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Abstract

This paper uses replicator dynamics to compare the steady states arising from two types
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Non-technical summary

Sethi and Somanathan (1996) study the evolution of cooperation in
a common property regime. They postulate that individuals may be
partly motivated to cooperate by social norms, and use evolutionary
dynamics to explain how such norms could emerge. Their key result
is that if the cost of being punished is sufficiently high relative to the
benefits of over-extraction, and the number of users engaging in over-
extraction is low relative to the number of people punishing cheaters,
then the system will evolve towards a cooperative outcome where no one
over-extracts the resource.

Using replicator dynamics, we compare the steady states arising from
two types of common property regimes - one in which over-exploiters
are punished by the resource users themselves, and another where en-
forcement is handled by guards who collect a tax from the users. The
main contribution of the present paper is thus to assess the prospects of
cooperation in a common property regime when punishment of defectors
is delegated to specialized guards who, unlike in the original model by
Sethi and Somanathan (1996), do not rely on harvesting for income, but
rely on taxes collected from resource users instead.

The results of this analysis highlight an important trade-off between
formal and informal approaches to rule enforcement in common property
regimes - the use of formal guards can make cooperative outcomes more
stable but also make it possible to realize a scenario in which the resource
is used unsustainably and the community still bears the costs of rule
enforcement.
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1 Introduction

Neoclassical economic models of resource use tend to make grim pre-
dictions regarding the viability of common property regimes (CPRs), in
which the rights to access a resource are shared by a defined group of
users. In such an arrangement, the Nash equilibrium level of effort will
be strictly greater than the socially optimum for any population greater
than 1 (Hamburger 1973). If punishment for over-extraction could be
effectively enforced in a CPR, and the cost of being punished was suf-
ficiently high, then in principle the socially optimal level of extraction
could be induced. However, monitoring and enforcing rules around re-
source use is typically costly, so there is an incentive for individuals to
free-ride on punishment efforts undertaken by others. Consequently, ra-
tionally self-interested agents would not be able to self-enforce extraction
limits in CPRs (Henrich and Boyd 2001, Fehr and Gächter 2002).

Stock dependent growth effects tend to create even stronger incentives
towards over-extraction - since an individual in a CPR with n users
appropriates only a 1/n share of the stock, s/he only internalizes a 1/n
share of the reduction in stock-growth that results from over-extraction
(Dasgupta and Heal 1979, Perman 2003). This would lead us to expect
unsustainable extraction within CPRs tending towards stock collapse.
These effects are attenuated when the population of users is small and
fixed, but as Hardin (1968) notes, population growth causes CPRs to
approach open access conditions even when the resource is controlled by
a single group of users.

While there are examples of failed CPRs, there have been many exam-
ples of successful CPRs with active mechanisms to enforce harvest re-
strictions (see Baland and Platteau 1996 and Ostrom 1990 for a review).
These examples defy the reasoning presented above. One potential ex-
planation for this discrepancy is the strong information assumptions in
the models used by Perman (2003) and Dasgupta and Heal (1979) -
they assume perfect information about the payoff function, universal ra-
tionality, and common knowledge about that rationality.3 Uncertainty
about the payoff functions or about the reasoning of other players can
create the incentive to use an ’imitate the successful’ heuristic rather
than Nash equilibrium reasoning (Camerer 1997, Gigerenzer and Selten
2002).

3For challenges to these assumptions see Schultz et al. (2007), and Cialdini et al. (2004).
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Sethi and Somanathan (1996) present a model which captures these
insights particularly well. The authors suggest that individuals may be
partly motivated to cooperate by social norms, and use evolutionary
dynamics to explain how such norms could emerge. Their key result
is that if the cost of being punished is sufficiently high relative to the
benefits of over-extraction, and the number of users engaging in over-
extraction is low relative to the number of people punishing cheaters,
then the system will evolve towards a cooperative outcome where no one
over-extracts the resource.4 The main contribution of the present paper
is to assess the prospects of cooperation in a CPR when punishment
of defectors is delegated to specialized guards who, unlike in Sethi and
Somanathan (1996), do not rely on harvesting for income, but rely on
taxes collected from resource users instead.

1.1 Methods

Suppose a group of n users faces some harvest function H(X), which
defines the total returns of a resource given a level of total harvest effort,
and where each chooses some effort xi so that X =

∑n
i=0 xi. We will

assume that the harvest function is concave and with diminishing returns
to scale (H ′ < 0, H ′′ > 0), that no returns can be realized without effort
(H(0) = 0), and that some returns can be profitably extracted given
some fixed effort cost w, (H ′(0) > w). The average return to effort is
assumed to be constant for all users given the total group effort and
defined as follows: A(X) = H(X)/X.

Following Sethi and Somanathan (1996), we assume that the community
is composed of three types of players - cooperators (c), who contribute
xc, defectors (d), who contribute xd and face some punishment δ from
each enforcer, and enforcers (e), who contribute xc and undertake costly
punishment against each defector at a cost of γ each. Since the model
assumes that defectors are punished by fellow resource users, we will
refer to this setup as the vigilante model. The relative shares of each
type sums to 1 and are governed by a replicator dynamic ṡj = sj(πj− π̄)
where π̄ represents the average payoff in the group (scπc + sdπd + seπe).

4Modifications of Sethi and Somanathan (1996) have rationalized empirically observed situations of stable coex-
istence between high- and low- extractors, resulting in partial internalization of the externality: Noailly et al. (2007)
and Schlüter et al. (2016) relax the mean-field approximation by modelling interactions in space, while Tavoni et al.
(2012) and Lade et al. (2013) introduce ostracism of defectors who exceed the norm about sustainable harvesting
and find regions of coexistence of both types. A related setup is analysed in Andreoni and Gee (2011).
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The payoffs for each type are as follows:

x̄ = (xc(1− sd) + xdsd) (1)
πc = xc(A(nx̄)− w) (2)

πd =
xd
xc
πc − nδse (3)

πe = πc − nγsd (4)

π̄ = πc(
x̄

xc
)− sdse(δ + γ) (5)

(6)

Enforce is weakly dominated by cooperate, so se = 0 in a classical
game theoretic set up. This condition implies that defect weakly dom-
inates cooperate and sd = 1 (defect is the Nash Equilibrium solu-
tion). In fact, sd = 1 is an unconditionally stable steady state of this
system, representing a breakdown of cooperation where all users har-
vest unsustainably. However, sd = 0 is conditionally stable, provided
nδ > (xc − xd)(A(xc) − w). This result means that if the number of
users who are enforcing the rules is sufficiently high in the initial period,
and the cost of punishment is sufficiently low, then the number of defec-
tors will decay more quickly than the number of enforcers, and enough
enforcers will remain to deter any future defectors.

CPRs enforced by vigilante justice similar to this setup include the fa-
mous lobster fisheries of Maine (Acheson 1975), as well as the coastal
fisheries in the Bahia province of Brazil (Cordell and Mckean 1986).
However, many of the CPRs documented in the empirical literature
exhibit a more organized system in which guards are paid to enforce re-
source use restrictions using some form of taxation levied on the users.
Such systems have been used to manage mountain pastures and forests
in the Italian Alps (Casari 2007), as well as traditional common lands in
medieval Japan (Mckean 1992), and a mountain community in Törbel,
Switzerland (Netting 1976). Similar common property forests also ex-
isted in the Indian province of Andhra Pradesh and the Kumaon region
(Wade 1989, Agrawal 2001). Does such a setup offer any advantages
over informal enforcement? By modifying the payoff functions to more
accurately represent such a system we can address this question. We
will refer to this modified setup as the guard model. Given some tax
rate, α, we can represent this arrangement with the following payoff
functions. Note that the level of effort now depends on both sc and sd,
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since enforcers no longer harvest resources.

X∗ = n(sdxd + scxc) (7)

π∗c = xc(
H(X∗)

X∗
− w)(1− α) (8)

π∗d =
xd
xc
π∗c − nδse (9)

π∗e =
α

se(1− α)
(scπ

∗
c + sd

xd
xc
π∗c )− nγsd (10)

π̄∗ = π∗c (sc +
xd
xc
sd)− nsesd(γ + δ) (11)

(12)

We can construct the Jacobian matrix for the system by taking all partial
derivatives. The general form of this matrix is as follows (the guard
model uses π∗ in place of π):[

πc − π̄ + sc(
δ(πc−π̄)
δsc

) sc(
δ(πc−π̄)
δsd

)

sd(
δ(πd−π̄)
δsc

) πd − π̄ + sd(
δ(πd−π̄)
δsd

)

]
(13)

A potential steady state equilibrium will arise whenever sj = 0 or
πj − π̄ = 0 for some strategy j. That equilibrium will be stable if
the Jacobian has a positive determinant and a negative trace. There are
seven potential steady-state conditions in either model - three steady
states where only one type remains, three where one type disappears
and the other two earn equal payoffs, and one where all three types earn
equal payoffs.

2 Results

Table 1 compares the equilibria of the guard model with the established
vigilante model.

Table 1: Steady State Conditions
Potential Equilibria Vigilante Stability Conditions Guard Stability Conditions
Cooperators Only Unstable Unstable
Defectors Only Stable Stable
Enforcers Only nδ > (xd − xc)(A(X)− w) Unstable
No Cooperators* Unstable δ

γ >
(xd−xc)(1−α)

αxd

No Defectors Sc < 1− (xd−xc)(A(X)−w)
nδ Sc < 1− (xd−xc)(1−α)(A(X)−w)

nδ

No Enforcers** Stable Stable
All Payoffs Equal*** Unstable Unstable
* Conditionally stable only in guard model
** Coincides with Defectors Only equilibria in both models
*** Coincides with No Defectors in vigilante model but not guard model

Result 1. A defector only outcome is stable in both scenarios.
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As expected, both models admit for the possibility of an unconditionally
stable outcome of all defectors. This outcome arises when there is a
breakdown in cooperation - the number of enforcers and cooperators
dwindle to zero.

Result 2. A no-defector outcome exists in both scenarios, but the guard
model requires weaker parametric conditions for stability than the vigi-
lante model.

In both cases, stability depends on the ratio between the net harvest
premium earned by a defector and the total punishment they receive.
Specifically, a guard system will have a stable cooperative outcome if,
in equilibrium, Sc < 1 − (xd−xc)(1−α)(A(X)−w)

δ , while under a vigilante
scenario Sc < 1 − (xd−xc)(A(X)−w)

δ . This result arises because the net
harvest premium is attenuated by the tax charged under a guard system.
Another consequence is that the stability of the cooperative equilibrium
can be maintained with fewer enforcers.

This is an important result. Ciriacy-Wantrup and Bishop (1975) and
Lawry (1990) identify that interactions with external economies can dis-
rupt common property regimes. In either setup, the disruption can come
as a consequence of access to new technology (increasing the average re-
turn to effort and thus the defector harvest premium), or from reductions
to the damage from punishment (social sanctions such as ostracism or
excommunication may be less effective if one can integrate into a suffi-
ciently large outside group). However, this result illustrates how CPRs
enforced by guards can be more resilient to such shocks.

Result 3. An equilibrium consisting of only enforcers and defectors is
possible in the guard model but not in the vigilante model.

An equilibrium consisting of only defectors and enforcers is unstable
in the vigilante model since enforcers earn a weakly lower payoff than
cooperators in that system. However, it can be stable in the guard model
if δ

γ >
(xd−xc)
xd

(1−α)
α . This is a worst-case scenario, since the resource is

being used unsustainably and additional welfare is lost to enforcement
that is ultimately ineffective; whether or not Cooperate will be strictly
dominated depends on three ratios: the cost of being punished relative
to the cost of punishing, the premium from defecting relative to the
defector payoff, and the share of revenue going to harvesters relative to
the share for enforcers. This new potential equalibria can be seen in the
following figure, which has been parameterized to allow for the existence
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of a defector-enforcer equilibrium.
Basins of Attraction in Guard and Vigilantee Models

3 Discussion

3.1 Limitations

We assume that the number of enforcers could vary in response to the
economic incentives at play. However, in many of the case studies cited
in this paper, guards and other types of rule enforcers are hired and
legitimized by a community authority that can potentially restrict the
number of enforcers. Replicator dynamics are, at best, a coarse rep-
resentation of the deliberative processes culminating in the choice of
guards, setting of tax rates and fines.

Another stark assumption is that all individuals pay their taxes. In real-
ity, there is a strategic incentive to avoid paying taxes (or under-report
income), while free-riding on the enforcement efforts of the guards.
While it is possible to imagine a simultaneous tax collection game in
which the guards enforce both resource use rules and tax collection rules,
such a process is outside the tractability of our simple model.

Lastly, in the guard model we assume that the cooperators and defectors
’take up the slack’ whenever the share of enforcers increases, implying
that at a minimum, the socially optimal effort will be contributed if
Se < 1. This modelling assumption implies that the cooperator-enforcer
equilibrium will produce the same average payoff in both models. In re-
ality, each person has a maximum effort level reflecting their capacity
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constraints. Depending on the population, the abundance of the re-
source stock, and the equilibrium ratio of cooperators to enforcers, the
socially optimal total effort may exceed the capacity constraints of the
population. At this point, the average-payoff of the vigilante model will
be strictly greater than that of the guard model.

3.2 Conclusions

The results of this analysis highlight an important trade-off between
formal and informal approaches to rule enforcement in CPRs - the use
of formal guards can make cooperative outcomes more stable but also
make it possible to realize a scenario in which the resource is used unsus-
tainably and the community still bears the costs of rule enforcement. If
a social planner found it impossible or undesirable to create formal rules
guiding the use of a common property resource but was able to make
certain methods of decentralized punishment possible (or salient), then
these results could be used to determine which methods (and under what
conditions) to make available. Given that most of the world’s physical
resources face some pre-existing institutions and norms, the most likely
candidates for these designs would be online spaces and interactions or
new off-grid communities.
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5 Appendix I - Steady State Calculations

5.1 Steady State Calculations for The Guard Model

Definitions:

πc = xc(1− α)(A(X)− w) (14)
πd = xd(1− α)(A(X)− w)− nδSe (15)

πe =
(Scxc + Sdxd)(α)(A(X)− w)

Se
− nγSd (16)

1 = Sc + Sd + Se (17)
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5.1.1 Cooperators only - Sd = 0, Se = 0, π̄ = πc =⇒ Sc = 1

5.1.2 Defectors only - Sc = 0, Se = 0, π̄ = πd =⇒ Sd = 1

5.1.3 Enforcers only - Sc = 0, Sd = 0, π̄ = πc =⇒ Se = 1

5.1.4 No cooperators - Sc = 0, πd = πe = π̄

From the definitions of the profit functions and the condition that Sc = 0

(18)

xd(1− α)(A(X)− w)− nδSe =
(0xc + Sdxd)(α)(A(X)− w)

Se
− nγSd

(19)
Factoring out Sd (20)

πd = Sd(
(xd)(α)(A(X)− w)

Se
− nγ) (21)

Isolating Sd (22)

Sd =
πd

(xd)(α)(A(X)−w)
Se

− nγ
(23)

Applying the fact that Sd + Se = 1|Sc = 0 (24)

Sd =
πd

(Sd + Se)(
(xd)(α)(A(X)−w)

Se
− nγ)

(25)

Applying the definition of enforcer profit (26)

Sd =
πd

πe + Se(
(xd)(α)(A(X)−w)

Se
− nγ)

(27)

Applying the condition that πd = πe (28)

Sd =
πd

πd + xdα(A(X)− w)− Senγ
(29)

Since Sd cannot exceed 1 (30)
xdα(A(X)− w) > Senγ (31)

Se <
xdα(A(X)− w)

nγ
(32)

Applying the definition of πd (33)

Sd =
xd(1− α)(A(X)− w)− nδSe

xd(1− α)(A(X)− w)− nδSe + xdα(A(X)− w)− Senγ
(34)

Sd =
xd(1− α)(A(X)− w)− nδSe
xd(A(X)− w)− nSe(δ + γ)

(35)

(36)
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5.1.5 No defectors - Sd = 0, πc = πe = π̄

From the definitions of the profit functions and the condition that Sd = 0

(37)

xc(1− α)(A(X)− w) =
(Scxc + 0(xd))(α)(A(X)− w)

Se
− 0(nγ) (38)

Cancelling common factors (39)

(1− α) =
Scα

Se
(40)

Simplifying (41)
(1− Sc)(1− α) = Scα (42)
1− α− Sc = 0 (43)
Sc = 1− α (44)
Se = α (45)

(46)

5.1.6 No enforcers - Se = 0, πc = πd = π̄

From the definitions of the profit functions and the condition that Se = 0
(47)

xc(1− α)(A(X)− w) = xd(1− α)(A(X)− w)− 0 (48)
Cancelling common factors (49)
xc = xd (50)

(51)

But, xc < xd by assumption, so no such equilibrium exists.
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5.1.7 All payoffs equal - πc = πd = πe = π̄

From the definitions of the profit functions and the condition that πc = πd

(52)
xc(1− α)(A(X)− w) = xd(1− α)(A(X)− w)− nδSe (53)
Simplifying (54)

Se =
(xd − xc)(1− α)(A(X)− w)

nδ
(55)

From the definitions of the profit functions and the condition that πe = πc
(56)

(Scxc + Sdxd)(α)(A(X)− w)

Se
− nγSd = πc (57)

Apply the definition of Se (58)
nδ(Scxc + Sdxd)(α)(A(X)− w)

(xd − xc)(1− α)(A(X)− w)
− nγSd = πc (59)

Cancel Common Factors (60)
nδ(Scxc + Sdxd)(α)

(xd − xc)(1− α)
− nγSd = πc (61)

Isolate Sc and Sd (62)

Sc(
nδxcα

(1− α)(xd − xc)
) + Sd

nδxdα

(1− α)(xd − xc)
− nγSd = πc (63)

Express Sc in terms of Sd (64)

Sc =
(1− α)(xd − xc)

nδxcα
(πc − Sd

nδxdα

(1− α)(xd − xc)
+ nγSd) (65)

Simplify (66)

Sc =
πc(1− α)(xd − xc)

nδxcα
+
nγSd(1− α)(xd − xc)

nδxcα
− Sd

(xd)

xc
(67)

Sc =
(1− α)2(xd − xc)(A(X)− w)

nδα
+ Sd(

nγS(1− α)(xd − xc)
nδxcα

− (xd)

xc
)

(68)
Solve for Sd (69)

Sc(
nδxcα

(1− α)(xd − xc)
) + Sd(

nδxdα

(1− α)(xd − xc)
− nγ) = πc (70)

Sd = (
(1− α)(xd − xc)

nδxdα
− nγ)(xc(A(X)− w)(1− α)− Sc(

nδxcα

(1− α)(xd − xc)
)

(71)
(72)
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5.2 Steady State Populations for The Vigilantee Model

Definitions:

πc = xc(A(X)− w) (73)
πd = xd(A(X)− w)− nδSe (74)
πe = xc(A(X)− w)− nγSd (75)
1 = Sc + Sd + Se (76)

5.2.1 Cooperators only - Sd = 0, Se = 0, π̄ = πc =⇒ Sc = 1

5.2.2 Defectors only - Sc = 0, Se = 0, π̄ = πd =⇒ Sd = 1

5.2.3 Enforcers only - Sc = 0, Sd = 0, π̄ = πc =⇒ Se = 1

5.2.4 No cooperators - Sc = 0, πd = πe = π̄

From the definitions of the profit functions and the condition that πd = πe

(77)
xd(A(X)− w)− nδSe = xc(A(X)− w)− nγSd (78)
Rearranging and simplifying (79)
(xd − xc)(A(X)− w)

n
= δSe − γSd (80)

Apply the condition fact that Se = 1− Sd|Sc = 0 and simplify (81)
(xd − xc)(A(X)− w)

n
= δ(1− Sd)− γSd (82)

(xd − xc)(A(X)− w)

n
− δ = −Sd(δ + gamma) (83)

Sd =
nδ − (xd − xc)(A(X)− w)

n(δ + γ)
(84)

Trivially (85)
Se = 1− Sd (86)

Se = 1− nδ − (xd − xc)(A(X)− w)

n(δ + γ)
(87)
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5.2.5 No defectors - Sd = 0, πc = πe = π̄

From the definitions of the profit functions and the condition that πd = πe
(88)

xc(A(X)− w) = xc(A(X)− w)− Sd(nγ) (89)
From the condition that Sd = 0, a tautology follows (90)
xc(A(X)− w) = xc(A(X)− w) (91)
thus, Sd = 0 is sufficient for a steady state, regardless of Sc and Se

(92)

5.2.6 No enforcers - Se = 0, πc = πd = π̄

From the definitions of the profit functions and the condition that πd = πe
(93)

xc(A(X)− w) = xd(A(X)− w)− 0(nγ) (94)
Cancelling out common factors (95)
xd(A(X)− w) = xc (96)

Since cooperator and defector payoffs cannot be equal without enforcers,
no such equilibrium exists.

5.2.7 All payoffs equal - πc = πd = πe = π̄

From the definitions of the profit functions and the condition that πc = πe
(97)

xc(A(X)− w) = xc(A(X)− w)− Sd(nγ) (98)
Simplifying (99)
Sd(nγ) = 0 (100)
Since γ and n are assumed to be strictly positive (101)
Sd = 0 (102)
Thus, this equilibrium is satisfied only under the same conditions as iii

(103)

6 Appendix II - Steady State Stability Calculations

The general form of the Jacobian matrix is:[
πc − π̄ + Sc(

δ(πc−π̄)
δSc

) Sc(
δ(πc−π̄)
δSd

)

Sd(
δ(πd−π̄)
δSc

) πd − π̄ + Sd(
δ(πd−π̄)
δSd

)

]
(104)
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For any potential equilibrium, it must be the case that either Sc = 0
or πc − π̄ = 0. Similarly, it must be the case that either Sd = 0 or
πd − π̄ = 0. Thus, we can make the following simplification:[

πc − π̄ + 0 0
0 πd − π̄ + 0

]
(105)

Thus, the trace and the determinant for each matrix must be as follows:

Tr(J) = J11 + J22 = πc + πd − 2π̄ (106)
Det(J) = J11J22 − 0 = (πc − π̄)(πd − π̄) (107)

An equilibrium has local asymptotic stability if and only if the Jacobian
at that point has a positive determinant and negative trace. We can use
this information to calculate the stability conditions for every potential
equilibrium.

6.1 The Guard Model

6.1.1 Cooperators Only - Sd = 0, Se = 0, π̄ = πc

Tr(J) = πd − πc = (xd − xc)(A(X)− w)(1− α) + nδ(0)→ Tr(J) > 0
(108)

Thus, the equilibrium is always unstable.

6.1.2 Defectors Only - Sc = 0, Se = 0, π̄ = πd

Tr(J) = πc − πd = (xc − xd)(A(X)− w)(1− α) + nδ(0)→ Tr(J) < 0
(109)

Det(J) = (πc − π̄)(πd − πd) = 0 (110)

The trace is strictly negative, so the equilibrium is always stable.

6.1.3 Enforcers Only - Sc = 0, Sd = 0, π̄ = πe

Tr(J) = πc + πd − 2πe = (xd + xc)(A(X)− w)(1− α)− nδ − 2(0− 0)
(111)

Tr(J) < 0→ (xd + xc)(A(X)− w)(1− α) < nδ (112)
Det(J) = πcπd − 0(0) = πcπd (113)
Since πc > 0 by definition (114)
Det(J) > 0→ πd > 0→ xd(1− α)(A(X)− w) > δn→ πd > 0

(115)
(116)
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The determinant condition implies the trace condition. The determinant
is indefinite, so the equilibrium is conditionally stable.

6.1.4 No Cooperators - Sc = 0, πd = πe = π̄

Tr(J) = πc − πd (117)

Tr(J) < 0→ nδ(1− Sd) > (xd − xc)(1− α)(A(X)− w)→ Sd < 1− (xd − xc)(1− α)(A(X)− w)

nδ
(118)

Det(J) = (πc − πd + 0)(πd − πd + 0)− 0 = (πc − πd)(0) = 0 (119)
(120)

The trace is indefinite, so the equilibrium is conditionally stable.

6.1.5 No Defectors - Sd = 0, πc = πe = π̄

Tr(J) = πd − πc = (xd − xc)(A(X)− w)(1α)− nδ(1− Sc) (121)

Tr(J) < 0→ Sc < 1− (xd − xc)(A(X)− w)(1α)

nδ
(122)

Det(J) = (πc − πc + Sc(0))(πd − πc + 0)− 0(0) = 0 (123)

The trace is indefinite, so the equilibrium is conditionally stable.

6.1.6 No Enforcers - Se = 0, πc = πd = π̄

Tr(J) = πd − πc = (xd − xc)(A(X)− w)(1α)− 0 (124)

The trace is strictly positive, so the equilibrium is always unstable.

All Payoffs equal - πc = πd = πe = π̄

T r(J) = πc + πd − 2π̄ = 0 (125)
Det(J) = (πc − π̄)(πd − π̄) = 0 (126)

(127)

Both the trace and determinant are zero, so the equilibrium is always
unstable.

6.2 The Vigilante Model

6.2.1 Cooperators Only - Sd = 0, Se = 0, π̄ = πc

Tr(J) = πd − πc = (xd − xc)(A(X)− w)(1− α)− nδ(0)→ Tr(J) > 0
(128)

The trace is strictly positive, so the equilibrium is always unstable.
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6.2.2 Defectors Only - Sc = 0, Se = 0, π̄ = πd

Tr(J) = πc − pid = (xc − xd)(A(X)− w)− nδ(0)→ Tr(J) < 0
(129)

Det(J) = (πc − π̄)(πd − πd) = 0 (130)

The trace is strictly negative, so the equilibrium is always stable.

6.2.3 Enforcers Only - Sc = 0, Sd = 0, π̄ = πe

Tr(J) = πd − πc = (xd − xc)(A(X)− w)− nδ (131)
Tr(J) < 0→ (xd − xc)(A(X)− w) < nδ (132)
Det(J) = (πc − πe)(πd − πe) = nδSd(πd − πe) = 0 (133)

(134)

The trace is indefinite, so the equilibrium is conditionally stable.

6.2.4 No Cooperators - Sc = 0, πd = πe = π̄

Tr(J) = πc − πe = nδSd > 0 (135)
Det(J) = (πc − πd)(0) = 0 (136)

(137)

The trace is strictly positive, so the equilibrium is unstable unless there
are also no defectors (considered separately).

6.2.5 No Defectors - Sd = 0, πc = πe = π̄

Tr(J) = πd − πc = (xd − xc)(A(X)− w)− nδ(1− Sc) (138)

Tr(J) < 0→ Sc < 1− (xd − xc)(A(X)− w)

nδ
(139)

Det(J) = (πc − πc + Sc(0))(πd − πc + 0)− 0(0) = 0 (140)

The trace is indefinite, so the equilibrium is conditionally stable.

6.2.6 No Enforcers - Se = 0, πc = πd = π̄

xc(A(X)− w) < xd(A(X)− w)→ πc < πd|Se = 0 (141)
(142)

Since cooperator and defector payoffs cannot be equal without enforcers,
no such equilibrium exists.
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6.2.7 All Payoffs equal - πc = πd = πe = π̄

Tr(J) = πc + πd − 2π̄ = 0 (143)
Det(J) = (πc − π̄)(πd − π̄) = 0 (144)

(145)

Both the trace and determinant are zero, so the equilibrium is always
unstable.
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