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Abstract  

We study patient mobility in the Italian National Health System, using patient-episode 
level data on elective Percutaneous Transluminal Coronary Angioplasty procedures 
over the years 2008-2011. We examine how patients’ choice of the hospital is affected 
by changes in waiting times and clinical quality within hospitals over time. We estimate 
mixed-logit specifications and show the importance of jointly controlling for time-
invariant and time varying clinical quality to identify the effect of waiting times. 
Conversely, failure to capture variations in clinical quality over time does not affect the 
estimate of the discouraging effect of travel distance. We provide evidence that patients 
are responsive to changes in waiting times and clinical quality: average demand 
elasticity with respect to own waiting times and mortality is estimated to be – 0.17 and 
– 1.38, respectively. Patients’ personal characteristics significantly influence how they 
trade off distance and waiting times with quality of care. We find a higher Willigness-
To-Wait and Willingness-to-Travel to seek higher quality care for patients in the 
younger age groups and who are more severely ill. The results convey important policy 
implications for highly regulated healthcare markets. 
   
Key words: patients’ mobility; hospital choice; travel distance; waiting times; 
healthcare quality; mixed logit models.  

JEL codes: I11, I18, R22 

 
1 This is a fully revised and updated version of the paper previously circulated under the title 
“Disentangling the effect of waiting times on hospital choice: Evidence from panel data”, Quaderni - 
Working Paper DSE, No. 1118, 2018, University of Bologna. 
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NON-TECHNICAL SUMMARY 

This paper investigates the determinants of patients’ mobility in the healthcare sector. 

There is a growing interest in evaluating how patients’ mobility responds to variations 

in waiting times and clinical quality, as this provides key insights for policy.  

Considering patients’ preferences for a highly relevant speciality in the field of 

cardiology (Percutaneous Transluminal Coronary Angioplasty procedures), we 

examine how geographical accessibility interacts with waiting times and clinical 

quality in affecting patients’ choice of hospital for elective treatments. We estimate 

patient choice models by using data from the Emilia-Romagna region in Italy over the 

period 2008-2011. The institutional context we study is such that hospitals operate 

under weak competitive pressure, and evidence on how patients trade off aspects of 

health care quality under these circumstances is still lacking.  

We find that waiting times have a negative and significant impact on hospital demand, 

with the estimated average elasticity of demand for waiting times being – 0.17. On 

average, patients are willing to travel an extra distance of about 1.4 kilometers for 

shortening waiting times for care by 1 week. We detect relatively little variation in the 

trade-off between waiting times and distance across different types of patients. Hospital 

choice is more significantly affected by changes in clinical quality, with the estimated 

average demand elasticity to mortality rates being – 1.38. Responsiveness to changes 

in hospital quality varies substantially across patient characteristics, with younger age 

groups and those more severely ill being more willing to trade off quality with distance 

and waiting times.  

The results suggest that quality disclosure policies may have beneficial effects also in 

highly regulated settings. Yet, policy-makers should carefully consider the 

consequences in terms of access to high quality care for those patients who are less 

sensitive to quality variation. 
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1. Introduction   

Timely access to, and quality of, hospital services are central concerns for patients and 

regulators (e.g., Beckert et al, 2012; Gravelle et al, 2014; Gaynor et al, 2016; Gutacker 

et al, 2016). However, assessing the determinants of patient choice is challenging due 

to the multidimensional nature of quality and to the limited observability of important 

attributes. This notwithstanding, there is a growing interest in understanding how 

patients’ mobility responds to variations in waiting times and clinical quality, as this 

offers key insights on patients’ preferences.  

Two waves of initiatives have boosted the relevance of these issues in public health 

systems: the enhancement of patient choice and the effort for shortening waiting times. 

Patient empowerment reflects the belief that greater choice can spur public 

organisations by promoting better quality and higher social welfare (e.g., Cookson and 

Dawson, 2012). Alongside with waiting times acting as a rationing device, long waits 

for care have become a major policy concern (Siciliani et al, 2014). 

However, there are also reasons for scepticism about patients’ ability to exercise an 

active choice when equity-oriented policies hinder competition, and common quality 

standards level out differences across providers, leaving patients with little incentive to 

bypass the nearest facility. Thus, it remains an empirical matter to determine whether 

patient choice is affected by preferences over factors other than geographical 

proximity, and to estimate the trade-off between hospital attributes (Balia et al, 2020).  

We study patients’ mobility in the Italian National Health Service (NHS) where 

secondary care is free of charge and patients’ costs stem mainly from travel distance 
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and waiting times. Hospitals retain incentives to attract patients, as they receive 

reimbursement through a Diagnosis Related Group (DRG)-based Prospective Payment 

System (PPS) (Lippi Bruni and Mammi, 2017; Cappellari et al, 2016). We analyse 

hospital choice in response to changes in waiting times and clinical quality within 

hospitals over time by using patient-level data on elective Percutaneous Transluminal 

Coronary Angioplasty (PTCA) for the period 2008-2011. Clinical quality is measured 

by mortality for Acute Myocardial Infarction (AMI), which is the key time-varying 

quality measure in our analysis (Berta et al, 2016; Moscelli et al, 2018).  

We contribute to the literature on patient mobility and hospital choice by investigating 

the joint influence of hospital geographical accessibility, waiting times and clinical 

quality. Isolating the effect of distance and waiting times poses serious challenges 

because choice may reflect preferences for quality. If patients are sensitive to clinical 

quality, hospitals delivering better care will face higher demand, possibly inducing a 

positive correlation between waiting times and quality. Similarly, patients may be more 

or less discouraged by distance depending on perceived  quality. Therefore, variations 

in hospital quality should be controlled for in order to obtain unbiased estimates of 

patients’ Willingness-To-Wait (WTW) and Willingness-To-Travel (WTT).  

We estimate conditional logit (CL) and mixed logit (ML) model specifications. We 

improve on existing studies on a number of issues. First, our estimation strategy jointly 

controls for time-invariant heterogeneity across providers via hospital fixed effects 

(FEs) and for time varying hospital quality. We show that failing to do so leads to 

biased estimates for the effect of waiting times. Conversely, in our study failure to 

account for variations in quality over time does not affect the estimate of the distance 
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parameters. Notably, our findings lend support to the ML model, displaying preference 

heterogeneity for both unobserved and observed patient characteristics. Second, we 

investigate patients’ preferences for a highly relevant speciality in the field of 

cardiology and in an institutional context where hospitals operate under weak 

competitive pressure, for which evidence on how patients trade off aspects of health 

care quality is still lacking. Third, we assess how the trade-off among hospital attributes 

vary with patients’ characteristics. Detecting preference heterogeneity in terms of 

WTW and WTT for better quality and shorter waiting times is important for policy and 

helps target patients who are more at-risk of suffering from poor health care quality. 

Whereas some earlier studies looked at the trade-off between travel distance and 

hospital attributes such as waiting times and quality of care, to our knowledge we are 

the first to provide estimates of patients’ WTW for higher quality. Policy makers may 

be interested in the extent to which longer waits may discourage patients from 

demanding higher quality care. 

Our preferred specification yields an average elasticity of demand with respect to own 

waiting times of – 0.17, suggesting that a 1% increase in average waiting times (0.16 

days) leads to a decline in the predicted number of admissions by around 0.17%. With 

respect to own quality, the average elasticity of demand is equal to – 1.38, so that a 1% 

increase in mortality rate (10% of the sample average) reduces demand by around 1.4%. 

The marginal rate of substitution between hospital attributes provides further insights. 

On average, patients are willing to travel an extra distance of about 1.4 kilometers for 

a 1-week reduction in waiting times. We find relatively little variation in the trade-off 

between waiting times and distance among different types of patients, with the 
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reference patient having a WTT for a 1-week reduction in waiting times equal to about 

2 kilometers. By contrast, patients’ sensitivity to quality varies largely across patient 

characteristics, with younger groups and those more severely ill being more willing to 

trade off quality with distance and waiting times.  

 

2. Background and motivation  

 

2.1 Institutional setting 

The Italian NHS is funded out of general taxation and provides universal coverage. 

Secondary care is largely supplied by public hospitals, either run by Local Health 

Authorities (LHAs) or operating as public Trusts, with administrative autonomy, 

extensively paid under PPS.2 Primary care is organised as a list-based system and 

citizens are registered with a General Practitioner (GP). When referred by their GP or 

by a specialist, patients can access any publicly funded hospital. Since patients are not 

charged at the point of use, travel distance, waiting times and quality of care are the 

key drivers of hospital choice.   

In the Italian NHS regions benefit from a large autonomy in organising and funding 

their health system (Di Novi et al, 2019).3 Regions like Lombardy have encouraged 

competition within the public sector, as well as between public and accredited private 

 
2 Accredited private hospitals generally play only a minor role (Fattore et al, 2013). In Emilia-Romagna 
acute care beds covered by accredited private hospitals amount to 12%. 
3 Such feature has also induced the economic literature on the Italian NHS to concentrate on single-
region studies taking advantage of a homogenous institutional setting (e.g. Martini et al, 2014; Amaral- 
Garcia et al, 2015; Lippi Bruni et al, 2016; Perucca et al, 2019, Barili et al, 2021).  
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centres (Moscone et al, 2012). On the contrary, in Emilia-Romagna policy-makers have 

favoured cooperation and coordination among providers by centrally planning 

production capacity, and by promoting a strong integration between hospital- and 

district-level services (Ferré et al, 2014). Located in the North-East of Italy, with a 

population of nearly 4.5 million people, the healthcare system of Emilia-Romagna can 

be broadly compared in terms of size, standards of services and underlying socio-

economic conditions to the NHS-based systems of small and medium western 

European countries. Moreover, Emilia-Romagna is among the five Italian regions 

serving as benchmark to assess the health needs and the standard costs used to identify 

the basket of services covered by the NHS (“Essential Levels of Care”), giving national 

prominence to this regional context (Verzulli et al, 2017). 

 

2.2. Related literature  

Our work relates to two partially overlapping strands of literature: the studies on patient 

mobility and those that estimate demand elasticity to own waiting times. Hospital 

choice for elective care is inherently linked to patient mobility.4 Earlier works have 

studied the influence of patients’ and providers’ characteristics on the propensity to 

seek treatment at hospitals other than the closest one (e.g. Tai et al, 2004; Varkevisser 

and van der Geest, 2007; Robertson and Burge, 2011). Focusing on the Italian case, 

more recent contributions have investigated patients’ migrations across jurisdictions by 

examining the push and pull factors and the financial consequences of patients seeking 

 
4 See Brekke et al (2014) for a review of the hospital choice literature, and Aggarwal et al (2017) for a 
survey on patient mobility. 
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care out of their catchment area (e.g. Fabbri and Robone, 2010; Balia et al, 2014, 2018, 

2020; Berta et al, 2021).  

Hospital choice models typically rely on a multinomial logit specification, with patients 

choosing a provider within a set of possible destinations. The bulk of this literature uses 

cross-sectional data, and measures quality by means of clinical indicators such as 

mortality and readmission rates (Beckert et al, 2012; Varkevisser et al, 2012; Berta et 

al, 2016; McConnell et al, 2016). However, such variables may be correlated with 

unobserved hospital attributes affecting patient behaviour. By contrast, other 

contributions use a longitudinal design with hospital fixed effects, thus controlling for 

unobserved time-invariant heterogeneity across hospitals (e.g. Hodking, 1996; Tay, 

2003; Gaynor et al, 2016; Gutacker et al, 2016; Moscelli et al, 2016; Avdic et al, 2019).  

Demand response to waiting times has attracted considerable attention as well. A body 

of literature has used aggregate data at the ward and practice level (e.g. Martin and 

Smith, 2003; Gravelle et al, 2002), or has focused on small areas (e.g. Gravelle et al, 

2003). Although with some variability, these studies have consistently outlined a 

negative and significant elasticity to waiting times, with estimates in most cases 

ranging between – 0.2 and – 0.3. As for Italy, Riganti et al (2017) find a demand 

elasticity to waiting times for surgical treatments between – 0.15 to – 0.24.  

Even though individual-level information helps avoid the “ecological” fallacy when 

indicators capture effects that do not occur at the individual level (Martin and Smith, 

1999), it has seldom been exploited to analyse the elasticity of demand for waiting 

times, as we do here. Moreover, patient-level data allows controlling for individual 

characteristics including hospital proximity, which improves estimate precision and 
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makes it possible to analyse the trade-off between distance and waiting times (Pope, 

2009). We account for preference heterogeneity for hospital characteristics, by 

interacting hospital attributes with patient characteristics and allowing preferences to 

vary randomly across patients.  

 

2.3 Our contribution 

The works closest to ours are Sivey (2012) and Moscelli et al (2016). The first uses 

patient-level panel data to study the impact of waiting times for cataract patients from 

English GP practices. It applies a multinomial logit framework and controls for quality 

differences via hospital FEs. The paper shows that, while waiting times positively 

affect choice before controlling for hospital time-invariant heterogeneity, the impact 

comes out negative once hospital FEs are included. The second contribution uses a 

panel of English hospitals to study how local market conditions – measured by the 

number of local rivals – affect demand elasticity for hip replacements, once quality of 

care, waiting times and distance are accounted for.   

We differ from these contributions on a number of issues. First, we consider 

cardiovascular interventions where mortality rates are higher compared to cataract 

surgeries and hip replacements: a feature expected to affect WTT and WTW for higher 

quality of care. Second, identification in Sivey (2012) relies on the assumption that 

hospital quality does not vary over time, therefore excluding time-varying quality 

indicators: a restriction that is overcome in our context. In Moscelli et al (2016), the 

dynamics of the hospital market do not allow to control for unobserved characteristics 

at the level of single hospital, but only for homogeneous groups of providers. By 
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contrast, we use a balanced sample of providers and include hospital FEs to account 

for time-invariant unobserved heterogeneity possibly associated with quality.   

A further distinguishing feature of our work is the stability of the regulatory framework, 

which has always allowed free patient mobility (Levaggi and Zanola, 2004). This 

minimizes confounders due to providers’ reactions to changes in the competitive 

environment. When patients are given greater choice opportunities, providers are 

incentivised to improve their attractiveness. Hence, when greater choice is introduced 

it may be hard to separate demand- from supply-side effects (Gaynor et al, 2016). 

Moreover, here providers are encouraged to co-operate rather than to compete, and the 

system is committed to ensure equity through regulated quality standards. 

Finally, we assess how the trade-off among hospital attributes vary with patients’ 

characteristics. Detecting preference heterogeneity in terms of WTT and WTW for 

better quality is important for policy, as it may help target patients who are more at-

risk of suffering from poor quality services.  While the former issue has attracted some 

attention, the latter has remained largely unexplored so far. Quite interestingly, we find 

a fairly steep gradient associated to changes both in severity conditions and patients’ 

age. When the number of comorbidities increases, patients appear more willing to wait 

to gain access to a better performing centre, other things equal. On the contrary, ageing 

per se pushes patients in the opposite direction, with older individuals being more prone 

to obtain a quick access to treatment rather than to wait longer for being admitted in 

higher quality hospitals. 
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3. Methods 

We estimate responsiveness to travel distance, waiting times, and clinical quality using 

patient-level data for elective PTCA surgeries. We rely on the multinomial logit 

framework (McFadden, 1974), and model utility of patient 𝑖 conditional on choosing 

hospital 𝑗 at time 𝑡 as:   

 

𝑈௧ = 𝑉௧ + 𝜈௧ (1) 

 

where 𝑉௧ is the deterministic component and 𝜈௧ is the random error term. Alternative 

assumptions on the error structure and on the coefficients lead to different model 

specifications. We estimate conditional logit (CL) and mixed logit (ML) models. In the 

CL, the stochastic components of the conditional utility function in (1) are identically, 

independently distributed (iid) and follow a type-1 extreme value distribution. The 

deterministic component of utility is: 

 

𝑉௧ = 𝛽ௗ𝑓(𝐷) + 𝛽௪𝑊௧ିଵ + 𝛽𝑔(𝑄௧ିଵ) + 𝜉             (2) 

 

where 𝐷 is the distance of patient 𝑖 from hospital 𝑗, 𝑓 is a cubic function of 𝐷, 𝑊௧ିଵ 

denotes the median waiting time for an elective PTCA at hospital 𝑗 in year 𝑡 − 1, 𝑄௧ିଵ 

is the quality at hospital 𝑗 in year 𝑡 − 1, and 𝑔 is a quadratic function of 𝑄௧ିଵ. 𝜉 is a 

vector of hospital-specific FEs. The vector of coefficients on distance, waiting times 

and quality of care ( 𝛽ௗ, 𝛽௪ and 𝛽) are allowed to vary with patient characteristics 
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so as to account for variation in preferences. Following previous studies, we assume 

that hospital choice responds to past, rather than current, waiting times and quality (e.g. 

Gutacker et al, 2016; Varkevisser et al, 2012). Lagged values prevent potential 

endogeneity due to the simultaneous influence of demand on waiting times and quality.  

Hospital FEs absorb differences in persistent hospital characteristics, including, among 

others, teaching status, size, or whether a hospital provides highly specialized services, 

reputation and experience effects. Hospital FEs are crucial for identifying the impact 

of waiting times, as they control for unobserved time-invariant hospital attributes 

possibly correlated with waiting times. The coefficient is identified by the relationship 

between waiting times and hospital choice within hospitals over time: a negative 

coefficient implies that, on average, hospitals whose waiting times increased between 

𝑡 − 1 and 𝑡 decreased demand in period 𝑡, ceteris paribus.  

The CL model relies on the Independence from Irrelevant Alternatives (IIA) property. 

Under this restrictive assumption, discrimination by patients among hospitals consists 

of pairwise comparisons unaffected by characteristics other than the pair under 

consideration. To overcome this limitation, we use the ML model, derived from the 

conditional utility function in (1) where 𝜈௧ are iid extreme values. The deterministic 

component of utility is the same as for the CL, except that the ML coefficients are 

allowed to vary randomly between individuals. By specifying individual random 

coefficients, the ML model accounts for unobserved preference heterogeneity and is 

robust to violations of the IIA (Train, 2009).    
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4. Data 

Our primary data source is the hospital discharge dataset (Schede di Dimissione 

Ospedaliera, SDO) that contains individual-level information for patients receiving 

NHS-funded care in Emilia-Romagna. We study intra-regional patient mobility for 

elective admissions.5 In doing so, we focus on short-distance movements of patients, 

while excluding long distance travels. Policy concerns for short-distance mobility 

largely prevail over those for the long-distance one, since the latter is relatively less 

frequent, in most cases involving highly complex procedures or idiosyncratic 

circumstances. On the contrary, the former can be induced by horizontal competition 

between nearby jurisdictions spurred by quality differences in local hospital markets: 

it involves larger groups of patients, with major implications for efficiency in resource 

allocation within the system, including the risk of unnecessary duplication of services.6 

Our sample includes 15,766 patients undergoing elective PTCAs over the years 2008-

2011, and each patient’s choice set is assumed to embrace all publicly financed 

hospitals providing PTCAs. It comprises 22 hospitals in each year. On average, 

hospitals treat about 324 patients per year. The average number of patients treated by 

 
5 We consider elective patients who reside in Emilia-Romagna. Non-elective (urgent) patients are 
excluded, as they are not placed on waiting lists. Residents treated in other regions are not included in 
our data, as these procedures are recorded in the datasets of destination regions. We also exclude 
residents from other regions treated in Emilia-Romagna, as their choice set should comprise the hospitals 
in the region of origin that do not appear in our dataset. Moreover, institutional barriers between regional 
health systems may affect the use of hospital services making the two groups of patients highly 
heterogeneous (Atella et al, 2014).  
6 The available evidence shows that inter-regional and intra-regional patient mobility in the Italian NHS 
are distinct phenomena influenced by different push and pull factors (e.g., Balia et al, 2020, 2018). 
Different determinants of patients’ willingness-to-travel for care for short- and long-distance 
movements, as well as varying DRG tariffs between intra- and extra-regional patients, contribute to 
explain such findings. 
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hospitals decreases from 344 to 266 between 2008 and 2011.7 Figure 1 presents 

hospitals’ location and volumes of activity. 

 

[Figure 1 about here] 

 

Waiting time is measured as the difference in number of days between the date when 

the patient is placed on the waiting list and the date of hospital admission. It has to be 

computed for each hospital in the choice set. However, while the waiting time at the 

chosen hospital is observed, the time a patient would have waited had he chosen an 

alternative provider is unknown. To tackle this problem, we follow Sivey (2012) in 

computing waiting times at the hospital-year level as the median of the individual 

waiting times for all elective PTCAs discharged at each hospital in each year.8  

Clinical quality is measured by risk-adjusted mortality rates for AMI within 30 days of 

admission provided at hospital-year level by the Italian Ministry of Health through the 

National Outcome Evaluation Program (Programma Nazionale Esiti, PNE). The PNE 

releases procedure-specific indicators for all NHS hospitals for selected conditions and 

surgical interventions. These measures are computed linking clinical and 

administrative datasets, using rigorous scientific standards and validation procedures 

based on risk-adjustment mechanisms. 

 
7 Our model specification includes 22 alternative specific parameters corresponding to the regional 
hospitals that provide PTCAs, but no patient FEs. This feature ensures that, given our sample size, the 
estimator is free from the incidental parameter problem, which may affect non-linear models when the 
time dimension is short (s.c. small T) and the number of individual FEs increases with sample size 
(Lancaster, 2000). 
8 Median waits allow to account for the right skewed distribution of waiting times. 
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The PNE indicators were not disclosed to the public during the observational period 

and, therefore, the choice of the hospital cannot be attributed to the patient’s direct 

assessment of the performance indicator of reference. In our analysis, the PNE measure 

acts as a proxy for quality retrieved by patients from various sources, including GP and 

specialist advices, as well as previous personal experience and positive word-of-mouth 

(e.g. Moscone et al, 2012; Gutacker et al, 2016). Such broad quality dimension is 

influenced by the human and physical capital endowment of each hospital and by the 

effort to deliver effective treatments (Gaynor and Town, 2012). In turn, these features 

are assumed to influence performances measured by indicators issued by the PNE.  

Empirical research pointed out the existence of statistically significant correlations 

between patients’ overall rating of the hospital and measures based on technical quality 

(Castle et al, 2005; Isaac et al, 2010). As for the context of our study, patients’ surveys 

conducted in Emilia-Romagna revealed that physicians’ recommendations are one of 

the most important determinants of their hospital choice (Fiorentini et al, 1999) and 

indicators for technical quality, such as risk-adjusted mortality rates, can be effectively 

used as proxies of patients’ perceptions on more general quality dimensions. 

Travel distance is computed (in kilometres) using Microsoft MapPoint, as the fastest 

road line route from the centroid of the patient’s municipality of residence to each 

hospital site. Patient characteristics include age, gender, foreign citizenship and the 

Charlson Comorbidity Index (CCI). To account for underserved areas, we add a dummy 

taking value 1 if there is only one hospital providing PTCAs in the patient’s LHA of 

residence, and 0 otherwise.  
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Since our dataset do not include individual-level proxies for socio-economic status, that 

has been shown to be relevant for hospital choice (e.g. Moscelli et al, 2018), we 

construct income-classes at the municipality level. Using data on average gross income 

from the Ministry of Economy and Finance, we construct dummy variables for each 

tertile of the income distribution, and attribute to each patient the income class 

corresponding to the municipality of residence. 

Table 1 provides summary statistics. The average hospital has a median waiting time 

of 16 days and has risk-adjusted mortality rates equal to 9.9. Patients travel 18.6 

kilometres on average for an elective PTCA, about three times the average distance to 

the nearest hospital, suggesting that choice is not uniquely driven by the purpose of 

minimising travel distance. Patients are on average 69 years old with a CCI of 1.028, 

men prevail over women and foreigners are less than 2%.   

 

5. Results 

Tables 2-3 present the results from the CL and the ML models, estimated using the 

clogit and mixlogit commands in Stata 16 (Hole, 2007a). The first three 

columns consider specifications where additional sets of regressors are successively 

included. The most parsimonious one (column 1) controls for distance and waiting 

times only, allowing for observed preference heterogeneity through interactions with 

patient characteristics. Then, we include hospital FEs (column 2). In our preferred 

specification as illustrated in equation (2), we add the risk-adjusted mortality rate 

(column 3). Lastly, we replicate the final specification without interactions to provide 
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average estimates for the whole sample of patients (column 4). All models (1)-(4) also 

include squared and cubic distance terms and the squared term of AMI mortality 

accounting for non-linear effects of distance and quality.9  

 

5.1 Conditional logit estimates 

Since the related literature mainly exploits a CL specification, we report the 

corresponding estimates in Table 2 for comparability purposes.  

 

[Table 2 about here] 

 

However, such specification relies on the IIA hypothesis, which is not supported in our 

data according to the Hausmann-McFadden test. Hence, we refer to the discussion of 

the ML specification for more detailed comments (section 5.2). It is worth noticing here 

that distance has always a negative and significant effect, confirming that patients 

prefer closer hospitals, ceteris paribus. Our measure of clinical quality has a negative 

and statistically significant effect. The coefficient for waiting times is positive and 

significant before including any control for quality (column 1). It is no longer 

significant after accounting for time-invariant hospital differences through hospital FEs 

(column 2), while it becomes negative and significant once we control for clinical 

quality (column 3). Finally, the results of the ML without interactions (column 4) show 

 
9 We have also tested for non-linear effects of waiting times by adding the squared term. The results 
(available upon request) provide no evidence of non-linearities in the impact of waiting times on hospital 
choice. For this reason, the variable is entered in linear form. 
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that the distance, waiting times and quality coefficients are qualitatively similar to those 

obtained with the full set of interactions (column 3). 

 

5.2 Mixed logit estimates 

Table 3 shows the ML estimates, where the distance coefficients are allowed to vary 

across patients.10 All remaining coefficients are assumed to be fixed as in the CL 

specification.11 We fit the ML model by maximum simulated likelihood using 50 

Halton draws.12  

 

[Table 3 about here] 

 

Results are similar to those obtained from the CL model, with the log-likelihood 

statistics and the information criteria (AIC, BIC) indicating that the ML model fits the 

data better. Our preferred specification (column 3) shows that on average patients 

prefer closer hospitals, with shorter waiting times and lower mortality rates.  

By comparing our findings across regressions (1)-(3), the coefficients are qualitatively 

similar except those for waiting times. While the effect of waiting times is positive and 

 
10 As pointed out by previous studies, unobserved preference heterogeneity for distance might reflect the 
influence exerted by patients’ family or friends (network effects), which can reduce the welfare loss 
associated with travelling for care (Balia et al, 2020). 
11  We have tested for the presence of unobserved heterogeneity with respect to waiting times and 
mortality rates. The results (available upon request) yield no evidence of significant unobserved 
heterogeneity with respect to neither waiting times or quality.  
12 We have tested the sensitivity of our findings in the final ML specification using up to 500 Halton 
draws. Even after increasing the number of draws by an order of ten, the estimated coefficients and the 
associated elasticities with respect to waiting times and quality are remarkably stable (results available 
upon request).  
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significant before controlling for any dimension of hospital quality, it is no longer 

significant once we include hospital FEs, and becomes negative and significant after 

accounting for time-varying hospital quality. Such evidence suggests that omitting to 

control for either source of differences in quality would deliver biased estimates of 

waiting time elasticity.  

The interactions between hospital attributes and patient characteristics point to 

preference heterogeneity associated to observable personal characteristics. On the 

whole, age differences across patients emerge as a key driver of preferences over 

hospital attributes. In line with prior research, older patients appear more reluctant to 

travel (e.g., Beckert et al, 2012; Gutacker et al, 2016). These individuals more 

frequently suffer from limited mobility which hinders their access to distant providers. 

We also find that older people are less sensitive to variations in hospital mortality rates, 

suggesting that they are less responsive to quality differences or have poorer access to 

information on quality. In addition, they show a greater dislike for longer waiting times. 

A higher marginal disutility of time spent on waiting lists for elective treatment is 

consistent with shorter life expectancy, but it may also reflect severe conditions other 

than those captured by the number of comorbidities that call for timely intervention. 

Sicker patients appear more willing to trade off distance and waiting times for quality: 

they are more prone to travel and to wait for care and more likely to choose high quality 

providers. In addition, patients living in areas with only one hospital performing 

PTCAs are less reluctant to travel, less willing to wait and more responsive to variations 
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in clinical quality. Finally, patients residing in more income-deprived areas are more 

reluctant to travel and less sensitive to changes in waiting times and quality.13 

 

6. Size of the effect of waiting times and quality of care on hospital choice 

We estimate the elasticity of demand of hospital 𝑗 with respect to own waiting times as 

the % change in the predicted probability of choosing hospital j associated with a 1% 

increase in own waiting times. To compute the predicted probabilities, we use the 

mixlpred command in Stata following our preferred ML specification based on 

Equation (2). We then calculate the mean of the % change in the predicted probabilities 

across all hospitals to provide the average % change in the expected demand (i.e., 

predicted number of patients) resulting from a 1% increase in own waiting times. 

Similarly, we derive the own quality demand elasticity of hospital 𝑗 as the % change in 

the predicted probability of choosing hospital j associated with a 1% decrease in own 

mortality rates.14 

Table 4 provides the means and standard deviations (SD) of the estimated demand 

elasticities. The results show a mean waiting time elasticity equal to - 0.17, suggesting 

that a 1% increase in average waiting times (0.16 days) leads to a decrease in the 

predicted number of admissions by around 0.17%. With respect to own quality, the 

 
13 While our data on patients’ socio-economic status are aggregated at municipality level, future research 
should also consider the use of patient-level information to more precisely assess the impact of patients’ 
socio-economic status on their responsiveness to waiting times and quality. 
14 Unfortunately, this approach does not provide standard errors. While in principle the bootstrap 
procedure could be used as an alternative to obtain standard errors, it is usually not operational in practice 
due to the massive computational burden needed to estimate the ML model. Because of that, bootstrap 
procedures are typically not implemented following ML estimation.  
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elasticity of demand is equal to – 1.38, so that a 1% increase in mortality rate (10% of 

the sample average) reduces demand by around 1.4%.  

 

[Table 4 about here] 

 

Further insights into how the estimated marginal utilities of distance, waiting times and 

quality vary with patient characteristics are provided in Table 5. We use the delta 

method to provide standard errors (Hole, 2007b). The first column of Panel A displays 

the estimated marginal utilities obtained from the ML without interactions. The second 

column reports the marginal utilities derived from the ML with interactions for the 

reference patient, defined as the individual with average or modal characteristics (male, 

aged 69 years, Italian, with a CCI equal to 1.028, residing in the least income-deprived 

municipalities). In the successive columns we consider different “patient-types”, whose 

characteristics varies each at a time, while keeping all other attributes at the level set 

for the reference patient. The exercise is performed for: females, patients at the 10th 

and 90th percentiles of the age and CCI distribution.    

 

[Table 5 about here] 

 

The most notable differences between the ML with and without interactions emerge for 

the quality attribute, with marginal utility varying largely across types of patients, 

whereas smaller differences are detected for the marginal utilities of distance and 

waiting times. Gender does not have a major impact on preferences, as women are only 
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slightly less sensitive to variations in distance, waiting times and quality. On the 

contrary, age differences substantially affect sensitivity to quality, while leading to 

smaller changes in responsiveness to geographical proximity and waiting times. 

Patients at the 10th percentile of the age distribution (55 years) are less reluctant to 

travel and to wait for care compared to patients at the 90th percentile (89 years) and are 

also considerably more sensitive to improvements in quality. As for severity, patients 

with a CCI score equal to 6 (90th decile) are keener to wait and to travel farther than 

the average patient and display a larger marginal utility of quality.  

The marginal rates of substitution between hospital attributes provide further insights. 

Based on the coefficient estimates obtained in the ML without interactions, the first 

row and column of Panel B gives the ratio of the marginal utility of waiting times over 

the marginal utility of distance. Such ratio can be interpreted as WTT for shorter 

waiting times, the additional distance that on average patients would be willing to travel 

for a reduction in waiting times by 1 day. According to our estimates on average 

patients are willing to travel about 1.4 kilometres for a 1-week reduction in waiting 

times. Similarly, the second row and first column of Panel B provides the WTT for 

higher quality. We find that on average patients are willing to travel about 0.12 

kilometres for being treated in a hospital that ensures a 1% reduction in AMI mortality. 

The remaining columns of Panel B illustrate the WTT based on the ML estimates with 

the full set of interactions. The results for the reference patient point to a higher WTT 

for a 1-week reduction in waiting times, equal to 2 kilometres, and a larger WTT for a 

1% decrease in hospital mortality, equal to 0.8 kilometres. While individual differences 

in the trade-off between distance and waiting times are relatively small, the trade-off 
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between distance and quality varies substantially across types of patients. Patients with 

more comorbidities appear more willing to travel farther for higher quality, a result that 

supports the assumption made in earlier studies (Gowrisankaran and Town, 1999) and 

that is in line with previous evidence finding that patients who are more severely ill 

care more about quality (Gaynor et al, 2006). Interestingly, younger patients are more 

willing to travel to seek higher quality care, other things equal, suggesting that they are 

more prone to screen hospital destinations and less influenced by the discouraging 

effect of distance.  

Additionally, we examine the trade-off between waiting times and quality, referred to 

as WTW for better quality. In the first column of Panel C, we show that on average 

patients are willing to wait about 0.6 days for a reduction in hospital mortality rate by 

1%. The results in columns (2)-(7) obtained in the ML with interactions reveal a large 

variation in WTW across patients, with the most willing to wait for higher quality being 

younger patients and those suffering from more severe conditions. For the reference 

patient, the results indicate a WTW of about 2.6 days for opting for a hospital where 

mortality decreases by 1%. 

 

7. Robustness analyses 

7.1 Restricted hospital choice sets 

Since patients can choose any publicly financed provider, in our main analysis we have 

defined the choice set to include all 22 regional hospitals providing PTCAs. However, 

patients may consider only the subset of alternatives that are geographically closer. To 
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test the robustness of our findings, we present here ML estimates that apply more 

restrictive definitions of the choice set. Based on different conjectures about how 

patients process information, two approaches are typically employed: one relies on the 

hypothesis that patients focus on a given number of closest alternatives; the other 

assumes that patients consider only hospitals within a given distance radius.  

As for the k-closest providers criterion, in line with previous studies, we restrict the 

potential destinations to the 10-closest hospitals (Howard, 2005; Sivey, 2012). Even 

though the choice set of each patient is more than halved, in our data the risk of 

disregarding relevant destinations is negligible, since 99% of the actual choices fall 

within such range. As for the fixed radius approach, Varkevisser et al (2014) consider 

1-hour travel time as a critical range of reference. In our context, this roughly 

corresponds to a travel distance of 50 km. Consistently, we redefine the patient choice 

sets to include all hospitals within a fixed radius distance of 50 km. Such criterion 

comprises around 94% of the destinations actually chosen.15  

In Table 6, we present the ML estimates using the 10-closest providers criterion, while 

Table 7 reports the estimates based on the 50 km radius. These findings can be directly 

compared to those of Table 3. For the sake of brevity, we do not show the coefficients 

for the full set of interactions and concentrate on waiting times, distance and quality 

measures.  

 

 
15 The total number of observations used for the analysis is equal to 346,852 when we include all 22 
alternatives, falls to 156,760 when applying the 10 closest providers criterion, and drops further to 75,855 
with the fixed radius criterion.  
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[Tables 6 and 7 about here] 

 

The empirical findings are robust to alternative definitions of the patient choice set. As 

for waiting times, adding hospital fixed-effects and time-varying quality leads to a 

pattern similar to that recorded in Table 3. If we focus on the more general specification 

(model 3), also the magnitude of the waiting time coefficients is remarkably stable 

across different definitions of the choice set. The distance coefficient is smaller in size 

when considering hospitals within 50 km of distance from patient residence, suggesting 

that the discouraging effect of distance becomes relatively less important when more 

far-away hospitals are excluded from consideration.  

 

7.2 Extra-regional patient mobility 

Due to lack of individual information on patients travelling to other regions, our 

analysis considers intra-regional mobility only, and the parameters capture the drivers 

of short- and medium-distance patients’ movements. However, some short distance 

movements may not be recorded in our data, as some individuals may choose hospitals 

just across the regional border. To assess the empirical relevance of the phenomenon, 

we exploit aggregate data for the set of DRGs that together count for 80% of all elective 

admissions included in our sample to identify the areas of the region characterised by 

non-negligible cross-border outflows. This information is available at the LHA-level 

only and suggests that cross border mobility occurs in particular from the LHAs of 
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Piacenza and Parma. In most other cases, the share of patients treated outside the 

regional borders - including also long-distance movements - ranges between 3-5%.  

To test the robustness of our findings, we estimate our final ML specification excluding 

patients who reside in areas where outflows are non-negligible. In the remaining areas, 

we can confidently argue that the parameter estimates should not be affected by 

patients’ outflows as the latter represent only a minor empirical issue. The results are 

reported in Table 8. 

 

[Table 8 about here] 

 

We consider exclusion criteria based on administrative and geographical grounds. First, 

we exclude residents in the LHA of Piacenza alone, and then residents in the LHAs of 

Piacenza and Parma together (first and second column of Table 8, respectively). The 

geomorphic configuration of the region also suggests an alternative criterion based on 

the exclusion of municipalities located on the northern border of the region. Emilia-

Romagna is characterised by high hills and mountains in the south-western part that is 

scarcely populated, with relatively poor transport infrastructures and limited mobility. 

On the contrary, the northern part is characterised by a flat territory, more densely 

populated and well connected through efficient transport networks. This points to the 

largest share of outflows being due to patients residing close to the northern border and 

being directed toward northern regions (Lombardy and Veneto), where the quality of 

health service is deemed to be as high as in Emilia-Romagna. Based on these 

considerations, we exclude patients residing in the municipalities located in the 
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northern border of the region, irrespectively of the LHA they belong to (third column 

of Table 8). We find that restricting the analysis to geographical areas where patient 

outflows are a minor issue leaves the estimates largely unchanged. Such evidence is 

reassuring as it suggests that our main findings are not driven by missing information 

on residents treated in different regions. 

 

7.3 Additional indicators of hospital quality 

In our study, hospital quality acts as a magnet for patients’ flows. Therefore, we are 

interested in proxies for quality broad enough to be credibly retrieved by patients 

through their sources of information (family networks, GPs, etc.), as well as in 

measures validated at the scientific and institutional level. The PNE program serves 

this purpose well: it is promoted by National and Regional Health Authorities and it 

releases risk-adjusted indicators for different clinical areas. We restrict our attention to 

the PNE indicators for the cardiological area. In our main analysis, we have used 30-

days AMI mortality rate as key time varying quality measure; an indicator that has 

gained a prominent position as a proxy for clinical quality of hospital services in 

general (e.g. Cooper et al, 2011; Bloom et al, 2015) and in the cardiological area in 

particular.  

Yet, extending the spectrum of quality indicators may help account for features that a 

single measure may not capture. In this section, we assess the robustness of our findings 

by considering a richer set of measures for clinical quality. The additional indicators 

meet the following inclusion criteria: they refer to the cardiovascular area, are risk-
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adjusted and available for the full set of hospitals included in our sample. Among the 

measures released by the PNE, three additional indicators meet these minimum 

requirements: readmission rate after AMI, 30-day mortality rate for patients with heart 

failure and readmission rate for patients with heart failure.16 We report in Table 9 the 

estimates of our ML specification corresponding to column 3 of Table 3, augmented 

by the three quality indicators discussed above. 

 

[Table 9 about here] 

 

The results reported in Table 9 show that these additional measures for hospital quality 

do not seem to influence the probability that a patient chooses a particular destination 

once we control for differences in AMI mortality rate across providers, with the latter 

indicator emerging as a good summary measure for quality dimensions that are relevant 

for patient choice. Most importantly, our findings for the coefficients of main policy 

interest are largely unaffected.   

 

8. Discussion and conclusion  

As in Italy public hospital care is free of charge, patients trade off travel distance versus 

waiting times and clinical quality when choosing their destination for elective 

 
16 Ideally, it would have been advisable to include also quality indicators referring to elective procedures. 
Unfortunately, measures such as 30-day mortality rate for coronary bypass and for aortic valvuloplasty 
cannot be included in the present analysis. Due to the concentration of such procedures in a limited 
number of points of delivery, these indicators are released only for 6 out of the 22 hospitals of our sample. 
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procedures. We estimated patient choice models to assess demand responsiveness to 

changes in waiting times and quality of care by using patient-level data on elective 

PTCA surgeries. A major challenge when studying mobility towards hospitals with 

shorter waiting times is the potential correlation with quality. Thanks to disease-

specific quality indicators issued by public authorities and to a balanced panel of 

hospitals, we are able to control for time-invariant quality (via the hospital FEs) and 

for the time varying aspects of clinical quality (via risk-adjusted mortality rates for 

AMI). In this way, we can relax assumptions that may not hold in every context, such 

as constant quality over time or uniform quality patterns within groups of hospitals, 

which were present in previous studies.  

Our results documented the importance of jointly accounting for time-invariant 

differences across hospitals and time-varying clinical quality. Omitting time-varying 

quality controls produces biased estimates of responsiveness to waiting times, while no 

impact is recorded on the propensity to travel for care. We found that waiting times 

have a negative and significant impact on hospital demand, with the estimated average 

elasticity of demand for waiting times being – 0.17, and that on average patients are 

willing to travel an extra distance of about 1.4 kilometers for shortening waiting times 

for care by 1-week. There is relatively little variation in the trade-off between waiting 

times and distance across different types of patients, with the reference patient having 

a WTT for a 1-week reduction in waiting times equal to 2 kilometers. We also 

highlighted that patients respond to variations in hospital mortality rates over time, and 

estimated the average demand elasticity to mortality rates to be – 1.38. Responsiveness 

to changes in hospital quality varies widely across patient characteristics, with younger 
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age groups and those more severely ill being more willing to trade off quality with 

distance and waiting times.  

Waiting times have a negative and significant effect on demand. This has important 

implications for highly regulated healthcare systems. A relevant concern in such 

contexts is whether increasing NHS resources is an effective policy instrument to 

reduce waiting times. However, the interplay between demand- and supply-side factors 

in determining waiting times suggests that increasing public funding may not always 

result in a reduction in waiting times (e.g., Siciliani and Iversen, 2012), as increasing 

NHS capacity may bring forward previously latent demand. Small demand elasticity 

with respect to waiting times as shown in our study suggest that patients’ response to a 

reduction in waiting time is relatively small on average. Net of this effect, increasing 

healthcare resources is expected to shorten waiting times.  

Finally, our finding that hospital choice is affected by changes in clinical quality 

suggests that favouring well-informed patient choice - e.g., by disclosing information 

on hospital quality to the public - may produce beneficial effects also in highly 

regulated settings. We have shown that, even in such contexts, patients’ sensitivity to 

quality changes makes hospitals with better health outcomes more attractive. At the 

same time, policy-makers should carefully monitor the consequences in terms of access 

to high quality care for those patients who are unlikely to bypass local providers. 
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Figure 1. Emilia-Romagna region, map of hospital locations. 

 

 
 

Note: Circle size is proportional to the volume of elective PTCA treatments provided in each hospital.  
TH, teaching hospital.  
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Table 1. Descriptive statistics: years 2008-2011.  

Variable  Mean  SD 
 

Hospital characteristics    
     Median annual inpatient waiting time (days)  16.148 9.379 
    Between-hospital variation  8.162 
    Within-hospital variation   4.862 
  AMI Mortality rate (%) 9.923 2.563 
    Between-hospital variation  1.856 
    Within-hospital variation   1.799 
 

Patient characteristics   
     Distance to hospital visited (km) 18.612 19.119 
  Distance to closest hospital (km) 6.457 6.436 
  Female  0.263 0.440 
  Age 69.017 11.440 
  Foreigner 0.017 0.130 
  Charlson comorbidity index (CCI) 1.028 1.419 
  Unique provider within the LHA of residence 0.316 0.465 
  Income deprivation – group 1 (more deprived) 0.328 0.470 
  Income deprivation – group 2 0.332 0.471 
  Income deprivation – group 3 (least deprived) 0.339 0.473 
   
 

Sample characteristics   
     No. of hospitals  22 
  No. of patients 15,766 
    

AMI, Acute Myocardial Infarction. LHA, Local Health Authority. SD, Standard Deviation. 
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Table 2. Results from conditional logit estimation of hospital choice. 
 
Variable Model 1 Model 2 Model 3 Model 4 

Distance (in km) -0.142*** -0.128*** -0.122*** -0.154*** 
 (0.0113) (0.0132) (0.0132) (0.00262) 

Distance2 (/100) 0.148*** 0.159*** 0.151*** 0.0728*** 
 (0.0182) (0.0212) (0.0212) (0.00413) 

Distance3 (/10000) -0.0456*** -0.0572*** -0.0543*** -0.0130*** 
 (0.00759) (0.00921) (0.00919) (0.00164) 

Waiting time 0.0464*** 0.00323 -0.0274*** -0.0268*** 
 (0.00748) (0.00975) (0.0106) (0.00293) 

AMI mortality rate   0.535** 0.311*** 
   (0.238) (0.0538) 

AMI mortality rate2   -0.0415*** -0.0166*** 
   (0.0120) (0.00266) 

Interactions with distance Y Y Y N 
Interactions with distance2 Y Y Y N 
Interactions with distance3 Y Y Y N 
Interactions with waiting time Y Y Y N 
Interactions with AMI mortality N N Y N 
Interactions with AMI mortality rate2 N N Y N 
Hospital FEs N Y Y Y 
Log-likelihood -16600.0 -12503.7 -12,383.2 -12912.4 
AIC 33,264.0 25,113.5 24,904.4 25878.7 
BIC 33,608.2 25,683.6 25,646.6 26169.1 

 

AMI, Acute Myocardial Infarction.   
Notes: Estimates from the conditional logit model. Years 2008-2011. All hospital-specific indicators are lagged by one 
year. No. of observations = 346,852. No. of patients = 15,766. No. of hospitals = 22. Standard errors in parentheses. 
Significance levels: ***p< 0.01, **p< 0.05, *p< 0.1.  
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Table 3. Results from mixed logit estimation of hospital choice. 
 
Variable Model 1 Model 2 Model 3 Model 4 

Distance (in km) -0.154*** -0.132*** -0.126*** -0.164*** 
 (0.0138) (0.0168)    (0.0168) (0.00338) 

Distance2 (/100) 0.146*** 0.125*** 0.117*** 0.0230*** 
 (0.0242) (0.0290)    (0.0292) (0.00717) 

Distance3 (/10000) -0.0640*** -0.0659*** -0.0625*** -0.0125*** 
 (0.0111) (0.0130)    (0.0132) (0.00321) 

Waiting time 0.0520*** 0.00795 -0.0241** -0.0312*** 
 (0.00789) (0.0107) (0.0119) (0.00323) 

AMI mortality rate   0.458* 0.397*** 
   (0.257) (0.0612) 

AMI mortality rate2   -0.0380*** -0.0210*** 
   (0.0129) (0.00301) 

Interactions with distance     

Age -0.0000281 -0.000357    -0.000371  
 (0.000194) (0.000231)    (0.000233)  

Female 0.0206*** 0.0203*** 0.0192***  
 (0.00486) (0.00659)    (0.00655)  

Foreigner -0.0123 -0.0133    -0.0161  
 (0.0158) (0.0182)    (0.0191)  

CCI 0.00598*** 0.00596*** 0.00611***  
 (0.00145) (0.00199)    (0.00197)  

Unique local provider -0.0543*** -0.0229*** -0.0205***  
 (0.00495) (0.00728)    (0.00734)  

Income - 1st tertile 0.0892*** -0.00790    -0.0123  
 (0.00630) (0.00848)    (0.00842)  

Income - 2nd tertile 0.0496*** -0.0307*** -0.0356***  
 (0.00609) (0.00855)    (0.00857)  

Interactions with distance2     

Age -0.00169*** -0.00164*** -0.00160***  
 (0.000325) (0.000373)    (0.000381)  

Female -0.0156* -0.0106    -0.00956  
 (0.00809) (0.0116)    (0.0115)  

Foreigner 0.000264 -0.00234    0.00227  
 (0.0252) (0.0277)    (0.0300)  

CCI -0.00161 0.000191    -0.0000952  
 (0.00233) (0.00346)    (0.00340)  
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Table 3. (continued). 
 
Variable Model 1 Model 2 Model 3 Model 4 

Unique local provider 0.0699*** 0.0332*** 0.0307***  
 (0.00770) (0.0112)    (0.0114)  

Income - 1st tertile -0.0867*** 0.00815    0.0142  
 (0.0109) (0.0139)    (0.0137)  

Income - 2nd tertile -0.0492*** 0.0552*** 0.0633***  
 (0.0126) (0.0174)    (0.0175)  

Interactions with distance3     

Age 0.000761*** 0.000845*** 0.000824***  
 (0.000142) (0.000163)    (0.000169)  

Female 0.00360 -0.000185    -0.000444  
 (0.00322) (0.00513)    (0.00505)  

Foreigner 0.00713 0.0115    0.00964  
 (0.00957) (0.0104)    (0.0120)  

CCI -0.000495 -0.00176    -0.00160  
 (0.000889) (0.00157)    (0.00153)  

Unique local provider -0.0206*** -0.00910**  -0.00832*  
 (0.00289) (0.00450)    (0.00459)  

Income - 1st tertile 0.0208*** -0.00234    -0.00433  
 (0.00449) (0.00570)    (0.00554)  

Income - 2nd tertile 0.00789 -0.0314*** -0.0348***  
 (0.00605) (0.00892)    (0.00903)  

Interactions with waiting time     

Age -0.000304*** -0.000689*** -0.000315**  
 (0.000110) (0.000146)    (0.000161)  

Female 0.00548* 0.00978**  0.0104**  
 (0.00301) (0.00401)    (0.00444)  

Foreigner 0.000654 -0.00769    -0.0156  
 (0.0108) (0.0142)    (0.0156)  

CCI 0.00365*** 0.00524*** 0.00421***  
 (0.000899) (0.00122)    (0.00136)  

Unique local provider -0.0794*** -0.0628*** -0.0445***  
 (0.00344) (0.00534)    (0.00586)  

Income - 1st tertile -0.00636* 0.0108**  0.0172***  
 (0.00355) (0.00502)    (0.00563)  

Income - 2nd tertile 0.0153*** 0.0116**  0.0171***  
 (0.00385) (0.00533)    (0.00606)  
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Table 3. (continued). 
     

Variable Model 1 Model 2 Model 3 Model 4 

Interactions with AMI mortality     

Age   -0.00361  
   (0.00356)  

Female   0.0675  
   (0.100)  

Foreigner   0.522  
   (0.370)  

CCI   0.0887***  
   (0.0322)  

Unique local provider   -0.637***  
   (0.116)  

Income - 1st tertile   0.422***  
   (0.111)  

Income - 2nd tertile   0.303***  
   (0.116)  

Interactions with AMI mortality rate2    

Age   0.000319*  
   (0.000179)  

Female   -0.00282  
   (0.00497)  

Foreigner   -0.0297  
   (0.0186)  

CCI   -0.00460***  
   (0.00159)  

Unique local provider   0.0375***  
   (0.00576)  

Income - 1st tertile   -0.0180***  
   (0.00553)  

Income - 2nd tertile   -0.0126**  
   (0.00579)  

SD of Distance   0.0536*** 0.0601*** 
   (0.00257) (0.00237) 

SD of Distance2   0.00803*** -0.00732*** 
   (0.00161) (0.00240) 

SD of Distance3   -0.00198** -0.000388 
   (0.000986) (0.000726) 
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Table 3. (continued). 
     

Variable Model 1 Model 2 Model 3 Model 4 

Hospital FEs N Y Y Y 
Log-likelihood -16,443.0 -12,290.8 -12,179.4 -12,533.0 
AIC 32,956.1 24,693.6 24,502.9 25,126.1 
BIC 33,332.6 25,296.0 25,277.3 25,448.8 

 

AMI, Acute Myocardial Infarction. 
Notes: Estimates obtained using the Stata mixlogit command (Hole, 2007a), 50 Halton draws. Years 2008-2011. All 
hospital specific indicators are lagged by one year. No. of observations = 346,852. No. of patients = 15,766. No. of 
hospitals = 22. Standard errors in italics. Significance levels: ***p< 0.01, **p< 0.05, *p< 0.1.   
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Table 4. Average elasticities of demand. 
 
 

Average elasticity of demand  

  Waiting time (days) -0.17 
 (0.139) 

  Mortality rate from AMI (%) -1.38 
 (1.292) 

 

AMI, acute myocardial infarction.   
Notes: Results based on the mixed logit regression in column 3 of Table 3. Standard deviations in parentheses. 
 
 
 
 
Table 5. Marginal utility, WTT and WTW: main effects and effect by type of patient. 
 

 Mixed logit 
without 

interactions 

Mixed logit with interactions 
 Baseline Female Age = 55 Age = 89  CCI = 0 CCI = 6 

Panel A: Marginal utility        

  Distance (in km) -0.157** -0.144*** -0.128*** -0.131*** -0.161*** -0.150*** -0.114*** 
 (0.002) (0.004) (0.004) (0.004) (0.005) (0.004) (0.006) 

  Waiting time (days) -0.031*** -0.042*** -0.031*** -0.037*** -0.048*** -0.046*** -0.021** 
 (0.003) (0.005) (0.006) (0.006) (0.006) (0.005) (0.008) 

  Mortality rate from AMI (%) -0.019* -0.110*** -0.098*** -0.148*** -0.055*** -0.107*** -0.122*** 
 (0.010) (0.017) (0.020) (0.019) (0.021) (0.018) (0.029) 
        

Panel B: WTT        

  Waiting time (days) 0.197*** 0.292*** 0.242*** 0.282*** 0.298*** 0.306*** 0.184** 
 (0.021) (0.037) (0.048) (0.044) (0.040) (0.037) (0.075) 

  Mortality rate from AMI (%) 0.121* 0.764*** 0.766*** 1.129*** 0.342*** 0.713*** 1.070*** 
 (0.066) (0.123) (0.160) (0.147) (0.130) (0.122) (0.264) 
        

Panel C: WTW        

  Mortality rate from AMI (%) 0.613* 2.619*** 3.161*** 4.000*** 1.146*** 2.326*** 5.810** 

  (0.330) (0.455) (0.737) (0.660) (0.414) (0.413) (2.344) 
 

AMI, acute myocardial infarction. WTT, willingness to travel. WTW, willingness to wait.   
Notes: ML without interactions: results based on the mixed logit regression in column 4 of Table 3. ML with interactions: 
results based on the mixed logit regression in column 3 of Table 3. Standard errors calculated using the delta method are 
reported in parentheses. 
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Table 6. Mixed logit model: choice set with the 10 nearest hospitals. 
 
Variable Model 1 Model 2 Model 3 Model 4   
Distance (in km) -0.156*** -0.167*** -0.164*** -0.166***   
 (0.0212) (0.0258)    (0.0260) (0.00471)    

  
Distance2 (/100) 0.102* 0.160*** 0.179*** 0.0291***   
 (0.0533) (0.0592)    (0.0609) (0.0112)    

  
Distance3 (/10000) 0.00773 -0.0550    -0.0761** -0.0275**    
 (0.0356) (0.0365)    (0.0384) (0.0114)    

  
Waiting time 0.0467*** -0.00575 -0.0356*** -0.0314***   
 (0.00831) (0.0115) (0.0126) (0.00327)    

  
AMI mortality rate   0.473* 0.415***   
   (0.266) (0.0618)    

  
AMI mortality rate2   -0.0380*** -0.0220***   
   (0.0134) (0.00305)    

  
     

  
Interactions with distance Y Y Y N   
Interactions with distance2 Y Y Y N   
Interactions with distance3 Y Y Y N   
Interactions with waiting time Y Y Y N   
Interactions with AMI mortality N N Y N   
Interactions with AMI mortality rate2 N N Y N   
     

  
SD of Distance 0.0240*** 0.0535*** -0.0432*** 0.0543***   
 (0.00498) (0.00281)    (0.00311) (0.00364)    

  
SD of Distance2 0.0424*** 0.0104 0.0374*** 0.0371***   
 (0.00468) (0.00668) (0.00387) (0.00775)    

  
SD of Distance3 -0.00691* -0.00063 0.00650*** -0.00883**    
 (0.00381) (0.00233) (0.00231) (0.00388)    

  
     

  
Hospital FEs N Y Y Y   
Log-likelihood -15564 -11526.1 -11,404.4 -11768.5   
AIC 31198.1 23164.2 22,952.7 23597   
BIC 31546.8 23722.1 23,670.0 23895.9   
 

AMI, Acute Myocardial Infarction.   
Notes: Estimates obtained using Stata mixlogit command (Hole, 2007a), 50 Halton draws. All hospital-specific 
indicators are lagged by one year. No. of observations = 156,760. No. of patients = 15,676. No. of hospitals = 10. 
Standard errors are in parentheses. Significance levels: ***p< 0.01, **p< 0.05, *p< 0.1. 
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   Table 7. Mixed logit model: choice set with all hospitals within 50 km from patient residence. 
  
Variable Model 1 Model 2 Model 3 Model 4 
Distance (in km) -0.121*** -0.125*** -0.122*** -0.160*** 

 (0.0251) (0.0344) (0.0340) (0.00529) 

Distance2 (/100) -0.0308 -0.0249 -0.0147 0.0221**  
 (0.0540) (0.0718)  (0.0710) (0.0110) 

Waiting time 0.0410*** -0.0154  -0.0408*** -0.0315*** 
 (0.00965) (0.0135) (0.0147) (0.00337) 

AMI mortality rate   0.408 0.404*** 
 

  (0.298) (0.0634) 

AMI mortality rate2   -0.0332** -0.0214*** 
 

  (0.0150) (0.00314)  
 

    
Interactions with distance Y Y Y N 
Interactions with distance2 Y Y Y N 
Interactions with waiting time Y Y Y N 
Interactions with AMI mortality N N Y N 
Interactions with AMI mortality rate2 N N Y N 

 
    

SD of Distance -0.0151 0.0443*** 0.0438*** 0.0402*** 
 (0.00946) (0.00418) (0.00425) (0.00381) 

SD of Distance2 -0.00644 0.00126 0.000401 0.00270 
 (0.0223) (0.0126) (0.0127) (0.0146)  
   

  
Hospital FEs N Y Y Y 
Log-likelihood -12510.9 -8978.3 -8,876.6 -9090.8 
AIC 25073.8 18050.6 17,879.3 18237.7 
BIC 25313.9 18484.7 18,461.2 18496.3 

 

AMI, Acute Myocardial Infarction.   
Notes: Estimates obtained using Stata mixlogit command (Hole, 2007a), 50 Halton draws. All hospital-specific 
indicators are lagged by one year. No. of observations = 75,855. No. of patients = 14,794. No. of hospitals = 22. Standard 
errors are in parentheses. Significance levels: ***p< 0.01, **p< 0.05, *p< 0.1. 
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Table 8. Mixed logit model: sensitivity analyses using different sample sets. 
  
Variable (1) (2) (3) 
Distance (in km) -0.117*** -0.119*** -0.107*** 

 (0.0172) (0.0190) (0.0162) 

Distance2 (/100) 0.086*** 0.0891** 0.0728*** 
 (0.0298) (0.0349) (0.0271) 

Distance3 (/10000) -0.044*** -0.0473*** -0.0404*** 
 (0.0132) (0.0167) (0.0116) 

Waiting time -0.0274** -0.0269** -0.0209* 
 (0.0121) (0.0128) (0.0121) 

AMI mortality rate 0.4982* 0.487* 0.558** 
 (0.2599) (0.262) (0.265) 

AMI mortality rate2 -0.0404*** -0.0399*** -0.0428*** 
 (0.0131) (0.0132) (0.0133) 

Interactions with distance Y Y Y 
Interactions with distance2 Y Y Y 
Interactions with distance3 Y Y Y 
Interactions with waiting time Y Y Y 
Interactions with AMI mortality Y Y Y 
Interactions with AMI mortality rate2 Y Y Y 
SD of distance 0.056*** 0.0580*** 0.0550*** 
 (0.0026) (0.00288) (0.00286) 

SD of distance2 -0.002 -0.000811 -0.000142 
 (0.0019) (0.00227) (0.00172) 

SD of distance3 0.0003 -0.000175 0.000243 
 (0.0009) (0.00135) (0.000722) 

Hospital FEs Y Y Y 
Log-likelihood -11,886.6 -11428.1 -11516.9 
AIC 23,917.2 23000.2 23177.9 
BIC 24,685.6 23764.2 23946.4 
No. of observations 318,560 299,882 319,066 
No. of patients 14,480 13,631 14,503 

 

   AMI, Acute Myocardial Infarction.   
Notes: Results based on the mixed logit regression in column 3 of Table 3 using different sample sets: (1) - sample 
excludes residents in the LHA of Piacenza; (2) - sample excludes residents in the LHAs of Piacenza and Parma; (3) - 
sample excludes residents in the Emilia-Romagna's northern border. All hospital-specific indicators are lagged by one 
year. Standard errors in parentheses. No. of hospitals = 22. Significance levels: ***p< 0.01, **p< 0.05, *p< 0.1. 
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Table 9. Mixed logit model: sensitivity analysis to the inclusion of other quality indicators 

 
Variable Coeff. 
Distance (in km) -0.110*** 
 (0.0166) 

Distance2 (/100) 0.0816*** 
 (0.0281) 

Distance3 (/10000) -0.0461*** 
 (0.0121) 

Waiting time -0.0316** 
 (0.0124) 

AMI mortality rate 0.553** 
 (0.262) 

AMI mortality rate2 -0.0426*** 
 (0.0132) 

AMI readmission rate 0.00813 
 (0.0182) 

Heart failure mortality rate -0.0260 
 (0.0362) 

Heart failure readmission rate 0.0673 
 (0.0426) 

Interactions with distance Y 
Interactions with distance2 Y 
Interactions with distance3 Y 
Interactions with waiting time Y 
Interactions with AMI mortality Y 
Interactions with AMI mortality rate2 Y 
Interactions with AMI readmission rate Y 
Interactions with heart failure mortality rate Y 
Interactions with heart failure readmission rate Y 
SD of Distance -0.0540*** 
 (0.00263) 
SD of Distance2 0.00116 
 (0.00207) 
SD of Distance3 0.00106* 
 (0.000585) 

 

AMI, Acute Myocardial Infarction. 
Notes: Estimates obtained using the Stata mixlogit command (Hole, 2007a), 50 Halton draws. Years 2008-2011. All 
hospital specific indicators are lagged by one year. No. of observations = 341,471. No. of patients = 15,766. No. of 
hospitals = 22. Standard errors in italics. Significance levels: ***p< 0.01, **p< 0.05, *p< 0.1. 
 
 
 

 



 


