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Abstract

This paper develops a Bayesian quantile regression model with time-varying
parameters (TVPs) for forecasting inflation risks. The proposed parametric
methodology bridges the empirically established benefits of TVP regressions for
forecasting inflation with the ability of quantile regression to model flexibly the
whole distribution of inflation. In order to make our approach accessible and
empirically relevant for forecasting, we derive an efficient Gibbs sampler by
transforming the state-space form of the TVP quantile regression into an
equivalent high-dimensional regression form. An application of this methodology
points to a good forecasting performance of quantile regressions with TVPs
augmented with specific credit and money-based indicators for the prediction of
the conditional distribution of inflation in the euro area, both in the short and
longer run, and specifically for tail risks.

Keywords: Quantile regression; MCMC; time-varying parameters; Bayesian
shrinkage; Horseshoe; euro area; inflation tail risks.

JEL Classification: C11, C22, C52, C53, C55, E31, E37, E51

ECB Working Paper Series No 2600 / October 2021 1

mailto:dikorobilis@googlemail.com


Non-Technical Summary

The prediction of inflation risks is a fundamental task of central banks whose primary
objective is the maintenance of price stability. For this purpose, it is of paramount
importance to develop models which allow for a useful prediction of inflation risks, that is,
the risk of extreme realisations of inflation that correspond to the tails of its distribution.

This paper provides an exploration of the extent to which some modelling extensions
allow for an improvement of the prediction of the distribution of inflation, concentrating
on its left (negative or low inflation) and right (high inflation) tails. The analysis is
carried out in the context of a time-series quantile regression setting that has proven to
be particularly useful in macroeconomic forecasting (e.g., Adrian et al. (2019)). Within
this econometric framework, we explore two possible enhancements to improve inflation
risk forecasting: first, the role of financial indicators and, second, the role of time-varying
parameters.

While the role of specific financial indicators in the prediction of inflation risks has
been assessed before (e.g., López-Salido and Loria (2019)), the current analysis is the first
to provide a systematic assessment of a broad set of indicators, including both financial
quantities and financial prices.

The specification and estimation of time-varying parameter quantile regression
(TVP-QR) models is not novel (e.g., Kim (2007), Cai and Xu (2009), and Wu and Zhou
(2017)). In contrast to previous contributions, however, our proposed framework is
Bayesian, meaning that error and parameter distributions are all flexible parametric
rather than nonparametric. Our main methodological contribution is to propose a
Markov chain Monte Carlo (MCMC) algorithm that makes estimation of, and
forecasting with, the TVP-QR model feasible and fast even over a fine grid of quantiles.

We establish the benefits of our approach using both synthetic and real data. When
generating synthetic data from regressions with time-varying parameters and flexible
error distributions we find that our framework recovers the true parameters with higher
accuracy compared to non-quantile time-varying parameter regressions that rely on a
Gaussian disturbance term. Additionally, we show using these simulated data examples
that our algorithm is able to track complex patterns of time-variation in parameters.

We apply this flexible framework to the problem of forecasting core consumer price
inflation in the euro area using various financial indicators, both four-quarters ahead and
twelve-quarters ahead. Using quarterly observations from 1990 to 2019, we find that a
number of specific financial volume indicators such as loans to the private sector, loans to
households and narrow money (M1) often provide the largest inflation tail risk forecasting
gains, especially in the context of quantile regressions with time-varying parameters or
quantile regression-based augmented Phillips curve models with time-varying parameters.
A comparison of several different models and financial indicators allows to conclude that
such forecast gains derive both from the predictive informational content of such specific
financial volume indicators and from the benefits of modelling time-varying parameters
in the context of quantile regressions.
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1 Introduction

The objective of this paper is to uncover which models allow for an enhanced prediction of

inflation risks, that is, the risk of extreme realisations of inflation that correspond to the

tails of its distribution. For this purpose, we explore jointly two main modelling directions.

First, we assess the role of financial indicators in forecasting the distribution of inflation,

concentrating on its left (negative or low inflation) and right (high inflation) tails. To

address this question, we adopt a time-series quantile regression setting that has proven

to be particularly useful in macroeconomic forecasting. Using such setting, Adrian et al.

(2019) show that the risks of low real economic activity growth are particularly sensitive

to deteriorating financial conditions. Similarly, Korobilis (2017), López-Salido and Loria

(2019) and Tagliabracci (2020) use quantile regressions to explore the factors that affect

different quantiles of the inflation distribution. Within this econometric framework, our

second research question is methodological and pertains to understanding the role of time-

varying parameters in a quantile regression. Time-varying parameters (TVPs) have a long

tradition in macroeconomics (see for example Cooley and Prescott, 1976) and there is a

large econometric literature that also attempts to use TVP regressions to identify good

predictors of the mean of inflation at different points in time (Koop and Korobilis, 2012).1

Furthermore, Rossi (2020) points out the importance of modelling time-varying volatility

for predicting densities in macroeconomic data and it has also recently been argued that

regressions featuring time-varying variances can forecast output risks as well as constant

parameter quantile regression models (Brownlees and Souza, 2021; Carriero et al., 2020).

However, little is known about whether one can further improve forecasts by combining

the benefits of time-varying parameters with the flexibility of a quantile regression setting.

Taking all the considerations above into account, our proposal is to use a

time-varying parameter quantile regression (TVP-QR) model for forecasting the full

distribution of inflation. At the conceptual level, specification of a TVP-QR model is

not novel.2 However, serious inference challenges are in order with the implementation

of this model in a time-series forecasting context. Kim (2007), Cai and Xu (2009), and

Wu and Zhou (2017) use nonparametric methods, such as splines and local polynomials,

to estimate TVP-QR models. However, nonparametric estimators are not

1Summarising the results of a comprehensive comparison of different models, data and transformations,
Faust and Wright (2013) argue that a basic principle in forecasting inflation is to allow for its local mean
to be smoothly varying over time, and an obvious way of doing this is via time-varying parameters (Stock
and Watson, 2007).

2For related Bayesian modeling approaches, see Gerlach et al. (2011), Griffin and Mitrodima (2020)
and Pfarrhofer (2021).
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straightforward to interpret and they are hard to apply to models with more

predictors/indicators than time-series observations (as is often the case with euro area

macroeconomic data) or if the interpretation of coefficients is key for policy purposes. In

contrast to previous contributions, our proposed framework is Bayesian, meaning that

error and parameter distributions are all flexible parametric rather than nonparametric.

We approximate the quantile regression (QR) problem with an asymmetric Laplace

error distribution (Kozumi and Kobayashi, 2011). The evolution of time-varying

parameters follows a random walk specification which is traditionally tackled with

standard Markov chain Monte Carlo (MCMC) algorithms for state-space models; see for

example the Bayesian quantile state-space model of Gonçalves et al. (2020). However, in

a QR setting we need to estimate separate regressions for each quantile level, making

MCMC estimation cumbersome and costly for the purpose of recursive forecasting.3 Our

main methodological contribution is to propose an MCMC algorithm that makes

estimation and forecasting with the TVP-QR model feasible. We borrow ideas from

Korobilis (2021) and write the TVP-QR model as an equivalent high-dimensional

(quantile) regression. The resulting approximation-free algorithm ends up being a minor

reparameterisation of the efficient algorithm of Chan and Jeliazkov (2009), but it is

computationally much faster, thereby allowing estimation of the TVP-QR model over a

fine grid of quantiles.

We establish the benefits of our approach using both synthetic and real data. When

generating synthetic data from regressions with time-varying parameters and flexible

error distributions we find that our framework recovers the true parameters with higher

accuracy compared to non-quantile TVP regressions that rely on a Gaussian disturbance

term. Additionally, we show using these simulated data examples that our algorithm is

able to track complex patterns of time-variation in parameters. We achieve this by

adopting the horseshoe prior for sparse signals of Carvalho et al. (2010), which in our

setting allows for shrinkage of the time-varying parameters towards few structural

breaks, or even time-invariance, without any dependence on prior tuning of

hyperparameters. That way, we fully address concerns in Amir-Ahmadi et al. (2020)

about the impact that prior hyperparameter choice has on estimation of TVPs, making

the new estimation algorithm both fast and easy to use by less experienced users.

We apply this flexible framework to the problem of forecasting core consumer price

3Gonçalves et al. (2020) propose a straightforward MCMC algorithm for general quantile state-space
models, but they acknowledge that this algorithm is very slow when iterating over quantiles, so they end
up proposing a faster, approximate algorithm. Similarly, Lim et al. (2020) estimate a TVP-QR model
but estimation is based on approximate variational Bayes methods.
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inflation in the euro area using various financial indicators, both in the short run

(four-quarters ahead) and the medium run (twelve-quarters ahead). Using quarterly

observations from 1990 to 2019, we find that a number of specific financial volume

indicators such as loans to the private sector, loans to households and narrow money

(M1) often provide the largest inflation tail risk forecasting gains, especially in the

context of quantile regressions with time-varying parameters or quantile regression-based

augmented Phillips curve models with time-varying parameters. A comparison of several

different models and financial indicators, including both financial prices and financial

volumes, allows to conclude that such forecast gains derive both from the predictive

informational content of such specific financial volume indicators and from the benefits

of modelling time-varying parameters in the context of quantile regressions.

The paper is organised as follows. The next section describes the Bayesian TVP-QR

model, its prior distributions, and our efficient MCMC estimation approach. In Section

3 we conduct a small Monte Carlo experiment to establish that the TVP-QR model can

recover estimates of the true TVPs much more accurately than the default TVP regression

with Gaussian errors and stochastic volatility. In Section 4 we show the quantitative

results from a large-scale exercise forecasting euro area core inflation involving versions of

our proposed model using different indicators, as well as various competing methodologies.

Section 5 concludes the paper.

2 Bayesian time-varying parameter quantile

regression

Let πt be the scalar observation of inflation in time periods t = 1, ..., T , and xt a p-

dimensional vector of predetermined variables that includes an intercept, lags of inflation

and exogenous predictors. We want to model the full distribution of πt by specifying the

following model for each of its quantiles τ = {0.05, 0.10, ..., 0.90, 0.95}

πt = Qτ (πt|xt) + εt, (1)

where Qτ denotes the conditional quantile function of the τ -th quantile of πt. Several

linear and nonlinear quantile functions have been proposed, especially in microeconometric
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applications. In a time-series context, we are interested in the following function

Qτ (πt|xt) = xtβt(τ), (2)

βt(τ) = βt−1(τ) + vt, (3)

where vt ∼ Np (0,V (τ)) is a state error with covariance matrix V (τ). Under this

specification parameters evolve as random walks. When V (τ) is small the evolution is

smooth,4 while for larger values of V (τ) this specification can capture abrupt jumps.

Therefore, the full time-varying parameter quantile regression (TVP-QR) specification

in its most general form comprises Equations (1) to (3).

2.1 A reparameterised TVP-QR model

Our first building block for estimating this model is the treatment of the error. In the

constant parameter case, βt(τ) = β(τ), Koenker and Bassett (1978) show that univariate

conditional quantiles can be obtained as the solution to the following optimisation problem

β̂(τ) = min
β(τ)

E
T∑
t=1

ρτ (εt), (4)

where ρτ (u) = (τ − I(u < 0))u is a loss function. The minimiser of Equation (4) is

equivalent to maximising an asymmetric Laplace likelihood (Yu and Moyeed, 2001), that

is, the case where εt has density given by

p(εt; τ, σ) ∼ τ(1− τ)

σ(τ)2

[
e

(1−τ)
εt

σ(τ)2 I(εt ≤ 0) + e
−τ εt

σ(τ)2 I(εt > 0)
]
, (5)

where σ(τ)2 is a scale parameter.5 Following Kozumi and Kobayashi (2011), the

asymmetric Laplace distribution can be written as a Gaussian-Exponential scale

4Notice that the solution V (τ) = 0 gives the constant parameter model as a special case of the TVP
model.

5In the time-varying parameter mean regression framework it is natural to assume the presence of
stochastic volatility, σ2

t . Combined with the typical assumption of Normality in the errors, time-varying
variances are able to produce more flexible, heavy-tailed unconditional distributions of inflation. The
assumption of stochastic volatility in the quantile regression model, σt(τ), is computationally trivial
to incorporate. However, we have found that, unlike for longer financial data (Gerlach et al., 2011),
it consistently produces inferior fit and out-of-sample forecasts for euro area inflation data, given its
relatively short sample size. Even when not allowing the variance parameter to fluctuate over time, in
the context of quantile regression, it still takes a different value across different quantiles, meaning that
we are able to capture very complex shapes of distributions.
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mixture of the form

(εt|ut, zt) ∼ θ(τ)zt +
√
σ(τ)2κ(τ)2zt(τ)ut, (6)

where zt(τ) ∼ Exp(σ2(τ)) and ut ∼ N(0, 1), while θ(τ), κ(τ)2 are parameters defined as

θ(τ) = 1−2τ
τ(1−τ)

, κ(τ)2 = 2
τ(1−τ)

. If we marginalise Equation (6) over zt we obtain Equation

(5); see more details in Appendix A and Khare and Hobert (2012). Therefore, the first

modelling assumption we adopt is that the error distribution in Equation (1) follows the

mixture of Normals specification in Equation (6). The benefits of this assumption are

immediately visible: since the likelihood is conditionally (on zt) Gaussian, the

conditional parameter posteriors will be identical to standard expressions from linear

Gaussian regression models.6

The second building block is the way we treat time variation. We extend ideas in

Korobilis (2021) and we rewrite the model in Equations (2) - (3) as a high-dimensional

regression with more covariates than observations. In particular, it is easy to show that

if we stack all T observations, these equations can be rewritten as

Qτ (π|X ) = Xβ∆(τ), (11)

β∆(τ) = v, (12)

6It is easy to visualise this; for example in the linear QR case

πt = xtβ(τ) + θ(τ)zt +
√
σ(τ)2κ(τ)2zt(τ)ut, (7)

if we condition on zt (i.e. we treat it as a known parameter) we can write

πt − θ(τ)zt = xtβ(τ) + σ(τ)κ(τ)
√
zt(τ)ut,⇒ (8)

πt − θ(τ)zt
κ(τ)
√
zt

=

(
xt

κ(τ)
√
zt

)
β(τ) + σ(τ)ut, (9)

π̃t = x̃tβ(τ) + ε̃t, (10)

which is a linear, Gaussian regression on the data π̃t and x̃t, and the error ε̃t ∼ N(0, σ(τ)). Therefore,
it is fairly trivial to derive conditional posteriors for β(τ) and σ(τ) using this form.
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where π = [π1, ..., πT ]′, v = [v′1, ...,v
′
T ]′ and

X =


x1 0 ... 0 0

x2 x2 ... 0 0

... ... ... ... ...

xT−1 xT−1 ... xT−1 0

xT xT ... xT−1 xT

 , and

T × Tp

β∆(τ) =


β1(τ)

∆β2(τ)

...

∆βT−1(τ)

∆βT (τ)

 .

Tp× 1

(13)

We provide detailed derivations and discussion of this form in Appendix A. In this new

formulation, all Tp coefficients of the TVP regression are stacked in a single vector,

while at the same time they appear in first differences form. Specifically, in this

hierarchical (multilevel) regression specification, Equation (12) can be interpreted as a

prior for β∆(τ) which means that equation Equation (11) can be treated as a linear

regression model and estimated using algorithms for constant parameter models.

Interpretation of this formulation is straightforward as we can recover the original vector

of TVPs, β = [β1(τ)′, ...,βT (τ)′]′ as the cumulative sum of the vector of first differences,

β∆(τ).

2.2 Likelihood, priors and a new Gibbs sampler

Putting together these pieces, the new parameterisation now combines Equation (1) with

the distributional assumptions on the error term in Equation (6) with the reparameterised

TVP function in Equations (11) and (12). The core of the TVP-QR model now has the

following form

π = Xβ∆(τ) + θ(τ)z(τ) + S̃u, (14)

where S̃ is a T × T diagonal matrix with t-th diagonal element
√
σ(τ)2κ(τ)2zt(τ). This

model is completed by considering priors on various parameters. By definition, z(τ) ∼
Exponential(σ(τ)2). The scale parameter can take the standard inverse Gamma prior,

that is, σ(τ) ∼ inv − Gamma(ρ1, ρ2). Finally, from Equation (12) we already discussed

that β∆(τ) has a Normal prior of the form β∆(τ) ∼ N(0, V (τ)). Multiplication of these

priors with the reparameterised likelihood implied by the model in Equation (14), gives
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the following conditional posteriors

β∆(τ)|• ∼ N
(
Q×

(
X ′U−1ỹ

)
,Q
)
, (15)

σ(τ)2|• ∼ inv −Gamma

(
ρ1 +

3T

2
, ρ2 +

T∑
t=1

(y?t )
2

2zt(τ)κ(τ)2
+

T∑
t=1

zt(τ)

)
, (16)

zt(τ)|• ∼ IG

(√
θ(τ)2 + 2κ(τ)2

|yt −Xtβ∆(τ)|
,
θ(τ)2 + 2κ(τ)2

σ(τ)2κ(τ)2

)
, (17)

where the notation |• means “conditioning on other parameters and data”,

Q = (X ′U−1X + V (τ)−1)
−1

, U = (σ(τ)2κ(τ)2) × diag (z1(τ), ..., zT (τ)),

ỹ = (y − θ(τ)z(τ)), y?t =
(
yt −Xtβ∆(τ)− θ(τ)zt(τ)

)
. This Gibbs sampler is a

reparameterised version of the ergodic Gibbs sampler for constant parameter quantile

regressions developed by Khare and Hobert (2012). Sampling from the conditional

distributions is straightforward and computation can be sped up by sampling for all

values of τ simultaneously, instead of sampling iteratively for each τ . The only

computational challenge is sampling of the Tp elements in β∆(τ), since Tp can be very

large. Bhattacharya et al. (2016) provide a very efficient way of sampling from such

high-dimensional Normal posteriors, and we refer the reader to this paper and

Appendix A for more information about implementation.

The reparameterised form of the TVP regression shows that this is a model with

more predictors than observations (measurement matrix X has Tp covariates but only T

observations). Therefore, it is evident that prior selection for the high-dimensional vector

β∆(τ) must be done carefully; see Amir-Ahmadi et al. (2020) for a discussion of this issue.

Consequently, the horseshoe prior of Carvalho et al. (2010) is adopted, due to the fact

that it is shown to have excellent theoretical guarantees, thus, making it an established

estimator in statistics.7 The horseshoe prior for β∆(τ) is defined as

β∆(τ)|λ(τ)2, {ψi(τ)2}Tpi=1 ∼ N(0, V (τ)), (18)

Vi,i(τ) = λ(τ)2ψi(τ)2, i = 1, ..., Tp,

λ(τ) ∼ Cauchy+ (0, 1) , (19)

ψi(τ) ∼ Cauchy+ (0, 1) , i = 1, ..., Tp, (20)

7In linear Gaussian regression settings, the horseshoe prior is minimax in l2 norm (van der Pas et al.,
2014), attains risk equal to the Bayes oracle (Ghosh et al., 2016) and posterior credible intervals under
the horseshoe prior also have good frequentist coverage properties in an asymptotic sense. More recently,
Bhadra et al. (2020) show that horseshoe regularisation retains its excellent properties in several classes
of complex models, including non-linear, non-Gaussian regression, and deep neural networks.
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where Cauchy+ denotes the half-Cauchy distribution on the positive reals.8 In line with

Amir-Ahmadi et al. (2020), V (τ) comprises hyperparameters that have their own prior

distributions and are, thus, updated by information in the data. The fact that the

hyperpriors for λ(τ) and ψi(τ) do not depend on further parameters that require

tuning/calibration, makes the horseshoe a fully automatic prior that adapts equally well

to low-dimensional as well as high-dimensional problems.

2.3 Noncrossing quantiles

Quantiles of a distribution have the property that they are monotonically increasing on

the quantile level τ , for instance, the forecasted value of inflation at τ = 0.05 should always

be smaller than the value of inflation at τ = 0.10. However, quantile regression models

are typically estimated independently for each quantile level τ , which is also what our

proposed Gibbs sampler is doing. Therefore, when estimating a quantile function without

reference to other quantiles, there is no guarantee that the monotonicity assumption will

always hold. To solve this issue, there are numerous ways of post-processing quantile

estimates in order to ensure that estimates Q̂τ1(yt|xt) > Q̂τ2(yt|xt) for τ1 < τ2 are not

allowed.

For that reason we use the recently proposed algorithm of Rodrigues and Fan (2017)

which is specifically tailored to Bayesian quantile regression using output from an

MCMC algorithm (i.e. samples from the parameter posterior). This algorithm involves

using a consistent MCMC-based estimator to obtain quantile regression estimates and

subsequently fitting a Gaussian process regression to smooth out the quantile estimates.

A key working assumption of this smoothing procedure is the combination of quantile

8The formulation using the half-Cauchy priors is not ideal as it does not allow straightforward
derivation of conditional posteriors. Makalic and Schmidt (2016) note that the half-Cauchy distribution
can be written as a mixture of inverse Gamma distributions. Therefore, the horseshoe prior can be
written equivalently as

β∆(τ)|λ(τ)2, {ψi(τ)2}Tpi=1 ∼ N(0, V (τ)), (21)

Vi,i(τ) = λ(τ)2ψi(τ)2, i = 1, ..., Tp,

λ(τ)2|ξ(τ) ∼ inv −Gamma (1/2, 1/ξ(τ)) , (22)

ξ(τ) ∼ inv −Gamma (1/2, 1) , (23)

ψi(τ)2|ζi(τ) ∼ inv −Gamma (1/2, 1/ζi(τ)) , (24)

ζi(τ) ∼ inv −Gamma (1/2, 1) , (25)

which is a formulation that allows for straightforward calculation of conditional posteriors; see Makalic
and Schmidt (2016) for more details on posterior computation. It is trivial to show that one can simply
add the formulas for the conditional posteriors of λ(τ)2, ξ, ψi(τ)2, ζi(τ) to the Gibbs sampler in Equations
(15)-(17).
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function estimates Q̂τ (yt|xt) (which are obtained from estimation of the TVP-QR) with

the information that neighboring quantiles τ ? 6= τ convey for the quantile function of τ .

Based on results for the asymmetric Laplace distribution, Rodrigues and Fan (2017)

show that one can use the following auxiliary model to obtain information from

neighboring quantiles:

Qτ,τ?(yt|xt) =


xtβ(τ ?) + σ(τ?)

1−τ? log
(
τ
τ?

)
, if 0 ≤ τ ≤ τ ?,

xtβ(τ ?)− σ(τ?)
τ?

log
(

1−τ
1−τ?

)
, if τ ? ≤ τ ≤ 1,

(26)

where Qτ,τ?(yt|xt) is the induced quantile, and τ, τ ? ∈ {0.05, 0.10, ..., 0.90, 0.95}. When

τ = τ ? then Qτ,τ?(yt|xt) ≡ Qτ (yt|xt), that is, the induced quantile is equivalent to the

estimated quantile based on our model. However, for all other levels of τ ? we obtain

additional induced quantile values that provide information for the quantile curve at τ .

The principle is that the closer τ ? is to τ , the more information its quantile curve can

provide for estimation of the quantile curve at τ .

Given that there are 19 values in the set τ, τ ? ∈ {0.05, 0.10, ..., 0.90, 0.95}, in our

application Qτ,τ?(yt|xt) is a 19 × 19 matrix. The diagonal elements of this matrix are

identical to Qτ (yt|xt) (after we have estimated our model, they are identical to

Q̂τ (yt|xt)). Rodrigues and Fan (2017) specify a Gaussian process regression that ends up

being equivalent to a weighting scheme where for each τ the quantiles Qτ,τ?(yt|xt) take

increasingly more weight the closer τ ? is to τ . That way, the induced quantile at τ = τ ?

(i.e. Qτ (yt|xt)) takes the most weight and very distant quantiles get decreasing weights.

It is very trivial to specify and implement this weighting/smoothing scheme, and we

refer the reader to Rodrigues and Fan (2017) for more details.9 Proposition 2 in that

paper shows that this smoothed estimate of the quantiles is consistent, and it is

guaranteed to provide a non-crossing solution.

9Their algorithm introduces two new parameters, σ2
κ and b (using their notation). We follow the

authors and set σ2
κ = 100 and we select the minimum b that provides a non-crossing solution.
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3 Simulation study

In this section we use artificial data in order to examine the performance of our proposed

algorithm. We generate data from the following time-varying regression model

yt = xtβt + εt, (27)

βt = µ+ 0.99(βt−1 − µ) + T−
1
2ut, (28)

where x ∼ N(0, I2) is a vector of p = 2 synthetic predictors, µ ∼ U(−2, 2) is the long-

run mean of βt
10, and ut ∼ N(0, I). Since in the empirical section we are interested in

capturing predictors that are short-lived, we artificially shrink all values of β1,t to be zero

for t > T/3, that is, the first predictor is only relevant for y only for the first third of

the sample. The second predictor in the vector x is left unrestricted (i.e. not zero) in all

periods.

Regarding the distribution of εt, we follow the Monte Carlo design in Yu (2017), and

consider eight different choices:

1. Gaussian: N(0, 12)

2. Skewed : 1/5N(−22/25, 12) + 1/5N(−49/125, (3/2)2) + 3/5N(49/250, (5/9)2)

3. Kurtotic: 2/3N(0, 12) + 1/3N(0, (1/10)2)

4. Outlier : 1/10N(0, 12) + 9/10N(0, (1/10)2)

5. Bimodal : 1/2N(−1, (2/3)2) + 1/2N(1, (2/3)2)

6. Bimodal, separate modes: 1/2N(−3/2, (1/2)2) + 1/2N(3/2, (1/2)2)

7. Skewed bimodal: 3/4N(−43/100, 12) + 1/4N(107/100, (1/3)2)

8. Trimodal: 9/20N(−6/5, (3/5)2) + 9/20N(6/5, (3/5)2) + 1/10N(0, (1/4)2)

This list covers a wide variety of flexible distributions, even though it is far from

exhaustive.

We generate M = 500 datasets of length T = 200 from the eight time-varying

parameter regression data generating processes (DGPs). For each dataset we fit two

10Notice that even though βt will be estimated using the random walk evolution outlined in the previous
section, in the DGP we generate its path from a persistent yet stationary process. This choice ensures
that we generate time-varying parameters that are not explosive and won’t cause numerical problems
during estimation.
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models, a “mean” TVP regression with stochastic volatility, and our quantile TVP

regression. The former model is simply a special case of the latter, where we allow the

variance to be time-varying, and we convert the asymmetric Laplace distribution into a

Normal distribution.11 In both cases of these two estimated models we use the same

automatically tuned horseshoe prior, such that we do not influence subjectively

posterior estimates of time-varying parameters, and the same efficient sampler for TVPs

outlined in the previous section. Therefore, both TVP models are almost identical with

the exception of the assumption about the error distribution.

With this Monte Carlo-based exercise, we aim to find out how well the asymmetric

Laplace distribution can capture all of the eight error distributions we assume generated

the data. In particular, we want to find out how large is the estimation error of the TVPs

under the two estimated models in each of the eight DGPs, as accuracy of estimates of

the TVPs will have an immediate impact on forecasting the synthetic outcome variable

yt (and, as a result, inflation πt, when we input real data). On that account, we measure

estimation accuracy using the following mean squared deviation (MSD) measure:

MSDj =
1

M

M∑
m=1

{
1

T

T∑
t=1

[
1

2

2∑
i=1

(
β

(m)
t,i − β̂

(m),j
t,i

)2
]}

, (29)

where j = {mean TVP regression, quantile TVP regression} and β̂
(m),j
t,i is the posterior

mean of the m-th Monte Carlo iteration, of coefficient βt,i, in model j. For this loss

function, lower values imply lower estimation error.

Results of this exercise are presented in Table 1. Numerical entries in this table

are the MSDs for the mean regression (first row) and quantile regression for quantiles

τ = 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95 (rows 2-8). There are eight columns in this table

that are associated with each of the error distributions assumed in the DGP. We observe

that when the data are generated from a TVP regression with Normal errors, then the

mean TVP regression estimator is optimal as it is based on the assumption that the

disturbance term is Normal. In this case the quantile TVP regression is overparameterised

and the asymmetric Laplace distribution assumption does not perform well. However,

once we drop the assumption of Normality in the DGP, the mean regression model is

performing worse than the quantile regression model in terms of estimation error. In the

case of more complex distributions (Skewed bimodal, trimodal) the error produced by the

mean regression model can be substantially larger.

11Using the scale mixtures of Normals representation in (6), we can obtain the Normal distribution by

fixing zt(τ) = 1
κ(τ)2 = τ(1−τ)

2 for all t and setting τ = 0.5.
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Table 1: Mean squared deviations (MSDs) of estimated vs true time-varying parameters,
using mean and quantile regressions

Gaussian Skewed Kurtotic Outlier Bimodal
Bimodal

sep. modes

Bimodal

skewed
Trimodal

MSD Regression

mean 0.01 0.25 0.04 0.01 0.10 0.21 0.45 1.03

MSD Quantile Regression

τ = 0.05 0.06 0.05 0.05 0.02 0.09 0.13 0.05 0.09

τ = 0.10 0.05 0.05 0.05 0.02 0.09 0.13 0.04 0.08

τ = 0.25 0.05 0.04 0.04 0.01 0.08 0.12 0.04 0.08

τ = 0.50 0.05 0.04 0.04 0.01 0.06 0.11 0.03 0.06

τ = 0.75 0.04 0.04 0.04 0.01 0.07 0.12 0.03 0.07

τ = 0.90 0.05 0.05 0.05 0.02 0.08 0.13 0.03 0.08

τ = 0.95 0.05 0.05 0.05 0.01 0.09 0.13 0.03 0.08

Notes: The mean regression model is a TVP regression with stochastic volatility assuming Normal

measurement error distribution. The quantile regression model allows for time-varying coefficients of

predictors and constant intercept and variance in each quantile.

In order to assist our understanding of how severe the estimation error is in the TVP

regression with stochastic volatility and Normality, Figure 1 plots parameter estimates

from the mean and quantile regression models in the case of the true error distribution

being trimodal (eighth case). The left-hand side panel shows estimates of the coefficient

on the first predictor (βt,1), and the right-hand side panel estimates on the coefficient of

the second predictor (βt,2). In all plots the black, dotted line shows the (average over

500 iterations) true generated time-varying coefficient. The green line is the average over

500 iterations of the posterior median of the TVPs and the shaded areas are the 68%

probability bands. Looking at βt,1 in the left-hand side panel of the figure, the mean

regression model (top graph) produces some error, as the true value of the coefficient

(black dotted line) is not close to the posterior median (green line), i.e. it is not always

inside the grey shaded area. In a few periods the true value of this coefficient is even

outside the 68% bands. This is not the case for the quantile regression estimates for

τ = 0.05, 0.10, 0.90, 0.95 (bottom four graphs), where the posterior median is much closer

to the true value of this coefficient. The picture of large estimation errors in the TVPs

are more pronounced when we look at βt,2. The “mean” regression estimates completely

miss the true path of this coefficient that is used to generate the data. By contrast,

the estimates of this time-varying parameter from the quantile regression are much more

accurate. This graphical illustration gives an example of how the MSDs of the previous
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Figure 1: Posterior estimates of time-varying parameters (TVPs) estimated using mean
(upper panels) and quantile (middle and bottom panels) regressions. The five panels on
the left pertain to coefficient β1t in our DGP, and the five panels on the right to coefficient
β2t. The DGP used to produce this figure is that of a time-varying regression model with
a trimodal error distribution. Mean regression is done under the standard assumption of
a Normal error distribution, while the quantile regression is estimated using the flexible
asymmetric Laplace distribution. Black lines are the true TVPs, which are the same for
both the mean and quantile regressions. The green lines are the averages (over 500 Monte
Carlo iterations) of the estimated posterior means, and the shaded areas are the 68 percent
probability bands.

table translate into significant estimation errors. Consequently, when our data distribution

is non-Gaussian (which is the case with inflation and several other macroeconomic and

financial variables), then our proposed TVP-QR methodology will dominate traditional

TVP regressions with stochastic volatility.

4 Forecasting inflation risks in the euro area

4.1 Data

In order to assess the practical usefulness of the proposed approach for the projection

of the conditional distribution of inflation, we concentrate on euro area HICP excluding

energy and food inflation (henceforth referred to as core HICP inflation) developments

from the first quarter of 1990 to the fourth quarter of 2019 (see Figures B1 and B2 in

Appendix B). Taking core inflation instead of headline (total) HICP inflation as reference

allows abstracting from the influence of temporary factors such as oil price and exchange
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rate swings and focusing on more fundamental forces driving inflation tail risks. For core

HICP quarterly inflation (measured by the annualised quarter-on-quarter growth rate of

HICP excluding energy and food) over the whole sample size (1990Q1-2019Q4) the 5th

and 95th percentiles correspond to quarterly inflation rates at 0.7 percent and 4.2 percent,

respectively (see Table B2 in Appendix B). The unconditional distribution of core HICP

quarterly inflation is slightly skewed to the left and exhibits a heavy right-hand side tail.

Nineteen financial indicators are considered in the analysis, including both financial

volumes and financial prices. Specifically, these include four money volume indicators (M1

and M3, each expressed in annualised quarterly growth rates and as a ratio to GDP), eight

credit volume indicators (total credit to the non-financial private sector, bank lending

to the non-financial private sector, bank lending to non-financial corporations and bank

lending to households, each expressed in annualised quarterly growth rates and as ratio to

GDP), four credit spreads (for the 10-year government bond yields, lending rates to non-

financial corporations, lending rates to households and investment grade corporate bond

yields, all as deviations from the 3-month Euribor rate) and three additional financial

indicators (stock prices, house prices and the composite indicator of systemic stress).

Table B1 in Appendix B reports the details of these data and Figures B3 - B8 provide a

graphical representation of them.

4.2 Models and forecast setup

The forecast performance of several models for the prediction of the conditional

distribution of core HICP inflation in the short and medium term (i.e. four-quarters and

twelve-quarters ahead, respectively) is assessed. The performance of various categories

of models is analysed, including regression and Phillips-curve based models augmented

with financial indicators, which are compared to the forecasting ability of various

regression and Phillips curve models without financial predictors. For each model we

entertain various specifications, ranging from quantile regressions to mean regressions,

with or without time-varying parameters and with or without stochastic volatility.

We consider forecasts from the TVP-QR and numerous competitors, all of which can
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be written as special cases of the general formulation12

πt+h = ct(τ) + φ1t(τ)πt + φ2t(τ)πt−1 + βt(τ)xt + εt+h, εt+h ∼ ALD(σt(τ)), (30)

where all the time-varying parameters follow the standard random walk assumption we

established in Section 2 (but which we omit here for the sake of brevity). When βt(τ) = 0

the exogenous predictors xt are absent, and we have the class of AR(2) models. When

also φ1t(τ) = φ2t(τ) = 0 no lags of inflation are present and the model belongs to the

class of time-varying intercept (local level) models. The assumption that εt+h follows

the asymmetric Laplace distribution (ALD), coupled with the additional assumption that

σt(τ) = σ(τ) (see footnote 5), provides us with our proposed class of TVP quantile

regression models. We already argued in footnote 11 that, when using the scale mixture

of Normals representation of the ALD, we can obtain traditional TVP regression with

stochastic volatility as a special case, and this result also holds for Equation (31). Finally,

we can obtain constant parameter regressions and quantile regressions simply by fixing

time-varying parameters to be constant over time (e.g. by setting the state variance in

Equation (3) to zero). Therefore, we see that by placing appropriate restrictions in the

specification above we can nest a wide class of popular forecasting models for inflation.

These range from the TVP-QR, as the most flexible specification we can obtain from

that equation, to the simple AR(2) model, being the most parsimonious special case. In

particular, we consider forecasts from the following models

1. AR(2) model with constant parameters and variance (AR(2)) – this model is our

benchmark upon which we measure the performance of all other models

2. AR(2) model with TVPs and stochastic volatility (TVP-AR-SV)

3. Time-varying intercept only model with stochastic volatility13 (TVI-SV)

4. Quantile AR(2) with time-varying parameters (TVP-QAR)

5. Quantile regression model with time-varying intercept (TVI-QR)

12We specify a direct multi-step ahead forecasting model which, under the assumption that inflation is
AR(p), implies that the forecast errors are correlated having an MA(h− 1) structure. This fact suggests
that in mean regression models an unbiased estimator can be made more efficient by acknowledging
the effect of autocorrelated errors in the estimator variances. The parametric TVP-QR allows to easily
incorporate an MA structure in the errors, and even allow for stochastic volatility if desired; see Chan
(2013). Despite the fact that such an extension can be incorporated in our model, it unnecessarily
increases computation. This is because we only work with the posterior mean of each TVP in each
quantile level we estimate, and the variance is not used to construct predictive densities.

13This model is similar to the unobserved components stochastic volatility (UCSV) model of Stock and
Watson (2007), although it does not assume stochastic volatility in the equation for trend inflation.
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6. Mean regressions with constant parameters, exogenous predictors, and stochastic

volatility (AR-SV-X)

7. Mean regressions with time-varying parameters, exogenous predictors, and

stochastic volatility (TVP-AR-SV-X)

8. Quantile AR(2) with constant parameters augmented with exogenous predictors

(QAR-X), and

9. Quantile AR(2) with time-varying parameters augmented with exogenous predictors

(TVP-QAR-X)

On top of these purely time-series models, we also consider a semi-structural Phillips

Curve (PC) formulation of Equation (30), similar to López-Salido and Loria (2019). In

its most general form, the PC formulation is

πt+h = (1− λt(τ))π∗t + λt(τ)πLTEt + θt(τ) (yt − y∗t ) + γt(τ)πIt + βt(τ)xt + εt+h, (31)

where π∗t is lagged inflation (computed as the average over the previous four quarters),

πLTEt+h are the long-term inflation expectations (measured using Consensus 6 to 10 years

ahead inflation expectations), (yt − y∗t ) is the output gap (calculated as the principal

component of available estimates), and πIt+h are relative import prices (measured as the

spread between import deflator inflation and core inflation). Accordingly, we consider the

following specifications based on the PC restrictions:

1. Mean PC regression with stochastic volatility, no additional predictors (PC-SV)

2. Mean PC regression with time-varying parameters and stochastic volatility, no

additional predictors (TVP-PC-SV)

3. Quantile PC regression, no additional predictors (QPC)

4. Quantile PC regression with time-varying parameters, no additional predictors

(TVP-QPC)

5. Mean PC regression with stochastic volatility, with additional predictors (PC-SV-X)

6. Mean PC regression with time-varying parameters and stochastic volatility, with

additional predictors (TVP-PC-SV-X)

7. Quantile PC regression, with additional predictors (QPC-X)
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8. Quantile PC regression with time-varying parameters, with additional predictors

(TVP-QPC-X)

All the models above, other than the AR(2) which is based on least squares, are

estimated using the same default, automatic horseshoe prior we specified in the previous

two sections. Whenever we consider models with exogenous predictors, we only estimate

each class of models with one predictor at a time. Even though the horseshoe prior can

accommodate ultra-high dimensional models, we are particularly interested in

understanding the role of individual variables for forecasting inflation risks. For that

reason, we do not consider here forecasting using the full model (all predictors), or

principal components from the predictors, or forecast combinations. These are all

reliable methods for improving forecast accuracy in any class of models, but they do not

allow us to pin down the informational content of each individual predictor. Given these

considerations, overall, 160 models are estimated, eight of which are models with no

predictors and 152 of which are models with one individual financial indicator as an

exogenous predictor.

Using data from 1990Q1 to 2019Q4, each model is estimated on the basis of the first

half of the sample and used to produce four-quarters ahead and twelve-quarters ahead

forecasts for 19 quantiles (τ = 0.05, 0.10, ..., 0.90, 0.95), and thereafter forecasting follows

a recursive scheme. We concentrate on the relative quantile scores at the first and last

quantiles, that is the 5th and the 95th percentiles, to assess the ability of these models and

indicators to predict low and high tail risks to inflation. The empirical analysis considers

the quantile score of each competing model relative to the benchmark AR(2) model, by

taking an average of such scores across all the forecasting periods. For each competing

model j, the average (over the evaluation sample) quantile score for each τ and h is defined

as:

QSjh(τ) =
1

Rh

Rh∑
t=1

[πt+h − Q̂τ (πt+h|xt)][I{πt+h ≤ Q̂τ (πt+h|xt)}], (32)

where Rh is the length of the forecast evaluation sample (which depends on the forecast

horizon, i.e. it is shorter for longer horizons). Smaller values of this loss function

indicate better performance. We also use the predictive likelihood as a measure of

general performance of the whole predictive density from each model we estimate

(Korobilis, 2017). The predictive likelihood (PL) is obtained as the h-step ahead

predictive density evaluated at the h-step ahead out-of-sample realisation of inflation.

For the case of the PL, higher values indicate better performance.
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4.3 Best performing models

When looking at the forecasting performance of the specific models, it appears that a

number of credit and money volume indicators are particularly useful in predicting tail

risks of core HICP inflation, outperforming several other financial indicators, especially

in the context of quantile regression models featuring time-varying parameters.

For example, looking at forecasts for inflation tail risks four-quarters ahead (see

upper panel in Table 2) a number of specific models appear to be very useful especially

for forecasting the upper quantile (τ = 0.95). This is the case, in particular, of quantile

regressions with time-varying parameters (TVP-QAR-X) featuring bank loans to the

private sector and total credit to the private sector, which lead to forecast gains very

close to the best performing model, that is the PC model with time-varying parameters

and stochastic volatility (TVP-PC-SV-X) featuring bank loans to firms (see results

under QScore95). For the lowest quantile (τ = 0.05) the improvement is more limited

but non-negligible, especially for PC models with time-varying parameters and

stochastic volatility (TVP-PC-SV-X) augmented with private sector loans, as well as for

quantile regressions with time-varying parameters (TVP-QAR-X) featuring the M1 to

GDP ratio or house prices (see results under QScore5). The overall density seems to be

improved especially for quantile regressions with time-varying parameters

(TVP-QAR-X) featuring the M1 to GDP ratio or loans to the private sector (see results

under PL).

Also twelve-quarters ahead inflation tail risk forecasts can be improved, especially for

upper tail risks (τ = 0.95), by considering quantile regression-based PC models with

time-varying parameters (TVP-QPC-X) featuring loans to households (see lower panel in

Table 2). The latter specific model also appears to lead to the strongest improvement

for the overall density (see results under PL). By contrast, gains for the lowest quantile

(τ = 0.05) are more limited but can still be detected especially for quantile regressions

with time-varying parameters (TVP-QAR-X) featuring the ratio of private sector loans

to GDP or the ratio to private sector total credit to GDP.

Overall, when assessing specific models, financial volume indicators such as loans to

the private sector, loans to firms, loans to households, total credit to the private sector

and the ratio of M1 to GDP often provide the largest forecasting gains, especially in the

context of quantile regressions with time-varying parameters (TVP-QAR-X) or quantile

regression-based Phillips curve models with time-varying parameters (TVP-QPC-X).
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Table 2: Best financial indicators and models for the prediction of core HICP inflation
tail risks

Measure Ranking Indicator Specification Score
4-quarters ahead

1st loans to private sector TVP-PC-SV-X 0.891
QScore5 2nd M1/GDP TVP-QAR-X 0.900

3rd house prices TVP-QAR-X 0.900

1st loans to firms TVP-PC-SV-X 0.761
QScore95 2nd loans to private sector TVP-QAR-X 0.767

3rd credit to private sector TVP-QAR-X 0.780

1st M1/GDP TVP-QAR-X 1.474
PL 2nd loans to private sector TVP-QAR-X 1.429

3rd house prices QAR-X 1.383
12-quarters ahead

1st private sector loans/GDP TVP-QAR-X 0.951
QScore5 2nd private sector credit/GDP TVP-QAR-X 0.962

3rd yield curve TVP-QAR-X 0.963

1st loans to households TVP-QPC-X 0.635
QScore95 2nd private sector credit/GDP QAR-X 0.685

3rd loans to households/GDP QAR-X 0.692

1st loans to households TVP-QPC-X 1.552
PL 2nd loans to households QAR-X 1.336

3rd loans to households/GDP QAR-X 1.295

Notes: PC stands for Phillips curve, QAR for quantile autoregression with two lags, AR for mean
autoregression with two lags, TVP for time-varying parameters and SV for stochastic volatility. Low
inflation tail risks are captured by the 5th percentile (τ = 0.05) while high inflation tail risks are captured
by the 95th percentile (τ = 0.95). The lower blocks for each horizon reports the Predictive Likelihood
(PL) which provides an evaluation of the forecast of the whole distribution of inflation. The last column
reports the ratios of the predictive quantile score of the models described in each row to that of the AR(2)
model. For the quantile scores, a value below 1 signals an improvement of the forecast relative to the
benchmark and the lower the value the larger is the improvement. For the PL, any value above 1 signals
an improvement of the forecast relative to the benchmark model and the higher the value of such ratio
the larger the improvement.

4.4 The role of financial indicators

In order to understand what role the inclusion of financial indicators might play, it can

be interesting to compare the evolution over time of the upper and lower quantile scores,

as a measure of tail risk forecast errors, for different models. By comparing the evolution
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of the quantile scores of the best models for the upper and lower quantiles (τ = 0.05 and

τ = 0.95) among the quantile regression models with time-varying parameters - which

are often among the best and which are the main focus of the paper - as highlighted in

Table 2, with those of a similar model without the financial indicator we can derive some

indication on the importance of considering such additional indicator when forecasting

inflation tail risks. A similar comparison with the quantile scores of the same models with

constant parameters, but all else equal, can give an idea on the importance of this specific

modelling choice.

Starting with the best TVP-QAR model for the prediction of four-quarters ahead

inflation low quantiles (τ = 0.05), that is the TVP-QAR-X model featuring the M1 to

GDP ratio, and comparing its quantile score with that of the TVP-QAR model (i.e.,

without any financial indicator) we can notice that the latter model leads to additional

large forecast errors especially during the global financial crisis, that is around 2008 and

2009 (see left-hand side chart of the top panel of Figure 2). Similarly, the model with

constant parameters (QAR-X) for M1 to GDP produces additional large forecast errors

not only in 2008 and 2009, though smaller than those of the TVP-QAR model, but also in

2013, 2016 and 2017, by contrast to the benchmark TVP-QAR-X model for M1 to GDP

(see right-hand side chart of the top panel of Figure 2).

As regards the best TVP-QAR model for the prediction of the highest quantile (τ =

0.95) for inflation four-quarters ahead, that is the TVP-QAR-X model featuring loans

to the private sector, the same model without this financial indicator leads to higher

forecasting errors both in prolonged periods, such as between 2007 and 2009, and in

specific quarters, such as in mid-2011 and late 2014 (see left-hand side chart of the bottom

panel of Figure 2). The same model with constant parameters implies much larger forecast

errors especially between 2010 and 2011 and in late-2014, compared to the model with

time-varying parameters (see right-hand side chart of the bottom panel of Figure 2).
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Figure 2: Quantile score evolution for the best TVP-QAR-X model and alternative models:
4-quarter ahead

A similar exercise with the best TVP-QAR model for the prediction of the lowest

quantile (τ = 0.05) of inflation twelve-quarters ahead, that is the TVP-QAR-X model

featuring the ratio of loans to the private sector to GDP, suggests that the same model

without this financial indicator leads to higher forecasting errors around 2009 and in

mid-2016 (see left-hand side chart of the top panel of Figure 3). The same model with

constant parameters implies much larger forecast errors especially around 2009, 2014 and

2016, compared to the model with time-varying parameters (see right-hand side chart

of the top panel of Figure 3). As regards the upper quantile (τ = 0.95), taking the

time-varying parameters quantile regression PC augmented with loans to households as

reference, the forecast error of the same model either without financial indicator or with

fixed parameters are clearly higher for prolonged periods (bottom panel of Figure 3).
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Figure 3: Quantile score evolution for the best TVP-QAR-X and TVP-QPC-X models
and alternative models: 12-quarter ahead

Overall, for the prediction of tail risks of inflation both one-year and three-years ahead,

it appears that the inclusion of the financial indicator outperforming other ones within

TVP-QAR-X or TVP-QPC-X models explains a significant fraction of the reduction in

forecasting errors compared to competing specific models. However, also the key modelling

specification characterising such models, that is time-varying parameters, seems to be

instrumental in explaining the good forecasting performance of the models highlighted.

The good forecasting properties of credit and money indicators for inflation tail risks

appear consistent with economic intuition. Credit growth indicators, the coefficients of

which tend to be positive within the estimated quantile regression models considered

(see Figure C4 in Appendix C), can be seen as proxies of the degree of tightness of

financial constraints for firms and households, which affect the price setting decisions of

firms and the spending decisions of households. By contrast, the estimated coefficient

for the ratio of M1 to GDP tends to be negative (see Figure C4 in Appendix C), which
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could reflect the fact that increases in M1 in excess of GDP are likely to capture

increased uncertainty which is typically associated with the postponement of

expenditure thereby creating disinflationary pressures. From a theoretical perspective,

these results appear to be consistent with the implications of the continuous-time

monetary model of Brunnermeier and Sannikov (2016) allowing for endogenous risk

dynamics, featuring heterogeneous agents and financial frictions. Within this model,

credit and money volume aggregates emerge as particularly informative indicators, both

in normal times and during financial crises. In normal times, credit and money

quantitative aggregates can signal vulnerabilities before they appear in spreads and risk

premia, while during financial crises they can provide valuable information on sectoral

bottlenecks in the economy in the form of impaired balance sheets and debt overhang

problems (see also the discussion in Brunnermeier and Sannikov (2014)).

5 Conclusion

We develop a methodology for modelling and forecasting inflation risks flexibly via time-

varying parameter quantile regressions. A key methodological contribution is represented

by a new Gibbs sampler for time-varying parameters that is highly efficient and can be

easily adapted to other settings that admit familiar state-space forms and are notoriously

computationally intensive, such as dynamic factor models and time-varying parameter

VARs. In terms of forecasting accuracy, we show that our feasible TVP-QAR model indeed

provides improvements over its constant parameter alternative, as well as traditional TVP

regressions with stochastic volatility.

An application of this methodology to the prediction of euro area core inflation tail

risks, with data spanning the past thirty years, points to a very good forecasting

performance of quantile regressions with time-varying parameters augmented with

specific credit and money-based indicators, both in the short and the medium run.

Follow-up work will concentrate on assessing the ability of the proposed modelling

framework to enhance the prediction of the tail risks of other core macroeconomic and

financial variables, such as real GDP and asset prices, both in the euro area and in other

countries.
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Appendix

A Bayesian inference in the quantile regression

model

A.1 Linear quantile regression setting

Following Yu and Moyeed (2001) the quantile regression model has a parametric

representation

yt = xtβ(τ) + σ(τ)εt, (A.1)

where β(τ) and σ(τ) are the regression coefficients and the scale parameter, respectively,

for each quantile level τ , and εt are i.i.d. from a joint Asymmetric Laplace density of the

form
∏T

t=1
τ(1−τ)
σ(τ)2

[
e

(1−τ)
εt

σ(τ)2 I(εt ≤ 0) + e
−τ εt

σ(τ)2 I(εt > 0)
]
. We can write the Asymmetric

Laplace distribution using the following mixture representation (cf Kozumi and

Kobayashi, 2011)

yt = xtβ(τ) + θ(τ)zt + σ(τ)κ(τ)
√
zt(τ)ut, ut ∼ N(0, 1), (A.2)

where θ(τ) = 1−2τ
τ(1−τ)

and κ(τ)2 = 2
τ(1−τ)

and zt(τ) ∼ exp(σ(τ)2). Under this mixture

representation the density of yt is of the form

T∏
t=1

1√
2πzt(τ)σ(τ)2κ(τ)2

exp

{
−(yt − xtβ(τ)− θ(τ)zt(τ))2

2zt(τ)σ(τ)2κ(τ)2

}
exp

{
− zt(τ)

σ(τ)2

}
, (A.3)

which conditionally on zt(τ) is a Normal density, while marginalising (i.e. integrating)

over the unknown zt(τ) gives the desired Asymmetric Laplace density (see the Appendix

of Khare and Hobert, 2012, for a proof).

Given priors of the form

β(τ) ∼ N(0, V (τ)), (A.4)

σ(τ) ∼ IG(ρ1, ρ2), (A.5)

zt(τ) ∼ exp(σ(τ)), (A.6)
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for each τ = 0.05, 0.10, ..., 0.90, 0.95 1, we obtain conditional posteriors of the form

β(τ)|• ∼ N
((
x′Ux+ V (τ)−1

)−1 ×
(
x′U [y − θ(τ)z(τ)]

)
,
(
x′Ux+ V (τ)−1

)−1
)
, (A.7)

σ(τ)2|• ∼ inv −Gamma

(
ρ1 +

3T

2
, ρ2 +

T∑
t=1

(yt − xtβ(τ)− θ(τ)zt(τ))2

2zt(τ)κ(τ)2
+

T∑
t=1

zt(τ)

)
,(A.8)

zt(τ)|• ∼ IG

(√
θ(τ)2 + 2κ(τ)2

|yt − xtβ(τ)|
,
θ(τ)2 + 2κ(τ)2

σ(τ)2κ(τ)2

)
, (A.9)

where x = [x′1, ..., x
′
T ]′, x = [y1, ..., yT ]′, and U is a T × T diagonal covariance matrix with

t-th element (zt(τ)σ(τ)2κ(τ)2)−1. In Equation (A.9) IG denotes the Inverse Gaussian

distribution.2 Kozumi and Kobayashi (2011) derive a posterior for zt(τ) as in Equation

(A.9) that is Generalised Inverse Gaussian (GIG) with different hyperparameters. The

expression in (A.9) is derived by noting the property that the IG(µ, λ) distribution is a

GIG(λ/µ2, λ,−1/2) distribution, see Johnson et al. (1994).

A.2 Dealing with high-dimensional settings

Before we proceed with the time-varying parameter (TVP) version of the previous

sampling algorithm, we discuss how we deal with high-dimensional versions of the

Bayesian quantile regression model (the TVP quantile regression is such a model). Our

focus is both on fast and efficient computation, as well as automatic shrinkage of the

vector of regression coefficients.

Unlike the regular regression model, notice that in the quantile regression shrinkage

is imperative even in the case where the number of predictors, p, is much smaller

relative to the number of time series observations, T , that is, even when p � T . This is

because we need to estimate a p-dimensional vector β(τ) for each quantile level

τ = 0.05, 0.10, ..., 0.90, 0.95. While around the median nearby quantiles can help assist

estimate the β’s more accurately, estimation in more extreme quantiles will rely on only

a small proportion of the sample. Therefore, even small or moderate values of p can

induce large estimation error of unrestricted estimators.

We specify a hiearchical shrinkage prior for β(τ) and, in particular, we follow

1Note that each β(τ) has its own prior variance V (τ) for each quantile level τ , while σ(τ) depends
on the same hyperparmeters ρ1, ρ2 for all τ . This is because it is trivial to be noninformative for the
variance parameters σ(τ), while this is not the case for β(τ): as we detail in the next subsection we
are interested in regularising this parameter for the sake of estimation accuracy, therefore, V (τ) will be
estimated adaptively (i.e. for each τ = 0.05, 0.10, ..., 0.90, 0.95).

2While the inverse of a Gamma variate is distributed inverse Gamma, and vice-versa, the same is not
true for the Normal (Gaussian) and Inverse Gaussian distributions.

ECB Working Paper Series No 2600 / October 2021 31



Bhattacharya et al. (2016) who adopt a horseshoe prior of the form

β(τ)i|λ(τ)2, ψi(τ)2 ∼ N
(
0, λ(τ)2ψi(τ)2

)
, (A.10)

λ(τ) ∼ Cauchy+ (0, 1) , (A.11)

ψi(τ) ∼ Cauchy+ (0, 1) , (A.12)

for i = 1, ..., p and τ = 0.05, 0.10, ..., 0.90, 0.95. The conditional posteriors of λ, ψi can

be obtained if we consider the formulation of the horseshoe prior adopted in Makalic and

Schmidt (2016). These authors write the horseshoe prior using the equivalent hierarchical

notation

β(τ)i|λ(τ)2, ψi(τ)2 ∼ N(0, λ(τ)2ψi(τ)2), (A.13)

λ(τ)2|ξ(τ) ∼ inv −Gamma (1/2, 1/ξ(τ)) , (A.14)

ξ(τ) ∼ inv −Gamma (1/2, 1) , (A.15)

ψi(τ)2|ζi(τ) ∼ inv −Gamma (1/2, 1/ζi(τ)) , (A.16)

ζi(τ) ∼ inv −Gamma (1/2, 1) . (A.17)

Conditional posteriors under this prior formulation are trivial to derive and exact formulas

can be found in Makalic and Schmidt (2016).

The next step in our analysis is to sample efficiently the large dimensional vector

β(τ) using Equation (A.7), especially when p� T . We follow again Bhattacharya et al.

(2016) who propose an efficient way to sample from the Normal distribution using the

Woodbury matrix identity. Calculation of the posterior covariance matrix of β(τ) relies

on inverting the p× p matrix (x′Ux+ V −1) which requires O(p3) algorithmic operations.

The same number of algorithmic operations are needed to obtain the Cholesky

decomposition of the posterior covariance, which is essential in order to generate from

the desired Normal posterior distribution. In high dimensions, that is when p gets large,

both these operations become computationlly cumbersome. Bhattacharya et al. (2016)

propose instead the following sampling scheme3:

3This algorithm only works when the prior covariance matrix is diagonal, which is the case with the
Horseshoe prior and the vast majority of Bayesian prior specifications.
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Algorithm for efficient sampling from (A.7)

Step 1 Sample η ∼ N(0, V (τ)) and δ ∼ N(0, IT )

Step 2 Set v = x̃η + δ

Step 3 Set w = (x̃V x̃′ + IT )−1[y − θ(τ)z(τ)− v]

Step 4 Set β(τ) = η + V x̃′w

where x̃ = xU−1/2 where U−1/2 is a T × T diagonal matrix with elements

(
√
zt(τ)σ(τ)κ(τ))−1 on its main diagonal. Instead of generating from a p-variate Normal

posterior distribution, the algorithm above involves generating from the p-variate

Normal prior distribution, and a T -variate standard Normal. As long as the prior

covariance matrix is diagonal, generating from η ∼ N(0, V ) is computationally trivial.

Similar arguments hold for δ ∼ N(0, IT ). The remaining transformations in the

algorithm result from the Woodbudy identity (see Bhattacharya et al., 2016, for a

straightforward proof) and they can be extremely efficient. The worst case complexity of

the algorithm is O(T 2p), which provides huge gains relative to inverting and taking the

Cholesky factor of the p× p matrix (x′Ux+ V −1).

Since our algorithm for estimating the quantile regression model is written in

MATLAB, further gains can be achieved by replacing for loops with vector operators.

This is very relevant here, because the algorithm requires for each MCMC iteration to

also iterate through Equations (A.7)-(A.9) for each quantile level τ . MATLAB allows to

generate from matrix-variate versions of the required posterior distributions, such that

all parameters can be generated at once ∀ τ ∈ {0.05, 0.10, ..., 0.90, 0.95}.

A.3 Bayesian inference in the quantile regression model with

time-varying parameters

Following the previous sections, the Bayesian time-varying parameter quantile regression

model can be written as

yt = xtβ(τ)t + εt, εt ∼ ALD(σ(τ)2), (A.18)

βt(τ) = βt−1(τ) + vt, vt ∼ N(0, V (τ)) (A.19)

subject to the initial condition β0(τ) ∼ N (0, V0(τ)), where xt is a 1×p vector of predictors,

and V (τ) is a p × p covariance matrix. Given that the ALD distribution for εt admits

a mixture of Normals representation, it is trivial to treat the system above as a linear,

conditionally Gaussian state-space model. However, doing so would result in recursive
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sampler that would be quite inefficient.

We first note that the t-th observation yt can be solved for ∆βt(τ) = βt(τ) − βt−1(τ)

as

yt = xtβt(τ) + εt

= xt∆βt(τ) + xtβt−1(τ) + εt

= xt∆βt(τ) + xt∆βt−1(τ) + xtβt−2(τ) + εt

...

= xt∆βt(τ) + xt∆βt−1(τ) + ...+ xt∆β2(τ) + xtβ1(τ) + εt (A.20)

which shows that the coefficients at time t, β(τ)t is simply the cumulative sum of changes

over the previous time periods. More intuition can be built if we stack for all observations

t and rewrite Equations (A.18)-(A.19) in the form
y1

y2

...

yT−1

yT

 =


x1 0 ... 0 0

x2 x2 ... 0 0

... ... ... ... ...

xT−1 xT−1 ... xT−1 0

xT xT ... xT−1 xT




β1(τ)

∆β2(τ)

...

∆βT−1(τ)

∆βT (τ)

+


ε1

ε2

...

εT−1

εT

 ,(A.21)


β1(τ)

∆β2(τ)

...

∆βT−1(τ)

∆βT (τ)

 =


v1

v2

...

vT−1

vT

 (A.22)

or more compactly

y = Xβ∆(τ) + ε, (A.23)

β∆(τ) = v, (A.24)

where β∆ = [∆β1(τ)′,∆β2(τ)′, ...,∆βT (τ)]′ and X is the block triangular matrix shown

analytically above. The first equation is a static linear regression with parameters β∆(τ).

The main characteristic of this equation is that it represents a high-dimensional setting,

since the lower-triangular matrix X has dimensions T × Tp, i.e. more covariates than

observations. The second equation is an identity and, instead of having the interpretation

of a state equation, it can be seen as a standard Normal prior for the difference between
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βt(τ) and βt−1(τ). This high-dimensional representation shows clearly why shrinkage in

TVP models is imperative, and why choice of the state covariance matrix (V (τ) here) is

of paramount importance; see the discussion in Amir-Ahmadi et al. (2020).

It is notable that this representation of the TVP regression is equivalent to a minor

reparameterisation of the formulation and algorithm of Chan and Jeliazkov (2009). Using

their methods, the time-varying parameter quantile regression would be written as

y = Xβ(τ) + ε, (A.25)

β(τ) = H−1v, (A.26)

where

H =



Ip 0 ... 0 0

−Ip Ip
. . . 0 0

. . . . . . . . . . . .
...

0 0 −Ip Ip 0

0 0 0 −Ip Ip


, X =



x1 0 ... 0 0

0 x2
. . . 0 0

...
. . . . . . 0

...

0 ... 0 xT−1 0

0 ... 0 0 xT


(A.27)

and β = [β1(τ)′, ..., βT (τ)′]′. Note that if we compare (A.25) with (A.23) it holds that:

Xβ(τ) = XH−1Hβ(τ) = (XH−1)(Hβ(τ)) = Xβ∆(τ). (A.28)

Similarly, if we left-multiply both sides of (A.26) with H, we obtain (A.24), showing

that our suggested specification is a simple rotation of Chan and Jeliazkov (2009) using

matrix H that creates first differences of the coefficients β(τ) and turns the diagonal

matrix X into a lower triangular matrix. Despite the similarities, the formulation we

propose makes full use of the fast algorithm of Bhattacharya et al. (2016) because the

prior distribution of β∆(τ) is diagonal (i.e. easy to sample from), while the distribution

of β(τ) is tridiagonal; see Chan and Jeliazkov (2009) for its exact form. Therefore, our

proposed Gibbs sampler is faster than the one proposed by Chan and Jeliazkov (2009),

especially in high-dimensions (large p) and in the case of the quantile regression model

where we need to sample TVPs for each quantile level τ .

Replacing ε with its mixture of Normal representation of the previous subsection,

and adding the Horseshoe prior on V (τ) we can write the full Bayesian TVP quantile
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regression model using the following equations

y = Xβ∆(τ) + θ(τ)z(τ) + (S̃)u, (A.29)

β∆(τ) ∼ N(0, V (τ)), (A.30)

Vi,i(τ) = σ(τ)2λ(τ)2ψi(τ)2, i = 1, ..., Tp,

λ(τ) ∼ Cauchy+ (0, 1) , (A.31)

ψi(τ) ∼ Cauchy+ (0, 1) , (A.32)

σ(τ) ∼ IG(ρ1, ρ2), (A.33)

zt(τ) ∼ exp(σ(τ)), t = 1, ..., T, (A.34)

where S̃ is a T × T diagonal matrix with diagonal element σ(τ)κ(τ)
√
zt(τ).

A.4 Noncrossing quantiles

All estimation algorithms for quantile regression models, including the one presented

above, assume that the quantile curves are fitted independently from each other. If we

write the quantile regression model using the generic form

yt = Qτ (yt|xt) + εt, (A.35)

then each curve Qτ (yt|xt) is estimated independently for each τ = 0.05, 0.1, ..., 0.90, 0.95.

This independence means that there is no mechanism in place in order to guarantee that

estimates Q̂τ (yt|xt) satisfy the very definition of a quantile, that is the fact that

Q̂τ1(yt|xt) < Q̂τ2(yt|xt) when τ1 < τ2. This condition is also known as “quantile

noncrossing”. Various algorithms have been proposed in the literature to deal with this

issue. Most algorithms propose to post-process the estimated quantile functions using

some smoothing procedure/function. Such post-processing can work well, however,

inevitably, will introduce some bias in quantile estimates, therefore choice of an

appropriate algorithm is essential.

Here we use the recently proposed algorithm of Rodrigues and Fan (2017) for

Bayesian quantile regression. This algorithm involves to first use a consistent

MCMC-based estimator to obtain quantile regression estimates (such as the one

outlined above), and then use a Gaussian process regression to smooth out the quantile

estimates. In order to achieve this, Rodrigues and Fan (2017) note that exactly because
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adjacent quantiles are correlated, one can use the following auxiliary model

Qτ,τ?(yt|xt) =


xtβ(τ ?) + σ(τ?)

1−τ? log
(
τ
τ?

)
, if 0 ≤ τ ≤ τ ?,

xtβ(τ ?)− σ(τ?)
τ?

log
(

1−τ
1−τ?

)
, if τ ? ≤ τ ≤ 1,

(A.36)

where Qτ,τ?(yt|xt) is the induced quantile, and τ, τ ? ∈ {0.05, 0.10, ..., 0.90, 0.95}. When

τ = τ ? then Qτ,τ?(yt|xt) ≡ Qτ (yt|xt), that is, the induced quantile is equivalent to the

estimated quantile based on our model. However, for all other levels of τ ? we obtain

additional induced quantile values that provide information for the quantile curve at τ .

The principle is that the closer τ ? is to τ , the more information its quantile curve can

provide for estimation of the quantile curve at τ .

Given that there are 19 values in the set τ, τ ? ∈ {0.05, 0.10, ..., 0.90, 0.95}, in our

application Qτ,τ?(yt|xt) is a 19 × 19 matrix. The diagonal elements of this matrix are

identical to Qτ (yt|xt). Rodrigues and Fan (2017) specify a Gaussian process regression

that ends up being equivalent to a weighting scheme where for each τ the quantiles

Qτ,τ?(yt|xt) take increasingly more weight the closer τ ? is to τ . That way, the induced

quantile at τ = τ ? (i.e. Qτ (yt|xt)) takes the most weight and very distant quantiles get

decreasing weights. It is very trivial to specify and implement this weighting/smoothing

scheme, and we refer the reader to Rodrigues and Fan (2017) for more details.4 Proposition

2 in that paper shows that this smoothed estimate of the quantiles is consistent, and a

Monte Carlo study supports the good properties of this method.

4Their method introduces two new parameters, σ2
κ and b (using their notation). We follow the authors

and set σ2
κ = 100 and we select the minimum b that provides a non-crossing solution.
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B Data

B.1 Details on data definitions, derivations and sources

Table B1: List of euro area indicators

VARIABLE FULL DESCRIPTION UNIT CATEGORY

Core HICP HICP - All-items excluding energy and food index main variable of interest

Inflation expectations Long-term inflation expectations percent Phillips curve determinant

Output gap Output gap percentage points Phillips curve determinant

Import prices Relative import prices index Phillips curve determinant

M1 M1 index financial indicator: money

M1/GDP M1 to GDP ratio percent financial indicator: money

M3 M3 index financial indicator: money

M3/GDP M3 to GDP ratio percent financial indicator: money

CreditPS Credit to the private sector index financial indicator: credit

CreditPS/GDP Credit to the private sector to GDP ratio percent financial indicator: credit

LoansPS Bank loans to the private sector index financial indicator: credit

LoansPS/GDP Bank loans to the private sector to GDP ratio percent financial indicator: credit

Loans to NFCs Bank loans to non-financial corporations index financial indicator: credit

LoansNFC/GDP Bank loans to non-financial corporations to GDP ratio percent financial indicator: credit

Loans to HHs Bank loans to households index financial indicator: credit

LoansHH/GDP Bank loans to households to GDP ratio percent financial indicator: credit

CorpBondSpr Corporate bond spread percentage points financial indicator: spread

NFCLendingSpr Firm lending rate spread percentage points financial indicator: spread

HHlendingSpr Household lending rate spread percentage points financial indicator: spread

CISS Composite Indicator of Systemic Stress index financial indicator: other

StockP Dow Jones Euro Stoxx Price Index index financial indicator: other

HouseP Residential property price index index financial indicator: other

Slope YC Slope of the yield curve percentage points financial indicator: other

HICP - All-items excluding energy and food (”core HICP”) ECB data from

1997 onwards (ECB Statistical Data Warehouse (SDW) code:

ICP.M.U2.Y.XEF000.3.INX, quarterly averages) extended backwards to 1990 with

Eurostat data (SDW code: ICP.M.U2.N.XEF000.4.INX, quarterly averages) and

seasonally adjusted via Matlab X-13 Toolbox. Source: ECB and Eurostat.

Consensus Long-Term Inflation Expectations Consensus forecast, 6-10-years

ahead, for the euro area from 2003 onwards (quarterly data from 2014Q2 onwards,

extended back on the basis of semiannual data from April 2003 to October 2013,

with quarterly missing data derived as averages of the two seminannual contiguous

data), extended back to 1990Q1 with weighted average of country seminannual

Consensus forecasts (for Germany, France, Itay, Spain and the Netherlands to
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1995Q1 and for Germany, France and Itay to 1990Q1, with 2019 consumer

spending weights at actual euro exchange rate and with quarterly missing data

derived as averages of the two seminannual contiguous data). Source: Consensus

Economics.

Output gap Principal component of three euro area output gap estimates (derived by

interpolating annual estimates by EC, IMF and OECD). Source: European

Commission, IMF, OECD and ECB calculations.

Relative import prices Difference between growth of deflator for imports of goods

and services (Eurostat ESA2010 data, SDW code:

MNA.Q.Y.I8.W1.S1.S1.C.P7. Z. Z. Z.IX.D.N from 1995Q1 onwards, extended

backwards with AWM data: MTD from AWM19upd18) and core HICP growth

(see above for details). Source: ECB and Eurostat.

M1 Index of notional stocks for M1 (SDW code: BSI.M.U2.Y.V.M10.X.I.U2.2300.Z01.E,

end of quarter data). Source: ECB.

M1 to GDP ratio Ratio of M1 (index of notional stock, see above, rescaled to

nominal stock values on the basis of outstanding amounts, SDW code:

BSI.M.U2.Y.V.M10.X.1.U2.2300.Z01.E, with base December 2010) to nominal

GDP (Eurostat ESA2010 data, SDW code:

MNA.Q.Y.I8.W2.S1.S1.B.B1GQ. Z. Z. Z.eur.V. Z from 1995Q1 onwards, extended

backwards with AWM data: YER*YED from AWM19upd18, quarterly data

annualised). Source: ECB.

M3 Index of notional stocks for M3 (SDW code: BSI.M.U2.Y.V.M30.X.I.U2.2300.Z01.E,

end of quarter data). Source: ECB.

M3 to GDP ratio Ratio of M3 (index of notional stock, see above, rescaled to

nominal stock values on the basis of outstanding amounts, SDW code:

BSI.M.U2.Y.V.M30.X.1.U2.2300.Z01.E, with base December 2010) to nominal

GDP (Eurostat ESA2010 data, SDW code:

MNA.Q.Y.I8.W2.S1.S1.B.B1GQ. Z. Z. Z.eur.V. Z from 1995Q1 onwards, extended

backwards with AWM data: YER*YED from AWM19upd18, quarterly data

annualised). Source: ECB.

Credit to the non-financial private sector Euro area credit to private non-financial

sector from all sectors at market value, domestic currency, adjusted for breaks,
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from the BIS Long series on credit to the non-financial sector database (BIS code:

Q:XM:P:A:M:XDC:A, see https://www.bis.org/statistics/totcredit/totcredit.xlsx)

from 1999Q1 onwards, extended back with weighted average of country data from

the same BIS database (for Germany, France, Itay, Spain, Belgium, Finland and

Portugal with GDP weights). Source: BIS.

Credit to the non-financial private sector to GDP ratio Euro area credit to

private non-financial sector from all sectors at market value, percentage of GDP,

adjusted for breaks, from the BIS Long series on credit to the non-financial sector

database (Q:XM:P:A:M:770:A, see https://www.bis.org/statistics/totcredit/

totcredit.xlsx) from 1999Q1 onwards, extended back with weighted average of

country data from the same BIS database (for Germany, France, Itay, Spain,

Belgium, Finland and Portugal with GDP weights). Source: BIS.

Bank loans to the non-financial private sector Loans to the non-financial private

sector (NFPS) granted by Monetary and Financial Institutions (MFIs), adjusted for

loan sales, securitisation and cash pooling activities (notional stock index rescaled

to outstanding amounts in Eur millions with base December 2010): sum of loans to

non-financial corporations and loans to households (see below for details). Source:

ECB.

Bank loans to the non-financial private sector to GDP ratio Loans to NFPS

(see above for details) to nominal GDP (Eurostat ESA2010 data:

MNA.Q.Y.I8.W2.S1.S1.B.B1GQ. Z. Z. Z.eur.V. Z from 1995Q1 onwards, extended

backwards with AWM data: YER*YED from AWM19upd18, quarterly data

annualised). Source: ECB and Eurostat.

Bank loans to non-financial corporations Loans to non-financial corporations

(NFCs) granted by Monetary and Financial Institutions (MFIs), adjusted for loan

sales, securitisation and cash pooling activities (notional stock index rescaled to

outstanding amounts in Eur millions with base December 2010 (SDW code:

BSI.M.U2.Y.U.A20T.A.I.U2.2240.Z01.E from 2003 onwards, end of quarter data,

extended back on the basis of internal ECB estimates). For details on the

adjustment see the explanatory notes: www.ecb.europa.eu/press/pr/stats/md/

shared/pdf/explanatorynoteonadjustedloans.en.pdf. Source: ECB.

Bank loans to non-financial corporations to GDP ratio Loans to NFCs (see

above for details) to nominal GDP (Eurostat ESA2010 data, SDW code:
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MNA.Q.Y.I8.W2.S1.S1.B.B1GQ. Z. Z. Z.eur.V. Z from 1995Q1 onwards, extended

backwards with AWM data: YER*YED from AWM19upd18, quarterly data

annualised). Source: ECB and Eurostat.

Bank loans to households Loans to households and non-profit institutions serving

households granted by Monetary and Financial Institutions (MFIs), adjusted for

loan sales, securitisation and cash pooling activities (notional stock index rescaled

to outstanding amounts in Eur millions with base December 2010, SDW code:

BSI.M.U2.Y.U.A20T.A.I.U2.2250.Z01.E from 2003 onwards, end of quarter data,

extended back on the basis of internal ECB estimates). For details on the

adjustment see the explanatory notes: www.ecb.europa.eu/press/pr/stats/md/

shared/pdf/explanatorynoteonadjustedloans.en.pdf. Source: ECB.

Bank loans to households to GDP ratio Loans to households (see above for

details) to nominal GDP (Eurostat ESA2010 data, SDW code:

MNA.Q.Y.I8.W2.S1.S1.B.B1GQ. Z. Z. Z.eur.V. Z from 1995Q1 onwards, extended

backwards with AWM data: YER*YED from AWM19upd18, quarterly data

annualised). Source: ECB and Eurostat.

Composite Indicator of Systemic Stress Composite Indicator of Systemic Stress

(CISS): quarterly averages of daily data (SDW code:

CISS.D.U2.Z0Z.4F.EC.SS CI.IDX from 1999 onwards, extended backwards on the

basis of internal ECB estimates). Source: ECB.

Dow Jones Euro Stoxx Price Index Dow Jones Euro Stoxx Price Index, historical

close, average of observations through period (SDW code:

FM.Q.U2.EUR.DS.EI.DJEURST.HSTA), seasonally adjusted via Matlab X-13

Toolbox. Source: ECB.

Residential property price index Residential property prices, transaction value,

index, all dwelling types, new and existing (SDW code: RPP.Q.I8.N.TD.00.3.00),

seasonally adjusted via Matlab X-13 Toolbox. Source: ECB.

Slope of the Yield Curve Euro area 10-year government benchmark bond yield

(SDW code: FM.M.U2.EUR.4F.BB.U2 10Y.YLD, quarterly average of monthly

data) minus 3-month Euribor (historical close, average of observations through

period, SDW code: FM.M.U2.EUR.RT.MM.EURIBOR3MD .HSTA, quarterly

average of monthly data, from 1994 onwards, extended backwards with AWM

data: STN from AWM19upd18). Source: ECB.
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Corporate bond spread Corporate bond yield (investment grade, quarterly average

of monthly data, internal ECB estimates, from 1999 onwards, extended backwards

with a weighted average of corporate bond yields from Global Financial Database

for Germany, France, Italy and Spain, with weights based on the outstanding

amounts of debt securities issued by non-financial corporations, SDW code:

SEC.M.”COUNTRY”.1100.F33000.N.1.Z01.E.Z, with DE, FR, IT and ES in place

of ”COUNTRY”, with a correction of German debt securities data in December

2011 linked to a reclassification) minus 3-month Euribor (historical close, average

of observations through period, SDW code: FM.M.U2.EUR.RT.MM.

EURIBOR3MD .HSTA, quarterly average of monthly data, from 1994 onwards,

extended backwards with AWM data: STN from AWM19upd18). Source: ECB

and Global Financial Database.

Firm lending rate spread Composite indicator of bank lending rates for loans

granted to non-financial corporations (SDW code:

MIR.M.U2.B.A2A.A.R.A.2240.EUR.N, quarterly average of monthy data, from

2000 onwards, extended backwards on the basis of internal ECB estimates) minus

3-month Euribor (historical close, average of observations through period, SDW

code: FM.M.U2.EUR.RT.MM.EURIBOR3MD .HSTA, quarterly average of

monthly data, from 1994 onwards, extended backwards with AWM data: STN

from AWM19upd18). Source: ECB.

Household lending rate spread Composite indicator of bank lending rates for loans

granted to households (weighted average of lending rates for loans to households

for house purchase, SDW code: MIR.M.U2.B.A2C.A.R.A.2250.EUR.N, and

lending rates for consumer credit, SDW code:

MIR.M.U2.B.A2B.A.R.A.2250.EUR.N, in both cases quarterly average of monthy

data, from 2000 onwards, extended backwards on the basis of internal ECB

estimates, with weights based on the outstanding amounts of loans to households

for house purchase and consumer credit) minus 3-month Euribor (historical close,

average of observations through period: FM.M.U2.EUR.RT.MM.

EURIBOR3MD .HSTA, quarterly average of monthly data, from 1994 onwards,

extended backwards with AWM data: STN from AWM19upd18). Source: ECB.
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B.2 Plots of data

Figure B1: Euro area inflation

Figure B2: Euro area core inflation
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Figure B3: Determinants of Phillips curve

Figure B4: Financial indicators: money
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Figure B5: Financial indicators: credit

Figure B6: Financial indicators: sectoral bank loans
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Figure B7: Financial indicators: asset prices, CISS and the yield curve

Figure B8: Financial indicators: spreads
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B.3 Main properties of core inflation

Table B2: Main properties of euro area HICP excluding energy and food prices inflation

Whole Sample

1990Q1-2019Q4

Pre-Great Recession

1990Q1-2007Q4

Post-Great Recession

2008Q4-2019Q4

Summary Statistics

Observations 119 71 48

Mean 1.8 2.2 1.1

Standard deviation 1.0 1.1 0.4

Minimum 0.3 0.6 0.3

Maximum 4.8 4.8 2.1

Empirical Quantiles

τ=0.05 0.66 0.88 0.50

τ=0.10 0.78 1.10 0.64

τ=0.90 3.35 4.00 1.72

τ=0.95 4.17 4.25 1.85

Skewness and fat tails (Test Statistics)

Skewness 4.988∗∗∗ 3.029∗∗∗ 0.145

Kurtosis 2.357∗∗∗ 0.247 1.004

Normality 0.695∗∗∗ 0.784∗∗∗ 0.644∗∗∗

Notes: *** denotes statistical significance at 1% significance level
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C Additional Results
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Figure C1: Error distributions generated in the Monte Carlo study: 1) Normal, 2) Skewed,
3) Kurtotic, 4) Outlier, 5) Bimodal, 6) Bimodal, separate modes, 7) Skewed bimodal, and
8) Trimodal.

Figure C2: Calibration tests of Rossi and Sekhposyan (2019) for the best models for 4-
quarters ahead prediction
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Figure C3: Calibration tests of Rossi and Sekhposyan (2019) for the best models for 12-
quarters ahead prediction
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Figure C4: Coefficient estimates for the financial indicator within the best TVP-QAR-
X models for 4-quarters ahead prediction. The three panels at the top pertain to the
coefficient corresponding to the ratio of M1 to GDP while the three panels at the bottom
for loans to the private sector, for the quantiles τ = [0.05, 0.5, 0.95]. Solid lines are the
posterior means, dashed lines the posterior medians, while the shaded areas corresponds
to the posterior 16th and 84th quantiles for each coefficient.
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Figure C5: Coefficient estimates for the financial indicator within the best TVP-QAR-
X models for 12-quarters ahead prediction. The three panels pertain to the coefficient
corresponding to the ratio of loans to the private sector to GDP, for the quantiles
τ = [0.05, 0.5, 0.95]. Solid lines are the posterior means, dashed lines the posterior
medians, while the shaded areas corresponds to the posterior 16th and 84th quantiles for
each coefficient.
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Figure C6: Coefficient estimates for the all the regressors within the best TVP-QPC-
X models for 12-quarters ahead prediction. The three panels at the top pertain to the
coefficient corresponding to the intercept, the three panels in the middle to inflation inertia
and the three panels at the bottom to long-term inflation expectations for the quantiles
τ = [0.05, 0.5, 0.95]. Solid lines are the posterior means, dashed lines the posterior
medians, while the shaded areas corresponds to the posterior 16th and 84th quantiles for
each coefficient.
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Figure C7: Coefficient estimates for the all the regressors within the best TVP-QPC-
X models for 12-quarters ahead prediction. The three panels at the top pertain to the
coefficient corresponding to the output gap, the three panels in the middle to the change
in relative prices and the three panels at the bottom to the financial indicator of loans
to households, for the quantiles τ = [0.05, 0.5, 0.95]. Solid lines are the posterior means,
dashed lines the posterior medians, while the shaded areas corresponds to the posterior
16th and 84th quantiles for each coefficient.
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