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Abstract

Fed’s monetary policy announcements convey a mix of news about different 

kinds of conventional and unconventional policies and about the economy. Finan-

cial market responses to these announcements are very leptokurtic: often tiny, but 

sometimes large. I estimate the underlying structural shocks exploiting this feature 

of the data. I find standard monetary policy, Odyssean forward guidance, large 

scale asset purchases and Delphic forward guidance, and estimate their effects.

JEL classification: E52, E58, E44

Keywords: High-frequency identification; Non-Gaussianity; Excess kurtosis; 

Forward guidance; Asset purchases
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Non-technical summary

Economists study high-frequency financial market responses to Fed’s policy announce-

ments in order to learn more about the effects of Fed policies on the economy. However,

these announcements may in general contain very diverse news: news about the cur-

rent policy rates, forward guidance on the future course of policy rates, decisions about

large scale asset purchases, comments on the recent economic data and economic fore-

casts. Each of these dimensions may affect the economy differently, if at all, and there

is an active debate about their relative effects. To resolve this debate, it is crucial to

decompose the financial market reactions into the underlying structural dimensions. Re-

searchers construct such decompositions combining economic reasoning and institutional

knowledge.

This paper points out that financial market responses to Fed announcements are very

leptokurtic, i.e. they are very small most of the time, but occasionally they are large.

This is a crucial observation, because in the presence of non-Gaussianity, such as this, the

data themselves contain information about the relevant decompositions into underlying,

structural dimensions. This paper proposes to exploit this information.

This paper’s baseline model includes the high-frequency responses of fed funds futures,

US Treasury yields and stock prices to 240 Fed policy announcements between 1991 and

2019. They are modeled using a Student-t distribution, which is capable of capturing

their high kurtosis. The model pins down four underlying independent dimensions of the

Fed announcements. Looking at the responses of variables to each of these dimensions

it is straightforward to label them, ex post, as the standard fed funds policy, standard

(Odyssean) forward guidance, long-term interest rate policy (naturally associated with

the large scale asset purchases) and forward guidance understood as a prediction about

the economy rather than as a commitment to a path of policy rates (dubbed “Delphic”

forward guidance by Campbell et al. 2012). The paper experiments with alternative sets

of variables and subsamples and finds that the first two dimensions show up very robustly

across specifications, the other two show up in most of them, and no other interpretable

dimension emerges. The baseline decomposition agrees well with the accepted narrative

accounts of Fed policies and their effects, even though it is obtained from the statistical

features of the data alone.
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1 Introduction

Central banks deploy a growing arsenal of policies in their efforts to steer the economy, but

measuring the effects of these different policies is difficult. One challenge is the endogeneity

of these policies, another, how to disentangle their effects. To address the endogeneity

problem researchers increasingly follow Kuttner (2001) and use as instrumental variables

the changes of financial asset prices in a narrow time window around Federal Open Market

Committee (FOMC) announcements. Prior to the announcement, asset prices reflect the

consensus view about the state of the economy and the Fed’s expected response to it.

After the announcement, asset prices incorporate also any unexpected news about the

current and future fed funds rate policies, asset purchases and the Fed’s view on the state

of the economy. Consequently, the difference between the pre- and post-announcement

asset prices, although purged of a large endogenous component of the Fed policy, still

includes many different dimensions, which may affect the economy differently. Therefore,

it is of crucial importance for monetary economics to separately identify their effects.

This paper studies the high-frequency reactions of financial markets to FOMC an-

nouncements and estimates the underlying structural, i.e. independent shocks. It finds

that these shocks can be naturally labeled ex-post as the current fed funds policy, an

“Odyssean” forward guidance (a commitment to a future course of policy rates), a large

scale asset purchase and a “Delphic” forward guidance (a statement about the future

course of policy rates understood as a forecast of the appropriate stance of the policy

rather than a commitment, see Campbell et al. 2012). The paper then uses local projec-

tions to track the different effects of these shocks on the economy.

To identify the structural shocks I exploit a striking feature of the data. Namely,

financial market reactions to FOMC announcement are very leptokurtic, i.e. often tiny,

but sometimes large. This feature implies that the data contain a lot of information about

the nature of the underlying structural shocks. Given the importance of Fed’s policies, it

is vital to exploit this available information as well as possible. Previous literature has

ignored it, treating the shocks explicitly or implicitly as Gaussian. This paper is the first

attempt to tap this valuable information.

The intuition of how excess kurtosis helps identify structural shocks is simple. Lep-
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tokurtic responses of financial markets, assuming linearity, as is common in the literature,

imply that the underlying structural shocks are leptokurtic, i.e. often tiny and sometimes

large. Then, when we see a significant market reaction to an FOMC announcement, there

is a high chance that only one, or only a small subset of the structural shocks is driving

this reaction. This greatly facilitates detecting unique patterns of responses characterising

individual shocks. As a result, the shocks are identifiable from the data without the need

for additional identifying assumptions. I specify a simple econometric model in which

the responses of a vector of financial variables to FOMC announcements are driven by

independent Student-t shocks, estimate it and back out the shocks.

More in detail, the baseline model expresses the surprises (i.e., the high-frequency

reactions to FOMC announcements) in the near-term fed funds futures, 2- and 10-year

Treasury yield and the S&P500 stock index as linear combinations of four Student-t

distributed shocks. It turns out that these four shocks are very precisely estimated and

ex post have natural economic interpretations. The first shock raises the near-term fed

funds futures, with a diminishing effect on longer maturities and depresses the stock

prices. It can be naturally labeled as the standard monetary policy shock. The remaining

shocks do not affect the near-term fed funds futures. The second shock increases the 2-

year Treasury yield the most and depresses the stock prices. It can be naturally labeled as

the (Odyssean) forward guidance shock. The third shock increases the 10-year Treasury

yield the most and plays a large role in some of the most important asset purchase

announcements. It can be naturally labeled as the asset purchase shock. The fourth

shock is similar to the Odyssean forward guidance shock, but triggers an increase, rather

than a decrease, in the stock prices. Therefore, this shock matches the concept of Delphic

forward guidance introduced by Campbell et al. (2012).

The findings of this paper are relevant for the ongoing research on the effectiveness of

non-standard monetary policies. I track the effects of the estimated shocks using daily

local projections. I find persistent and significant effects of non-standard policies (forward

guidance and asset purchases) on Treasury yields and, in the case of forward guidance,

on corporate bond spreads.

Also the Delphic forward guidance shocks have significant and persistent effects on

financial variables and contribute to the historical narrative of Fed policies. One of the

ECB Working Paper Series No 2585 / August 2021 4



largest Delphic shocks occurs in August 2011, when the Fed stated that exceptionally low

interest rates will be warranted at least through mid-2013, triggering pessimism about

the economy.

Previous research has used a variety of approaches and assumptions to decompose the

financial market reactions into economically interpretable components (see Gürkaynak

et al., 2005; Inoue and Rossi, 2018; Cieślak and Schrimpf, 2019; Lewis, 2019; Swanson,

2021; Miranda-Agrippino and Ricco, 2020; Jarociński and Karadi, 2020, and others). Most

of these papers construct the shocks with the a priori assumed features and ignore their

non-Gaussianity. For example, Gürkaynak et al. (2005) separate the target factor (stan-

dard monetary policy) and the path factor (forward guidance) imposing a zero restriction

on the response of short term rates response to forward guidance. Swanson (2021) con-

structs the same two dimensions plus the large scale asset purchase shocks, minimizing

the variance of the pre-Zero Lower Bound (ZLB) asset purchases shocks. Jarociński and

Karadi (2020) separate monetary policy (a summary of standard and non-standard poli-

cies) from information shocks or Delphic forward guidance using sign restrictions. It is

interesting that the first three shocks I estimate in the present paper are strikingly sim-

ilar to the standard monetary policy (fed funds rate) shock, the forward guidance shock

and the long-term interest rate/large scale asset purchase (LSAP) shock constructed by

Gürkaynak et al. (2005) and Swanson (2021) even though I do not impose any of their as-

sumptions. Furthermore, the fourth shock I estimate is highly correlated with the central

bank information shock of Jarociński and Karadi (2020). Thus, my simple identification

approach provides a validation of these papers’ more involved assumptions.

Identification through non-Gaussianity, such as the excess kurtosis exploited here, has

been known since the 1990s but economic applications have been few so far. This source

of identification underlies the Independent Components Analysis (ICA) (Comon, 1994;

Hyvärinen et al., 2001), which is widely used in signal processing, telecommunications

and medical imaging. Bonhomme and Robin (2009) use ICA to identify factor loadings.

Methodologically closest paper to the present one is Lanne et al. (2017) who identify

structural VARs with Student-t shocks. Gouriéroux et al. (2017) extend the inference

on Structural VARs to pseudo-maximum likelihood. Gouriéroux et al. (2020) show that

also the Structural Vector Autoregression Moving Average (SVARMA) model is identified
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under shock non-Gaussianity. Fiorentini and Sentana (2020) study the effects of distribu-

tional misspecification and identify a structural VAR of volatility indices. Braun (2021)

applies identification through non-Gaussianity to the oil market.

There are analogies between identification by non-Gaussianity and identification by

heteroskedasticity (Rigobon, 2003). Both approaches are examples of a statistical identi-

fication exploiting that shocks arrive “irregularly”. For some recent applications of iden-

tification by heteroskedasticity see e.g. Lewis (2019, 2020); Brunnermeier et al. (2020).

In particular, Lewis (2019) also identifies the effects of Fed’s non-standard policies from

high-frequency financial data, but his approach is very different from the present paper,

as it relies on the intraday time variation of the volatility of asset prices on the days of

FOMC announcements.

Economists commonly assume Gaussian shocks, where shock independence boils down

to their orthogonality. Consequently, in the Gaussian case the researcher needs additional

identifying assumptions to choose among the infinity of orthogonal rotations of the shocks.

By contrast, in models with statistical identification, such as the non-Gaussian or het-

eroskedastic cases, the rotations are no longer equivalent and one can discriminate among

them based on the data, for example using the likelihood function. This does not pre-

clude imposing identifying restrictions or informative Bayesian priors. I do not do it in

this paper but it would be a straightforward extension.

The fact that in the non-Gaussian or heteroskedastic case the likelihood function

discriminates among the shock rotations sidesteps some controversial issues, such as the

critique of the sign restrictions by Baumeister and Hamilton (2015), or the challenges of

doing inference in set-identified models (e.g Giacomini and Kitagawa, 2021). However,

since these statistical methods pin down the shocks only up to sign and permutation, in

Monte Carlo methods one needs to address the technical challenges of shock normalization

(Waggoner and Zha, 2003) and label switching, and this paper shows how to do it.

Section 2 presents the data, highlighting their excess kurtosis. Section 3 lays out

the econometric model and explains the identification with a simple example. Section 4

reports the results from the baseline model and their sensitivity analysis. Section 5 tracks

the longer term effects of the shocks using daily local projections. Section 6 concludes.
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2 Data

The data on high-frequency financial market reactions to FOMC announcements come

from the widely-used dataset of Gürkaynak et al. (2005) (GSS from now on). This dataset

contains the changes of financial variables in a 30 minute window around FOMC an-

nouncements (from 10 minutes before to 20 minutes after the announcement). The sample

studied here contains 240 FOMC announcements from July 1991 to May 2019.

In the baseline analysis I consider a vector of four variables. I refer to them using

their well-known GSS database identifiers. MP1, or the first fed funds future adjusted for

the number of the remaining days of the month (see GSS for details) is the expected fed

funds rate after the meeting. ONRUN2 and ONRUN10 are the 2- and 10-year Treasury

yields. Finally, SP500 is the Standard and Poors 500 blue chip stock index.

The choice of MP1, ONRUN2 and ONRUN10 follows Swanson (2021), who finds

that these three variables approximately span the target, path and LSAP factors that he

constructs.1 I add the SP500 in order to capture the effects beyond the yield curve.

The responses of the four baseline variables to FOMC announcements are very non-

Gaussian. Figure 1 reports, for each variable, the histogram, a Gaussian density and

a Student-t density each fitted into the data by maximum likelihood. We can clearly

see that the Gaussian densities, plotted in red, fit the histograms poorly. First, the

Gaussian distributions predict too few near-zero observations. Second, the observed 4-,

6- and even 8-standard deviation outliers are unlikely under the Gaussian distribution.

The fitted Student-t densities, which agree with the histograms quite well, have very low

shape parameters (v = 0.6, 1.7, 2.3, 2.3, respectively) implying very large departures from

Gaussianity.

1Swanson (2021) reports that MP1, the part of ONRUN2 that is unexplained by MP1 and the part
of ONRUN10 that is unexplained by MP1 and ONRUN2 have correlations respectively 96%, 96%, 89%
with his target, path and LSAP factors.
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Figure 1: The empirical distributions of the baseline variables.
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Note. Each plot contains the histogram of the data, the Gaussian density and the Student-t density each
fitted into the data by maximum likelihood. The histograms are scaled so that they integrate to 1.

3 The econometric model

Throughout this paper I study the market responses to the FOMC announcements using

the following simple econometric model:

yt = C ′ ut un,t ∼ i.i.d.T (v). (1)

yt = (y1,t, ..., yN,t)
′ is the vector of N variables observed at time t. ut = (u1,t, ..., uN,t)

′ is

a vector of unobserved, structural, i.e. mutually independent, shocks. C is an N × N

matrix whose i, j-th element C(i, j) contains the effect of shock i on variable j. We are

interested in independent shocks because only when they are independent it makes sense

to discuss and interpret the effect of an individual shock.

Equation (1) is a special case of a Structural VAR with no lags of yt. The case of no

lags is relevant when variables yt are approximately unpredictable, as is the case for the
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financial market responses to FOMC announcements studied in this paper.2

T (v) denotes the Student-t density with the shape parameter v and the probability

density function

p(un,t) = c(v) (1 + u2n,t/v)−
v+1
2 , (2)

where c(v) = v−1/2B
(
1
2
, v
2

)−1
is the integrating constant, with B(·, ·) denoting the beta

function.

A sample of T observations satisfies

Y = U C, (3)

where Y is the T ×N matrix with y′t in row t and U is the corresponding T ×N matrix

of structural shocks. It is convenient to reparameterize the model in terms of W = C−1,

so that we can write YW = U . The log-likelihood of the sample Y is

log p(Y |W, v) = T log | detW | − v + 1

2

∑
t

∑
n

log(1 + u2n,t/v) + TN log c(v), (4)

where un,t = y′tw
n, with wn the n-th column of W . By maximizing the likelihood (4) we

can estimate the set of shocks U and their effects C = W−1.

The identification of this model depends crucially on the distribution of the shocks.

For example, when the shocks are Gaussian the model is not identified and there are

infinitely many versions of U and C that fit the data equally well. By contrast, when the

shocks are independent and leptokurtic, as in (1), U and C are identified up to reordering

and changing the signs.

3.1 The intuition behind the identification

The purpose of this section is to provide a simple illustration how structural relationships

get revealed in the data in the presence of excess kurtosis. For a formal proof that non-

Gaussianity (of a more general form) of all but one shocks implies identification see e.g.

Lanne et al. (2017), Proposition 2.

2Miranda-Agrippino and Ricco (2020) study the predictability of financial market responses to FOMC
announcements using their own lags and ten factors extracted from macroeconomics variables. They
report unadjusted R-squared below 0.1 (see their Table 3).
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Figure 2: Stylized example: demand and supply of good A.
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Note. Each sample has 1000 observations. The samples in the left column are generated from (5) with
coefficients C1, and the samples in the right column are generated with coefficients C2. In panels C and
D the shocks d and s are independent Gaussian with mean 0 and variance 1. In panels E and F the
shocks d and s are independent Student-t with mean 0, scale parameter 1 and shape parameter v = 1.5.
Before feeding to the model, the Student-t shocks are re-scaled so that their sample variance equals 1. In
all four scatter plots, ∆P and ∆Q have sample mean zero, sample variance 1 and sample correlation 0.2.
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To fix ideas, consider the market for a good A. Market prices P and quantities Q are

determined by demand and supply, each subject to shocks. Let us consider the innovations

in P and Q in response to shocks, denoted ∆P and ∆Q. Can we identify the slopes of

the demand and supply curves from the data on ∆P and ∆Q?

Consider two structural models. In Model 1 the demand schedule is relatively flat and

the supply schedule is steep, while in Model 2 it is the reverse. Models 1 and 2 satisfy

equation (5) with coefficients C1 and C2 respectively.

∆Q

∆P

 = C ′i∈{1,2}

s
d

 , with C ′1 =

 0.94 0.33

−0.14 0.99

 , C ′2 =

 0.14 0.99

−0.94 0.33

 , (5)

where s is a supply shock and d a demand shock. In Model 1 a unit supply shock s

increases the quantity supplied by 0.94 while the market price falls by 0.14, revealing a

flat demand curve with the slope of −0.14/0.94 ≈ −0.15. The slope of the supply curve

is 0.99/0.33 = 3. In Model 2 the slopes are -6.7 and 0.33 respectively. Panels A and B of

Figure 2 plot these demand and supply curves.

When the shocks s and d are Gaussian, we cannot identify the slopes from the data

on ∆P and ∆Q. The second row of Figure 2 presents the combinations of ∆P and ∆Q

obtained from Model 1 in panel C and from Model 2 in panel D, when the shocks d and

s are drawn from independent Gaussian distributions with mean 0 and variance 1. In

this example C1 × C ′1 = C2 × C ′2 = ( 1 0.2
0.2 1 ). Consequently, in both cases (∆P,∆Q) are

Gaussian with the same first two moments, (0, 0) and ( 1 0.2
0.2 1 ), so the samples look the

same.

When the shocks s and d are independent Student-t, the situation changes. Now

Models 1 and 2 produce systematically different ∆P and ∆Q. This is illustrated in the

third row of Figure 2. The samples in the third row are generated from (5) but this time

shocks d and s are drawn from a Student-t distribution with mean 0 and shape parameter

v = 1.5. For consistency with the previous example, the shocks are re-scaled to ensure

that their sample variance is 1. Hence, (∆P,∆Q) continue to have the same first two

moments, (0, 0) and ( 1 0.2
0.2 1 ). Nevertheless, the samples in panels E and F look very

differently from each other and even an observer lacking any statistical training will have

no problem matching each sample with the correct structural model.
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What helps here is the high kurtosis of the Student-t distribution, i.e. the fact that

the shocks are often tiny, but sometimes large. For an outlying observation, chances are

that only one of the shocks was large, while the other was tiny. Hence, these observations

cluster around the demand and supply schedules, revealing their slopes.3

Figure 3: Stylized example: information in the likelihood function of the data from panel
E of Figure 2.
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Note. Likelihood of the sample in panel E of Figure 2, as a function of the rotation angle α. α = 0
corresponds to the Choleski decomposition of the sample variance of Y . Left panel: Student-t likelihood
given in (4). Right panel: Gaussian likelihood.

Obviously, if we can identify the structural model visually, we can also do it numerically

by evaluating the likelihood function. Let Y be the T × 2 matrix collecting the data on

prices and quantities from panel E of Figure 2, i.e. generated from Model 1. Let U be

the T × 2 matrix with orthogonal shocks. We can decompose Y into orthogonal shocks

in infinitely many ways because

Y = UC = UQ(α)Q(α)′C = Ũ C̃ for any Q(α) =

 sinα cosα

− cosα sinα

 (6)

where U ′U = I = Ũ ′Ũ . Parameter α indexes all models that fit the data Y while implying

different slopes of demand and supply. All these models have the same likelihood if

we incorrectly assume that the shocks are Gaussian. However, the Student-t likelihood

3This example focuses on the identification resulting from a high kurtosis, because this is what the
empirical application exploits. Other deviations from normality ensure identification as well. The online
Appendix illustrates the identification coming from low kurtosis.
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discriminates between these alternative models. This is illustrated in Figure 3.

The left panel of Figure 3 plots the log-likelihood of Y implied by the Student-t

distribution of shocks, and given in (4). The log-likelihood peaks at the rotation angle α

that corresponds to Model 1 in this example. At the α that corresponds to Model 2 the

likelihood is 71 log points lower, so the likelihood ratio test would reject this model at any

practical confidence level. Nevertheless, a researcher who wrongly assumes the Gaussian

model would not be able to discriminate between the models. As the right panel of Figure

3 illustrates, the Gaussian likelihood is the same for any value of α. This is because the

Gaussian likelihood depends only on the first two moments and all values of α produce

models with the same first two moments. However, incorrect values of α imply shocks that

exhibit particular relations between demand and supply shocks, such as their co-kurtosis,

in order to match the data in panel E. This violates the independence of the shocks and

hence gets penalized in the Student-t likelihood.

The rest of the paper investigates whether the non-Gaussianity of the FOMC policy

surprises reveals the slopes of structural relations similarly as in the above example. In

this real-life case no bi-variate scatter-plot of the variables from the GSS dataset looks

like panels E and F of Figure 2, so clearly one needs to consider more than two variables

and two shocks. The hope is that the data are informative enough to pin down a sufficient

number of distinct shocks and that the independence assumption is reasonable enough to

yield interpretable shocks.

3.2 Estimation

I estimate model (1) and conduct inference on the structural shocks and their impacts on

the variables. I use the maximum likelihood estimation to obtain Ŵ and v̂, the estimate

of the structural shocks Û = Y Ŵ , the estimate of the impact matrix Ĉ = Ŵ−1 and other

quantities discussed later. To assess the estimation uncertainty I simulate the exact shape

of the likelihood using the Metropolis-Hastings algorithm.

3.2.1 Maximum likelihood

I maximize the likelihood function (4). The Appendix provides the analytical expression

for the gradient. One peculiarity of model (1) is that it is only identified up to a per-
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mutation of the shocks and up to scaling each shock by +/-1. The likelihood p(Y |W ) is

invariant to permuting the columns of W (N ! possibilities) and flipping their signs (2N

possibilities), and consequently it has N ! × 2N equally high modes. The maximization

routine converges to one of these modes, Ŵ , which corresponds to a particular ordering

and signs of the shocks. I compute the asymptotic variance of (vec Ŵ ′, v̂)′ as V = (−H)−1,

where H is the Hessian of the log-likelihood at Ŵ , v̂.

3.2.2 Simulation of the shape of the likelihood with the Metropolis-Hastings

algorithm

Next I use the Metropolis-Hastings algorithm to draw a sample of parameter values from

the distribution proportional to the likelihood. This has two purposes. First, I want

to explore the shape of the likelihood function in order to detect potential identification

problems. Second, I want the inference about nonlinear functions of W , such as the C,

to be as precise as possible. With a sample from the Metropolis-Hastings algorithm I

can assess the uncertainty about all quantities of interest precisely without relying on

asymptotic approximations.

Simulation. I start the simulation from the maximum likelihood estimate Ŵ , v̂. I

generate proposal draws with a random walk model with the innovation variance equal to

the asymptotic variance V scaled to ensure the acceptance rate of about 20%. The scale

is 0.66 in the baseline model. I generate 10,000,000 draws and keep every 10,000-th. This

simulation takes less than 5 minutes on a standard laptop.

Normalization. The Metropolis-Hastings chain may visit the neighborhoods of differ-

ent modes. As a consequence, given a draw of W one does not know to what ordering

and signs of the shocks it corresponds. The draw needs to be normalized, i.e. mapped

into the same ordering and signs of the shocks as in Ŵ . I proceed in two steps. First,

I fix the signs of the shocks for each permutation. Second, I pick one of the (up to)

N ! permutations, choosing the one that has the highest probability under the Gaussian

approximation of the likelihood function around Ŵ .

Let W̃ denote a draw of W , let p = 1, ..., N ! index the permutations of the N columns
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of W̃ , let W̃p denote the matrix obtained by the p-th permutation of the columns of W̃ ,

let VW denote the asymptotic variance of vecW (i.e., V without the last row and column)

and let F (x|m,V ) denote the multivariate Gaussian density with mean m and variance

V evaluated at the point x.

Algorithm 1 Given a draw W̃ , for each permutation W̃p, p = 1, ..., N !:

1. Scale the columns of W̃p by +/-1 using the Likelihood Preserving normalization of

Waggoner and Zha (2003) (their Algorithm 1), obtaining a sign-normalized matrix

W̃LP
p .

2. Evaluate f(p) = F (vec W̃LP
p | vec Ŵ ,VW ).

Take the W̃LP
p∗ where p∗ = arg maxp f(p) as the normalized W̃ .

In practice a finite Markov Chain does not visit the neighborhoods of all the modes but

only a subset of them, so I only need to consider the permutations of those columns of W

that have multiple modes before the normalization, rather than all the N ! permutations.

This speeds up the normalization.

The baseline model (defined below) estimated on the full sample is an extreme case,

because the different modes of its likelihood are well separated by regions of a low like-

lihood. As a result, a 10,000,000 long chain with the standard, 20% acceptance rate is

unlikely to visit the neighborhood of another mode. However, for larger models and for

models estimated on subsamples the chains do visit neighborhoods of multiple modes and

the normalization sometimes becomes more time consuming than the simulation itself.

4 Estimation results

4.1 The baseline model

I define yt=(MP1, ONRUN2, ONRUN10, SP500), estimate model (1) by maximum like-

lihood and then simulate the shape of the likelihood.

Figure 4 reports the distribution of the elements of C obtained with the simulation.

Vertical lines represent the maximum likelihood estimates and the histograms represent
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Figure 4: The distribution of C
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Note: Histograms of the elements of C based on the Metropolis-Hastings chain. Black vertical lines
represent the maximum likelihood estimates.

the distribution of the draws from the Metropolis-Hastings algorithm. The distributions

look approximately Gaussian and, ex post, yield very similar inferences as the asymptotic

distribution of the maximum likelihood estimates. However, next subsections report some

models where the likelihood functions have less regular shapes and the simulation-based

inference matters.

Figure 5 reports the distribution of the degree of freedom parameter v. The maximum

likelihood estimate is 1.33 and virtually all the probability mass lies between 1 and 2,

implying a very leptokurtic distribution.

4.2 The impact effects of the four baseline shocks

Figure 6 reports C in a more convenient way. First, C gives the responses of Y to a unit

shock, but it is easier to interpret and compare with the previous literature the effects
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Figure 5: The distribution of v
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Note: Histogram of v based on the Metropolis-Hastings chain. The black vertical line represents the
maximum likelihood estimate.

of a one standard deviation shock. Although the standard deviation of u is not defined

for the Student-t density with v ≤ 2, one can always compute the standard deviation of

Û = Y Ŵ . Therefore, in the following plots I re-scale the entries in each row of C by the

sample standard deviation of the corresponding shock (the corresponding column of Û).

Second, for a more convenient interpretation of the coefficients I now switch to reporting

only their modes and the 95% probability ranges (the ranges between quantiles 0.025

and 0.975). Third, I plot the responses of interest rates against the x-axis showing their

maturity. Figure 6 shows this more convenient presentation of C and Table 1 provides

the underlying numbers for reference.

The shocks reported in Figure 6 are tightly estimated and have intuitive economic

interpretations.

u1 looks like a standard contractionary monetary policy shock. The fed funds rate

increases by 7.5 basis points and other interest rates follow, with a weaker effect for

longer maturities. The 2-year Treasury yield increases by almost 4 basis points and the

10-year Treasury yield by about 1.6 basis points. The SP500 index drops by 26 basis

points.

u2 looks like the effect of forward guidance. The fed funds rate does not change in

the near term, but the 2-year yield increases by more than 4 basis points and the 10-year

yield by 3.4 basis points in the half-hour window around the FOMC announcement. This

shock is very contractionary and the SP500 drops by 44 basis points.
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Figure 6: The responses of the variables to standardized shocks, 95% band.
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← u1 = Standard monetary policy

← u2 = Odyssean forward guidance

← u3 = Long term rate shock (LSAP)

← u4 = Delphic forward guidance
(information)

Table 1: The responses of the variables to standardized shocks

MP1 ONRUN2 ONRUN10 SP500

u1 7.51 3.92 1.56 -26.35
(0.03) (0.30) (0.23) (3.50)

u2 -0.01 4.29 3.37 -43.50
(0.13) (0.19) (0.19) (2.31)

u3 0.02 -1.52 2.17 8.66
(0.11) (0.38) (0.32) (4.84)

u4 -0.01 2.56 1.76 35.43
(0.16) (0.29) (0.24) (2.77)

Notes. Standard deviations in parentheses. The same coefficients
are reported graphically in Figure 6.

u3 is essentially an idiosyncratic shock to the 10-year yield, because it has little effect

on anything else: only the 2-year rate falls a little. However, I show below that this

shock has a significant impact on the stock market in the later part of the sample and

its realizations coincide reasonably with large asset purchases, which justifies calling it an
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LSAP shock.4

Finally, u4 moves the yield curve similarly as the forward guidance shock u2, only

is about two-thirds of the size. However, by contrast to u2, this shock is accompanied

by an increase in the SP500 index by 35 basis points, suggesting the activation of the

information effect. In particular, this shock perfectly matches the notion of the Delphic

forward guidance of Campbell et al. (2012).

Table 2: Variance decomposition

MP1 ONRUN2 ONRUN10 SP500

u1 1.00 0.36 0.11 0.18
(0.00) (0.04) (0.03) (0.04)

u2 0.00 0.43 0.53 0.48
(0.00) (0.04) (0.07) (0.03)

u3 0.00 0.05 0.22 0.02
(0.00) (0.03) (0.06) (0.03)

u4 0.00 0.15 0.14 0.32
(0.00) (0.03) (0.03) (0.06)

Total 1.00 1.00 1.00 1.00

Note: Shares of the sample variance. Standard deviations in parentheses.

Since the shocks do not have a well-defined variance, also variance decompositions need

to be taken with a grain of salt and we should expect them to be sensitive to outliers.

Table 2 reports the variance decompositions of all variables, which should be interpreted

with this caveat. u1 is simply equal to MP1. In light of this, the federal funds rate

surprises are a valid instrument for the standard monetary policy shock (e.g. Kuttner

(2001); Bernanke and Kuttner (2005) use this instrument). However, the most important

shock is the Odyssean forward guidance shock u2, which accounts for 43% of the variation

of 2-year bond yields and about a half of the variation of 10-year bond yields and stock

prices in the half-hour windows around FOMC announcements. The third shock that is

pervasive, in the sense that it accounts for non-trivial shares of multiple variables, is the

Delphic forward guidance shock u4. It accounts for about 15% of the variation of Treasury

yields and one third of the variation of stock prices.

4Swanson (2021) also finds that his LSAP shock has an insignificant effect on the stock prices in the
full sample.
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The effects of u1 and u2 on MP1 and Treasury yields reported in Table 1 are very

similar to the effects of the target factor and path factor of GSS and Swanson (2021)

(compare with Swanson’s Table 3). This is in spite of the fact that I do not impose their

zero restriction on the response of MP1 to all shocks but one. In spite of my more agnostic

approach, the estimation uncertainty is very small. We can conclude that the maximum

likelihood estimation that exploits the kurtosis of the data validates these earlier studies

and their assumptions.

Another important lesson is that Fed information effects matter, as witnessed by

the nontrivial role of u4, but they manifest themselves as the Delphic forward guidance.

The theoretical models of Melosi (2017) and Nakamura and Steinsson (2018) predict

information effects that accompany current fed fund rate changes, but that is not what

shows up in the estimation.

4.3 The distribution of the estimated shocks

Figure 7: The distribution of û
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The marginal distributions of the estimated shocks Û are very leptokurtic, consistently

with the assumed model. Figure 7 shows the histograms of the estimated shocks Û (blue
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bars) along with the plots of Student-t densities T (1.33), with the degrees of freedom

parameter v = 1.33 that maximizes the likelihood function (red lines). We can see that

the Student-t densities match the histograms quite well.

Table 3: Rank correlations and linear correlations between the shocks

Rank correlations Linear correlations

u1 u2 u3 u4

u1 1 -0.01 -0.03 0.03
u2 (0.83) 1 0.02 0.04
u3 (0.68) (0.75) 1 0.02
u4 (0.66) (0.53) (0.80) 1

u1 u2 u3 u4

u1 1 -0.17 -0.07 -0.12
u2 (0.01) 1 0.32 0.05
u3 (0.25) (0.00) 1 0.02
u4 (0.06) (0.48) (0.76) 1

Note: Correlation coefficients above the diagonal, p-values in parentheses below the
diagonal. Rank correlations (Spearman’s correlations) in the left panel, linear corre-
lations (Pearsons’s correlations) in the right panel. The linear correlation between u2
and u3 drops from 0.32 to 0.07 if one omits the QE1 announcement.

Table 3 reports the correlations between the shocks and, at the same time, illustrates

the perils of applying linear statistics to non-Gaussian variables. The rank (Spearman’s)

correlations, reported in the left panel are all negligible. However, the linear (Pearson’s)

correlations, reported in the right panel, are sometimes large. Especially striking is the

correlation of 0.32 between u2 (forward guidance shocks) and u3 (LSAP shocks). Such

a high correlation between Gaussian shocks would mean that they are systematically

related and hence studying their effects in isolation makes little sense. However, for non-

Gaussian variables such a high linear correlations can happen by chance. In fact, in this

case the linear correlation is almost entirely driven by a single observation, namely the

announcement of the QE1 program in March 2009, which caused a particularly large

reaction of financial markets. After omitting this single data point the linear correlation

drops to 0.07, revealing that the shocks u2 and u3 are not in fact systematically linearly

related.

4.4 The estimated shocks: the history

Figure 8 reports the history of the shocks over time. To facilitate the interpretation, the

shocks are rescaled so that a one unit u1 shock raises the MP1 by 1 basis point, a one
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Figure 8: The estimated shocks over time.

1992 1994 1996 1998 2000 2002 2004 2006 2008
-50

-40

-30

-20

-10

0

10

20

30 IM IM IM.IM IM

dr
op

 c
on

si
de

ra
bl

e

fir
st

 e
as

in
g

w
ea

kn
es

s

tig
ht

en
in

g

un
w

el
co

m
e

ov
er

sh
oo

tin
g

tig
ht

en
in

g

co
ns

id
er

ab
le

Ja
n3

.2
00

1

un
se

ttl
ed

u1
u2
u3
u4

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
-25

-20

-15

-10

-5

0

5

10 QE1
FG mid-2013

Twist
Taper

No taper patient
unlikely

dovish
consider

4to2

u1
u2
u3
u4

Note. IM: an “inter-meeting” announcement.

unit u2 and u4 raises the ONRUN2 by 1 basis point, and a one unit u3 shock raises the

ONRUN10 by 1 basis point. The top panel of Figure 8 shows the pre-ZLB period 1991-

2008 and the bottom panel the remaining period 2009-2019. Vertical bars highlight many

of the same events as GSS and Swanson (2021). Appendix B plots the market responses

to these events.

The history of the standard monetary policy shock u1 agrees with the accepted ac-

counts. u1 is essentially equal to MP1 and is also highly correlated with the GSS target

factor/Swanson (2021) fed funds rate shock (rank correlation 0.76, linear correlation 0.95).
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Table 4 reports these and other correlations between various shocks. In the 1991-2008

plot we can see that, as is frequently noted, the largest realizations of standard policy

shocks occur at inter-meeting announcements (labeled “IM” in the plot). After 2008 the

standard monetary policy shocks are negligible.

The Student-t model interprets some of the forward guidance episodes as Odyssean,

u2 and some as Delphic, u4, or the mix of both. Table 4 reports that the forward guid-

ance shock of Swanson (2021) is highly positively correlated with both u2 and u4 (rank

correlations of 0.74 and 0.48 respectively). The 1991-2008 plot in Figure 8 highlights

the dates of the ten forward guidance episodes discussed in GSS (their Table 4, “Ten

Largest Observations of the Path Factor”). They are labeled with the key word of the

FOMC statement or a one-word description of its message. The Odyssean forward guid-

ance, u2 dominates the announcements marked ‘overshooting’ (December 1994, markets

expect future tightening after Blinder’s recent comments of ‘overshooting’), ‘unsettled’

(October 1998), ‘tightening’ (May and October 1999) and ‘drop considerable’ (January

2004, dropping of the commitment to a ‘considerable period’ of the same policy). The

Delphic forward guidance u4 dominates the episodes labeled ‘Jan3,2001’ and ‘weakness’

(August 2002). The remaining highlighted announcements (‘first easing’, ‘unwelcome’

and ‘considerable’) are mixtures of both types of forward guidance.

The announcement on January 3, 2001 triggers the largest Delphic shock in the sample.

It is a large inter-meeting rate cut that, as discussed in GSS, caused financial markets to

mark down the probability or a recession and as a result expect higher rates down the

road. The GSS methodology picks it up as a combination of a target factor easing and

a path factor (forward guidance) tightening. In this paper’s methodology the forward

guidance is of the Delphic kind and therefore reinforces the stock market gains rather

than dampening them, which helps match the data. Since this u4 shock is so large, I

test the robustness of the results to dropping the January 3, 2001 observation from the

sample. The results without this observation are almost unchanged. The correlation of

the two estimates of u4 on the remaining dates is more than 0.99.

In the announcement labeled ‘weakness’ on August 13, 2002 the FOMC stated that the

balance of risks has shifted towards economic weakness. This stimulated both pessimism,

reflected in stock market losses, and expectations of lower rates in the future. Therefore,
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although the announcement did not promise a rate cut explicitly, it worked as a Delphic

forward guidance.

In the 2009-2019 plot in Figure 8 the largest Delphic shock is the ‘mid-2013’ announce-

ment, issued on August 9, 2011, in which the FOMC stated that the “economic conditions

... are likely to warrant exceptionally low levels for the federal funds rate at least through

mid-2013”. It is intuitive that such a wording of the forward guidance is prone to trigger

a Delphic interpretation (e.g. Del Negro et al. 2012 discuss the Delphic nature of this an-

nouncement). By contrast, the forward guidance episodes from December 2014 to March

2016 are either Odyssean, u2 or mixes of Delphic and Odyssean.

Interestingly, the ‘dovish’ announcement on September 17, 2015, which is a major

forward guidance shock in Swanson (2021), does not show up as such here. On that day

markets priced in some probability that the Fed would raise the rates for the first time

since 2008. The Fed did not change the rates and the MP1 dropped by 6.4 basis points

upon the announcement. This is interpreted here as a standard fed funds rate shock u1 of

-6.4 basis points, accompanied by a mix of Odyssean and Delphic forward guidance shocks

of -1.5 basis points each. However, there are few other so clear discrepancies between the

two approaches.

Table 4 shows that the Delphic shock u4 is highly positively correlated with the central

bank information (CBI) shock of Jarociński and Karadi (2020), which picks up the positive

correlation between interest rate surprises and stock price surprises. For the baseline CBI

shock, which uses the fourth fed funds future (FF4) as the summary of the interest rate

surprises, the correlation is 0.58. For the CBI shock based on the first principal component

of futures with maturities up to 1 year as the summary of interest rate surprises, (reported

by Jarociński and Karadi, 2020 in the Appendix), the correlation is even higher, 0.78.

The largest by far LSAP shock u3 accompanies the announcement of the expansion

of the QE1 program (March 18, 2009). I check the robustness of the results to omitting

this observation, but all the lessons remain almost unchanged (see the second line of

Table 4). As in Swanson’s analysis, this shock is accompanied by a large expansionary

Odyssean forward guidance shock. Another sizable expansionary LSAP shock happens

at the announcement of the ‘Operation Twist’ (September 21, 2011). Finally, there is

first a contractionary and then an expansionary LSAP shock during the “taper tantrum”
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Table 4: Pairwise rank and linear correlations with baseline shocks u1, u2, u3 and u4

Obs. u1 u2 u3 u4

Changing the sample

Drop January 3, 2001 239 u1:
1.000

(1.000)
u2:

0.998

(0.999)
u3:

0.994

(0.998)
u4:

0.998

(0.999)

Drop QE1 (March 18, 2009) 239 u1:
0.998

(1.000)
u2:

0.998

(0.999)
u3:

0.998

(0.999)
u4:

0.997

(0.999)

Sample 1999-2004 120 u1:
0.93

(0.98)
u2:

0.89

(0.95)
u3:

0.91

(0.94)
u4:

0.97

(0.99)

Sample 2005-2019 120 u1:
0.94

(1.00)
u2:

0.82

(0.78)
u3:

0.88

(0.97)
u4:

0.96

(0.98)

Other papers

Swanson (2021) 240 ff:
0.76

(0.95)
fg:

0.74

(0.79)
lsap:

-0.66

(-0.84)
fg:

0.48

(0.49)

JK (2020) FF4 221 MP:
0.50

(0.70)
MP:

0.62

(0.44)
MP:

-0.05

(-0.03)
CBI:

0.58

(0.65)

JK (2020) 1stPC 237 MP:
0.52

(0.65)
MP:

0.69

(0.56)
MP:

-0.05

(0.03)
CBI:

0.78

(0.81)

Note. Rank (Spearman’s) correlations on top, regular font; linear (Pearson’s) correlations below,

in brackets, italics. ‘ff’, ‘fg’ and ‘lsap’ stand for fed funds, forward guidance and large scale asset

purchase shocks. ‘MP’ and ‘CBI’ stand for monetary policy and central bank information shocks.

episode, the first on June 19, 2013 (‘taper’) the second on September 18, 2013 (‘no taper’).

Also consistently with Swanson’s findings, there are no expansionary LSAP shocks during

the announcements of QE2 and QE3 programs.

4.5 Time variation

Estimation of the model on smaller sub-samples yields two corrections to the previous

messages. First, in the earlier part of the sample there is some evidence of the standard

information effects associated with the movements of the current fed funds rate (as in

Melosi, 2017; Nakamura and Steinsson, 2018). These standard information effects do not

replace or modify the Delphic forward guidance but appear as a separate shock substi-

tuting the LSAP shock. Second, the LSAP shock u3 has a significant effect on the stock

prices in the later part of the sample.

Figure 9 reports the responses of all variables estimated in the first half of the sample
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Figure 9: First vs second half of the sample
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(left panel) and in the second half of the sample (right panel). The error bands in these

smaller samples are wider. A number of differences between the left and the right panel

show up. First, the standard policy shock is moves the yield curve in a similar way but

is larger in the first sample (MP1 increases by 9 basis points) and smaller in the second

sample (MP1 increases by less than 6 basis points). Second, in response to the Odyssean

forward guidance shock u2 medium and long rates move in parallel in the first sample,

while the effect is hump-shaped in the second sample, with the 10-year rate moving much

less. Third, the LSAP shock is non-existent in the first sample. Instead the shock u3

now resembles the standard information shock associated with the fed funds rate, but

is not precisely estimated. By contrast, the LSAP shock in the second sample is very

pronounced and has a significant and intuitive effect on the stock prices. Finally, the

Delphic forward guidance shock is broadly similar but it moves the stock prices more

relatively to the interest rates in the first half of the sample.

Figure 10 reports the responses of all variables estimated on rolling windows of 100

observations. Many of these models are imprecisely estimated, but the overall tendencies

are clear and quite intuitive. First, the standard monetary policy shock u1 becomes
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Figure 10: Rolling window estimates of C
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Notes. Each line plots the effect of shock ui on variable j, C(i, j) estimated on rolling samples

of 100 observations. The horizontal axis shows the last observation of the rolling sample. The

vertical line shows the beginning of the last sample.

smaller as the windows include more observations from the ZLB period. Second, for the

Odyssean forward guidance u2 we can see the gradual emergence of the ‘hump-shaped’

yield curve response noted above. Third, the shock u3 is unstable and switches from

being a standard information shock in the early windows (where it is a fed funds rate

hike associated with a positive stock price response) to being a contractionary LSAP

shock in the later windows. The switch occurs at the point where the rolling window

includes for the first time the QE1 announcement of March 18, 2009. However, the same

switch occurs, only several months later, when the QE1 announcement is omitted from
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Table 5: Pairwise rank correlations with the baseline model shocks

Obs. u1 u2 u3 u4

Models in Figure 11

the model with MP2 240 u1: 0.871 u2: 0.984 u3: 0.995 u4: 0.987

FF4 240 u1: 0.650 u2: 0.597 u3: 0.952 u4: 0.891

ED1 240 u1: 0.887 u2: 0.636 u3: 0.983 u4: 0.785

ED2 240 u1: 0.988 u2: 0.981 u3: 0.973 u4: 0.849

ED3 240 u1: 0.986 u2: 0.963 u3: 0.952 u4: 0.750

ED4 240 u1: 0.980 u2: 0.994 u3: 0.951 u4: 0.969

Models in Figure 12

ONRUN5 240 u1: 0.987 u2: 0.999 u3: 0.941 u4: 0.996

EURO 240 u1: 0.997 u2: 0.945 u3: 0.968 u4: 0.998

ED2,ED4,ONRUN5,EURO 240 u1: 0.967 u2: 0.927 u3: 0.919 u4: 0.869

Note. The first column identifies models by the variable(s) added to the baseline specification.

the sample. Finally, the Delphic forward guidance shock maintains similar features, while

becoming slightly smaller in the later windows.

4.6 Adding variables to the baseline model

This section reports a series of models that include one or more additional variables

from the GSS dataset. The four shocks from the baseline model continue to show up

in most of these alternative models. The standard monetary policy shock u1 and the

Odyssean forward guidance shock u2 are remarkably robust and almost always retain

their dominant role. On the other hand, the Delphic shock u4 becomes much smaller (in

terms of its impact on the yield curve) in many of the alternative models. The additional

shocks that appear in these larger models are either best described as idiosyncratic shocks

to individual variables, as variants of the baseline shocks, or are imprecisely estimated

and difficult to interpret economically.

Figure 11 reports models with additional interest rates instruments with maturities

under two years. MP2 is the fed funds rate expected after the second FOMC meeting

(constructed by GSS from the fed funds futures). The additional shock captures the

idiosyncratic variation in MP2. FF4 is the fourth fed funds future, which has a maturity

of three months. The additional shock is a sizable (4 basis points) fed funds rate hike
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Figure 11: Adding a short-term interest rate instrument
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accompanied by an expectation of lower rates in the future and triggering a stock price

increase. ED1 is the first eurodollar future, which expires at the end of the quarter. The

additional shock is similar to the one in the FF4 model, but with an only two basis point

movement in the fed funds rate. ED2 is the second eurodollar future, which expires at

the end of the following quarter. The additional shock involves a significant movement of
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Figure 12: Adding other variables

ONRUN5 EURO ED2,ED4,ONRUN5,EURO

0 2Y 5Y 10Y
-2

0

2

4

6

8

ba
si

s 
po

in
ts

yield curve

-40

-20

0

20

40
SP500

0 2Y 5Y 10Y
-2

0

2

4

6

8

ba
si

s 
po

in
ts

-40

-20

0

20

40

0 2Y 5Y 10Y
-2

0

2

4

6

8

ba
si

s 
po

in
ts

-40

-20

0

20

40

0 2Y 5Y 10Y
-2

0

2

4

6

8

ba
si

s 
po

in
ts

-40

-20

0

20

40

0 2Y 10Y
-2

0

2

4

6

8

ba
si

s 
po

in
ts

yield curve

-40

-20

0

20

SP500

-40

-20

0
EURO

0 2Y 10Y
-2

0

2

4

6

8

ba
si

s 
po

in
ts

-40

-20

0

20

-40

-20

0

0 2Y 10Y
-2

0

2

4

6

8

ba
si

s 
po

in
ts

-40

-20

0

20

-40

-20

0

0 2Y 10Y
-2

0

2

4

6

8

ba
si

s 
po

in
ts

-40

-20

0

20

-40

-20

0

0 1Y 2Y 5Y 10Y

-2
0
2
4
6
8

ba
si

s 
po

in
ts

yield curve

-40

-20

0

20

40
SP500

-40

-20

0

EURO

0 1Y 2Y 5Y 10Y

-2
0
2
4
6
8

ba
si

s 
po

in
ts

-40

-20

0

20

40

-40

-20

0

0 1Y 2Y 5Y 10Y

-2
0
2
4
6
8

ba
si

s 
po

in
ts

-40

-20

0

20

40

-40

-20

0

0 1Y 2Y 5Y 10Y

-2
0
2
4
6
8

ba
si

s 
po

in
ts

-40

-20

0

20

40

-40

-20

0

0 2Y 5Y 10Y
-2

0

2

4

6

8

ba
si

s 
po

in
ts

-40

-20

0

20

40

0 2Y 10Y
-2

0

2

4

6

8

ba
si

s 
po

in
ts

-40

-20

0

20

-40

-30

-20

-10

0

0 1Y 2Y 5Y 10Y

-2
0
2
4
6
8

ba
si

s 
po

in
ts

-40

-20

0

20

40

-40

-20

0

0 1Y 2Y 5Y 10Y

-2
0
2
4
6
8

ba
si

s 
po

in
ts

-40

-20

0

20

40

-40

-20

0

0 1Y 2Y 5Y 10Y

-2
0
2
4
6
8

ba
si

s 
po

in
ts

-40

-20

0

20

40

-40

-20

0

0 1Y 2Y 5Y 10Y

-2
0
2
4
6
8

ba
si

s 
po

in
ts

-40

-20

0

20

40

-40

-20

0

only the 2-year and 10-year treasury yields. With ED3 the additional shock is similar, but

with a significant positive response of the stock prices, making it a second, more longer

term Delphic forward guidance shock. With ED4 the additional shock is only significant

for the 2-year treasury yield. In all these models the effect of the baseline Delphic shock

u4 on the yield curve is diminished, and with ED2 it becomes completely insignificant.

Furthermore, in the models with ED2, ED3 and ED4 the LSAP shock that raises the

10-year yield has a significantly negative impact on the respective eurodollar future and

the 2-year Treasury yield.

Figure 12 reports three additional models. ONRUN5 is the 5-year Treasury yield.

The additional shock affects mainly the 5-year Treasury yield itself, but is imprecisely
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estimated. EURO is the exchange rate, in US dollars per euro. The exchange rate

appreciates after all the four baseline shocks, consistently with the uncovered interest

rate parity. The additional shock captures the idiosyncratic movements in the exchange

rate not explained by the other shocks. Finally, the last model adds four variables:

second and fourth eurodollar futures (ED2,ED4), five-year Treasury yield (ONRUN5)

and the dollar/euro exchange rate (EURO). Shocks u1 and u2 are remarkably robust

also in this large model. The LSAP shock is similar to the baseline model, though less

precisely estimated. The Delphic forward guidance shock is also similar to the baseline

but, as in most of the larger models, its impact on the yield curve is smaller, almost

halved. The first additional shock is a parallel shift of the yield curve with no significant

effect on the stock prices (thus, it could be a combination of an Odyssean and a Delphic

forward guidance). The next two shocks are imprecisely estimated. The last shock is the

idiosyncratic exchange rate shock familiar from the previous model.

Table 5 reports the rank correlations of the first four shocks from the models reported

in Figures 11 and 12 with the four baseline shocks. These correlations tend to be quite

high.

One lesson from these exercises is that there seems to be a need for variable-specific id-

iosyncratic shocks along with the pervasive and economically interpretable shocks. Models

combining non-Gaussian shocks and a factor structure may be a promising way forward.

5 Longer term effects: daily local projections

To study the effects of the four baseline shocks beyond the first thirty minutes after the

FOMC announcement I estimate local projections:

xt+h − xt−1 = α + βi
hui,t + et, (7)

where xt is a daily financial variable and t is day of the FOMC announcement. I consider

horizons h = 1, 3, 5, 10, 15, 20, 25 business days. ui,t, i = 1, 2, 3, 4 are the maximum likeli-

hood estimates of the shocks implied by the baseline model above, rescaled so that a one

unit u1 shock raises the MP1 by 1 basis point, a one unit u2 and u4 raises the ONRUN2 by
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1 basis point, and a one unit u3 shock raises the ONRUN10 by 1 basis point. The shocks

are included in the regressions one-by-one. βi
h is the quantity of interest: the effect of a one

unit shock. I estimate equation (7) with OLS and compute heteroskedasticity-consistent

errors. Figure 13 reports the results.

Figure 13: The effects of the shocks on daily financial variables: local projections
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Note. The variables are in the same units as the shocks. 90% bands (+/-1.645 standard

deviations)

Three main lessons follow from these local projection results. First, the effects of

the shocks on interest rates and stock prices in the first 30 minutes given by the matrix

C are not just temporary blips. They persist in the following days and weeks, and are

statistically significant at many, though not all horizons. In particular, shocks u1 and

u2 significantly increase the 2-year Treasury yield (with the elasticity of approximately
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0.5) and depress the stock prices (with the elasticities of -6 and -8). Shocks u2 and u3

significantly increase the 10-year Treasury yields (with the elasticities of 1 and almost

2). The positive effect of the Delphic shock u4 on Treasury yields and stock prices is

marginally significant at some horizons and insignificant at others.

Second, the shocks gradually propagate through the financial system and with some

delay get reflected in the corporate bond spreads. Especially the Odyssean forward guid-

ance shock u2 significantly increases the corporate bond spreads after a few weeks. The

effect of standard monetary policy u1 and asset purchases u3 on the corporate bond

spread is also positive but only marginally significant. The Delphic shock u4 strongly and

significantly reduces the corporate bond spreads.

Third, the standard policy and forward guidance shocks u1 and u2 significantly strengthen

the dollar vs the euro (with the elasticities of 3 and 6 respectively). The effect of the asset

purchase shock u3 is even larger according to the point estimates (the elasticity of 8), but

estimated with a large uncertainty. The effect of the Delphic shock u4 on the dollar is the

weakest, it is actually zero at most horizons. This shock’s weak impact on the exchange

rate is consistent with the recently highlighted role of the dollar as a key barometer of

financial market risk-taking capacity (Avdjiev et al., 2019). A positive Delphic shock in-

creases the financial markets’ appetite for risk and this pushes the dollar down, in practice

roughly canceling any effect of higher US interest rates.

6 Conclusions

This paper exploits the high kurtosis of financial market responses to pin down four

main dimensions of FOMC announcements, which can be naturally labeled as: standard

monetary policy, Odyssean forward guidance, LSAP and Delphic forward guidance. These

shocks have plausible effects on financial markets and provide intuitive interpretations of

the FOMC announcements in the sample. The findings on the FOMC policies and their

effects are consistent with the well-known studies of GSS and Swanson (2021), in spite

of not using their assumptions, thus providing their independent validation. This paper

additionally refines these studies by accounting also for the Delphic announcements.
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Appendix A Sensitivity of the baseline model to the

distributional assumptions

The results remain very similar for values of v between 1 and 10. For v > 10 the identi-

fication becomes weaker and the point estimates begin to change. However, even values

much smaller than 10 are strongly rejected in favor of the point estimate v = 1.33.

Figure A.1: Maximum log-likelihood conditional on different values of v
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Note. The horizontal line shows the cut-off point implied by the likelihood ratio test at the 1%

significance level.

To examine the sensitivity of the results to v I re-estimate model (4) fixing v at a grid

of values from 0.5 to 30. Figure A.1 shows that the maximum attainable value of the log-

likelihood decreases quickly as v deviates from the unconstrained estimate of 1.33. The

figure is truncated at v = 10 for readability but the log-likelihood continues to decrease

also for v > 10. The horizontal line at the top of the figure shows the cut-off point implied

by the likelihood ratio test at the 1% significance level. We can see that already the null

hypothesis of v = 2 is rejected.

Figure A.2 shows that the effects of the four shocks are very similar for values of v

from 1 to 12. Especially for the shocks u1 and u4 the estimates are difficult to distinguish

in the figure as they lie almost on top of each other. The main visible difference is present

for long-term rate shocks u3: its effect on the 2-year yield is slightly negative for low v

and becomes positive starting at about v = 3. The point estimates change qualitatively
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Figure A.2: The effects of standardized shocks, conditional on different values of v
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somewhere between v = 12 and v = 15: shocks u1 and u4 become essentially fed funds

rate shocks with little effect on the longer maturities, while u2 becomes an almost parallel

shift of the whole yield curve including the shortest maturity. However, for v = 15 the

uncertainty is substantially larger and many effects are no longer statistically significant

(the same is true for v = 12, but not for v ≤ 10).
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Appendix B Additional figures

Figure B.1: The effects of selected FOMC announcements before 2008
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Note. The horizontal line in the right subplots represents the change of the S&P500 stock index.

IM stands for an “inter-meeting” announcement.
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Figure B.2: The effects of selected FOMC announcements since 2008
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