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Abstract

Using the S&P GSCI and its five component sub-indices, we show that considering

each commodity separately yields nontrivial hedging gains in and out of sample. During

1999–2019, the maximum Sharpe ratio portfolio assigns positive weights to the GSCI

Energy, Industrial and Precious Metals, whereas only precious metals enter the optimal

portfolio after the financial crisis. In out-of-sample optimizations based on dynamic

conditional correlations, a subset of commodity futures excluding the GSCI Agriculture

and Livestock outperforms conventional stock-bond portfolios with and without the

overall GSCI. We argue that the “normal backwardation” in commodity markets has

broken down during our sample period.
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1 Introduction

At least since Markowitz (1952), it is well known that the correlation between candidate

assets is crucial for effective portfolio diversification. The lower the correlation between an

asset and all other assets in a portfolio, the larger is the potential reduction in the portfolio’s

risk from including this asset. In this paper, we investigate the scope of commodity futures

in portfolio diversification and optimization, which hinges on the cross-correlations between

their returns and the returns on traditional assets, such as stocks and bonds. Given that the

correlations of the returns on stocks, bonds, and commodity futures are likely time-varying,

the weight of the latter in the optimal portfolios might also change over time.

Using Standard&Poor’s global commodity investment benchmark (formerly the Goldman

Sachs Commodity Index ) GSCI and its five component sub-indices, we show that considering

the underlying commodity futures separately yields nontrivial hedging gains over a conven-

tional stock-bond portfolio both in and out of sample. Throughout our sample period from

January 1999 to December 2019, the maximum Sharpe ratio portfolio assigns substantial

weight to the GSCI Precious Metals and, to a lesser extent, the GSCI Energy and Industrial

Metals, whereas only precious metals are included in the optimal portfolio after the financial

crisis of 2007–2008. In out-of-sample portfolio optimizations based on a dynamic conditional

correlations (DCC) model, a subset of commodity futures excluding the GSCI Agriculture

and Livestock outperforms conventional stock-bond portfolios as well as a portfolio consid-

ering the overall GSCI. We argue that the theory of “normal backwardation” proposed by

Keynes (1930) and Hicks (1939), which implies that there are more participants with hedging

demand than speculators willing to supply these hedging services and thus positive risk pre-

mia for buyers in commodity futures markets, ceased to hold for all GSCI sub-indices either

prior to or during the financial crisis. This is likely due to the increased “financialization”

of commodity markets after 2000.

We are not the first to consider the hedging gains from investing in commodity futures.

Early research by Bodie and Rosansky (1980), Bodie (1983), and Edwards and Park (1996),

for example, has illustrated the suitability of commodity futures as an inflation hedge.1

1The inflation-hedge property is not surprising, given that commodity futures are a bet on future spot
prices, which are directly related to components in the basket of commodities underlying the consumer or
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Jensen et al. (2000) report dramatic improvements in the return and risk performance of a

portfolio from including commodity futures during their sample period from January 1973

to December 1997.2 Similarly, Gorton and Rouwenhorst (2006) find that stocks and com-

modity futures obtained similar average returns during 1959–2004, while futures exhibited

slightly lower volatility. More recent studies argue that commodities have been increasingly

integrated in global financial markets after 2000, as commodity futures indices and exchange

traded funds (ETFs) tracking these indices reduced the cost of entry. This development

is often referred to as the “financialization” of commodities and suspected to increase the

correlation of asset returns across markets, thus making commodity futures less suitable for

diversification (see, e.g., Domanski and Heath, 2007; Tang and Xiong, 2012; Silvennoinen

and Thorp, 2013). In contrast, other studies report no change or a reduction in the cor-

relation of commodity returns with stock and bond returns (see, e.g., Büyüksahin et al.,

2009; Chong and Miffre, 2010).3 In light of mixed evidence and given that all of the above

studies use data from before the financial crisis of 2007–2008, the recent developments in

correlations across financial markets and the hedging benefits from investing in commodity

futures remain an open empirical question.

Besides this potential structural break around the financial crisis, futures contracts for

different commodities are often considered as a homogeneous class of assets. When commod-

ity futures differ in their risk and return properties, however, in particular in their respective

correlations with stocks and bonds, this may lead to biased conclusions about the scope for

diversification. Jaiswal and Uchil (2018), for example, find evidence in favor of the common

wisdom that precious metals are a safe haven in times of financial-market turmoil and ex-

hibit thus widely different return dynamics than energy commodities or industrial metals,

the prices of which tend to be driven by (expectations about) global aggregate demand.

In order to illustrate the importance of distinguishing between different commodities,

consider Figure 1, which depicts the development of the GSCI Industrial Metals, Precious

producer price index used to calculate rates of inflation (Gorton and Rouwenhorst, 2006).
2Considering commodity futures increases the portfolio’s average annual return by six percentage points

relative to a portfolio with stocks and bonds only, while keeping the standard deviation constant at 4%.
3Büyüksahin et al. (2009), for example, conclude that the correlation of commodities with stocks and

bonds has not changed significantly during 1991–2007, despite increased interest in commodity futures as an
investment vehicle.
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Figure 1: Index of cumulated percentage changes during the COVID-19 pandemic (nor-
malized to 100 on January 1, 2020)

Metals, and Energy, respectively, where all three sub-indices are normalized to 100 in Jan-

uary 2020. During the ongoing COVID-19 pandemic, the cumulated returns on the three

component sub-indices clearly diverge. While precious metals futures had realized cumulated

returns of about 20% by the end of June, industrial metals and energy futures lost about

10% and more than 50%, respectively, as the global economy faced strong headwind.

In light of this heterogeneity across different commodities, we investigate the hedging

benefits from considering the overall GSCI as well as each of its five component sub-indices

— Energy, Industrial Metals, Precious Metals, Agriculture, and Livestock — separately for

inclusion in a conventional stock-bond portfolio. Given that the GSCI is weighted according

to world production volumes, it assigns a weight of 62% to Energy in 2019 (see Table 1),

which is not necessarily optimal from a hedging perspective. Hence, portfolio optimizations

considering the GSCI sub-indices separately may well imply very different optimal allocations

across the different commodities.

The rest of this paper is structured as follows. Section 2 discusses the implications of

Keynes’ theory of normal backwardation for commodity futures markets. Section 3 presents

the data and summary statistics for stocks and bonds as well as the overall GSCI and its five

component sub-indices. In Section 4, we conduct in-sample portfolio optimizations based on
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different loss functions both for the entire sample period and splitting the latter into two sub-

samples, prior to and after the financial crisis of 2007–2008, to allow for a structural break due

to the “financialization” of commodity markets. In Section 5, we conduct real-time (pseudo)

out-of-sample portfolio optimizations using a dynamic conditional correlations (DCC) model

to predict the correlations between candidate assets over the investment horizon. Section

6 discusses possible explanations for our in-sample and (pseudo) out-of-sample results and

provides evidence that Keynes’ theory of normal backwardation has broken down during our

sample period. Section 7 concludes. Our robustness checks are deferred to the appendix.

2 Commodity Futures and “Normal Backwardation”

In commodity markets, the spot price for immediate delivery coexists with several prices for

delivery at different points in time in the future. Accordingly, a commodity futures contract

specifies the purchase or sale of a certain quantity of a commodity at a given price at a

future point in time. The value of a futures contract at maturity equals zero, as the spot

and the futures price coincide. Futures contracts are settled each day, whereby the original

contract is replaced by a new one at the current futures price, while the buyer and the seller

exchange the difference between the old and the new futures price via transfers from their

margin accounts.4

Futures markets provide a hedging opportunity for commodity producers. If the time to

market of a commodity amounts to six months, for example, the producer may sell forward

her output immediately with delivery in six months at the 6-month futures price. This allows

locking in the difference between the 6-month futures price and the commodity’s production

costs as a risk-free profit, while avoiding the exposure to fluctuations in the future spot price.

According to Keynes (1930), producers of seasonal crops with a time to market of up to one

year, which are exposed to uncertainty regarding weather and future market conditions, for

example, are willing to pay a premium of 10 percent per annum in order to lock in their

profits in advance of production.5

4Margin accounts represent liquidity deposited with the broker by both parties that are sufficient to
absorb daily fluctuations in futures prices (Black, 1976).

5Keynes (1930) considers this to be a modest estimate of hedging premia, which may be substantially
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Note that spot and futures markets may be in two relative states. If a commodity’s spot

price is above its futures price, the market is said to be “in backwardation”.6 If the futures

price exceeds the commodity’s spot price instead, the market is said to be “in contango”.

This opens up the possibility for substantially different returns on commodity futures and

the corresponding spot contracts. Given that the fair futures price already account for the

expectations of market participants, anticipated price changes such as seasonal fluctuations,

for example, do not result in gains or losses on commodity futures.

Keynes’ theory of “normal backwardation” originates from the observation that there

are more sellers of futures contracts willing to accept a price below the expected future spot

price in exchange for insurance against unexpected price drops. This hedging premium at-

tracts investors and speculators, which are willing to absorb the supply of futures contracts.

Due to an excess demand for hedging by producers, which suppresses current futures prices

below expected future spot prices, commodity markets are assumed to be in backwardation

most of the time — hence the adjunct “normal” (Keynes, 1930). Gorton and Rouwenhorst

(2006) find empirical evidence for Keynes’ theory during 1959–2004, when the returns on

commodity futures significantly exceeded the returns on commodity spot prices. The ques-

tion is whether this regularity still holds, despite the recent “financialization” of commodity

markets described in the introduction.

Finally, it is important to distinguish between backwardation as a market state and the

theory of normal backwardation. Against the intuition, a commodity market may be in a

state of contango and still be consistent with Keynes’ theory. As an example, suppose that

the spot price of crude oil is expected to increase by 10 percent in the upcoming six months

and that the 6-month futures price of crude oil is 5 percent above the current spot price.

In this case the market is currently “in contango”, as the futures price exceeds the current

spot price, while normal backwardation continues to hold, as the expected future spot price

exceeds the corresponding futures price.

higher in less organized markets.
6To be precise, “(normal) backwardation” describes a state, where the expected spot price at maturity

exceeds the current futures price of a commodity. Given that the expected future spot price is unobservable,
the current spot price is generally assumed to be the best predictor under the efficient market hypothesis.
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3 Data

In this paper, we use weekly and monthly data for January 1999 through December 2019.

This 21-year sample period allows for robust estimation and comprises similar sub-samples

before and after the financial crisis of 2007–2008.

3.1 Global stocks and bonds

As a proxy for a diversified global stock portfolio, we use the Morgan Stanley Capital Inter-

national (MSCI) All Country World Index, which includes more than 2,700 stocks listed in

23 developed and 24 emerging markets. The weight of each stock in the index is determined

by its market capitalization.

As a proxy for a globally representative government bond index with varying duration,

we include the Bloomberg Barclays Global Treasury Total Return Index Value Unhedged7,

which comprises local currency government debt of 37 investment grade countries with 24

different currencies, including both developed and emerging markets.

As a proxy for the risk-free rate of return, we use the yield on 3-month US treasury bills.

3.2 The S&P GSCI

Standard&Poor’s global commodity investment benchmark (formerly the Goldman Sachs

Commodity Index ) GSCI represents a world production-weighted index of 24 exchange-

traded futures contracts (as of January 2020). The weight of each commodity is based

on its average worldwide production over the past five years. Although there is no general

restriction on the total number of futures contracts, certain eligibility criteria ensure that

only commodity futures with sufficient liquidity and investability are included in the GSCI.

7Source: Bloomberg Index Services Limited. BLOOMBERG® is a trademark and service of Bloomberg
Finance L.P. and its affiliates (collectively “Bloomberg”). BARCLAYS® is a trademark and service
mark of Barclays Bank Plc (collectively with its affiliates, “Barclays”), used under license. Bloomberg
or Bloomberg’s licensors, including Barclays, own all proprietary rights in the Bloomberg Barclays Indices.
Neither Bloomberg nor Barclays approves or endorses this material, or guarantees the accuracy or complete-
ness of any information herein, or makes any warranty, express or implied, as to the results to be obtained
therefrom and, to the maximum extent allowed by law, neither shall have any liability or responsibility for
injury or damages arising in connection therewith.
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Table 1: Composition of Standard&Poor’s global commodity investment benchmark GSCI

Subindex Weight Commodities Included

Energy 62.63% Crude Oil (and supporting contracts) and Natural Gas

Petroleum 59.52% Crude Oil (and supporting contracts)

Non-Energy 37.37% All commodities not included in Energy Sub-Index

Industrial Metals 11.16% Aluminum, Copper, Lead, Nickel, and Zinc

Precious Metals 4.14% Gold and Silver

Agriculture 15.41% Wheat (Chi. & Kan.), Corn, Soybeans, Coffee, Sugar, Cocoa,

and Cotton

Grains 11.42% Wheat (Chi. & Kan.), Corn, and Soybeans

Livestock 6.65% Lean Hogs, Live Cattle, and Feeder Cattle

Note: Weights based on the average contract reference prices for the 2019 annual calculation period

The overall index comprises five sub-indices — Energy, Industrial Metals, Precious Met-

als, Agriculture, and Livestock. Table 1 reports the weight of each sub-index in the overall

GSCI based on their average contract reference prices for 2019. It is important to note the

dominant weight on crude oil futures, which is a direct consequence of the production-based

weighting scheme. Also note that the weight on precious metals is only 4.14%, although

gold is considered as a suitable asset for portfolio diversification and a safe haven in tur-

bulent times. These observations already raise the question, whether the GSCI’s weighting

scheme is optimal from a financial investor’s point of view, and indicates potential scope for

improvement by including the GSCI sub-indices separately in a hypothetical global portfolio.

The purpose of the index is to replicate the development of a portfolio of commodities.

Accordingly, the corresponding futures are not held until maturity, as this would result in the

physical delivery of the commodities. At the beginning of each month, futures nearing their

expiration dates are instead sold and substituted by futures with the next closest expiration

date. These trades are executed in the 5-day roll period between the fifth and ninth business

day of each month.

In what follows, GSCI consistently refers to the S&P GSCI Total Return (TR) index.

Given that the corresponding futures contracts are fully collateralized, this commodity index

represents the closest substitute for an investment in stocks or bonds.8 The value of the GSCI

8In this case, “fully collateralized” means that the amount outstanding of a hypothetical payment at

8



TR on each business day equals the product of three components, i.e.

1. the value of the index on the preceding business day,

2. the sum of the Contract Daily Return (CDR) and the Treasury Bill Return (TBR) on

the business day plus 1,

3. the TBR on each non-business day since the last business day plus 1.

Accordingly, the formal representation of the value on day d is given by

GSCI TRd = GSCI TRd−1 ⋅ (1 +CDRd + TBRd) ⋅ (1 + TBRd)days, (1)

where CDRd denotes the ratio of the Total Dollar Weight Obtained (TDWO) on any given

business day divided by the Total Dollar Weight Invested (TDWI) on the preceding business

day minus 1, i.e.

CDRd =
TDWOd

TDWId−1
− 1, (2)

where TDWOd denotes the sum of the dollar weights of all futures contracts obtained from

an investment in the index on the preceding business day and TDWId−1 the sum of the

dollar weights on the preceding business day. The TBR on each calendar day d is given by

TBRd = [ 1

1 − 91
360 ⋅ rd−1

]
1
91 − 1, (3)

where rd−1 denotes the interest rate on the treasury bill as of the most recent business day.

3.3 Descriptive Statistics

Each panel of Figure 2 plots an index of cumulated percentage changes in the overall GSCI

and its component sub-indices, respectively, that is normalized to 100 in January 1999. Note

that the scale of the vertical axis varies between panels. Panels (a) and (b) illustrate the

similarity between the GSCI and its energy sub-index, reflecting the dominant weight of the

later in the overall index. It is therefore important to note that the GSCI Energy peaks at

maturity is invested in US treasury bills.
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Figure 2: Index of cumulated percentage changes (normalized to 100 in January 1999)

an index value of 1,057% on the eve of the financial crisis of 2007–2008, while it virtually

collapses during the crisis and performs poorly afterwards. Despite a slight recovery during

2009–2014, the price of crude oil futures contracts and thus the GSCI Energy declined again

starting in 2014, due to an unexpected increase in global supply fueled by US shale oil

producers and OPEC’s reluctance to cut production as well as weaker-than-expected global

economic growth and concerns about the Chinese economy on the demand side (see, e.g.,

Baumeister and Kilian, 2016; Ellwanger et al., 2017).

Similarly, the industrial and precious metals sub-indices realized substantial cumulative

returns prior to the financial crisis, peaking at 495.2 and 659.6% of their 1999 values, re-

spectively. At the same time, panels (c) and (d) illustrate the differences between the two

commodity classes. While the prices of industrial metals futures surged prior to and suffered

during the financial crisis, the prices of precious metals futures only started to pick up after-

wards. The latter development is likely related to inflation concerns fueled by central banks’

unconventional monetary policy actions and consistent with the widespread perception of
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Figure 3: Spot versus futures price index for GSCI Agriculture and Livestock (normalized
to 100 in January 1999)

precious metals, in particular gold, as an inflation hedge and a safe haven in times of financial

market turmoil (Baur and McDermott, 2010).9

Regarding the cumulated changes in Agriculture and Livestock in panels (e) and (f), recall

that the GSCI sub-indices are based on the prices of futures contracts rather than the prices of

the underlying commodities. As outlined in the previous section, spot and futures prices may

be disentangled for extended periods of time. While this will be discussed in greater detail

in Section 6, Figure 3 illustrates that, during our sample period, the GSCI Agriculture and

Livestock performed worse than the spot prices of the underlying commodities, where all are

normalized to 100 in 1999. In any case, institutional investors as well as the providers of the

GSCI index are bound to invest in commodities via futures, given that unprocessed orange

juice and lean hog, for example, cannot be stored in large quantities over long periods and

involve nontrivial inventory costs. Note also that a growing number of institutional investors

refrains from investing in agriculture or livestock commodities for ethical reasons.

Panels (g) and (h) of Figure 2 plot the cumulated changes of the MSCI All Country World

index and the Bloomberg Barclays Global Treasury Total Return Index Value Unhedged rel-

ative to their values in 1999. The MSCI World reflects the boom and bust of the dot-com

bubble at the start of the sample period and the global stock market boom leading up to the

financial crisis of 2007–2008. Due to their stable upward trend after 2009, stock investments

9There is an ongoing debate about the reasons for the decline in precious metals futures prices starting
in 2013. Candidate explanations include dissolving inflation concerns, bullish stock markets, more careful
monetary policy and forward guidance, as well as computerized trading.
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nevertheless realized a decent average return during our sample period. Nevertheless, it was

outperformed by the global bonds index over the past 21 years. With monetary policy rates

close to the zero lower bound (ZLB) in many developed economies, investment-grade gov-

ernment bonds with longer maturities, which still yielded a decent nominal return, attracted

large amounts of liquidity. It is important to note that, with policy rates remaining close

to the ZLB, there is little room for similar price surges in the near future, consistent with a

flattening of the index in panel (h) after 2013.

Table 2 reports the geometric mean and standard deviation of each asset’s monthly return

for 1999:1–2019:12 in percent. Consistent with the cumulated percentage changes in Figure

2, the GSCI Agriculture and Livestock realized negative returns on average over our sample

period. Moreover, agricultural futures exhibited an exceptionally large volatility in returns.

While futures contracts on precious metals and energy commodities yield the highest average

returns, the standard deviation of the GSCI Energy exceeds that of the GSCI Precious Metals

by about 80%. On average over our sample period, the overall GSCI performed worse than

both the global stocks and bonds indices, also due to a negative average returns on two of its

component sub-indices. In light of its competitive average return during our sample period,

it seems in order to point out the low volatility of the global bonds index, which indicates

that bonds are likely to carry a large weight in the optimal portfolios.

As pointed out beforehand, any hedging gains depend on the correlations between candi-

date assets. Table 3 therefore reports the contemporaneous correlations of monthly returns

Table 2: Summary statistics of monthly returns

Index Geometric Mean (in %) Standard Deviation (in %)

GSCI 0.085 6.650

GSCI Energy 0.201 9.146

GSCI Industrial Metals 0.362 6.099

GSCI Precious Metals 0.607 5.201

GSCI Agriculture −0.420 6.038

GSCI Livestock −0.172 4.281

MSCI Stocks 0.273 4.675

Global Bonds 0.303 1.904

Note: Geometric means and standard deviations of monthly returns for 1999:1–2019:12

12



Table 3: Contemporaneous correlations of monthly returns for 1999:1–2019:12

Index GSCI Energy Industrial Precious Agriculture Livestock Stocks Bonds

GSCI 1.000

Energy 0.977 1.000

Industrial 0.550 0.456 1.000

Precious 0.288 0.219 0.349 1.000

Agriculture 0.383 0.234 0.333 0.224 1.000

Livestock 0.129 0.080 0.095 −0.064 −0.015 1.000

Stocks 0.479 0.424 0.554 0.160 0.336 0.100 1.000

Bonds 0.144 0.099 0.179 0.447 0.248 −0.164 0.194 1.000

on the GSCI and its component sub-indices with the global stocks and bonds indices. The

lower the correlation of a given asset with all other candidate assets, the more suitable it is

to reduce the standard deviation and thus the risk of the optimal portfolio. First, note that

the large weight of the energy sub-index in the overall GSCI leads to an almost perfect cor-

relation of 0.977, in line with the comovement of the corresponding time series in panels (a)

and (b) of Figure 2. Moreover, the overall GSCI comoves strongly with its industrial metals

sub-index and the global stocks index, where the contemporaneous correlation amounts to

0.550 and 0.479, respectively. Finally, the GSCI Industrial Metals correlates strongly with

the global stocks index. Accordingly, these assets hardly qualify for portfolio diversification

during our sample period.

In contrast, the global bonds index displays relatively low contemporaneous correlations

with all asset classes but precious metals, which posses similar safe-haven properties and went

through the financial crisis largely unscathed. Given that the contemporaneous correlation

between bonds and livestock futures is negative and nontrivial, the two assets promise the

largest hedging gains ex ante. Focusing only on the matrix of contemporaneous correlations,

however, we ignores the negative average return on livestock futures during our sample

period. While a negative correlation coefficient between two assets indicates possible hedging

gains from including them in a portfolio, only two additional asset pairs display this property

in Table 3, which both involve the GSCI Livestock as well as the GSCI Precious Metals and

the GSCI Agriculture, respectively.
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4 In-Sample Portfolio Optimization

As a starting point, we construct optimal in-sample portfolios that satisfy a selection of

widely used objective functions. The aim is to show whether including (i) the overall GSCI

and (ii) its five component sub-indices in the pool of candidate assets yields performance

gains relative to the corresponding optimal portfolios with only stocks and bonds. In order

to provide a comprehensive overview, we compare an equally weighted portfolio against a

minimum risk efficient, a global minimum variance, and a maximum Sharpe ratio portfolio

based on the respective return and standard deviation. Throughout, we exclude short posi-

tions, as investment trusts are generally not permitted to use short selling except for hedging

purposes in order to neutralize long positions in the same asset.

4.1 Equally weighted portfolio

The equally weighted portfolio assigns constant and identical weights to all candidate assets.

Accordingly, it represents a näıve benchmark rather than the outcome of an optimization

procedure. When considering only the MSCI All Country World Index and the Bloomberg

Barclays Global Treasury Total Return Index, the corresponding weights are one half each.

When we also consider commodity futures, a näıve weight of one third is assigned to stocks

and bonds as well as (i) the overall GSCI and (ii) its five component sub-indices, respectively.

In the latter case, each component sub-index receives thus a weight of 1/15.

4.2 Minimum risk efficient portfolio

The minimum risk efficient portfolio minimizes the portfolio’s variance subject to attaining

a given target return — in our case the return of the equally weighted portfolio. When

considering only stocks and bonds, this implies that the minimum risk efficient portfolio

trivially replicates the equally weighted portfolio, which generally represents the unique only

combination of stocks and bonds that yields exactly the target return. The constrained
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optimization problem for the minimum risk efficient portfolio can be formalized as

min
wi

σ2
p =

n

∑
i=1

n

∑
j=1
wiwjσiσjρij s.t.

n

∑
i=1
wi = 1, 0 ≤ wi ≤ 1, r∗ =

n

∑
i=1
wiri = requal, (4)

where σ2
p denotes the portfolio’s variance, wi the weight of asset i, σi the standard deviation

of asset i, ρij the contemporaneous correlation between assets i and j, r∗ the return of the

minimum risk efficient portfolio, and requal the return of the equally weighted portfolio.10

4.3 Global minimum variance portfolio

The global minimum variance portfolio minimizes the portfolio variance without imposing

a constraint on the portfolio’s return. Accordingly, it is determined only by the standard

deviations of and correlations between the candidate assets. The corresponding optimization

problem resembles that of the minimum risk efficient portfolio, while we drop the constraint

on the portfolio return, i.e.

min
wi

σ2
p =

n

∑
i=1

n

∑
j=1
wiwjσiσjρij s.t.

n

∑
i=1
wi = 1, 0 ≤ wi ≤ 1, (5)

where all variables are as defined in (4).

4.4 Maximum Sharp ratio portfolio

Proposed by Sharpe (1994), the Sharpe ratio divides the excess return over the risk-free rate

of return by the standard deviation of an asset i, i.e.

Sharpe ratioi =
ri − rf
σi

, (6)

where ri and σi denotes the return and the standard deviation of the asset, respectively,

and rf the risk-free rate of return. The maximum Sharpe ratio portfolio maximizes the

Sharpe ratio of the portfolio. Given that this occurs when the capital allocation line (CAL) is

10Note that the weights on assets in the portfolio sum to 1, i.e. the portfolio is fully invested, are bounded
below by zero, which prevents short selling, and replicate the target return of the equally weighted portfolio.
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tangential to the efficient frontier, i.e. the upward sloping part of the hyperbola of “efficient”

portfolios, it is also known as the “tangency portfolio”.

The CAL starts at the risk-free rate and its slope equals the ratio between the incremental

increases in the portfolio’s return and standard deviation, i.e. the Sharpe ratio. Accordingly,

the Sharpe ratio is maximized, when the CAL is tangential to the efficient frontier:

max
wi

Sharpe ratiop =
rp − rf
σp

s.t.
n

∑
i=1
wi = 1, 0 ≤ wi ≤ 1, (7)

where all variables have been defined above. For the risk-free rate of return, rf , we use the

average monthly return on 3-month US treasury bills over the entire sample period.

4.5 Empirical results for 1999–2019

Table 4 reports the portfolio optimization results with only stocks and bonds. As mentioned

above, the minimum risk efficient portfolio with two candidate assets trivially replicates the

equally weighted portfolio and is therefore ignored.

The results show that the equally weighted portfolio attains the highest monthly return

due to its comparatively high weight on stocks. At the same time, it features the highest

volatility and thus the lowest Sharpe ratio in Table 4. The global minimum variance portfolio

assigns a weight of 91.38% to bonds, which is similar to the optimal weight of 85.90% in the

maximum Sharpe ratio portfolio. The results illustrate the gains from portfolio diversifica-

tion, as the standard deviation of the global minimum variance and of the maximum Sharpe

ratio portfolio is below that of bonds, although bond returns exhibit the lowest standard

Table 4: Optimal in-sample portfolios with stocks and bonds

Portfolio
Portfolio weight on Monthly Standard Sharpe

Bonds Stocks Return Deviation Ratio

Equally weighted 50.00 50.00 0.3539% 0.0269 0.0762

Global minimum variance 91.38 8.62 0.3280% 0.0186 0.0962

Maximum Sharpe ratio 85.90 14.10 0.3314% 0.0188 0.0971

Note: The risk-free rate equals the average monthly return on 3-month US treasury
bills for January 1999 through December 2019.
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deviation among the individual assets during our sample period. The results also confirm

that bonds, especially those with higher maturity and thus longer duration, experienced a

boom due to persistently low monetary policy rates.

Table 5 reports the optimal portfolios, when we consider the GSCI as a candidate asset.

Note that we generally find no improvement over the portfolios with only stocks and bonds.

During our sample period, the overall GSCI obtains zero weight in the minimum risk efficient

and the maximum Sharpe ratio portfolio, while its optimal weight in the global minimum

variance portfolio is a mere 1.5%. This seems at odds with results based on pre-2000 data,

where Jensen et al. (2000), for example, find considerable improvements in an optimal port-

folio’s return and risk from considering commodity futures in addition to stocks and bonds.

The seemingly contradictory findings in Table 5 suggest a structural break in commodity

futures markets during our sample period.

The portfolio optimization in Table 6 replaces the GSCI by its five component sub-

indices in order to qualify some of our previous findings. Although the overall GSCI turned

out to be largely irrelevant above, its sub-indices receive nontrivial weights in the optimal

portfolios. While the minimum risk efficient portfolio contains only 1.58% and 2.20% of the

energy and industrial metals sub-index, respectively, precious metals account for 8.24% and

outweigh thus stocks, which carry a mere 5.54%. The GSCI Agriculture virtually drops out

of the portfolio due to its negative average return and comparatively high volatility, while

the livestock sub-index accounts for 7.01%, despite attaining a slightly negative return on

average over our sample period. Relative to the equally weighted portfolio, the standard

Table 5: Optimal in-sample portfolios with the GSCI

Portfolio
Portfolio weight on Monthly Standard Sharpe

Bonds Stocks GSCI Return Deviation Ratio

Equally weighted 33.33 33.33 33.33 0.3396% 0.0344 0.0554

Minimum risk efficient 72.82 27.18 0.00 0.3396% 0.0205 0.0928

Global minimum variance 90.90 7.60 1.50 0.3272% 0.0186 0.0959

Maximum Sharpe ratio 85.90 14.10 0.00 0.3314% 0.0188 0.0971

Notes: The risk-free rate equals the average monthly return on 3-month US treasury bills
for January 1999 through December 2019. The target return of the minimum risk efficient
portfolio is the return of the equally weighted portfolio.
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Table 6: Optimal in-sample portfolios with GSCI sub-indices

Portfolio
Portfolio weight on Monthly Standard Sharpe

Bonds Stocks Energy Ind. Prec. Agri. Live. Return Deviation Ratio

EQW 33.33 33.33 6.67 6.67 6.67 6.67 6.67 0.3423% 0.0273 0.0707

MRE 75.42 5.54 1.58 2.20 8.24 0.00 7.01 0.3423% 0.0182 0.1062

GMV 76.47 3.91 0.00 0.00 0.00 0.32 19.30 0.2455% 0.0161 0.0599

MSR 52.35 6.06 4.00 4.42 33.17 0.00 0.00 0.4880% 0.0266 0.1273

Notes: The risk-free rate equals the average monthly return on 3-month US treasury bills for January 1999
through December 2019. EQW denotes the equally weighted, MRE the minimum risk efficient, GMV the
global minimum variance, and MSR the maximum Sharpe ratio portfolio, respectively.

deviation of monthly returns in the minimum risk efficient portfolio decreases from 2.73% to

1.82%, and the Sharpe ratio increases thus from 0.071 to 0.106.

The performance of the global minimum variance portfolio illustrates the pitfalls of disre-

garding returns in the portfolio optimization. Its lower standard deviation of 1.61% relative

to the minimum risk efficient portfolio comes at the cost of an average monthly return that

is about 10 basis points lower, implying a lower Sharpe ratio, as well. Note that the optimal

portfolio assigns nonzero weights only to commodity futures that correlate negatively with

bond or stock returns and offer thus the largest hedging gains. As a consequence, the GSCI

Agriculture and Livestock sub-indices carry positive weights notwithstanding their negative

average returns, while the portfolio is dominated by the global bonds index.

The maximum Sharpe ratio portfolio seems more interesting from a diversification point

of view. While the GSCI Energy and Industrial Metals carry minor weights of about 4%,

the precious metals sub-index accounts for one third of the optimal portfolio. This mix

of bonds, stocks, and commodity futures sub-indices yields an average monthly return of

almost 50 basis points at a standard deviation below that of the equally weighted portfolio

and maximizes thus the Sharpe ratio at 0.127. Recall that the maximum Sharpe ratio in

both Tables 4 and 5 was 0.097. Due to their negative average returns, neither the GSCI

Agriculture nor the GSCI Livestock are included in the maximum Sharpe ratio portfolio.

When we split our sample in the period prior to and the period after the financial crisis, i.e.

January 1999 through December 2007 and July 2009 through December 2019, respectively,

we find that the overall GSCI and its five component sub-indices allow for optimal portfolios
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with higher average returns and lower volatility mainly during the earlier sub-sample. While

the minimum risk efficient and the global minimum variance portfolio assign weights of one

sixth to the GSCI Livestock due to its hedging benefits, the maximum Sharpe ratio portfolio

assigns weights between 19 and 29.4% to the GSCI Energy, Industrial Metals, and Precious

Metals sub-indices mainly for return considerations.

In contrast, the overall GSCI virtually drops out of the optimal portfolios in the latter

sub-sample, where only livestock futures carry positive weights in the minimum risk efficient

and the global minimum variance portfolio, while precious metals futures retain a positive

weight in the maximum Sharpe ratio portfolio. Detailed results for the period prior to and

the period after the financial crisis are presented and discussed in Appendix A.1.

5 Out-of-Sample Portfolio Optimization

An important caveat of the in-sample portfolio optimization in Section 4 is that it determines

the optimal constant allocations only ex post, when the realized returns and volatilities have

been observed. The previous results are thus purely descriptive. In this section, we instead

investigate the opportunity for hedging gains from considering commodity futures ex ante.

For this purpose, we set aside part of our sample as a pseudo out-of-sample period and use

an econometric model to predict the volatilities and correlations of asset returns in real time.

5.1 Econometric methodology

The weapon of choice for modeling time series in empirical finance are so-called autoregressive

conditional heteroscedasticity (ARCH) models (Engle, 1982), which simultaneously estimate

a model of the mean and of the conditional variance of the time series. The popular general-

ized ARCH (GARCH) extension by Bollerslev (1986) furthermore includes a moving-average

component in the model of the conditional variance that may facilitate a more parsimonious

representation of time-varying volatilities.

As mentioned earlier, the potential gains from portfolio diversification crucially depend

on the correlations between candidate assets. Given that standard GARCH models predict

the conditional mean and variance of univariate time series, they cannot be used to predict
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the correlations between multiple assets. We therefore draw on the dynamic conditional cor-

relation (DCC) model proposed by Engle (2002) (see also Chong and Miffre, 2010; Sadorsky,

2014; Pouliasis and Papapostolou, 2018), i.e. a multivariate approach to modeling both the

conditional volatilities and the conditional correlations for a set of candidate assets.

The DCC model is estimated in two steps. In the first step, a univariate GARCH model is

specified and estimated for each asset. In the second step, the univariate GARCH models are

used to estimate the DCC coefficients (see Engle, 2002). Before setting up the DCC model

and discussing the empirical results, the univariate GARCH model is shortly explained below.

Given that the DCC model requires a sufficient number of observations in the estimation

window, the subsequent analysis is based on weekly rather than monthly data.

5.1.1 GARCH model

Although the GARCH model for the conditional variance may be estimated jointly with an

autoregressive moving average (ARMA) model for the conditional mean of each time series,

neither of the weekly or monthly return series exhibits autoregressive or moving average

patterns. Consistent with the efficient market hypothesis, the return series resemble white

noise, whereas the volatility of returns is clustered in time and may thus be predictable.

For each asset, we estimate a GARCH(1,1) model, where the error term is modeled as

εt = νt
√
ht, (8)

where νt denotes a white-noise process with E [νt] = 0 and σ2
ν = 1, and

ht = α0 + α1ε
2
t−1 + β1ht−1. (9)

Given that νt represents a white-noise process, both the conditional and the unconditional

mean of εt equals zero, whereas the conditional variance of εt is given by Et−1 [ε2t ] = ht.
While less parsimonious ARCH or GARCH processes are conceivable for the conditional

volatilities, the p-values of the Ljung-Box Q-statistics in Table 7 suggest that a GARCH(1,1)

model eliminates any serial correlation in the simple and squared standardized residuals for
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Table 7: p-values of Ljung-Box Q-statistics for univariate GARCH(1,1) processes

standardized residuals squared standardized residuals

Lags 1 4 12 1 4 12

GSCI 0.1166 0.1836 0.1628 0.7243 0.5225 0.8721

Energy 0.1134 0.2238 0.1254 0.9560 0.3329 0.5320

Industrial Metals 0.3096 0.8635 0.3919 0.8511 0.8095 0.1495

Precious Metals 0.5434 0.8629 0.7910 0.0471∗∗ 0.0200∗∗ 0.0190∗∗

Agriculture 0.5470 0.5439 0.7527 0.5680 0.9803 0.9570

Livestock 0.3527 0.0409 0.4165 0.5570 0.8382 0.9183

Stocks 0.8735 0.9686 0.9971 0.3573 0.6469 0.1181

Bonds 0.6058 0.2801 0.3660 0.7114 0.4733 0.4297

Note: ∗∗ indicates statistical significance at the 5% level.

all assets, except the GSCI Precious Metals, for the first 1, 4, and 12 weekly lags.

5.1.2 DCC model

In the DCC model, the vector of returns for N assets, rt = (r1t, r2t, ..., rNt), is modeled as

rt = µt + εt, εt = ztH1/2
t , (10)

where µt denotes the vector of conditional means of the returns. With no ARMA processes

present in the returns, we assume a random walk for each asset price, implying constant

conditional means, i.e. µt = µ, as in Fleming et al. (2001). In (10), zt denotes the vector of

standardized residuals and Ht the conditional covariance matrix

Ht ≡DtPtDt,

where

Dt = diag (h1/21t , h
1/2
2t , . . . , h

1/2
Nt ) ,

Pt = [diag (Qt)]−1/2Qt [diag (Qt)]−1/2 ,

Qt = (1 − a − b)P + azt−1z′t−1 + bQt−1,
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i.e. Dt denotes the N×N diagonal matrix of volatilities and Pt the N×N symmetric matrix of

dynamic conditional correlations with ρii,t = 1 for i = 1,2, ...N ∀t. Qt is an N ×N symmetric

positive-definite matrix, while a ≥ 0 and b ≥ 0 denote the shock and persistence parameter of

the DCC model, respectively. The off-diagonal elements of Ht are equal to hithjtρij,t, i ≠ j
(see Bollerslev, 1990; Engle, 2002).

Given that the first step of estimating the DCC model assumes GARCH(1,1) processes,

the conditional variance of asset i in period t is given by

hit = ωi + α1 (rit−1 − µit)2 + β1hit−1,

where ωi > 0 and α1, β1 ≥ 0 guarantees non-negative variances, while α1 +β1 < 1 ensures that

the variance processes are stationary.

5.2 Empirical results for 1999–2019

In this section, we evaluate the out-of-sample performance of the optimal portfolios with and

without the overall GSCI and its five component sub-indices, respectively, while splitting our

sample into an estimation and an evaluation period. The optimal weight of each candidate

asset is determined from an expanding estimation window that increases in length, as the

evaluation period moves forward in time.11 As a shortcut to accounting for transactions

costs, we assume that the optimal portfolios are rebalanced at an annual frequency.

Given that the DCC model requires many observations in order to estimate the variances

of and covariances between asset returns, the exercise is based on weekly data. As an initial

estimation period, we set aside the first four years of our sample, i.e. 1999–2002, to predict

correlations and derive thus optimal portfolio weights for the initial evaluation period, 2003.

In each round of the portfolio optimization, the estimation window expands, as more recent

observations are included, while the length of the evaluation period is constant at one year.

Having estimated the coefficients of the DCC model, we then use the 52-week-ahead forecasts

of the variances and covariances of asset returns to derive the optimal portfolio weights.

11Alternatively, we could use a rolling estimation window with constant length, which replaces the most
distant observations in the window by more recent ones, as we move forward in time. In Appendix C, we
show that our main results are robust to using a rolling rather than an expanding estimation window.
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As in Section 4, we compare the performance of conventional stock-bond portfolios with

an extension that considers either the overall GSCI or its component sub-indices in order to

investigate whether commodity futures enhance the performance of the optimal portfolios

and whether distinguishing between commodities allows for additional risk or return gains.

Before presenting the optimal out-of-sample portfolios, we report the estimation results for

the DCC model.

5.2.1 Dynamic conditional correlations

Table 8 summarizes the coefficient estimates of the DCC model including stocks, bonds, and

the overall GSCI. For each asset class, µ denotes the intercept of the return series, i.e. the

only coefficient estimated for the model of the mean. Similarly, ω denotes the intercept, α

the shock, and β the persistence parameter of the respective GARCH process. While α and

β are highly statistically significant for stocks, bonds, and the GSCI, ω is insignificant at

Table 8: DCC coefficient estimates for stocks, bonds and the GSCI

Coefficient Std. error t-statistic p-value

GARCH (1,1)

S
to

ck
s

µ 0.0022 0.0006 3.8203 0.0001

ω 0.0000 0.0000 1.9401 0.0524

α 0.1640 0.0558 2.9362 0.0033

β 0.8021 0.0609 13.1697 0.0000

B
o
n

d
s

µ 0.0006 0.0003 2.2362 0.0253

ω 0.0000 0.0000 0.7266 0.4675

α 0.0515 0.0193 2.6655 0.0077

β 0.9332 0.0239 38.9988 0.0000

G
S

C
I

µ 0.0008 0.0009 0.8662 0.3864

ω 0.0000 0.0000 1.6334 0.1024

α 0.0685 0.0191 3.5907 0.0003

β 0.9080 0.0279 32.5694 0.0000

DCC (1,1)

a 0.0129 0.0080 1.6166 0.1060

b 0.8180 0.0960 8.5164 0.0000
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Figure 4: Dynamic conditional correlations of stocks, bonds, and the GSCI for 1999–2019

conventional levels, except for stocks.12 The shock and persistence parameters of the DCC

model, a and b, describe a non-linear relationship and are thus difficult to interpret.13 Note

that the parameters of the GARCH processes in the DCC model are the same as for the

respective univariate processes.

12Given that α + β ≤ 1 by construction, without a non-zero intercept coefficient, the variance of an asset
is weakly decreasing over time.

13With a = 0 and b = 1, the DCC model is identical to the constant conditional correlation (CCC) model.
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Figure 4 plots the estimated dynamic conditional correlations of the model summarized

in Table 8. Recalling that low or even negative correlations are most valuable for hedging

during times of financial market turmoil, it is important to note the peak in panel (a), which

suggests that the correlation between stocks and commodity futures exceeded 0.20 during

the financial crisis of 2007–2008, eliminating thus any benefits from diversification. Panel

(b) does not display a similar peak in the correlation between bonds and commodity futures.

Instead, the latter declined and even became slightly negative during the dot-com bubble in

2002, when GSCI returns dropped, albeit not as strongly as stock returns.

Table 9 summarizes the coefficient estimates of the DCC model, when the overall GSCI

is replaced by its five component sub-indices. Again, all estimated α and β coefficients as

well as DCC parameters a and b are highly statistically significant. Figure 5 illustrates the

corresponding dynamic conditional correlations. It is important to note that the correlation

between stocks and the GSCI Energy sub-index increases during the financial crisis and

remains high afterwards. Similarly, the correlations of all assets but bonds with the GSCI

Livestock, which displays the lowest correlations on average over the sample period, increase

during the financial crisis, when hedging benefits would have been most valuable. Finally,

the positive correlation between the GSCI Precious Metals and bonds after the burst of the

dot-com bubble and the US housing bubble in panel (o) illustrates the safe-haven properties

of precious metals during turbulent times.

5.2.2 Maximum Sharpe ratio portfolio

Due to the so-called “separation property”, a linear combination of the risk free asset and

the maximum Sharpe ratio portfolio aligns with different investor preferences regardless of

the degree of risk aversion, as the capital allocation line is weakly above the efficient frontier

(Tobin, 1958). The only difference between a risk-averse and a risk-loving investor is that

the former invests a larger share of the portfolio in the risk-free asset (see, e.g., Bodie et

al., 2014). For this reason, we start by comparing the maximum Sharpe ratio portfolios

while gradually increasing the set of candidate assets. Given the lack of serial correlation in

the return series, we use the means over the 4-year estimation period to predict the returns
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Table 9: DCC coefficient estimates for stocks, bonds, and GSCI sub-indices

Coefficient Std. error t-statistic p-value

GARCH (1,1)

S
to

ck
s

µ 0.0022 0.0006 3.8225 0.0001

ω 0.0000 0.0000 1.9506 0.0511

α 0.1640 0.0554 2.9585 0.0031

β 0.8021 0.0603 13.3007 0.0000

B
o
n

d
s

µ 0.0006 0.0003 2.2392 0.0251

ω 0.0000 0.0000 0.7237 0.4692

α 0.0515 0.0194 2.6531 0.0080

β 0.9332 0.0240 38.8062 0.0000

E
n

er
gy

µ 0.0015 0.0012 1.2503 0.2112

ω 0.0000 0.0000 1.3779 0.1682

α 0.0764 0.0229 3.3310 0.0009

β 0.8996 0.0349 25.8026 0.0000

In
d

u
st

ri
al

µ 0.0007 0.0007 0.9905 0.3220

ω 0.0000 0.0000 0.4281 0.6685

α 0.0878 0.0316 2.7773 0.0055

β 0.9013 0.0254 35.4467 0.0000

P
re

ci
ou

s µ 0.0010 0.0007 1.4207 0.1554

ω 0.0000 0.0000 1.8832 0.0597

α 0.0935 0.0319 2.9281 0.0034

β 0.8738 0.0406 21.5032 0.0000

A
g
ri

cu
lt

u
re µ -0.0011 0.0007 -1.5267 0.1268

ω 0.0000 0.0000 3.0052 0.0027

α 0.1272 0.0292 4.3501 0.0000

β 0.8158 0.0368 22.1501 0.0000

L
iv

es
to

ck

µ 0.0001 0.0006 0.2151 0.8297

ω 0.0000 0.0000 6.6665 0.0000

α 0.0468 0.0048 9.7694 0.0000

β 0.9315 0.0061 153.0461 0.0000

DCC (1,1)

a 0.0181 0.0050 3.6032 0.0003

b 0.9277 0.0310 29.8866 0.0000
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Figure 5: Dynamic conditional correlations of stocks, bonds, and GSCI sub-indices for
1999–2019
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during the evaluation period.14 As a proxy for the future risk-free rate, we use the average

return on 3-month US treasury bills over the past 2 years. Due due to their stability over

time, the results for 4 years are qualitatively identical.

Figure 6 illustrates the performance of three maximum Sharpe ratio portfolios with and

without the overall GSCI and its five component sub-indices, respectively, for January 2003

through December 2019, where each portfolio is normalized to 100 in the first week of 2003.

Recall that, in this exercise, the portfolios are rebalanced on an annually basis. The optimal

out-of-sample weights for the maximum Sharpe ratio portfolios and their performances in

each year are reported in Appendix B.

Prior to the financial crisis, the optimal portfolio with commodity futures outperforms

the optimal portfolio with stocks and bonds only slightly. In the former, the overall GSCI

carries an average weight of 23.2% during 2003–2008. This advance is lost during 2008–2009,

when both the portfolio with and without the GSCI suffer similar losses. For 2009 through

2012, the two portfolios are fully invested in bonds and virtually moving together.

When considering the GSCI sub-indices separately, the relative gain over the conventional

stock-bond portfolio is an order of magnitude larger. In 2008, the cumulated portfolio return

peaks at 79.1%, as opposed to 43.2% for stocks and bonds and 48.9% for stocks, bonds, and

the overall GSCI. Although none of the maximum Sharpe ratio portfolios passes the financial

crisis without incurring substantial losses, the gap in cumulated returns widens rather than

closes during 2009–2012, as the portfolios with and without the overall GSCI drop to around

80% of their initial values, as opposed to 125% when considering the sub-indices separately.

Note that the latter portfolio assigns optimal weights between 27.6 and 43.5% to precious

metals and a small weight to the GSCI Agriculture in 2011, while the remaining portfolio is

invested in bonds. At the end of the sample period, the optimal portfolio including the GSCI

sub-indices realizes a cumulated return of 98.9%, whereas the stock-bond portfolio with and

without the overall GSCI realizes a cumulated return of 22.5% and 29.5%, respectively.

Figure 7 plots the annual Sharpe ratios of the optimal out-of-sample portfolios over time,

where negative Sharpe ratios are set to zero due to their lack of interpretability. This is the

14Predicting returns based on a shorter window increases the volatility of the Sharpe ratios, in particular
after the financial crisis of 2007–2008.
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Figure 6: Performances of optimal portfolios for January 2003 through December 2019

case for all three portfolios in 2005, 2008, and 2015, for example.15 A visual comparison of

the Sharpe ratios reveals the superior return-to-risk ratios of the optimal portfolio including

the GSCI sub-indices in 2009 and 2010, when it benefits from the relatively higher return

and lower volatility of precious metals futures. Note that the Sharpe ratios in Figure 7 are

determined ex-post, i.e. based on the observed portfolio returns and variances.

Note also that the Sharpe ratios of the optimal portfolios are identical in 2016, 2017, and

2019, when each of them is fully invested in stocks. This illustrates that the maximum Sharpe

ratio portfolio is prone to putting high weight on individual asset classes that performed well

in the recent past and incurs thus substantial risk. In what follows, we therefore complement

our findings with an out-of-sample analysis based on an alternative investor objective.

5.2.3 Global Minimum variance portfolio

Historically, the global minimum variance portfolio has performed well in particular during

periods of financial markets turmoil, such as the financial crisis of 2007–2008 (see, e.g., Clarke

et al., 2011). Moreover, the minimum variance approach relies only on the out-of-sample

predictions of variances and covariances, in line with the DCC model. By completely ignor-

15When the return of an asset falls short of the risk-free rate, the numerator in (6) becomes negative, and
a larger variance in the denominator increases rather than decreases the Sharpe ratio, ceteris paribus.
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Figure 7: Sharpe ratios of optimal portfolios for January 2003 through December 2019

ing return considerations, however, the approach is prone to overweighing asset classes with

inferior risk-return trade-offs or even negative average returns, such as the GSCI Agriculture

and Livestock sub-indices. Given that many institutional investors refrain from investing

in agricultural and livestock commodities for ethical reasons, we also compare the optimal

portfolios from the previous section, which consider stocks and bonds as well as the overall

GSCI and its five component sub-indices, with a global minimum variance portfolio that con-

siders only a subset of the GSCI’s components, while excluding the agriculture and livestock

sub-indices from consideration.16

Figure 8 depicts the performance of the optimal minimum variance portfolios for January

2003 through December 2019, where each portfolio is normalized to 100 in the first week of

2003. In contrast to the maximum Sharpe ratio portfolios in Figure 6, all four portfolios

pass the financial crisis relatively unscathed, illustrating the cardinal virtue of the minimum

variance approach. By investing a larger share in lower-yielding yet safer asset classes, the

approach avoids an excessively large exposure to unexpected turbulence in financial markets.

While the performance of the first three portfolios prior to the financial crisis is virtually

16Due to the negative average returns on the GSCI Agriculture and Livestock, a similar restriction on the
set of candidate assets has no effect for the maximum Sharpe ratio approach, where they consistently carry
very small weight in the optimal portfolio (see Table B.3).
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Figure 8: Performances of optimal portfolios for January 2003 through December 2019

identical, the portfolio considering the GSCI sub-indices separately falls short of the other

two during 2007–2009 and fails to catch up over the rest of our sample period. In contrast,

the stock-bond portfolios with and without the overall GSCI follow a very similar trend until

the end of 2013, when the conventional portfolio starts to realize somewhat higher cumulative

returns. It is important to note that all but the optimal portfolio with stocks, bonds, and

the GSCI sub-indices clearly outperform the maximum Sharpe ratio portfolios in Figure 6

by the end of our sample period. The reason is that the global minimum variance portfolios

don’t suffer a major blow to their values during the financial crisis.

Note that the most successful portfolio, which excludes the GSCI Agriculture and Live-

stock from consideration, invests more than 50 percent into bonds in each year of the sample

period (see Table B.8). Moreover, industrial and precious metals futures feature prominently,

for instance in 2004, where they account for 16.1 and 20.9%, respectively. By the end of

2019, this portfolio realizes a cumulated return of 136.3% relative to its starting value in

2003, outperforming the most successful maximum Sharpe ratio portfolio, which considers

all GSCI sub-indices separately, by a margin of 37.4 percentage points. The optimal stock-

bond portfolios with and without the overall GSCI still attain cumulated returns of 104.7

and 111.7% by December 2019.
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Figure 9: Sharpe ratios of optimal portfolios for January 2003 through December 2019

Note also that the GSCI Energy accounts for a maximum of 2.8% throughout our sample

period, as opposed to a weight of 62.6% in the overall GSCI in 2019 (see Table 1). After

2011, it even drops out of the optimal portfolio including all GSCI sub-indices, illustrating

yet again the importance of considering each component sub-index separately. The optimal

out-of-sample weights for the global minimum variance portfolios and their performances in

each year are reported in Appendix B.

Figure 9 plots the annual Sharpe ratios of the global minimum variance portfolios, where

negative values are again set to zero. Note, in particular, that the portfolio excluding the

GSCI Agriculture and Livestock attains the highest Sharpe ratio in six of the 12 years with

non-zero values, including 2003, 2009, and 2019.

The (pseudo) out-of-sample exercise in this section warrants two conclusions. First, the

overall GSCI helped enhance portfolio performances also in real time prior to the financial

crisis of 2007–2008, while losing much of its suitability for diversification during the second

half of the sample period. Second, investors may benefit from higher cumulated returns and

more hedging opportunities when considering the GSCI’s component sub-indices separately,

in particular during periods of financial market turmoil.
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6 The End of Normal Backwardation

In this section, we reassess the theory of normal backwardation described in Section 2.

Consistent with Keynes’ theory, earlier research by Bodie and Rosansky (1980) and Gorton

and Rouwenhorst (2006) reports significant risk premia in a broad index based on an equally

weighted cash-collateralized portfolio of commodity futures.17

When replicating our in-sample portfolio optimization for the period prior to and after

the financial crisis of 2007–2008, we find that the overall GSCI and most of its component

sub-indices drops out of the optimal portfolios in the later sub-sample (see Appendix A.2),

suggesting a structural break in commodity futures markets after the crisis. However, average

returns are not sufficient for contesting the theory of normal backwardation, as relatively

lower returns on futures could simply reflect a downward trend in spot prices. To evaluate

Keynes’ theory, we therefore contrast the relative development of a commodity’s futures

price with that of the corresponding spot price during our sample period.

Panel (a) of Figure 10 illustrates the development of an index of spot and futures prices,

respectively, for the overall GSCI during 1999–2019. Until October 2004, the relative price

development is in line with normal backwardation, as the index of commodity futures prices

increases faster than the spot price. Shortly before the financial crisis, however, the relative

performance reverses, and there are considerable rolling costs rather than rolling gains, as

postulated by Keynes.

The remaining panels of Figure 10 depict the relative price developments for the GSCI’s

component sub-indices. It is interesting to note that the energy futures in panel (b) perform

better than the spot price prior to, whereas the situation reverses during the financial crisis.

At the end of the sample period, the spot index outperforms the futures index by a margin of

331.8 relative to 65.7%, implying that the cumulated return on energy spot prices was about

five times larger than on energy futures.18 While one might argue that the unprecedented

increase in the spot price is largely due to the all-time low in real oil prices in November

17Analyzing commodity futures during 1950–1976, Bodie and Rosansky (1980) find average returns com-
parable to those of common stocks. Similarly, Gorton and Rouwenhorst (2006) find competitive average
returns during 1959–2004 and an annual risk premium on commodity futures of about 5%.

18Note that a spot-market investment in energy commodities requires buying and storing large amounts
of oil and gas physically for an extended period, which is unlikely to be economically profitable due to
non-trivial storing costs and availability in the short run.
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Figure 10: Spot versus futures price index for the GSCI and its five component sub-indices
(normalized to 100 in January 1999)

1998, the divergence of the spot and futures price index in panel (b) over time is far from

homogeneous and suggests a structural break around the financial crisis.

The spot and futures price indices for industrial metals in panel (c) display a very different

relationship. While they move together at the beginning of our sample period, futures prices

start outperforming the spot price prior to the financial crisis. After the crisis, the situation

reverses and the returns on the spot price outperform the returns on futures prices. By the

end of our sample period, the cumulated return on the GSCI Industrial Metals and on the

spot price index amount to 146.54 and 248.6%, respectively. However, this similarity must

be considered through the lens of a temporary excess return of 94.9 percentage points on the

futures index in March 2008, which is used up completely by December 2019.

Similarly, the spot and futures price indices for precious metals in panel (d) are virtually

indistinguishable up to their joint peak in September 2011 of 675.4 and 659.6, respectively.

From this point onwards, the spot price index outperform the GSCI Precious Metals by
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about 40 percentage points until the end of our sample period.

Due to the importance of physical storage costs, the spot and futures price indices for

agricultural and livestock commodities in panels (e) and (f) display a peculiar relationship.19

From the beginning of our sample period, both commodities exhibit substantial rolling costs,

which materialize as an increasing gap between the cumulated return on the spot and the

futures price index. Consequently, an investment into the respective futures index in January

1999 realizes a loss in December 2019, whereas a spot index investment yields a gain. Note

that the differences are sizeable. During our sample period, the spot price index for agri-

cultural and livestock commodities increases to 157.9 and 199.7, whereas the corresponding

futures price index decreases to 64.8 and 34.6%, respectively, of an initial investment.

Figure 10 illustrates substantial differences in the performances of spot and futures prices

and suggests a structural break in commodity markets, except for agriculture and livestock,

around the financial crisis of 2007–2008. The evidence in this paper qualifies thus the result

in Gorton and Rouwenhorst (2006) that an investment in futures contracts outperforms an

investment in commodities on the spot, consistent with the theory of normal backwardation.

During our sample period, this was not the case for the GSCI Agriculture and Livestock,

and is no longer the case for any other commodity in the GSCI in December 2019. As a

result, commodity producers obtain rather than pay a premium for hedging their sales prices

against unexpected fluctuations in the future spot price.

While this may seem counterintuitive, one candidate explanation is the relatively recent

“financialization” of commodity markets, as institutional investors are searching for oppor-

tunities to diversify their portfolios. Another possible explanation for the persistent change

in risk premia is that the effect of rolling activities on a futures price index increases in

the volume of the index. Hirshleifer (1989, 1990), finally, argues that risk premia in futures

markets depend on whether hedgers are short or long in the underlying asset. Building on

this hedging-pressure hypothesis, Basu and Miffre (2013) propose longing commodity futures

for which hedgers are short and speculators are long, while shorting commodity futures for

which hedgers are long and speculators are short. The authors find that a long-short portfolio

outperforms a long-only portfolio, consistent with hedging pressure.

19Note that some agricultural or livestock commodities are perishable and thus inherently unstorable.
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7 Conclusion

Historically, commodity futures exhibited competitive returns and low correlations with tra-

ditional asset classes, such as stocks and bonds (see, e.g., Bodie and Rosansky, 1980; Gorton

and Rouwenhorst, 2006). At the same time, an increasing “financialization” of commodities

took place prior to and during the financial crisis of 2007–2008, possibly inducing funda-

mental changes in the hedging properties of commodity futures. In this paper, we therefore

investigate whether the benefits recorded in the prior literature remain prevalent during

1999–2019.

In-sample portfolio optimizations reveal that Standard&Poor’s global commodity invest-

ment benchmark (formerly the Goldman Sachs Commodity Index ) GSCI obtains non-trivial

weights in the optimal portfolios prior to the financial crisis, facilitating considerably higher

Sharpe ratios. In contrast, the overall GSCI virtually drops out of the optimal portfolios

after 2008, which is at odds with earlier findings.

We proceed to show that considering separately the GSCI’s five component sub-indices

considerably enhances the performance of the optimal minimum risk efficient and maximum

Sharpe ratio portfolios on average over the sample period. Even after the financial crisis,

precious metals futures feature prominently in the optimal maximum Sharpe ratio portfolio,

corroborating the actual or perceived safe-haven properties of gold and silver. Similar benefits

are not attainable by investing in the overall GSCI, where precious metals carry a weight of

4% in 2019, for example. This emphasizes the importance of considering each commodity

sub-index as a separate candidate asset.

Our in-sample analysis is complemented by a (pseudo) out-of-sample portfolio optimiza-

tion, where we use a dynamic conditional correlation (DCC) model to predict the correlations

between candidate assets. Including the overall GSCI in this real-time portfolio optimization

helps outperform the optimal portfolio with only stocks and bonds prior to 2008, whereas

the optimal portfolio including the GSCI yields lower cumulated returns during the entire

evaluation period, 2003–2019. The largest cumulated return for the maximum Sharpe ratio

approach is again obtained, when considering the GSCI’s component sub-indices separately.

For the minimum variance approach, however, excluding the GSCI Agriculture and Live-
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stock enhances the performance, as the benefit of low conditional correlations with other

asset classes comes at the costs of negative returns on average over the sample period.

We argue that the observed changes in the hedging properties of commodity futures are

due to the recent failure of Keynes’ theory of normal backwardation. In line with this theory,

rolling gains were a stylized fact prior to 2005, whereas all commodity sub-indices exhibit

rolling costs after the financial crisis of 2007–2008, implying an inferior risk-return trade-off.

While the data and evidence in this paper does not warrant a conclusive explanation for

the changes in commodity risk premia, it illustrates that the commodity futures included in

the overall GSCI lost their suitability for portfolio diversification after the financial crisis or

earlier due to considerable rolling costs. Relative to stock markets, for example, there remains

a lack of knowledge about the return properties and hedging opportunities of commodity

futures (see Rouwenhorst and Tang, 2012), warranting future research.
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A In-Sample Portfolio Optimization

A.1 Empirical result for 1999–2007

Table A.1 reports the results of the in-sample portfolio optimization when considering stocks

and bonds only prior to the financial crisis of 2007–2008. During the first sub-sample, the

monthly returns of all three optimal portfolios are substantially higher than in Table 4 in the

main text, while the Sharpe ratios are similar, due to a higher risk-free rate of return. Note

that the average monthly rate of return on 3-month treasury bills dropped from 0.282% for

1999–2007 to 0.046% for 2009–2019.

Prior to the financial crisis, the global minimum variance portfolio is all but identical

to the maximum Sharpe ratio portfolio, as both assign weights of 4/5 and 1/5 on bonds

and stocks, respectively. The monthly return on either portfolio increases slightly relative to

the equally weighted portfolio, while the standard deviation decreases from 2.21% to 1.76%,

facilitating a substantially higher Sharpe ratio for either optimal portfolio.

Table A.2 illustrates the fundamentally different performances of commodity futures prior

to and after the financial crisis of 2007–2008. While the overall GSCI dropped out of the

minimum risk efficient and the maximum Sharpe ratio portfolio for the entire sample period,

it now accounts for weights between 1/3 and 2/5, even entering the global minimum variance

portfolio, albeit with a small weight. Across optimal portfolios, bonds continue to dominate

with weights ranging from one half in the maximum Sharpe ratio to 4/5 in the global

minimum variance portfolio, whereas the weight on stocks drops to between 6 and 18%.

Considering the overall GSCI generally increases the average monthly return and thus the

Table A.1: Optimal in-sample portfolios with stocks and bonds for 1999–2007

Portfolio
Portfolio weight on Monthly Standard Sharpe

Bonds Stocks Return Deviation Ratio

Equally weighted 50.00 50.00 0.4497% 0.0221 0.0759

Global minimum variance 80.74 19.26 0.4500% 0.0176 0.0956

Maximum Sharpe ratio 80.85 19.15 0.4500% 0.0176 0.0956

Note: The risk-free rate equals the average monthly return on 3-month US treasury
bills for January 1999 through December 2007.
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Table A.2: Optimal in-sample portfolios with the GSCI for 1999–2007

Portfolio
Portfolio weight on Monthly Standard Sharpe

Bonds Stocks GSCI Return Deviation Ratio

Equally weighted 33.33 33.33 33.33 0.7650% 0.0277 0.1746

Minimum risk efficient 58.25 8.45 33.30 0.7650% 0.0255 0.1897

Global minimum variance 78.49 18.19 3.32 0.4814% 0.0174 0.1143

Maximum Sharpe ratio 53.00 5.93 41.08 0.8386% 0.0292 0.1909

Notes: The risk-free rate equals the average monthly return on 3-month US treasury bills
for January 1999 through December 2007. The target return of the minimum risk efficient
portfolio is the return of the equally weighted portfolio.

Sharpe ratio, consistent with the finding in the existing literature that including commodity

futures may increase a portfolio’s performance and diversification. Note that, by including

the GSCI among candidate assets, the maximum Sharpe ratio for 1999–2007 almost doubles

from 0.096 in Table A.1 to 0.191 in Table A.2.

Table A.3 presents the optimal portfolios after replacing the GSCI by its five component

sub-indices. The equally weighted portfolio now attains a lower average monthly return than

in Table A.2, given that energy futures, which performed well prior to the financial crisis,

carry a higher-than-equal weight in the overall GSCI. Both the minimum risk efficient and

the global minimum variance portfolio assign weights of about 1/6 to the GSCI Livestock,

while energy, industrial and precious metals futures enter only the minimum risk efficient

portfolio with modest weights. This is due to their comparatively larger volatility.

When return considerations play a role, i.e. in the minimum risk efficient and the max-

Table A.3: Optimal in-sample portfolios with GSCI sub-indices for 1999–2007

Portfolio
Portfolio weight on Monthly Standard Sharpe

Bonds Stocks Energy Ind. Prec. Agri. Live. Return Deviation Ratio

EQW 33.33 33.33 6.67 6.67 6.67 6.67 6.67 0.6268% 0.0209 0.1648

MRE 57.53 8.33 5.74 7.14 5.23 0.00 16.02 0.6268% 0.0168 0.2057

GMV 61.47 14.47 1.88 0.00 0.00 4.82 17.37 0.4283% 0.0152 0.0963

MSR 19.62 0.00 19.17 29.44 23.72 0.00 8.05 1.2097% 0.0329 0.2819

Notes: The risk-free rate equals the average monthly return on 3-month US treasury bills for January 1999
through December 2007. EQW denotes the equally weighted, MRE the minimum risk efficient, GMV the
global minimum variance, and MSR the maximum Sharpe ratio portfolio, respectively.
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imum Sharpe ratio portfolio, the GSCI Agriculture is not included. It is important to note

that stocks are no longer included in the maximum Sharpe ratio portfolio either, while bonds

no longer dominate the portfolio. Instead, industrial and precious metals futures now ob-

tain optimal weights of 29.44 and 23.72%, respectively, while energy and livestock futures

contribute another 19.17 and 8.05%, respectively. As a result, the monthly return of the

maximum Sharpe ratio portfolio increases relative to Table A.2, from 0.839 to 1.210%, while

the Sharpe ratio increases from 0.191 to 0.282.

A.2 Empirical results for 2009–2019

Table A.4 summarizes the optimal portfolios with bonds and stocks only after the financial

crisis of 2007–2008. Note first that the Sharpe ratios across portfolios are substantially higher

during the second half of our sample period, as the risk-free rate of return drops to 0.046%.

Bonds again account for the lion’s share in the global minimum variance portfolio, whereas

stocks dominate by a small margin in the maximum Sharpe ratio portfolio.

Given that the overall GSCI had a positive weight prior to the financial crisis (see Table

A.2), yet dropped from the optimal portfolios for the entire sample period (see Table 5), it is

unlikely to feature prominently after the crisis. Indeed, the GSCI accounts for less than 3%

of the minimum risk efficient and the global minimum variance portfolio and drops out of the

maximum Sharpe ratio portfolio in Table A.5. Bonds account for about 92% in the former

two portfolios, while the maximum Sharpe ratio portfolio is unaffected by the consideration

of commodity futures. Finally, note that the Sharpe ratio of the global minimum variance

portfolio with commodity futures is lower than for the corresponding portfolio in Table A.4.

Table A.4: Optimal in-sample portfolios with stocks and bonds for 2009–2019

Portfolio
Portfolio weight on Monthly Standard Sharpe

Bonds Stocks Return Deviation Ratio

Equally weighted 50.00 50.00 0.4540% 0.0236 0.1728

Global minimum variance 92.37 7.63 0.2337% 0.0164 0.1148

Maximum Sharpe ratio 46.42 53.58 0.4726% 0.0247 0.1730

Note: The risk-free rate equals the average monthly return on 3-month US treasury
bills for July 2009 through December 2019.
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Table A.5: Optimal in-sample portfolios with the GSCI for 2009–2019

Portfolio
Portfolio weight on Monthly Standard Sharpe

Bonds Stocks GSCI Return Deviation Ratio

Equally weighted 33.33 33.33 33.33 0.2070% 0.0306 0.0489

Minimum risk efficient 92.24 5.03 2.73 0.2070% 0.0164 0.0987

Global minimum variance 92.07 5.53 2.40 0.2112% 0.0164 0.1012

Maximum Sharpe ratio 46.42 53.58 0.00 0.4726% 0.0247 0.1730

Notes: The risk-free rate equals the average monthly return on 3-month US treasury bills for
July 2009 through December 2019. The target return of the minimum risk efficient portfolio
is the return of the equally weighted portfolio.

Table A.6 illustrates the consequences of replacing the GSCI by its five component sub-

indices. The minimum risk efficient portfolio now comprises only bonds, stocks and the GSCI

Livestock. Relative to the equally weighted portfolio, its standard deviation drops from 2.48

to 1.65%, while the Sharpe ratio increases to 0.1523. The global minimum variance approach

facilitates a further reduction of the portfolio’s standard deviation at the cost of the lowest

average monthly return in Table A.6, as the GSCI Agriculture and Livestock contribute

negatively to the portfolio’s return during 2009–2019. Interestingly, the maximum Sharpe

ratio portfolio continues to assign the largest weight to stocks and a nontrivial weight to the

GSCI Precious Metals, attaining an average monthly return of 0.511% and a Sharpe ratio

of 0.175 even after the financial crisis.

Table A.6: Optimal in-sample portfolios with GSCI sub-indices for 2009–2019

Portfolio
Portfolio weight on Monthly Standard Sharpe

Bonds Stocks Energy Ind. Prec. Agri. Live. Return Deviation Ratio

EQW 33.33 33.33 6.67 6.67 6.67 6.67 6.67 0.2964% 0.0248 0.1013

MRE 68.62 23.49 0.00 0.00 0.00 0.00 7.89 0.2964% 0.0165 0.1523

GMV 79.44 1.50 0.00 0.00 0.00 0.98 18.08 0.1522% 0.0139 0.0769

MSR 33.48 57.15 0.00 0.00 9.36 0.00 0.00 0.5113% 0.0266 0.1751

Notes: The risk-free rate equals the average monthly return on 3-month US treasury bills for July 2009
through December 2019. EQW denotes the equally weighted, MRE the minimum risk efficient, GMV the
global minimum variance, and MSR the maximum Sharpe ratio portfolio, respectively.
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A.3 Discussion of sub-sample results

The previous analysis suggests that the properties of commodity futures and thus the hedging

gains of including them in a global portfolio changed during the financial crisis of 2007–2008.

Prior to the crisis, the GSCI and its five sub-indices facilitated considerable improvements in

the portfolios’ average returns and standard deviations. After the crisis, the GSCI virtually

drops from all optimal portfolios, while the GSCI Precious Metals is the only sub-index

included in the maximum Sharpe ratio portfolio in Table A.6.

Given that commodity futures accounted for a large share of the extraordinary returns

prior to the financial crisis, average returns are considerably lower after 2009. Comparing

the average monthly returns of the maximum Sharpe ratio portfolios in Tables A.3 and A.6,

we find that the former is more than twice as large as the latter, while the Sharpe ratio

decreases from 0.282 to 0.175. A candidate explanation is provided in Section 6 in the main

text, where we consider changes in the rolling costs and returns of commodities in both spot

and futures markets.

An important caveat of the in-sample portfolio optimizations is that they determine

the optimal constant allocations only ex post, when the realized returns and volatilities

have already been observed. The previous results are thus purely descriptive rather than

suitable for improving a portfolio’s performance in real time. Nevertheless, they demonstrate

the possible hedging gains from including commodity futures in a conventional stock-bond

portfolio as well as the possible value added of considering the GSCI sub-indices separately.

B Optimal Out-of-Sample Portfolio Weights
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Table B.1: Optimal weights in maximum Sharpe ratio portfolio with stocks and bonds

Year Stocks Bonds

2003 0.00% 100.00%

2004 0.00% 100.00%

2005 0.00% 100.00%

2006 31.58% 68.42%

2007 66.21% 33.79%

2008 95.70% 4.30%

2009 0.00% 100.00%

2010 0.00% 100.00%

2011 0.00% 100.00%

2012 0.00% 100.00%

2013 23.38% 76.62%

2014 36.73% 63.27%

2015 48.81% 51.19%

2016 100.00% 0.00%

2017 100.00% 0.00%

2018 78.64% 21.36%

2019 100.00% 0.00%

Table B.2: Optimal weights in maximum Sharpe ratio portfolio with stocks, bonds, and
the GSCI

Year GSCI Stocks Bonds

2003 71.07% 0.00% 28.93%

2004 23.55% 0.00% 76.45%

2005 5.39% 0.00% 94.61%

2006 15.29% 30.87% 53.84%

2007 11.51% 62.42% 26.07%

2008 35.42% 64.58% 0.00%

2009 0.00% 0.00% 100.00%

2010 0.00% 0.00% 100.00%

2011 0.00% 0.00% 100.00%

2012 0.00% 0.00% 100.00%

2013 9.16% 22.22% 68.62%

2014 6.31% 35.34% 58.35%

2015 0.00% 48.82% 51.18%

2016 0.00% 100.00% 0.00%

2017 0.00% 100.00% 0.00%

2018 0.00% 78.64% 21.36%

2019 0.00% 100.00% 0.00%
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Table B.3: Optimal weights in maximum Sharpe ratio portfolio with stocks, bonds, and
GSCI sub-indices

Year Energy Industrial Precious Agriculture Livestock Stocks Bonds

2003 59.58% 0.00% 21.18% 0.00% 2.51% 0.00% 16.73%

2004 12.59% 0.00% 29.31% 0.00% 2.50% 0.00% 55.60%

2005 3.71% 8.77% 18.58% 0.00% 1.82% 0.00% 67.12%

2006 7.21% 21.63% 15.43% 0.00% 3.69% 6.63% 45.43%

2007 0.53% 38.32% 7.55% 0.00% 3.68% 26.27% 23.65%

2008 5.90% 46.26% 32.24% 0.00% 0.00% 15.60% 0.00%

2009 0.00% 0.00% 43.51% 0.00% 0.00% 0.00% 56.49%

2010 0.00% 3.93% 27.60% 0.00% 0.00% 0.00% 68.47%

2011 0.00% 0.00% 32.98% 3.05% 0.00% 0.00% 63.97%

2012 0.00% 0.00% 28.81% 0.00% 0.00% 0.00% 71.19%

2013 0.00% 7.46% 22.08% 5.66% 0.00% 8.22% 56.58%

2014 3.35% 0.00% 2.94% 1.92% 5.93% 30.22% 55.63%

2015 0.00% 0.00% 0.00% 0.00% 24.11% 35.98% 39.91%

2016 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00%

2017 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00%

2018 0.00% 0.00% 0.00% 0.00% 0.00% 78.59% 21.41%

2019 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00%
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Table B.4: Out-of-sample performances of maximum Sharpe ratio portfolios

Year Stocks and Bonds With GSCI With GSCI sub-indices

2003 100.00 100.00 100.00

2004 115.13 116.36 124.32

2005 127.23 131.12 140.47

2006 119.54 125.08 145.10

2007 131.46 133.92 173.89

2008 143.23 148.91 179.10

2009 81.89 80.01 119.48

2010 84.86 82.91 141.63

2011 86.59 84.61 155.13

2012 93.94 91.78 173.94

2013 96.83 94.61 177.24

2014 97.79 95.57 159.51

2015 99.87 95.90 161.58

2016 96.13 92.30 147.72

2017 97.32 93.45 149.56

2018 118.86 114.13 182.65

2019 116.23 111.61 178.62

2020 129.46 124.31 198.94

Table B.5: Optimal weights in global minimum variance portfolio with stocks and bonds

Year Stocks Bonds

2003 13.51% 86.49%

2004 20.63% 79.37%

2005 21.49% 78.51%

2006 38.72% 61.28%

2007 24.58% 75.42%

2008 17.16% 82.84%

2009 13.64% 86.36%

2010 12.69% 87.31%

2011 13.11% 86.89%

2012 10.15% 89.85%

2013 8.39% 91.61%

2014 11.18% 88.82%

2015 12.23% 87.77%

2016 12.70% 87.30%

2017 17.59% 82.41%

2018 14.15% 85.85%

2019 8.86% 91.14%
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Table B.6: Optimal weights in global minimum variance portfolio with stocks, bonds, and
the GSCI

Year GSCI Stocks Bonds

2003 10.23% 12.31% 77.46%

2004 9.15% 19.01% 71.84%

2005 5.22% 20.99% 73.79%

2006 4.26% 38.29% 57.45%

2007 4.57% 24.31% 71.12%

2008 4.70% 16.87% 78.43%

2009 3.93% 13.32% 82.75%

2010 4.56% 12.29% 83.15%

2011 4.94% 12.64% 82.42%

2012 4.35% 9.86% 85.79%

2013 3.11% 8.23% 88.66%

2014 5.10% 10.83% 84.07%

2015 4.39% 11.89% 83.72%

2016 4.62% 12.30% 83.07%

2017 7.27% 16.48% 76.25%

2018 6.13% 13.42% 80.45%

2019 4.49% 8.45% 87.06%
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Table B.7: Optimal weights in global minimum variance portfolio with stocks, bonds, and
GSCI sub-indices

Year Energy Industrial Precious Agriculture Livestock Stocks Bonds

2003 0.18% 10.90% 9.40% 9.87% 14.77% 5.03% 49.85%

2004 0.52% 10.26% 15.10% 13.30% 14.85% 6.47% 39.50%

2005 0.75% 5.26% 10.02% 9.45% 11.60% 10.34% 52.58%

2006 0.70% 2.46% 7.58% 6.83% 12.10% 25.05% 45.29%

2007 0.96% 1.79% 6.17% 7.82% 15.31% 14.34% 53.61%

2008 0.93% 1.43% 5.39% 7.19% 16.00% 9.41% 59.66%

2009 1.47% 0.00% 4.68% 0.75% 20.99% 7.68% 64.44%

2010 0.12% 0.33% 5.44% 6.29% 17.30% 5.94% 64.59%

2011 0.00% 0.00% 6.33% 4.67% 18.32% 6.23% 64.46%

2012 0.00% 0.00% 4.42% 5.24% 17.10% 4.73% 68.50%

2013 0.00% 0.35% 3.97% 3.97% 13.87% 3.90% 73.94%

2014 0.00% 1.99% 4.03% 4.59% 18.83% 4.54% 66.03%

2015 0.00% 2.17% 4.21% 4.60% 16.74% 5.60% 66.67%

2016 0.00% 0.19% 5.44% 4.77% 15.93% 6.53% 67.15%

2017 0.00% 0.00% 7.28% 6.16% 16.10% 9.30% 61.15%

2018 0.00% 1.01% 5.54% 4.78% 13.81% 7.36% 67.51%

2019 0.00% 1.48% 5.53% 4.35% 11.98% 3.93% 72.74%
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Table B.8: Optimal weights in global minimum variance portfolio with stocks, bonds, and
GSCI sub-indices excluding Agriculture and Livestock

Year Energy Industrial Precious Stocks Bonds

2003 0.96% 15.55% 12.75% 6.70% 64.03%

2004 1.35% 16.11% 20.94% 9.48% 52.12%

2005 1.57% 7.61% 13.14% 13.43% 64.25%

2006 1.32% 3.77% 9.72% 30.62% 54.57%

2007 1.88% 3.22% 8.47% 18.81% 67.61%

2008 1.85% 2.34% 8.12% 12.81% 74.88%

2009 2.82% 0.00% 5.81% 11.15% 80.22%

2010 1.53% 1.65% 7.22% 9.35% 80.25%

2011 1.22% 0.44% 8.35% 10.04% 79.94%

2012 1.15% 0.00% 5.99% 8.11% 84.76%

2013 0.59% 1.12% 5.57% 5.38% 87.35%

2014 0.95% 3.44% 6.28% 6.62% 82.72%

2015 0.00% 2.79% 5.50% 10.41% 81.30%

2016 0.47% 0.60% 8.32% 10.29% 80.32%

2017 0.50% 0.71% 9.98% 14.19% 74.62%

2018 1.15% 2.62% 6.53% 10.64% 79.06%

2019 0.52% 3.58% 7.09% 5.47% 83.35%
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Table B.9: Out-of-sample performances of global minimum variance portfolios

Year Stocks and Bonds With GSCI With GSCI sub-indices Excl. Agriculture

and Livestock

2003 100.00 100.00 100.00 100.00

2004 116.77 116.80 117.00 119.48

2005 129.73 130.70 126.01 134.85

2006 127.04 129.69 128.85 139.38

2007 140.76 142.60 142.53 158.07

2008 152.91 156.20 155.71 173.57

2009 156.78 155.97 147.13 175.87

2010 169.16 168.73 152.77 191.47

2011 174.21 174.36 162.86 200.79

2012 185.45 184.82 172.92 216.73

2013 192.66 191.95 177.73 224.03

2014 187.79 187.23 169.12 213.47

2015 188.30 185.13 173.16 212.14

2016 181.75 175.98 158.96 202.53

2017 183.51 178.33 157.21 206.02

2018 200.36 193.81 171.35 224.00

2019 197.75 191.53 168.16 219.98

2020 211.74 204.68 176.73 236.26
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C Robustness Checks

In order to corroborate our results, we conduct three robustness checks. First, we replicate

the analysis based on continuous rather than discrete returns, which tend to be closer to zero.

Although the monthly returns are lower, as well, our qualitative results are not affected, ex-

cept that bonds obtain an even higher weight in the standard portfolio optimization exercise,

as the average continuous return on bonds exceeds that on stocks during our sample period.

Importantly, our main conclusion remains that the overall GSCI lost its suitability for hedg-

ing during our sample period, while the results for the out-of-sample portfolio optimizations

are hardly affected. Based on the maximum Sharpe ratio approach, the optimal portfolio

with only stocks and bonds continues to outperform slightly the portfolio considering the

overall GSCI, whereas the portfolio considering the GSCI component sub-indices separately

exhibits by far the best performance.

As a second robustness check, we replicate the out-of-sample portfolio optimization using

a rolling rather than an expanding estimation window, where the length of the estimation

period used to predict the conditional correlations remains constant. As the evaluation period

is shifted forward in time, the most distant are replaced with more recent observations. As

before, the first estimation window is 1999–2002, and the first evaluation period is 2003. After

predicting the conditional correlations for 2003, however, 1999 is dropped from the estimation

window in favor of 2003 in order to predict the conditional correlations for 2004. Again,

our qualitative insights are not affected. Based on the maximum Sharpe ratio approach,

the optimal portfolio with stocks and bonds outperforms the optimal portfolio considering

the overall GSCI, while the optimal portfolio considering the GSCI component sub-indices

separately performs best.

Finally, we use a Laplace (a.k.a. double exponential) rather than a normal distribution

to model the standardized residuals of the DCC model, as financial market returns often

exhibit a leptokurtic distribution with positive excess kurtosis and fat tails (see Mandelbrot,

1963).20 All results are qualitatively robust to this variation, as well. The results for these

and further robustness checks are available from the authors upon request.

20The Laplace distribution has an excess kurtosis of 3, while its mean, median, and mode are unchanged
relative to the normal distribution.
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