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We analyze if the transmission of oil price shocks on the U.S. economy has

changed with the shale oil boom. To do so, we put forward a framework that

allows for spillovers between industries and learning by doing (LBD) over time.

We identify these spillovers using a time-varying parameter factor-augmented

vector autoregressive (VAR) model with both state level and country level data.

In contrast to previous results, we find considerable changes in the way oil price

shocks are transmitted to the U.S economy: there are now positive spillovers to

non-oil investment, employment and production from an increase in the oil price

- effects that were not present before the shale oil boom.
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1 Introduction

In view of the volatile oil prices experienced over the past decades, understanding the

impact of oil price fluctuations on economic activity has been important. When oil prices

fell by more than 70% between 2014 and 2016, a natural question therefore quickly rose as

to what extent this massive oil price decline would stimulate U.S. economic growth. After

all, such a decline in oil prices should be good news to both consumers and producers in

an oil importing country: the cost of producing domestic output should decrease, while

demand for other goods and services should pick up as consumers have more money to

spend, all else equal.1 Little evidence, however, has been found to back up such claims.

In fact, according to an IMF Survey (March 2016), cheap oil doesn’t seem to have given

the expected boost to U.S. real economic activity.

Why didn’t growth in the U.S. pick up following the decline in oil prices? One hy-

pothesis is that the U.S. has dramatically reduced its dependence on petroleum imports

as its own production of oil has surged. Throughout the 2000s, horizontal drilling and

hydraulic fracturing led to a massive boost in the production of oil from shale rock deep

underground. Thus, when oil prices declined in 2014, U.S. oil producers were instead

hurt, affecting the overall economy negatively.

Yet, recent studies analyzing whether the shale boom has fundamentally changed the

way oil price shocks are being transmitted to the U.S. economy, have not found evidence

of such effects. In particular, Baumeister and Kilian (2016) analyze the effects of the

recent oil price decrease on the U.S. economy using simple regressions, and conclude that

while real investments in the oil sector did decline, private real consumption and non-oil

related business investments were positively stimulated by the oil price decline, offsetting

the negative drawback from the oil sector. Thus, according to Baumeister and Kilian

(2016), nothing has really changed: the U.S. still responds to the oil price shocks as a

typical net oil importer: when oil prices rise, U.S. activity falls, and vice versa when oil

prices fall.

We challenge this claim on two grounds. First, we believe that the transition U.S. is

experiencing, i.e., gradually changing from being a net oil importer to being the world’s

largest oil producer,2 does not happen by itself. Such a transition requires capital, technol-

ogy, labor, skills, and, most importantly, learning by doing (LBD) over a prolonged period

1See for instance Hamilton (1983) for a seminal paper and e.g. Hamilton (2009), Kilian (2009), Kilian and

Vigfusson (2011), Lippi and Nobili (2012), Peersman and Robays (2012), Cashin et al. (2014), Aastveit

(2014), Aastveit et al. (2015) and Stock and Watson (2016) for some recent studies emphasising different

sources of shocks and identification methods when analysing the effects of oil price changes.
2While the United States is still a net oil importer, it is expected that by 2020 the U.S. will export more

petroleum and other liquids than it is importing, see EIA’s Annual Energy Outlook (AEO) from 2018.
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Figure 1. Rolling correlation between the real price of oil and manufacturing industries, sample period

1974:Q2-2016:Q4, Moving Window 40 quarters. The correlation coefficient from each rolling sample is

plotted in the end of each sample. Hence, the last observation is the rolling sample from 2006Q4-2016Q4.

of time. In fact, the seed of the shale gas boom was planted already in the 1970s when the

U.S. government decided to fund R&D programs and provide tax credits to enterprises

interested in developing unconventional natural gas. Still, it was not before the private

entrepreneurship of Mitchell Energy, who experimented with new techniques for drilling

shale in the early 2000s, i.e., combining horizontal drilling with hydraulic fracturing, that

the process escalated and the natural gas boom spread to oil.3 Hence, when analyzing the

effects of the recent oil price drop on the U.S. economy, allowing for changing dynamics

related to the development of the shale oil boom seems imperative. And indeed, Figure

1 motivates such a a claim. It displays rolling correlation coefficients between the real

price of oil and production in some key U.S. industries such as, manufacturing, electrical

equipment and machinery. The figure clearly shows that the correlations have changed,

from being negative in the 1970s and 1980s, to being positive after 2000. We hypothesize

that these changes signal more than just correlations: they signal a structural change in

how the U.S. economy is affected by oil price shocks following the shale oil boom.

Second, during such a transition process, there may be productivity spillovers between

the oil-related and non-oil related industries. To the extent that these spillovers are

important, it could imply wider benefits for the economy, cf. Bjørnland and Thorsrud

(2016) and Bjørnland et al. (2019) for theoretical arguments and empirical applications

to resource rich countries such as Australia and Norway. In particular, Bjørnland et al.

(2019) have shown that by developing a dynamic three sector model that incorporates

3Natural gas from shale could now be economically produced, which led to dramatic increase in natural gas

production, and consequently lower prices of natural gas in the U.S. In 2009, when oil prices were relatively

high, firms began to experiment with shale technology to extract oil. Several firms were successful in

adopting shale technology in oil basins and production of shale oil increased significantly (see Wang and

Krupnick (2013) for the review of history of shale gas development in the United States).
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the productivity dynamics from the spending as well as the resource movement effect,

the growth effects of natural resources are likely to be positive and affect many industries

outside oil. Hence, we may expect both direct and indirect spillovers of oil on the wider

economy. Allowing for these spillovers seems therefore important when analyzing the

effect of a resource boom on the U.S. economy. In fact, claims for local spillovers are

already being backed up by a recent branch of literature using primarily cross-section or

panel data, see, e.g., Weber (2012), Allcott and Keniston (2018), Feyrer et al. (2017),

and Gilje et al. (2016) among others. Applied to regional data in resource abundant U.S.

states, these studies consistently find that energy booms benefit local non-oil employment,

wages and production.

Common to these recent (panel) data studies, however, is the fact that they focus on

activity at the local level in resource abundant U.S. states. Hence, while accounting for

instantaneous spillovers in certain geographical areas, little is known about the dynamic

effects on the aggregate economy outside the resource rich areas. Our hypothesis is that

the oil boom has had positive spillovers to many different industries across the U.S., and

that these spillovers have changed over time, consistent with the pattern seen in Figure

1. For this purpose, we need a time-series framework that also allows for geographical

dispersion. Previous times series studies addressing this issue have typically been aggre-

gate and focus on only a few macroeconomic variables. Furthermore, most often they rely

on time-invariant regressions. Thus, their maintaining assumption is that the effect of an

oil price shock has not changed over time, and that the role of the oil sector is of little

importance when analysing the dynamic effects of oil prices on the U.S. economy.

We address all of these shortcomings. In particular, we analyse the effects of oil price

shocks on the U.S. economy taking into account spillovers from oil to various industries

and employment across the U.S. states, while also allowing these dynamics to vary over

time. In so doing, we investigate whether the effects of an oil price shock has changed

during the last two decades. For this purpose we specify and estimate a time-varying

parameter (TVP) factor-augmented VAR (FAVAR) model with stochastic volatility, see

e.g. Korobilis (2013), Bernanke et al. (2005), Primiceri (2005) for seminal contributions.

Doing so, we find substantial changes in the way an oil price shock is transmitted to

the U.S. economy. In contrast to previous studies, our analysis suggests that an increase

in the oil price has now positive spillovers to the aggregate U.S. economy, effects that

were not present before the shale oil boom. In particular, we find non-oil nonresidential

business investments, as well as non-oil employment in both oil-producing and many

manufacturing-intensive producing states to increase following an oil price rise. What’s

more, there are positive spillovers to real personal income, and, to some extent, to personal

consumption. Hence, the U.S. responses to an oil price shock now more resemble those
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of an oil exporter rather than those of an oil importer. Assuming symmetric effects

(c.f., Kilian and Vigfusson (2011)), our results imply that an oil price decline will have

negative effects on the U.S. economy. This explains the puzzle that has preoccupied IMF

recently: namely why did the U.S. not experience a boom following the steep decline

in oil prices between 2014 and 2016? The answer is simply that the U.S. has increased

its reliance of oil, not as a consumer, but by becoming the world’s largest oil producer.

Going forward, policymakers needs to take into account that the transmission of an oil

price shock has changed with the shale oil boom. An oil price increase may now actually

be good news for many industries and states in the U.S. economy. This should have far

reaching implications for both fiscal and monetary policy.

Our paper relates and combines several approaches already developed in the liter-

ature, but in a separate manner. First, although different in methodology and focus,

our paper relates to a recent literature showing that shocks to certain sectors can have

a large impact on aggregate macroeconomic fluctuations. In particular, using network

theories, Acemoglu et al. (2012) show that sectors with a small factor share that are

highly complementary to other inputs can have a large impact on aggregate macroeco-

nomic fluctuations. Gabaix (2011) shows similar results when the firm size distribution

is sufficiently heavy-tailed and the largest firms contribute disproportionally to output.

Second, we relate to a large literature that analyses the effect of oil price shocks on

the U.S. economy, see e.g. Hamilton (2009), Kilian (2009), Edelstein and Kilian (2009),

Lippi and Nobili (2012) and Aastveit (2014) among many others. However, in contrast to

these papers which analyze the effect of oil price shocks on the U.S. economy using linear

models, we allow for changing dynamics. Furthermore, while these studies typically focus

on aggregate macroeconomic variables, we explicitly include the oil sector and disaggregate

state level data into the analysis to account for the potential new spillovers due to the

shale oil boom. For this purpose, we use a FAVAR model with a large data set and time

varying parameters.

Third, our TVP framework builds on a growing literature allowing for stochastic

volatility when analysing the effect of oil price shocks (i) on the U.S. macroeconomy

(e.g. Baumeister and Peersman (2013b) and Bjørnland et al. (2018)), (ii) on the inflation

passthrough (e.g. Clark and Terry (2010)), (iii) on the U.S. stock market (e.g. Kanga

et al. (2015) and Foronia et al. (2017)) and (iv) on the oil market (e.g. Baumeister and

Peersman (2013a)). While we also control for stochastic volatility, our main focus is to

examine if the dynamic effects have changed over time following the shale oil boom.

Fourth, we relate to a branch of the literature that has documented important hetero-

geneous effects in the transmission channels of oil price shocks to disaggregate industries,

see e.g. Bresnahan and Ramey (1993), Davis and Haltiwanger (2001), Lee and Ni (2002)
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and Herrera (2018). However, while these papers have primarily studied how the negative

effects of an oil price shock are transmitted to industries when the U.S was an oil im-

porter, our focus is to unravel potential heterogeneous effects due to the shale oil boom, at

both the industry level and across U.S. states. For this reason, the oil sector is explicitly

included into the model, as well as employment at the state level.

Finally, and as discussed above, we relate to the recent literature using panel data

studies that have consistently found that energy booms benefit non-oil employment at

the local level in many resource abundant U.S. states, c.f. Weber (2012), Allcott and

Keniston (2018), Feyrer et al. (2017), and Gilje et al. (2016) among others. In contrast

to these papers, however, we focus on the geographical dispersion of the oil price shocks

across all U.S. states, allowing also for time varying changes.

The TVP-FAVAR model is particularly useful when it comes to answering our research

questions. First, it allows us to distinguish between different types of shocks affecting the

oil market. Second, we are able to simultaneously estimate direct and indirect spillovers

between the different sectors of the economy. Third, we can estimate responses to a large

number of variables that is not possible with standard multivariate time series techniques

due to the curse of dimensionality. Lastly, we are able to take into account the time

variation and investigate how the effects of shocks have changed over time. To the best of

our knowledge, this is the first paper that models the interaction between the oil market

and the U.S. economy in a large data environment, allowing also for time-varying changes

during the fracking revolution.

The remainder of the paper is structured as follows. Section 2 describes a framework

for analysing spillovers of oil and learning by doing in an resource rich economy while

Section 3 describes the TVP-FAVAR model and the dataset. Empirical results are dis-

cussed in Section 4, focusing on, among others, the effects of an oil price shock on various

industries, the general macroeconomy and geographical dispersion of shocks to state level

employment. In Section 5 we analyse extensive robustness while Section 6 concludes.

2 Theoretical framework: Oil booms - a blessing or

a curse?

The history of the petroleum industry in the United States goes back to the early 19th

century. Petroleum became a major industry following the discovery of oil at Oil Creek,

Pennsylvania in 1859, and for much of the 19th and 20th centuries, the U.S. was the

largest oil producing country in the world. However, after production peaked in 1970, the

U.S. has experienced decades of production decline. Over time, the country has become

increasingly dependent on imports of oil, and in 1973, the U.S. government banned firms
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Figure 2. US: Net import of petroleum and crude oil vs. crude oil production

from exporting oil.

The empirical oil-macroeconomic literature, which took off after the seminal contri-

bution of Hamilton (1983), has typically analyzed the effect of oil price shocks on the

U.S. economy focusing on the period when the U.S. was a net oil importer. In line with

this, scholars have also found that the U.S. economy responds negatively to an oil price

shock that increases oil prices, as both consumers and producers have to pay more for the

imported energy products and for the complementary products to energy; again, see, for

instance, Hamilton (2009) and Kilian (2009) among many others.

The shale oil boom may have changed this relationship. By 2015 the U.S. oil produc-

tion had surpassed Russia and Saudi Arabia to become the worlds biggest producer of oil

and gas. By the end of that year, the export ban was lifted, and the U.S. is on its way to

become a net oil exporter. Figure 2 illustrates the transition. It shows how net import of

crude oil has plummeted from 2005/06 as the shale oil boom sparked a strong recovery

in the production of crude oil.

In line with this increased production, the oil-producing industry has also grown, with

potential spillovers to other industries. The spillovers can, of course, be of any form,

crowding in or crowding out other industries. In particular, traditional theories suggest

that energy booms often lead to a ‘crowding out’ of other tradable industries, such as

manufacturing. The idea is that gains from the boom largely accrue to the profitable

sectors servicing the resource industry, while the rest of the country, including traditional

manufacturing, suffers adverse effects from increased wage costs, an appreciated exchange

rate, and a lack of competitiveness as a result of the boom. In the literature, such a

phenomenon is commonly referred to as Dutch disease, based on similar experiences in
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the Netherlands in the 1960s, see e.g. Corden and Neary (1982) and Corden (1984) for

influential early contributions.

Traditional theories of Dutch disease, however, do not account for productivity spillovers

and learning by doing (LBD) between the booming resource sector and other non-resource

sectors. Instead, they emphasise that labour would be transferred from strong (tradeable)

to weak (non-tradeable) LBD sectors, and therefore reduce overall growth, see e.g. van

Wijnbergen (1984), Krugman (1987), Sachs and Warner (1995), Gylfason et al. (1999)

and Torvik (2001) among others. However, more recently, some studies have shown that

oil endowment may not necessary be a curse, but can instead be an engine for growth.

For instance, Bjørnland et al. (2019) have shown that by developing a dynamic three sec-

tor model (non-traded, traded, and oil service sector) that incorporates the productivity

dynamics from the spending as well as the resource movement effect of oil, the conclusions

proffered by earlier models of LBD and the Dutch disease are altered dramatically. In

particular, the resource movement effect implies that the growth effects of natural re-

sources are likely to be positive, reversing previous growth results in the literature. The

wider benefits for the economy are particularly evident when taking account of produc-

tivity ‘spillovers’ and ‘learning-by-doing’ from the oil-related (service) industry to other

traded and non-traded industries, as has also been shown empirically for the resource

rich countries Australia and Norway, see Bjørnland and Thorsrud (2016) and Bjørnland

et al. (2019). In particular, learning-by-doing may strengthen the spillovers between the

sectors, thus enforcing growth in the overall economy.

That the shale oil boom has had implications for economic growth at the local level

in the oil producing U.S. states, was pointed out in the introduction above. In particular,

Allcott and Keniston (2018) examine county-level data to investigate the local spillover

effects of boom-bust cycles in natural resource production, Weber (2012) examines county

level direct effect of drilling, Maniloff and Mastromonaco (2015) study the effect of the

number of wells on local economies, Fetzer (2014) estimates the effect of any drilling

activity after 2007 on economic outcomes at the local level, while Feyrer et al. (2017)

measure the effect of new oil and gas production on income and employment at the

county and regional level. Despite different methods, measures of oil and gas activity,

areas of study, and time frames, these studies consistently find that energy booms benefit

local or regional employment in the resource rich states in the U.S.4

However, little, if anything, is known about the spillovers of the shale boom to em-

ployment outside the oil rich states, and ultimately, to the aggregate U.S. economy. In

4In addition, Gilje et al. (2016) analyze in a recent study the effect of shale oil development on asset

prices. Using the shale oil discovery announcement as their measure of technology innovation the authors

find that in the period from 2012 to 2014 these technology shocks explain a significant component of

cross-sectional and time series variation in both asset prices and employment growth.
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particular, to what extent will a resource boom stimulate investment, production, em-

ployment, and wages beyond those at the local level in the energy rich states? If there is

LBD between industries, one should expect some positive spillovers for the wider econ-

omy. However, are these positive spillovers sufficiently strong so as to offset any negative

effects for consumption and investment when oil prices increase? According to Baumeis-

ter and Kilian (2016), the answer to this question is no. They find no spillovers from

oil-related investment to non-oil related investment. In fact, they argue that the recent

U.S. economy’s response to oil price changes has not been fundamentally different from

that observed after the oil price decline in 1986.

Based on this, we re-address the question of whether the shale boom has changed

the transmission of oil price shocks, focusing in particular on the potential spillovers

from the oil industry to other industries, and the extent to which these spillovers have

changed the transmission of oil price shocks to the U.S. economy over time. To do so, we

specify a model that can account for (i) heterogeneous responses in employment to the oil

price shocks across U.S. states; (ii) spillovers between industries; and (iii) time-varying

responses. We now turn to describe the econometric model in detail.

3 Empirical Modeling Framework

Many recent papers, including those cited above, have used SVAR models to study the

effects of oil price shocks on the aggregate U.S. economy. As we want to consider the role

of the oil industry for the dispersion of oil price shocks to economic activity, we augment

the standard VAR model with estimated factors that reflect information from both oil

and non-oil variables. To that end, we specify a factor-augmented vector autoregressive

(FAVAR) model that includes four factors. The factors will be driven by shocks that have

the potential to affect all sectors of the U.S. economy. First, we include a measure of global

activity and the real price of oil as two separate factors in the model. These are included

to capture, respectively, international business cycle conditions and developments in the

oil market that are relevant for the U.S. economy. This allows us in turn to identify two

foreign shocks: a global activity shock and an oil price shock, both of which can affect

the real oil price, though with potentially very different macroeconomic implications.

Second, to take into account the fact that there may be heterogeneous responses to

the oil price across U.S. industries, we estimate two separate latent factors for the U.S.

economy. The inclusion of latent factors also enables us to simultaneously estimate direct

and indirect spillovers between different industries and states in the U.S. The simultaneous

spillovers between different sectors at different geographical levels can not be captured

by including only observable variables in a small panel of data and have therefore not
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been taken into account in previous studies.5 While we do not impose any identifying

restrictions on these factors, we find that the factors capture different aspects of the U.S.

economy related to oil and non-oil, see Section 3.4.

Finally, the factors are used in a time-varying parameter (TVP) Vector Autoregressive

model with both time-varying coefficients and time-varying variance covariance matrix of

innovations. By allowing coefficients in the VAR augmented with factors to vary over

time we account for possible non-linearities or time variations between the oil price and

the U.S. economy. To account for possible heteroscedasticity of the structural shocks

and nonlinearities in the simultaneous relations among the variables we allow for multi-

variate stochastic volatility.6 All together, this framework allows us to investigate if the

transmissions of oil price shocks have changed over time.

On a final note, we have chosen to use a TVP approach to capture smooth changes in

the transmission of shocks. This is important, as we believe the transmission from a net

oil importer to a major oil producer takes time and is therefore well approximated with

the TVP approach, rather than a framework that allows for discrete breaks.

3.1 Data

We use a large panel of domestic and international quarterly series, covering the sample

period from 1990Q1 to 2016Q4.7 In particular, to accommodate the effects of oil price

shocks on the U.S. economy, we include a broad range of domestic macroeconomic in-

dicators as observable variables (reported in Appendix A - Table 2). Among others, we

include consumer and producer prices, investment series, stock prices, personal income,

various IP series, consumption, and the short term interest rates. To account for local

effects we also include employment series in 50 states of the U.S, and distinguish between

oil-related and non-oil employment series. These disaggregate employment series are only

available since 1990, hence the choice of starting date for the sample.

We include two observable ’foreign’ factors; global activity and the real oil price. For

the global activity factor, we use an estimate of industrial production for the OECD

plus other major countries (Brazil, China, India, Indonesia, Russia, and South Africa)

published by OECD Main Economic Indicators, and extended from November 2011 by

Baumeister and Hamilton (2019), see also Hamilton (2018) for justification. However, we

also analyze extensive robustness to our choice of variable in Section 5 by, among others,

5As was shown by Aastveit (2014), the response of macroeconomic variables to different oil price shocks

can be considerably different when one jointly models the interaction among endogenous variables.
6As was documented by Baumeister and Peersman (2013a) and Baumeister and Peersman (2013b), there

have been changes in elasticities in the oil market in recent decades.
7The first 10 years of the sample are used as a training period to estimate priors, see Appendix B for

details.
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using a factor that captures global demand proposed by Chiaie et al. (2017) instead of

the index suggested by Baumeister and Hamilton (2019). For the real oil price, we follow

Lee and Ni (2002) and Herrera (2018), among many others, and use the U.S. Refineries

Acquisition Cost deflated by CPI.

In sum, this gives us a panel of 107 domestic and international quarterly series. All

the series were initially transformed to induce stationarity and demeaned, while the series

used to extract factors were also standardized.

3.2 The time-varying FAVAR Model

Our framework builds on the FAVAR model, first proposed by Stock and Watson (2005)

and Bernanke et al. (2005). Technically, the developed and employed model is most closely

related to the set-up used in Korobilis (2013). In particular, we use a two-step estimator

and replace the factors by the first principal components obtained from the singular value

decomposition of the data matrix, and consequently treat them as observables. These

factors are then used in a time-varying VAR model with both time-varying coefficients

and time-varying variance covariance matrix of innovations, see Primiceri (2005).

Still, we deviate from Korobilis (2013) in several important ways. First, while Korobilis

(2013) uses a framework based on Bernanke et al. (2005) and Belviso and Milani (2006)

to identify the factors, we follow Boivin and Giannoni (2007) since it is well suited to use

with quarterly data.8 Second, to keep our model as parsimonious as possible, we do not

allow for stochastic volatility in the factor analysis regression. Finally, we stick to the

standard convention in the literature and model the random walk evolution of the VAR

parameters as in Primiceri (2005).

Now, let Ft be a m×1 vector of common factors assumed to drive the dynamics of the

economy. In our application, Ft contains both observable factors yt of dimension l×1 and

unobservable latent factors, ft of dimension k × 1, such that Ft =

(
yt

ft

)
and l + k = m.

The latent factors are extracted from a larger dataset Xt of dimension n×1, and assumed

to summarize additional information not captured by the observable factors. We assume

that Xt can be described by an approximate dynamic factor model given by

Xt = ΛFt + et, (1)

where Λ is n × m matrix of factor loadings and et ∼ N (0, R), is n × 1 vector of errors

assumed to be uncorrelated with the factors Ft and mutually uncorrelated. The joint

8While Bernanke et al. (2005) and Belviso and Milani (2006) perform a transformation of the principal

components exploiting the different behavior of “slow moving” and “fast moving” variables, the same

identification scheme would be not be suitable for quarterly data series as most of these series would

respond as “fast moving” to oil price shocks within a quarter.
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dynamics of the factors Ft are given by the following transition equation:

Ft = ct + b1tFt−1 + ...+ bptFt−p + ut, (2)

where ct is an m×1 vector of time-varying intercepts; bjt are m×m matrices for j = 1, .., p

of time-varying coefficients; ut is an unconditionally heteroskedastic disturbance term that

is normally distributed with zero mean and time-varying covariance matrix Ωt. According

to the literature on efficiently parametrizing large covariance matrices, Primiceri (2005),

we decompose Ωt in the following way:

Ωt = A−1
t ΣtΣ

′

t(A
−1
t ), (3)

where Σt is a diagonal matrix that contains the stochastic volatilities and At is a unit

lower triangular matrix with ones on the main diagonal that models the contemporaneous

interactions among the variables in (2):

At =


1 0 · · · 0

a21,t 1
. . .

...
...

. . . . . . 0

am1,t · · · am(m−1),t 1

 ,Σt =


σ1,t 0 · · · 0

0 σ2,t
. . . 0

...
. . . . . . 0

0 · · · 0 σm,t

 . (4)

It follows that

Ft = b1tFt−1 + ...+ bptFt−p + A−1
t Σtεt. (5)

We follow the standard convention and assume that model’s time-varying parameters

and stochastic volatilities follow random walk processes. LetBt = (vec(ct)
′
, vec(b1t)

′
, ..., vec(bpt)

′
)
′

be the vector of all R.H.S. coefficients in (5), αt = (a
′
j1,t, ..., a

′

j(j−1),t)
′

for j = 1, ...,m be

the vector of nonzero and nonone elements of the matrix At, and σt = (σ
′
1,t, ..., σ

′
m,t)

′
be

the vector containing the diagonal elements of Σt .The dynamics of the three processes

are specified as follows:

Bt = Bt−1 + ηBt

αt = αt−1 + ηαt

logσt = logσt−1 + ησt

(6)

We assume that innovations in the model are jointly normally distributed with the

following assumptions on the variance covariance matrices:

V ar





et

εt

ηBt

ηαt

ησt




=



R 0 0 0 0

0 Im 0 0 0

0 0 Q 0 0

0 0 0 S 0

0 0 0 0 W


(7)
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where Im is an m-dimensional identity matrix.

Following Primiceri (2005), we postulate a block-diagonal structure for S, with blocks

corresponding to parameters belonging to separate equations. Thus, the shocks to the

coefficients of the contemporaneous relations among variables in (5) are assumed to be

correlated within equations, but uncorrelated across equations.

3.3 Identification

As motivated above, we estimate a model with four factors, m = 4, and with associated

shocks that have the potential to affect all sectors of the U.S. economy. The first two

’foreign’ factors represent global activity and the real price of oil, and are treated as

observables. The two latent factors capture different parts og the domestic activity in the

U.S. and are inferred from data.

Starting with the two observable factors, we identify two structural shocks: a global

activity (demand) shock and an oil price shock. Specifically, we identify a global activity

shock and an oil price shock in a recursive manner, ordering oil prices after global activity

in the VAR. Thus we follow the usual assumption from the models of oil markets, and

restrict global activity to respond to oil price shocks with a lag (one quarter), see e.g.,

Hamilton (2009). In turn, any unexpected news regarding global activity is assumed to

affect oil price contemporaneously, see e.g., Kilian (2009) and Aastveit et al. (2015).9

Turning to the domestic economy, we assume domestic structural shocks can have no

contemporaneous effects on foreign variables (i.e., within the quarter), including the oil

price. Hence, the oil price is predetermined with respect to the domestic U.S. variables,

in line with findings of Kilian and Vega (2011). Still, one could argue that as the U.S.

has gained in importance as an oil producer, news about the U.S. oil activity may have

an immediate impact on oil prices. However, we believe our assumption is reasonable, as

during most of the period we are analysing, the U.S. oil producers have not been able to

export their crude oil. Still, as the U.S. is a part of the global activity measure (being a

large open economy), a shock that originates in the U.S. can still affect the real price of

oil contemporaneously via the global activity measure.

Finally, note that all observable variables in the vector Xt may respond to all shocks

on impact inasmuch as they are contemporaneously related to the factors through the

loading matrix, Λ.

9In contrast to these papers, and to keep our empirical model as parsimonious as possible, we do not

explicitly identify a global oil supply shock, but assume the oil price shock captures all supply side

developments. We believe this is reasonable. As shown in Kilian (2009) and a range of subsequent

papers, supply shocks explain a trivial fraction of the total variance in the price of oil, and do not

account for a large fraction of the variation in real activity either (at least in the sample used here).
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3.4 Estimation and interpretations of the factors

Our model is estimated using a computationally simple two-step estimation method, see

Korobilis (2013) and Stock and Watson (2005). In the first step, we estimate the space

spanned by the factors using the approach advocated by Boivin and Giannoni (2007),

to ensure that the estimated latent factors, ft, will recover dimensions of the common

dynamics not already captured by the observable variables, yt. Once we have estimated

the factors, we treat them as observables, before moving to the second step in which we

estimate the time-varying parameters in (5).

In the estimation, we use 4 lags (p = 4) for the VAR.10 A more detailed description of

the estimation strategy and prior specification is provided in Appendix B. In Appendix C

we provide justification of convergence of the Markov Chain Monte Carlo Algorithm. The

system is estimated using two observable and two latent factors in the vector Ft (l = 2,

k = 2). These four factors explain roughly 60 percent of the variation in Xt. Adding one

additional factor increases the variance explained by a modest 5 percent. Even using 8

factors, the variance has only increased to 70 percent.

Before going into the details of the empirical results, we interpret the factors somewhat.

As discussed above, the four factors are included to capture different aspects of relevance

to the U.S. economy. While the two observable factors are easily interpretable insofar

as they capture global activity and the oil price, the two latent factors are unobservable,

estimated using the whole dataset for the U.S. Tables 3 and 4 in Appendix A shed some

light on the latent factors by displaying correlations between each factor and some of

the series. We focus here on the series that display a correlation coefficient above 0.5

with either of the factors. We note from Table 3 that the first factor turns out to be a

good proxy for real non-oil activity in the U.S, as it captures most of the movements in

non-farm employment in non-oil states and some key macroeconomic aggregates. Still,

the factor has also a small positive correlation with some oil related series. Turning to

the second factor, this can be interpreted as an oil activity factor as it follows very closely

the movements in oil-related employment and oil investments, and has a small negative

correlation with employment in non-oil states, see Table 4. Finally, as we can see from

Figure 11 in Appendix A, the factors seem to fit data quite well, even though all the series

in our dataset load on these factors.

10Hamilton and Herrera (2004) show that a too restrictive lag length can produce misleading results re-

garding the effects of oil market shocks on the macro economy, while increasing the lag length to over

one year has negligible effects.
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4 Empirical Results

The aim of this paper is to analyze if the transmission of oil price shocks on the U.S.

economy has changed as a result of the shale oil boom. To that end, we focus on the effects

of an oil price shock that is normalized to increase oil prices, using impulse responses and

variance decompositions. As we will allow for time-varying changes, we report two types

of impulse responses. We report median impulse responses at different dates: 2001:Q1,

2004:Q1, 2007:Q1, 2011:Q1, 2013:Q1, 2014:Q1, and 2015:Q1. These dates are chosen

arbitrarily and are not crucial for our conclusion. In addition, we also report the impulse

responses after 4 quarters over all periods. In so doing we emphasize the maximum effect

of an oil price shock, which typically occurs after about three to four quarters according to

Hamilton (2008), Herrera and Pesavento (2009), Clark and Terry (2010), Peersman and

Robays (2012) and Herrera (2018), at various points in time. However, our conclusions are

robust for alternative horizons. Note that all estimated responses have been accumulated

and are shown in levels. To ensure that we compare an equal sized shock over time, we

normalize the dynamic effects of exogenous oil price shock to a 1 percent increase in the

oil price on impact (for all the calculated responses).11

4.1 Oil prices and resource booms

We start by examining the impact of the oil price shock on investment and production

in the oil-producing sector, see Figure 3. The figure reports impulse responses of oil

investment and mining to an oil price shock. In the left column, we focus on median

responses at different time intervals (c.f. the explanation above), while the right column

displays responses after four quarters. To the extent that higher oil prices also generate a

resource boom12 in the U.S. economy, we should expect to see investment and production

in the oil sector increase. And we do, cf. Figure 3. Both oil investment and mining activity

are increasing gradually. These effects are in line with our expectations: a higher oil price

makes it more profitable for firms operating in the oil sector to produce, and stimulates

their investments and activity. We also note that the (maximum) effect has drifted slightly

up over time. That is, for an equally sized increase in oil prices, oil investment and mining

activity increase slightly more now than before. Interestingly, these results are consistent

with Bjørnland et al. (2017) and Bornstein et al. (2018), that find, using micro data,

that shale (unconventional) oil producers are more price responsive than conventional oil

11A common way to report impulse responses is to examine one standard deviation shock. However, in the

models where volatility changes over time, one standard deviation shock corresponds to a different-sized

shock at each point in time. Therefore, we normalize the impact effects of the shock over time.
12A resource boom takes the form of either a new oil discovery, a more productive oil field or higher real

oil prices, see Corden (1984).
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(a) Oil Investment (median) (b) Oil investment (4 quarters)

(c) Mining (median) (d) Mining (4 quarters)

Figure 3. The effect of an oil price shock: Impulse responses for the resource sector: oil-investment and

mining. Left column: Posterior median of impulse responses. Right column: Impulse responses after 4

quarters with 16-th and 84-th percentiles

producers.

Hence, we conclude that higher oil prices generate an oil boom in the U.S. economy,

and even more so now than prior to the shale oil boom. This emphasizes that activity

in the oil industry is procyclical with the changes in oil price. The question is, to what

extent does the increased activity in the oil sector following the higher oil prices generate

spillovers to other industries and states? We turn to examine this now.

4.2 Aggregate macro effects

Having established that an oil price shock leads to a resource boom, we next examine the

impact on the aggregate macroeconomy. In particular, Figure 4 presents the responses of

an oil price shock after four quarters to some key nominal macro variables: CPI, interest

rates, dollar exchange rates, and SP500, while in Figure 5 we examine the responses in

16



(a) CPI (b) Interest rate

(c) Exchange rate (d) Stock prices (S&P 500)

Figure 4. The effect of an oil price shock: Impulse responses for selected nominal variables in the

U.S. economy with 16-th and 84-th percentiles. All responses are reported after 4 quarters, except the

response in the stock price that is displayed after 1 quarter

some key real variables; investment, income, and consumption. After this we turn to

examine various disaggregate industry effects in Section 4.3.

We first note from Figure 4 that an oil price increase is strongly associated with an

increase in consumer prices (CPI). This effect is significant during the whole sample and

is in line with our expectations and previous findings in the literature (c.f., Hamilton and

Herrera (2004)): higher oil prices lead to higher cost for firms, hence prices rise. We also

note that the effect on consumer prices shows little time variation. Second, the central

bank does not seem to respond strongly to changes in oil prices, as the response of the

interest rate is insignificant during the whole sample. This could explain some of the pass-

through of oil price shocks into consumer prices. Third, the exchange rate depreciates

following an oil price shock. This is consistent with many previous studies where it is

noted that, since 2000, there has been a negative relationship between the oil price and

U.S. dollar, see e.g. Fratzscher et al. (2014). Still, we find that the negative relationship
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(a) Investment (median) (b) Investment (4 quarters)

(c) Income (median) (d) Income (4 quarters)

(e) Consumption (median) (f) Consumption (4 quarters)

Figure 5. The effect of an oil price shock: Impulse responses for selected real variables of the U.S.

economy. Left column: posterior median of impulse responses. Right column: impulse responses after 4

quarters with 16-th and 84-th percentiles

has declined somewhat over time. Finally, we find that stock prices increase on impact13

following an oil price shock. This is very different from the findings in Kilian and Park

(2000) using a sample ending in 2006, but well in line with more recent studies such as

13Note that the responses for stock prices are reported on impact, as the effect dies quickly out, as expected.
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Fratzscher et al. (2014) and Mohaddes and Pesaran (2017).

Hence, oil price shocks may act as cost push shocks, in the sense that they increase

prices. Yet, the response is quite muted. Furthermore, there is little time variation in

the way oil price shocks are transmitted to nominal prices, consistent with what has

previously been found in the literature, c.f. Clark and Terry (2010).14 The next question

is therefore, does an adverse oil price shock also depress real activity?

Figure 5 addresses this, by presenting the median impulse responses (left column)

and the responses after four quarters (right column) to non-residential investment, real

personal income, and real private consumption of a higher oil price. In contrast to the

nominal variables that did not show much evidence of time-variation, we now observe

important time-variation in how the real variables are responding. First, we find that

non-residential (non-oil related) investment has responded systematically more positively

to an oil price shock throughout the 2000s, and the effect is significant and positive from

2013/2014, cf. Figure 5. Hence, while non-oil investment in the U.S. economy previously

fell when oil prices rose, it is now picking up. This is a new finding in the literature.

Second, for an oil importing country, a higher oil price typically means lower purchas-

ing power and potentially also lower demand for goods and services, as prices increase,

c.f. Figure 4. This is manifested in lower income and consumption throughout the first

part of the sample, see Figure 5. However, from 2012 and onward, real personal income

starts to drift upward following an oil price shock. Consistent with this, the response

in consumption has also gradually changed, and consumption is no longer responding

significantly negatively following an oil price shock.

Taken together, these results are consistent with U.S. becoming a major oil producer.

Following an oil price increase, investment and production in the oil sector increase, with

subsequent spillovers to non-oil aggregate investment and income, which also now increase

slightly with the U.S. resource boom. While these results may be consistent with what

has been documented at the local level in oil rich states recently, c.f., Feyrer et al. (2017)

and Allcott and Keniston (2018), these are new results for the aggregate U.S. economy.

Importantly, this suggests that higher oil prices are no longer bad news for the U.S.

economy. Hence, and oil price decline such as that experienced between 2014 and 2016,

may not be beneficial either. The main question remains, though: which industries and

states, are driving these results? Clearly, not all industries will benefit equally from the

direct and indirect spillovers of oil. Some may even still be negatively affected as before,

in particular if they are energy intensive in production. We turn to examine this next.

14Clark and Terry (2010) find monetary policy has become less responsive to energy inflation starting

around 1985, but stable since then.
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4.3 Disaggregate industry effects

Having seen that there are now some positive effects on the aggregate U.S. economy arising

from an oil price shock that increases oil prices (via the oil boom), Figure 6 examines in

more detail the response in various industry groups. Not surprisingly, we find that the

effect of higher oil prices on energy materials is significantly positive, and shows little

time variation over the sample. Hence, production of energy materials increases with the

oil boom. More interestingly, however, we observe a strong upward drift in the impulse

responses for business equipment and manufacturing, which respond positively to an oil

price shock by the end of the sample. Hence, there are now some positive spillovers from

the resource boom to production of manufacturing and business equipment, effects that

were not present before the shale oil boom.

We could think of three possible mechanisms through which the fracking boom could

positively affect manufacturing sector in the U.S. The first mechanism is by creating

energy independence and costs savings, as contraction of local energy prices (due to in-

creased supply) enhances competitiveness for U.S. manufacturing companies that operate

in energy-intensive sectors, c.f. Fetzer (2014). The second mechanism is through di-

rect purchases of manufactured inputs, as there are many manufacturing industries from

which the oil and gas sector makes input purchases. The third potential mechanism is

productivity and LBD spillovers between oil and other industries. That is an indirect

effect, which assumes that other industries benefits from new knowledge and technologies

created under the development of oil sector, c.f. Bjørnland et al. (2019).

To investigate this further, we analyse responses to subgroups of manufacturing pro-

duction in Figure 7. Doing so, we find heterogeneous responses among different industries.

For energy-intensive industries, i.e., food, beverage and tobacco products, motor vehicles,

and chemical products, responses are negative as expected, and for food, beverage and

tobacco, even significantly so. Higher oil prices increase the cost of producing and leads a

decline in demand, all else equal.15 This is as expected, and in line with what Baumeister

and Kilian (2016) found for these industries. Furthermore, we do not find much variation

over time, suggesting that the cost savings mechanism is of little importance on aggregate

level. Instead, we find support for the two other mechanisms: first, we find a systemati-

cally more positive response for industries that benefit directly from the booming resource

sector, i.e. machinery (machinery is used as input in production in the shale oil sector),

suggesting direct spillovers through inputs. Second, industries like fabricated metal prod-

15We also find that petroleum and coal production declines temporarily with the oil boom, which could

relate to the fact that downstream oil and gas industries, such as refining and petrochemicals, typically

benefit from falling energy prices, not vice versa, see e.g. Herrera (2018) and Brown and Yücel (2013)

for further discussions.
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(a) Energy materials (Median) (b) Energy materials (4 quarters)

(c) Business equipment (Median) (d) Business equipment (4 quarters)

(e) Manufacturing (Median) (f) Manufacturing (4 quarters)

Figure 6. The effect of an oil price shock: Impulse responses for Industrial Production series divided

according to Market Groups. Responses are reported after 4 quarters with 16-th and 84-th percentiles

ucts and computer and electronic products, again see Figure 7, that are technological

advances industries, could have benefited from indirect productivity spillovers from the

resource boom, responding gradually more positively throughout the period.
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(a) Food and beverage (b) Chemical (c) Motor vehicles

(d) Machinery (e) Fabricated metal (f) Computer and electronics

Figure 7. The effect of an oil price shock: Impulse responses for Manufacturing series at a disaggregate

level. Responses are reported after 4 quarters with 16-th and 84-th percentiles

Thus, we suggest that a gradual shift has taken place for several important industries

in manufacturing sector. In line with Baumeister and Kilian (2016) we find that most

of the energy intensive industries respond (insignificantly) negative, supporting the view

that the cost channel is of less importance. However, the industries that have direct and

indirect relationship to oil sector, have benefited from higher oil activity and are now

responding by increasing investment and activity when oil prices increase. This suggests

why, on average, manufacturing has benefited from higher oil prices during the shale

boom, cf. Figure 6. That is, allowing for spillovers between industries, we have found

that the oil industry can be an engine for growth. These is a new finding in the literature.

4.4 Geographical dispersion: State level effects - employment

So far we have focused on aggregate macroeconomic responses or disaggregate industry

responses for the U.S. taken as a whole. We now turn to investigate the response in

employment at the state level. We focus on employment as an important part of a oil

boom is the resource movement of labour into the energy producing sector, see Corden

(1984) for theory. Furthermore, there is recent empirical evidence of local spillovers to

non-oil employment in the oil rich states, see Allcott and Keniston (2018) and Feyrer

et al. (2017). Our focus is to investigate spillovers also outside the oil states. To do so,

we focus on both oil-rich and non-oil states. That is, we investigate the responses to an

increase in oil prices for both oil related employment and non-farm (non-oil) employment
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in oil rich states in Figure 8, and for non-farm employment in non-oil states in Figure 9.

We display results for a few of the states in these figures, emphasising the dispersion of

results. Detailed responses for all states can be found in Appendix D. Finally, Figure 10

displays the geographical dispersion of the oil price shocks for the whole of U.S.

Starting with the left column in Figure 8, we see that for all the oil-producing states,

oil-related employment responds significantly positive during the whole period, and there

is little evidence of time variation, see also Figure 12 in Appendix D. Hence, as expected,

employment in mining and oil-related industries rise with higher oil prices, and has done

so over the whole sample. Again, this indicates that the identified oil shock generate a

broad oil boom across the oil producing states in the U.S. More interestingly, there is now

clear evidence of time variation in employment outside mining in the oil-rich states, see

the right column in Figure 8. In particular, for some oil rich states, non-oil employment is

now increasing with the higher oil prices, see for instance Texas and Oklahoma. In fact,

we find significant positive effects on non-oil employment for the 9 biggest oil-producing

states. For California, however, the response is not significant positive, c.f. Figure 13 in

Appendix D. These results are consistent with the literature using cross-section data that

find positive spillovers from oil activity on local employment in oil rich states related to

the shale oil boom, see e.g., Feyrer et al. (2017). The findings are also consistent with

the results we have seen at the aggregate level, indicating a geographical dispersion of oil

related shocks to non-oil sectors within resource abundant states.

Turning to the non-oil states, we find evidence that non-farm employment has grad-

ually responded more positively to an oil shock. Still, responses are heterogeneous, with

some states responding significantly positive, while others do not, see Figure 9 for some

examples and Figure 13 in Appendix D for results for all states. For instance, three states

where employment responds significantly positive are: Iowa, Vermont and Connecticut.

As it turns out, these have all important manufacturing industries. In Iowa, the biggest

manufacturing industry is machinery, in Vermont it is computer and electronic products,

while in Connecticut it is aerospace and other transportation equipment. This is consis-

tent with what we have seen in Figure 7, where production in these industries respond

positively to the oil boom. On the other hand, states such as District of Columbia, where

there is almost no manufacturing production (manufacturing employs 0.2% of the work-

force in D.C), or in Missouri and New Jersey, where production of chemical products is

the biggest manufacturing industry, do not find positive effects.

Thus, there responses are heterogeneous across U.S. states, depending on industry

structure. How does this tally with the location of the various industries? To discuss this

issue we illustrate geographical dispersion of oil price shocks in Figure 10. To this end,

we let dark gray refer to the oil-rich states where employment responds now significantly
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(a) Texas: Oil employment (b) Texas: Non-oil employment

(c) North Dakota: Oil employment (d) North Dakota: Non-oil employment

(e) Oklahoma: Oil employment (f) Oklahoma: Non-oil employment

(g) Alaska: Oil employment (h) Alaska: Non-oil employment

Figure 8. The effect of an oil price shock: Posterior median of impulse responses for employment series

in oil-producing states
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(a) Iowa (b) Vermont (c) Connecticut

(d) District of Columbia (e) Missouri (f) Florida

Figure 9. The effect of an oil price shock: Posterior median of impulse responses for employment in

some (non-oil) U.S. states. Upper row: states with a high Manufacturing share in employment, Lower

row: states with a low manufacturing share in employment

positively to an oil price shock, while the non-oil states that respond significantly positive

to an oil price shocks are colored blue. Light gray refer to states where the response is

negative or not-significant. We have three main findings. First, Figure 10 shows that the

positive and significant effects on non-oil employment are found in the large oil producing

states (colored dark grey), mainly located in the middle of the U.S. All of these are part of

the shale oil boom. Second, the non-oil states that now observe a significant positive effect

on employment (colored blue) are either located close to the oil producing states: South

Dakota (SD), Nebraska (NE), Iowa (IA) and Illinois (IL) or to the North east: Virginia

(VA), West Virginia (WV), Pennsylvania (PA), New York (NY), Connecticut (CT), Maine

(MA), Vermont (VT) and Massachusetts (ME). These have industries that include some

of machinery, fabricated metal products, aerospace equipment, computer and electronic

products, and primary metals as one the three most important industries, c.f. NAM

(2015). As it was discussed in Section 4.3 these industries are typically closely connected

to the energy boom and in addition, primarily located close to the oil producing states or

in the north east.16 Finally, light grey are the states where the effect on employment from

the oil boom is negative or insignificant. We note that none of the car manufacturing

16One exception is Hawaii (HI), which, despite having a small manufacturing sector (employing 2.1% of the

workforce in the state), still finds employment responding significantly positive to an oil price increase.

This could relate to the importance of the service sector: an increase in personal income is good news for

tourism.
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Figure 10. U.S. States and geographical dispersion of oil price shocks. Dark gray refers to oil-rich states

blue refers to (non-oil) states where employment responds significantly positively to an oil price shock,

while light blue refers to states where the effect on employment from an oil price shock is negative or

insignificant. See the main text for additional explanations.

states, such as Michigan (MI), Ohio (OH), Indiana (IN), Kentucky (KY) and Tennessee

(TN), have positive spillovers to employment from the oil boom. This is as expected, as

these are states that are energy rich in production.

Finally, Table 1 displays variance decomposition for (non-oil) non-farm employment

after 4 quarters for some selected states. Starting with the oil producing states (upper

half of the table), the table confirms that the effects of oil price shocks have increased

over time for non-oil employment in most oil rich states, in particular in Wyoming and

North Dakota, where 40 percent of the variation in employment is due to oil price boom.

On the other scale is California, where the oil price shocks explain a relative small part

of the variation of employment; 15 percent. For the non-oil states, the effect varies, being

substantial and explaining around 30 percent of the variance in employment in Vermont

and Connecticut, whereas in DC, the oil boom explains a modest share of 10 percent.

We also find (although not displayed here) that for the most oil rich states the variance

explained by oil price shocks is highest after a quarter, while for non oil states, like Iowa

and Vermont, the variance explained by oil shocks increases gradually over time and is

highest after 4 quarters. This may indicate that it takes a longer time to realize the

spillovers of oil to the other states, than within an oil producing state.
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Table 1. Employment variance decomposition

State 2004Q1 2014Q1 2016Q1

O
il

st
a
te
s

Wyoming 0.20 0.36 0.47

North Dakota 0.24 0.35 0.42

Alaska 0.15 0.26 0.34

Oklahoma 0.10 0.20 0.32

Texas 0.10 0.15 0.26

California 0.18 0.11 0.17

N
o
n
-o
il

st
a
te
s

Vermont 0.15 0.21 0.38

Connecticut 0.14 0.18 0.32

Iowa 0.14 0.16 0.27

Florida 0.25 0.14 0.16

Missouri 0.19 0.11 0.14

District of Columbia 0.05 0.06 0.09

Note: Variance decomposition of (non-oil) non-farm employment after 4 quarters explained by oil price

shocks (in percentage points)

Our results may seem surprising. As alluded to above, the manufacturing sector is a

traded goods sector, and, according to the standard Dutch disease literature (e.g. Corden

(1984)), we would expect to see a contraction of the traded goods sector and an expansion

of the non-traded sectors (due to a spending effect). Instead, we find opposite results:

The higher oil price generates a resource boom, which again leads to increased demand

for output from the manufacturing sector and increased demand for labour. There is also

learning by doing spillovers during the shale oil boom, affecting all sectors of the U.S.

economy indirectly. For instance, as the development of new technology for drilling shale

and hydraulic fracturing demands complicated technical solutions, this could in itself

generate positive knowledge externalities that benefit many sectors. This is consistent

with recent theoretical contributions such as Allcott and Keniston (2018) and Bjørnland

et al. (2019).

We conclude that while there are heterogeneous effects to an oil price shock across the

U.S. states, many of the U.S. states are now behaving more procyclically with the U.S. oil

boom. Going forward, economic policy needs to take into account that the transmission

of an oil price shock has changed with the shale oil boom. An oil price increase may now

actually be good news for economic activity in the U.S.
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5 Robustness

To account for changes in the transmission of oil price shocks to the U.S. economy, we have

used a time-varying FAVAR model with stochastic volatility. Here we analyze robustness

along several dimensions. First, to what extent are the results driven by the use of the

time-varying parameters framework? To illustrate this we re-estimate the model presented

in Section 3.2, but now with constant coefficients and constant variance-covariance matrix

(Bt = B and Ωt = Ω), but for two different subsamples: 1990:Q2-2006:Q4 and 2000:Q1-

2016:Q4. We then plot the differences between the responses for these two sub-periods for

some selected key series in Figure 14 in Appendix E. Doing so, we find significant evidence

of changing coefficients, confirming our results. Note, however, due to our short sample,

there are a few years of overlap. We therefore also extend the sample backwards to start

in 1974, so that we can split the sample in 2001. However, with this extended sample, we

no longer have data for employment disaggregated into oil and non-oil at the state level.

Still, Figure 15 in Appendix E shows that there are large differences in responses pre and

post the shale boom, plotted here for manufacturing and S&P500. Hence, the results

of changing responses are not driven by the choice of model. Having said that, using a

simple split sample framework is sensitive to the subjectively chosen break date, and may

under or overestimate the true coefficients if there is variation within each sub-sample, as

the analysis in Section 4 clearly suggests. To capture such behavior, one needs a flexible

model allowing for time-variation, as the one we have applied here.

Second, as is well known in the literature, the choice of data included in the model is

crucial for the results. In our benchmark model we are using a relative large dataset, and

here we investigate robustness with respect to the global indicator. That is, we replace

the global activity variable with an alternative measure that captures global demand,

proposed by Chiaie et al. (2017). The global factor is strongly related to the measure

of economic activity and has homogeneous effects on all commodity markets. Hence, we

believe it is well suited alternative as a proxy for global demand. Figure 16 in Appendix

F.1 shows that the results are robust to the choice of global variable.

Third, in the benchmark model, we have included industrial production and many sub-

indices, which could be correlated. As shown by Boivin and Ng (2006), while additional

data my be useful for extracting the factors, the resulting factors may be less useful

for forecasting. Such a problem tends to arise when the idiosyncratic errors are cross-

correlated. We therefore test for robustness by excluding the Manufacturing sub-industries

series, keeping only aggregate manufacturing in the model. Figure 17 in Appendix F.2

shows that the results are robust to excluding the manufacturing sub-industries.

Fourth, since the global financial crisis, interest rates have also been very low. This

may have provided a stimulus to the economy, over and above the transmission of the oil
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price shocks. In particular, as pointed out by Datta et al. (2018), as the central bank does

not respond to inflationary pressures by changing interest rates at the zero lower band

(ZLB), changes in inflation can affect the real rate of interest differently. Thus, the impact

on variables such as output, consumption and equity prices from an oil price shock, may

also be different at the ZLB. To account for this, we add a shadow rate defined by Wu

and Xia (2016) to our dataset. Figure 18 in Appendix F.3 show that results are robust

to the inclusion of the shadow rate.

Fifth, and related to the above, many industries could have been affected by the decline

in global real economic activity, while the transmission of oil price shocks could be of less

importance. Hence, what we are capturing is the increased role of global demand, also as

a driver of oil prices.17 In addition, the low interest rates could be a contributing factor,

as discussed above. While we have controlled for global demand in the FAVAR model,

through the identified factors, here we do a different exercise by running a simple rolling

window linear regression model controlling for both global demand and the shadow rate:

∆yt,i = β1∆gat−1 + β2∆oilt−1 + β3∆̄shadt−1 + β4∆yt−1,i + ut (8)

where ∆yt,i denotes the percentage change in the variable of interest i, and ∆gat, ∆oilt

and ∆̄shadt denote, respectively, changes in global industrial production, the real price

of oil and the shadow rate.18 Figure 19 in Appendix F.4 displays the estimate of the

β2 coefficient for (a) investments and production in three (non-oil) industry groups: (b)

Fabricated Metal Products, (c) Chemical industries and (d) Food and Beverage. The

graph confirms our results: for both (non-oil) investments and fabricated metal products,

the responses to a change in an oil price increase have changed from being negative in the

1980s, to more positive by the early 2000s, the start of the shale boom. On the other hand,

industries not related to the oil boom, such as chemicals and food and beverage, display

no time variation, responding negatively during whole sample period. These results are

consistent with what we found in the base line analysis, suggesting that the effect of an oil

price increase has changed for industries related to the oil boom, and can not be explained

by global demand or the low interest rates.

Finally, an alternative explanation for why we find positive spillovers from an increase

in the oil price to employment in many non-oil producing states, is the fact that there

are other commodity prices, say corn and coal prices, correlated with oil prices, that also

have increased. Hence, we may have found significant effects on employment in states

17In particular, Baumeister and Kilian (2016) argued that several industries not directly related to oil,

for example chemical and fabricated metal products, have performed poorly during the recent oil price

decline. The main reason could be that they are negatively affected by the decline in global real economic

activity.
18∆̄ denotes the first difference
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with high coal and corn production. In order to address this issue, we include prices of

coal and corn in our dataset and reestimate our model. Results are robust. Furthermore,

as can be seen from Figure 20 in Appendix F.5 the effect of an oil price increase on both

coal and corn prices is stable during the whole sample period and do not show much time

variation.

6 Conclusion

It is widely accepted that the unprecedented expansion of the U.S. shale oil sector has

been a major contributor to oil investment since 2010. In this paper, we demonstrate that

the shale oil boom has not only impacted oil investment, but has also changed the way oil

price shocks are transmitted to aggregate investment, employment and various industries

across the U.S. To capture these effects, we have estimated a factor-augmented vector

autoregression (FAVAR) model with time-varying coefficients and stochastic volatility.

Our framework allows us to study the effects of oil price shocks on a large number of U.S.

macroeconomic variables and analyze the time variation in these effects. To the best of

our knowledge this is the first paper that jointly models the interaction between the oil

market and the U.S. economy in a large data environment, allowing also for time-varying

changes during the fracking revolution.

In contrast to previous studies, we find substantial changes in the way an oil price

shock is transmitted to the U.S. economy. In particular, we find both oil and the non-

oil nonresidential business investments, as well as production and employment in oil-

producing and manufacturing-intensive states to pick up following an oil price increase.

What’s more, there are positive spillovers to real personal income. Hence, this explains

why the U.S. did not experience a boom following the steep decline in oil prices between

2014 and 2016. The answer is simply that the country has increased its reliance of oil,

not as a consumer, but by becoming the world’s largest oil producer. Going forward,

economic policy needs to take into account that the transmission of an oil price shock has

changed with the shale oil boom. An oil price increase may now actually be good news

for economic activity in the U.S.
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Appendices

Appendix A Data Description

Global Variables

fred id Description

1 Baumeister and

Hamilton (2019)

World Industrial Production Index

2 Source: EIA Oil price US Refineries Acquisition Cost of domestic

and imported crude oil deflated by CPI

Macro aggregates

fred id Description

3 E318RC1Q027SBEA+

USIEOX..B (Datastream

Oil Investment Private fixed investment: Nonresidential:

Mining exploration, shafts, and wells + Equip-

ment, mining, and oilfield machinery

4 RPI Personal Income Real Personal Income

5 FEDFUNDS Interest Rate Effective Federal Funds Rate

6 INDPRO IP Index Industrial Production Index

7 PPIACO PPI Producer Price Index for All Commodities

8 CPIAUCSL CPI CPI : All Items

9 SP500 S&P500 S&Ps Common Stock Price Index: Composite

10 PRFI Residential Investment Private Residential Fixed Investment

11 PNFI Nonresidential Investment: **Private Nonresidential Fixed Investment:

12 PCEPI Private Consumption Real Private Consumption Expenditure

(chain-type quantity index)

13 DTWEXM Trade Weighted U.S. FX

Rate

Trade Weighted U.S. Dollar Index: Major Cur-

rencies

14 Source: EIA Net Petroleum Imports
U.S. Net Imports of Crude Oil and Petroleum Products

(Thousand Barrels per Day)

15 Source: Census Net Trade in Goods Trade in goods: Net trade

Disaggregate Industrial

Production

fred id Description

16 IPMANSICS Manufacturing IP: Manufacturing (SIC)

17 IPMINE Mining IP: Mining

18 IPUTIL Utilities IP: Electric and Gas Utilities

19 IPCONGD Consumer Goods IP: Consumer Goods

20 IPBUSEQ Business Equipment IP: Business Equipment

21 IPB52300S Defense and space equipment IP: Defense and space equipment

22 IPB54100S Construction supplies IP: Construction supplies

23 IPB54200S Business supplies IP: Business supplies

24 IPZ53010S Materials excluding energy

materials

IP: Materials excluding energy materials

25 IPB53300S Energy materials IP: Energy materials

26 IPG321S Wood product IP: Durable manufacturing: Wood product

Continued on next page
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27 IPG327S Nonmetallic mineral product IP: Durable manufacturing: Nonmetallic min-

eral product

28 IPG331S Primary metal IP: Durable manufacturing: Primary metal

29 IPG332S Fabricated metal product IP: Durable manufacturing: Fabricated metal

product

30 IPG333S Machinery IP: Durable manufacturing: Machinery

31 IPG334S Computer and electronic prod-

uct

IP: Durable manufacturing: Computer and

electronic product

32 IPG335S Electrical equipment, appli-

ance, and component

IP: Durable manufacturing: Electrical equip-

ment, appliance, and component

33 IPG3361T3S Motor vehicles and parts IP: Durable manufacturing: Motor vehicles

and parts

34 IPG3364T9S Aerospace and miscellaneous

transportation equipment

IP: Durable manufacturing: Aerospace and

miscellaneous transportation equipment

35 IPG337S Furniture and related product IP: Durable manufacturing: Furniture and re-

lated product

36 IPG339S Miscellaneous IP: Durable manufacturing: Miscellaneous

37 IPG311A2S Food, beverage, and tobacco IP: Nondurable manufacturing: Food, bever-

age, and tobacco

38 IPG313A4S Textiles and products IP: Nondurable manufacturing: Textiles and

products

39 IPG315A6S Apparel and leather goods IP: Nondurable manufacturing: Apparel and

leather goods

40 IPG322S Paper IP: Nondurable manufacturing: Paper

41 IPG323S Printing and related support

activities

IP: Nondurable manufacturing: Printing and

related support activities

42 IPG324S Petroleum and coal products IP: Nondurable manufacturing: Petroleum

and coal products

43 IPG325S Chemical IP: Nondurable manufacturing: Chemical

44 IPG326S Plastics and rubber products IP: Nondurable manufacturing: Plastics and

rubber products

Nonfarm Employment -

States

fred id Description

45 ALNA Alabama All Employees: Total Nonfarm in Alabama

46 AKNA Alaska *All Employees: Total Nonfarm in Alaska

47 AZNA Arizona All Employees: Total Nonfarm in Arizona

48 ARNA Arkansas All Employees: Total Nonfarm in Arkansas

49 CANA California *All Employees: Total Nonfarm in California

50 CONA Colorado *All Employees: Total Nonfarm in Colorado

51 CTNA Connecticut All Employees: Total Nonfarm in Connecticut

52 DENA Delaware All Employees: Total Nonfarm in Delaware

53 FLNA Florida All Employees: Total Nonfarm in Florida

54 GANA Georgia All Employees: Total Nonfarm in Georgia

55 HINA Hawaii All Employees: Total Nonfarm in Hawaii

56 IDNA Idaho All Employees: Total Nonfarm in Idaho

57 ILNA Illinois All Employees: Total Nonfarm in Illinois

58 INNA Indiana All Employees: Total Nonfarm in Indiana

59 IANA Iowa All Employees: Total Nonfarm in Iowa

60 KSNA Kansas *All Employees: Total Nonfarm in Kansas

61 KYNA Kentucky All Employees: Total Nonfarm in Kentucky

62 LANA Louisiana *All Employees: Total Nonfarm in Louisiana

63 MENA Maine All Employees: Total Nonfarm in Maine

Continued on next page

37



64 MDNA Maryland All Employees: Total Nonfarm in Maryland

65 MANA Massachusetts All Employees: Total Nonfarm in Mas-

sachusetts

66 MINA Michigan All Employees: Total Nonfarm in Michigan

67 MNNA Minnesota All Employees: Total Nonfarm in Minnesota

68 MSNA Mississippi All Employees: Total Nonfarm in Mississippi

69 MONA Missouri All Employees: Total Nonfarm in Missouri

70 MTNA Montana *All Employees: Total Nonfarm in Montana

71 NENA Nebraska All Employees: Total Nonfarm in Nebraska

72 NVNA Nevada All Employees: Total Nonfarm in Nevada

73 NHNA New Hampshire All Employees: Total Nonfarm in New Hamp-

shire

74 NJNA New Jersey All Employees: Total Nonfarm in New Jersey

75 NMNA New Mexico *All Employees: Total Nonfarm in New Mex-

ico

76 NYNA New York All Employees: Total Nonfarm in New York

77 NCNA North Carolina All Employees: Total Nonfarm in North Car-

olina

78 NDNA North Dakota *All Employees: Total Nonfarm in North

Dakota

79 OHNA Ohio All Employees: Total Nonfarm in Ohio

80 OKNA Oklahoma *All Employees: Total Nonfarm in Oklahoma

81 ORNA Oregon All Employees: Total Nonfarm in Oregon

82 PANA Pennsylvania All Employees: Total Nonfarm in Pennsylva-

nia

83 RINA Rhode Island All Employees: Total Nonfarm in Rhode Is-

land

84 SCNA South Carolina All Employees: Total Nonfarm in South Car-

olina

85 SDNA South Dakota All Employees: Total Nonfarm in South

Dakota

86 TNNA Tennessee All Employees: Total Nonfarm in Tennessee

87 TXNA Texas *All Employees: Total Nonfarm in Texas

88 DCNA District of Columbia All Employees: Total Nonfarm in the District

of Columbia

89 UTNA Utah All Employees: Total Nonfarm in Utah

90 VTNA Vermont All Employees: Total Nonfarm in Vermont

91 VANA Virginia All Employees: Total Nonfarm in Virginia

92 WANA Washington All Employees: Total Nonfarm in Washington

93 WVNA West Virginia All Employees: Total Nonfarm in West Vir-

ginia

94 WINA Wisconsin All Employees: Total Nonfarm in Wisconsin

95 WYNA Wyoming *All Employees: Total Nonfarm in Wyoming

Mining Employment -

Oil States

fred id Description

96 CONRMN Mining in Colorado All Employees: Mining and Logging in Col-

orado

97 KSNRMN Mining in Kansas All Employees: Mining and Logging in Kansas

99 SMU22000001021100001SA +

SMU22000001021300001SA

Mining in Louisiana All Employees: Mining: Oil and Gas Ex-

traction + Support Activities for Mining in

Louisiana

Continued on next page
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100 SMU30000001000000001A Mining in Montana All Employees: Mining and Logging in Mon-

tana

101 SMU35000001000000001A Mining in New Mexico All Employees: Mining and Logging in New

Mexico

102 SMU38000001000000001A Mining in North Dakota All Employees: Mining and Logging in North

Dakota

103 SMU40000001000000001A Mining in Oklahoma All Employees: Mining and Logging in Okla-

homa

104 SMU02000001021001301 Mining in Alaska All Employees: Mining: Oil and Gas Extrac-

tion, Well Drilling, and Support Activities in

Alaska

105 SMU06000001021100001SA +

SMU06000001021300001

Mining in California All Employees: Mining: Oil and Gas Extrac-

tion + Support Activities for Mining in Cali-

fornia

106 SMU48000001021100001SA +

SMU48000001021300001

Mining in Texas All Employees: Mining: Oil and Gas Extrac-

tion + Support Activities for Mining in Texas

107 SMU56000001021100001SA

+SMU56000001021311201SA

Mining in Wyoming All Employees: Mining: Oil and Gas Extrac-

tion + Support Activities for Oil and Gas Op-

erations in Wyoming

Additional Variables

fred id Description

108 Sources: Board of Governors

of the Federal Reserve System

and Wu and Xia (2016)

Shadow Rate Wu-Xia Shadow Federal Funds Rate

109 Source: Chiaie et al. (2017) Global Activity The Global Factor

Table 2. Data description. * Oil related employment is subtracted , ** Oil related investment is

subtracted
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Factor 1 Factor 2

North Carolina 0.91 -0.05

Tennessee 0.90 -0.12

Illinois 0.90 0.08

Fabricated metal product 0.86 0.17

Florida 0.86 -0.15

Manufacturing 0.85 -0.08

Texas 0.85 0.21

Electrical equipment appliance component 0.85 0.02

Iowa 0.81 0.10

Business equipment 0.80 0.16

Nonresidential Investment 0.77 0.03

Oklahoma 0.71 0.27

New York 0.71 0.04

Machinery 0.71 0.31

Computer electronic 0.66 0.02

Consume goods 0.64 -0.25

South Dakota 0.63 0.03

Real Private Consumption 0.61 -0.21

Interest Rate 0.54 -0.07

Primary metal 0.54 -0.02

Real Personal Income 0.53 0.04

Residential Investment 0.51 -0.33

Table 3. Examples of data series with correlation above 0.5 with factor 1.

Factor 1 Factor 2

Empl Texas: Oil 0.21 0.93

Empl Oklahoma: Oil 0.25 0.86

Empl New Mexico: Oil 0.35 0.81

Empl Wyoming: Oil 0.18 0.80

Empl North Dakota: Oil 0.04 0.79

Oil Investment 0.25 0.75

Empl California: Oil 0.12 0.71

Empl Louisiana: Oil 0.17 0.66

Mining 0.28 0.64

Empl Alaska: Oil 0.03 0.58

Empl Montana: Oil 0.28 0.57

Energy Materials 0.23 0.52

Table 4. Data series with correlation above 0.5 with factor 2.
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(a) Illinois (b) Mining in Texas

(c) Investment (d) Manufacturing

Figure 11. Graphs of the estimated factors compared to data series. Frame (a) and (b) plots factor 1 and

factor 2 respectively compared to real data; frame (c) and (d) plot the estimated values of macroeconomic

series from Equation 1 compared to real data
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Appendix B Estimation of a FAVAR model

B.1 Two Step Estimator Approach

In Section 3 of the main paper we described the benchmark model. Here we provide a

more detailed overview of how the model is estimated. We start by repeating the main

system equations. Recall the two main two equations in our model are the factor equation

(9) and the VAR equation (10):

Xt = ΛFt + et, (9)

Ft = b1tFt−1 + ...+ bptFt−p + A−1
t Σtεt. (10)

where the common factors Ft contain both the unobservables latent factors,ft and the

observables factors yt: Ft =

(
yt

ft

)
.

The time-varying parameters and covariances of the model follow random walk pro-

cesses given by (11):

Bt = Bt−1 + ηBt

αt = αt−1 + ηαt

logσt = logσt−1 + ησt

(11)

where Bt is the vector of all R.H.S. coefficients in (10), αt is the vector of non-zero and

no-none elements of the matrix At, and σt is the vector containing the diagonal elements

of Σt .

The innovations in the model are assumed to be normally distributed with the following

assumptions on the variance covariance matrix:

V ar





et

εt

ηBt

ηαt

ησt




=



R 0 0 0 0

0 Im 0 0 0

0 0 Q 0 0

0 0 0 S 0

0 0 0 0 W


(12)

The system is then estimated in two steps. In the first step we estimate the unob-

servable factors ft, while in the second step we estimate model parameters, conditional

on the factors. Below we describe each step in greater detail.

B.1.1 Step1: Latent Factor Estimation

We start by extracting k principal components from Xt and obtain estimates of the latent

factors, ft. In doing so, we do not impose a constraint whereby the observable factors

yt are the common component. So if the variables in yt are common components, they
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should be captured by the principal components. To remove yt from the space covered

by the principal components, we follow the approach advocated by Boivin and Giannoni

(2007), and impose the constraint that observable variables are two of the factors in the

first-step estimation. We denote the initial estimate of ft by f 0
t , and iterate through the

following steps:

1. RegressXt on f 0
t and the observed factors yt and obtain λ̂0

y

2. Compute X̂0
t = Xt − λ̂0

yyt

3. Estimate f 1
t as the k principal components of X̂0

t

4. Repeat the procedure multiple times

This procedure guarantees that the estimated latent factors will recover dimensions

of the common dynamics not already captured by the observable variables, yt. Given the

factors, Ft, we can estimate parameters in (9) and (10) independently of each other.

B.1.2 Step 2: The Gibbs Sampling Approach - Estimation of model param-

eters

Estimation of parameters in Factor Equation

Since the covariance matrix of the error terms in (9) is diagonal, we can estimate all the

parameters equation-by-equation. The parameters are sampled using standard arguments

for linear regression models (see Koop (2003)).

Block 1: Λpost, V ar(Λ)post|X,F,Λprior, V ar(Λ)prior, R

Conditional on the priors specified in B.2, the posterior draws of factor loadings of equation

i ,λi, and its variance V ar(λi) are:

λposti = (V ar(λi)
post)−1((V ar(λi)

prior)−1λpriori +R−1
i,i F

′
Xi)

V ar(λi)
post =

(
(V ar(λi)

prior)−1 +R−1
i,i X

′

iXi

)−1

for i = 1, ..., N .

Block 2: R|X,F,Λpost, ν0, δ0

We draw the conditional posterior for R from inverse Gamma distribution:

Ri,i|... ∼ IG(
ν1

2
,
δ

(i)
1

2
) (13)

ν1 = ν0 + T and δ
(i)
1 = δ0 + (Xi − λposti F )2
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Estimation of parameters in TVP VAR

The TVP VAR model in (10) is estimated by simulating the distribution of the parame-

ters of interest, given the data and the priors specified in B.2. Following Primiceri (2005),

Gibbs sampling is carried out in four steps, drawing in turn on time-varying coefficients

(Bt), simultaneous relations (At), volatilities (Σt), and hyper parameters (Q,W, S), condi-

tional on the observed data, estimated factors and the rest of the parameters. For further

details we refer to Primiceri (2005).19

B.2 Prior specification

We use an informative prior based on the training sample (from 1990:Q2 to 1999:Q4).

Following Primiceri (2005) the mean and the variance of B0 and αo are chosen to be

OLS point estimates and four times their variance of their estimates on initial subsample.

For log σ0, the mean of the distribution is chosen to be the logarithm of the OLS point

estimates of the standard errors of the same time invariant VAR, while the variance

covariance matrix is arbitrarily assumed to be identity matrix. Similarly, the mean and

the variance of factor loadings from (9), Λ, are chosen to be OLS point estimates and four

times their variance of their estimates from the training sample.

B0 ∼ N (B̂OLS, 4V ar(B̂OLS))

α0 ∼ N (α̂OLS, 4V ar(α̂OLS))

logσ0 ∼ N (logσ̂OLS, In)

Λ ∼ N (Λ̂OLS, 4V ar(Λ̂OLS))

We use prior from Inverted Gamma distribution for variance-covariance matrix R .

R ∼ IG(
ν1

2
,
δ1

2
)

where ν1 = ν0 + T and δ1 = δ0 + (X − Λ̂postF ). The priors for the remaining hyper-

parameters are all from the Inverse-Wishart distribution:

Q ∼ IW (k2
Q(1 + dimB)V ar(B̂OLS), 1 + dimB)

W ∼ IW (k2
W (1 + dimW )Ip, 1 + dimW )

Si ∼ IW (k2
S(1 + dimSi

)V ar(Âi,OLS), 1 + dimSi
)

19However, we modify the algorithm of Primiceri (2005) to reflect the correction to the ordering of steps

detailed in Del Negro and Primiceri (2015).
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Following Korobilis (2013) the degrees of freedom are set to dimB = m × m × p,

dimW = m and dimSi
= 1, ..,m−1, and are larger than the dimension of the corresponding

matrices, required to achieve a proper Inverse-Wishart distribution. The benchmark

results in this paper are obtained with ν0 = 10 , δ0 = 10.

As it was noted by Primiceri (2005), the values for kQ, kS, and kW , do not parameterize

time variation, but just define our prior beliefs about the amount of time variation in

parameters. The setting of kQ defines our beliefs about the amount of time variation in

time-varying coefficients in Equation 5, while setting of kW and kS defines beliefs about

the amount of time variation in stochastic volatility part of the same equation. It is worth

noting that there is a trade-off between setting, for example, kQ very high, but kW and

kS very low: this will force most of the models fit to be picked up though time-varying

coefficients, Bt. In the reverse case, setting kS and kW very high, but kQ very low, the

variation in Bt will almost be removed.

The time-varying parameters and stochastic volatilities are introduced in our FAVAR

models to allow for variation due to: 1) changes in the responses of domestic factors

to global shocks and 2) changes in volatility of global variables. To allow for 1) we set

kQ = 0.1, which is a reasonable amount of variation in VAR coefficient in order to uncover

any potential changes due to shale oil boom. However, the results obtained with lower

kQ are very similar to the baseline model. To allow for 2) we set kW = 0.1, taking into

account the fact that the volatility of oil price and other international business cycle

shocks has changed a great deal during last decade (see e.g. Baumeister and Peersman

(2013a), Baumeister and Peersman (2013b)). Similar to Primiceri (2005), we set kS = 0.1.

Estimating the model with lower values of kS and kW we obtain a similar results to the

benchmark case, however, if we set kW to 0.01 and lower, we seem to miss the high

volatility of the oil price during the last downturn, as has been well documented in the

literature.
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Appendix C Convergence of the Markov Chain Monte

Carlo Algorithm

We perform 30,000 iterations of the Gibbs sampler. The first 15,000 draws are discarded

and only every tenth of the remaining iterations is used for inference. The produced

results are not sensitive to the number of discarded draws or the number of passes used

for inferences. Following Primiceri (2005) and Baumeister and Peersman (2013b), we

ascertain that our Markov chain has converged based on the inefficiency factors (IFs) for

the posterior estimates of the parameters, that is the inverse of the relative numerical

efficiency (RNE) measure proposed by Geweke (1992). Here the estimates are performed

by employing a 4 percent tapered window used in computation of the RNE. As was noticed

by Primiceri (2005), values of the IFs below or around 20 are regarded as satisfactory. As

can be seen from the summary of the distribution of the inefficiency factors for different

set of parameters, reported in Table 5, the sample seems to have converged. That is, all

mean IF values are below 13 and 90 percent of the IFs are below 18., indicating modest

autocorrelation for all elements.

Median Mean Min Max 10-th Percentile 90-th Percentile

B 3.36 2.96 0.87 15.00 1.80 5.47

Λ 0.97 0.96 0.47 1.81 0.68 1.26

Σ 7.22 7.81 0.82 14.41 1.97 11.12

A 5.24 4.28 1.36 18.43 2.26 9.88

V 9.83 9.54 2.08 21.80 5.52 14.64

R 0.98 0.96 0.60 1.51 0.74 1.25

Table 5. Summery of the distribution of the IFs for different sets of parameters, where V is the set of

hyperparameters {Q,S,W}
.
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Appendix D Impulse Responses: Effect of oil price

shocks on employment in the U.S. states

D.1 Oil Related Employment

(1) Oil and Gas Extraction in Alaska

(2) Oil and Gas Extraction in Cali-

fornia

(3) Oil and Gas Extraction in

Louisiana

(4) Mining and Logging in Okla-

homa (5) Mining and Logging in Montana

(6) Mining and Logging in New Mex-

ico

(7) Mining and Logging in North

Dakota (8) Oil and Gas Extraction in Texas

(9) Oil and Gas Extraction in

Wyoming

Figure 12. Impulse responses for Oil Related Employment after 4 quarters with 16-th and 84-th

percentiles
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D.2 Nonfarm (non-oil) Employment

(1) Alabama (2) Alaska (3) Arizona

(4) Arkansas (5) California (6) Colorado

(7) Connecticut (8) Delaware (9) District Columbia

(10) Florida (11) Georgia (12) Hawaii

(13) Idaho (14) Illinois (15) Indiana
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Continued on next page

(16) Iowa (17) Kansas (18) Kentucky

(19) Louisiana (20) Maine (21) Maryland

(22) Massachusetts (23) Michigan (24) Minnesota

(25) Mississippi (26) Missouri (27) Montana

(28) Nebraska (29) Nevada (30) New Hampshire

Continued on next page
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(31) New Jersey (32) New Mexico (33) New York

(34) North Carolina (35) North Dakota (36) Ohio

(37) Oklahoma (38) Oregon (39) Pennsylvania

(40) Rhode Island (41) South Carolina (42) South Dakota

(43) Tennessee (44) Texas (45) Utah

Continued on next page
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(46) Vermont (47) Virginia (48) Washington

(49) West Virginia (50) Wisconsin (51) Wyoming

Figure 13. Impulse responses for Nonfarm Employment after 4 quarters with 16-th and 84-th percentiles
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Appendix E Split Sample

(a) S&P500 (b) Income

(c) Manufacturing (d) Business equipment

(e) Nebraska (f) Wyoming: Non-oil employment

Figure 14. Estimation of benchmark model with constant coefficients. Differences between responses

in sub-periods 1990Q1:2006:Q4 and 2000Q1:2016Q4 with 16-th and 84-th percentiles.
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S&P500

(a) Pre Shale Period (b) Shale Boom Period

Manufacturing

(c) Pre Shale Period (d) Shale Boom Period

Figure 15. The effect of an oil price shock on Manufacturing: Posterior median of impulse responses with

16-th and 84-th percentiles; Left column: estimated over subsample before the Shale Boom (1974:Q1-

2001:Q4). Right column: estimated over subsample during the Shale Boom (2002:Q1-2018:Q2)
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Appendix F Robustness to choice of variables

F.1 Robustness to the choice of global activity variable

(a) Investment (b) Income

(c) Manufacturing (d) Business equipment

(e) Nebraska (f) Wyoming: Non-oil employment

Figure 16. The effect of an oil price shock: Impulse responses for selected indicators of the U.S. economy

after 4 quarters with 16-th and 84-th percentiles from a model with alternative dataset, using a different

global variable (see the main text for details).
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F.2 Robustness to Manufacturing series

(a) Investment (b) Income

(c) Manufacturing (d) Business equipment

(e) Nebraska (f) Wyoming: Non-oil employment

Figure 17. The effect of an oil price shock: Impulse responses for selected indicators of the U.S. economy

after 4 quarters with 16-th and 84-th percentiles from a model with an alternative dataset that excludes

manufacturing sub-indexes (see the main text for details).
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F.3 Robustness to the shadow rate

(a) Investment (b) Income

(c) Manufacturing (d) Business equipment

(e) Nebraska (f) Wyoming: Non-oil employment

Figure 18. The effect of an oil price shock: Impulse responses for selected indicators of the U.S. economy

after 4 quarters with 16-th and 84-th percentiles from a model with an alternative dataset that uses a

shadow interest rate (see the main text for details).
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F.4 Rolling regressions

(a) Investment (b) Fabricated Metal production

(c) Chemical production (d) Food and beverages

Figure 19. The effect of an oil price shock. Plots of the β2 coefficients in the following regression:

∆yt,i = β1∆gat−1+β2∆oilt−1+β3∆̄shadt−1+β4∆yt−1,i+ut, where ∆yt,i denotes the percentage change

in the variable of interesti, and ∆gat, ∆oilt and ∆̄shadt denote, respectively, changes in global industrial

production, changes in the real price of oil and the first difference of the shadow rate. Sample period

1974:Q2-2016:Q4, Moving window 40 quarters.
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F.5 Robustness to other commodities: Corn and coal prices

(a) Corn prices (b) Coal prices

Figure 20. The effect of an oil price shock: Impulse responses for corn and coal prices. Responses are

reported after 4 quarters with 16-th and 84-th percentiles
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