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Abstract This paper proposes a comparison between multidimensional and unidi-
mensional poverty indicators. Sets of poor units identified by traditional head count
ratio, fuzzy unidimensional and fuzzy multidimensional indices are compared by
means of a rank correlation analysis. The robustness of the comparison is ensured by
a simulation study, which allows to address several issues related not only to fuzzy
sets based methods, such as the subjective choice of membership to the poor set, but
also to the multidimensional measurement, such as the effect of the weighting sys-
tem. Our results stress that the unidimensional indicators provide partial information
on poverty condition.
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Non-technical summary

Poverty is a multidimensional condition, not exclusively related to an insufficient
provision of income or wealth, but the result of the contemporaneous occurrence
of many factors. Multidimensional poverty is coherent with the concept of social
exclusion, which is the target of modern welfare policies and which also represents
a key element within the debate on alternative welfare measures to GDP.

Notwithstanding the general consensus about the multidimensional view of
poverty, its quantitative measurement is frequently operated on the basis of a sin-
gle indicator, usually the income, thus implying that the empirical assessments of
unidimensional and multidimensional approach generally coincide.

In this case, the multidimensional approach would be an elegant and theoretically
useful development, without the need to implement it empirically. Since the unidi-
mensional indicator is extremely simpler and faster to calculate, if it is also fully
informative, it represents a suitable solution for the measurement of poverty. When,
on the other hand, the two approaches indicate two different sets of poor units, it is
important to evaluate the different information contained in the two sets.

A relevant implication of the multidimensional approach is the opportunity to
divide total population not simply into just two subgroups, poor and non poor, as
it is done with poverty lines, but to detect a multiplicity of populations subgroups,
each related to different poverty levels, gradually moving from the completely poor
to the absolutely non poor condition.

A simple but effective method to detect different degrees of poverty, overcom-
ing the dichotomy poor and non poor, is given by the fuzzy sets. Within fuzzy sets
based methods it is possible to derive and to compose both multiple unidimensional
and also multidimensional indicators, thus allowing a more general and flexible ap-
proach to poverty measurement.

In this work we aim to address some issues related to the choice of the degrees of
membership to the poor of the different population subgroups: this choice belongs to
the researchers and, therefore, is frequently view as arbitrary and questionable. We
propose a simulation study in order to assess the effects on the set of poor units of
different degrees of membership and to evaluate the robustness of the fuzzy poverty
indicators.

We implement a rank correlation analysis able to provide an exhaustive compar-
ison between the sets of poor units defined by the different methods. The result of
rank correlation analysis allow to demonstrate that the two approaches define two
different sets of poor households, and we also show how this difference increases as
poorer population subgroups are targeted. Overall our results suggest not only two
different theoretical frameworks, but also mismatched empirical findings, with the
unidimensional indicator providing only partial information on poverty condition.

Relying on our conclusions, any socio-economic policy to reduce poverty devel-
oped on the basis of income information is likely to no achieve its proposed goals,
being addressed to socioeconomic units which are, in effect, non-poor. Only in the
framework of the multidimensional approach it is possible to correctly individuate
the set of the poor and to formulate actions able to reduce poverty.
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1 Introduction

Poverty is a multidimensional condition, not exclusively related to an insufficient
provision of income or wealth, but the result of the contemporaneous occurrence of
many factors [12], [15]. Multidimensional poverty is coherent with the concept of
social exclusion [1] [14], which is the target of modern welfare policies and which
also represents a key element within the debate on alternative welfare measures to
GDP.

Notwithstanding the general consensus about the multidimensional view of
poverty, its quantitative measurement is frequently operated on the basis of a sin-
gle indicator, usually the income, thus implying that the empirical assessments of
unidimensional and multidimensional approach generally coincide.

In this case, the multidimensional approach would be an elegant and theoretically
useful development, without the need to implement it empirically. Since the unidi-
mensional indicator is extremely simpler and faster to calculate, if it is also fully
informative, it represents a suitable solution for the measurement of poverty. When,
on the other hand, the two approaches indicate two different sets of poor units, it is
important to evaluate the different information contained in the two sets [5].

Our main contribution is to compare the sets of poor units defined by traditional
unidimensional and multidimensional approach. For this purpose we develop a rank
correlation analysis, able to investigate in depth the similarities between the different
indicators.

A relevant implication of the multidimensional approach is the opportunity to
divide total population not simply into just two subgroups, poor and non poor, as
it is done with poverty lines, but to detect a multiplicity of populations subgroups,
each related to different poverty levels, gradually moving from the completely poor
to the absolutely non poor condition. Only 2 subgroups can represent a severe limit
with just one inequality factor, but they are likely to be inadequate by using many
inequality factors.

A simple but effective method to detect different degrees of poverty, overcom-
ing the dichotomy poor and non poor, is given by the fuzzy sets. Within fuzzy sets
based methods it is possible to derive and to compose both multiple unidimensional
and also multidimensional indicators, thus allowing a more general and flexible ap-
proach to poverty measurement.

In this work we also aim to address some issues related to the choice of the de-
grees of membership to the poor of the different population subgroups: this choice
belongs to the researchers and, therefore, is frequently view as arbitrary and ques-
tionable. The weakness implied by subjective choices refers to their influence on
the stability of the results, that is, on the robustness of the method. Despite the va-
riety of studies on multidimensional poverty, analyses on their robustness are still
at a preliminary stage. Literature offers some interesting papers, among the others
Alkire and Santos [2] analyze the effects on robustness related to a wide variety of
elements, while Duclos et al. [10] develop a meaningful proposal in the framework
of stochastic dominance. In the following we propose a simulation study in order to
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assess the effects on the set of poor units of different degrees of membership and to
evaluate the robustness of the fuzzy poverty indicators.

Our purpose is to contribute to the theory of multidimensional poverty measure-
ment by providing evidence in favor of fuzzy sets methods which we suggest as an
efficient and rigorous solution. A second aim of the simulation study is to evaluate
the effects of different sets of weights, first on the final indicator, and, most impor-
tantly, on the definition of the set of poor units. We implement the rank correlation
analysis by referring also to the simulated indicators, thus providing an exhaustive
comparison between the sets of poor units defined by the different methods. Besides
the methodological aspects, our results are also interesting for applied poverty anal-
ysis and for poverty reduction policies, where the focus is the correct definition of
the set of poor units.

The paper is organized as follows. Section 2 critically introduces the basic of
fuzzy poverty indicators, Section 3 illustrates the Monte Carlo study developed to
assess the properties of fuzzy indicators, Section 4 compares poor sets defined by
traditional, fuzzy unidimensional and fuzzy multidimensional indicators, Section 5
presents a case study on Italian data and Section 6 concludes.

2 Fuzzy poverty indicators

Many Authors proposed, generalized or applied fuzzy sets based methods to the
poverty analysis, among the others [7], [4], [8], [13]. In the variety of the meaningful
contributions, we make a specific reference to the totally fuzzy approach by Cerioli
and Zani [6] and to the relative fuzzy approach by [7].

Let be A the set of the n units {a1,a2, ...,an}, B the subset of the poor units, and
µ(X) an indicator function, which determines the degree of membership of the i-th
unit to the set B with respect to a certain attribute X .

The indicator function transforms the achievement of a unit with respect to X to
the deprivation of that unit. A low or null achievement implies a maximum depriva-
tion, that is µ(X) = 1, while a high achievement leads to an absence of deprivation,
that is µ(X) = 0. Traditionally µ(X) can assume only two values, 1 for the poor
units and 0 for the non poor units, and X is the (equivalent) income; the well known
head count ratio H is the most famous example of this case, obtained when the pop-
ulation is divided in two non overlapping subgroups, poor and non poor, on the basis
of a poverty line z which uniquely defines the subset of poor units B:

µ(X) =

{
µ1 with µ1 = 1 if X < z
µ2 with µ2 = 0 if X ≥ z (1)

and
B =

⋃
(ai|µ(X)i = 1) .

We obtain the head count ratio H as the ratio between the number of poor and
the size of the population



Fuzzy poverty measurement: multidimensional and unidimensional indicators 5

H =
n

∑
i=1

µ(X)i ni/
n

∑
i=1

ni (2)

where µ(X)i and ni are the value of the indicator function and the sample weight of
the i-th unit, respectively.

The presence of only two groups and the use of a poverty line z introduce a high
rigidity in the analysis, since, given an ε as small as desired, any unit with income
xi = z− ε is considered as a poor unit, while a unit with income xi = z+ ε is classi-
fied as a non poor unit. In order to overcome this limit, which also strongly affects
policies and actions aimed to poverty reduction, it is necessary a more flexible ap-
proach, such as the fuzzy method, able to allow more than two groups.

2.1 Fuzzy unidimensional poverty indicators

Within the fuzzy sets, µ(X) is no longer only equal to 0 or 1, but ranges between
0 and 1, thus allowing intermediate or partial membership to B: if µ(X) = 1 and
µ(X) = 0 still indicate a poor and a non poor unit, respectively, values as µ(X) =
0.8 and µ(X) = 0.2 refer to an almost poor and to an almost non poor unit, and
µ(X) = 0.5 to a neither poor or non poor unit.

The first problem encountered in the framework of fuzzy indicators concerns the
choice of the number of groups to consider: while, in the classic case, two groups,
poor and non-poor, represent a forced choice, moving to k > 2 groups A1,A2, ...,Ak
with A = ∪A j and A j ∩Ah = 0 ∀i, j, the choice of k depends on the preferences of
the researchers.

In order to obtain the groups, the possible outcomes of X , ranging between Xmin
and Xmax, are divided in k intervals, one for each of the k groups; the intervals are
defined by a set of (k−1) values {X1,X2, ...,Xk−1}, chosen by the researchers with
Xmin < X1 < X2 < ... < Xk−1 < Xmax.

The poverty attribute X can be a polytomous or a continuous variable (such as
educational level or income) or also a composite indicator specifically derived by
the researchers combining different variables (such as ownership of the dwelling,
number of rooms and presence of toilet).

The second issue related to fuzzy indicators refers to the necessity to associate
to each group a value of the indicator function, which therefore assumes k values
{µ1,µ2, ...,µk}.

In this way the indicator function takes on a more complex form than in (1) and
can be represented as

µ(X) =


µ1 with µ1 = 1 if X ∈ [Xmin,X1]
µ2 if X ∈ [X1,X2]
...

µk−1 if X ∈ [Xk−2,Xk−1]
µk with µk = 0 if X ∈ [Xk−1,Xmax].

(3)
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A fuzzy unidimensional index evaluates the poverty condition with respect to a
certain attribute X and is obtained as in (4):

I(X) =
n

∑
i=1

µ(X)i ni/
n

∑
i=1

ni. (4)

where the main innovation is that µ(X) can also assume intermediate values be-
tween 0 and 1. The head count ratio H is a special case of I(X), obtained when
k = 2 and the indicator function can be only 0 or 1.

The fuzzy unidimensional index I(X), as the head count ratio, ranges between 0
and 1, and indicates the fraction of poor units on the total.

The fuzzy approach does not possess a poverty line partitioning total population
into poor and non-poor; in order to identify poor units, it is sufficient to have the list
of the µ(X)i in decreasing order and to obtain its cumulative distribution F(µ(X)):
if F(µ(X)i) < I(X) we have a poor household, while F(µ(X)i) ≥ I(X) indicates a
non-poor household.

The subset of poor units B is given by the union of the subgroups A j associated
to the highest values of µ(X) from A1 up to the subgroup Al to which belongs the
unit which fulfills the condition F(µ(X)i) = I(X):

B =
l⋃

j=1

A j.

Since this unit is usually not the last of its group, also in the unidimensional fuzzy
framework we face a awkward situation: to the same subgroup Al belong poor units
up to the i-th and non poor units from the i-th.

A finer classification with respect to only two cases, 0 and 1, is a relevant im-
provement, but the choice of the intermediate values depends on the individual re-
searchers, thus introducing into the analysis a certain degree of subjectivity and,
potentially, of uncertainty and unstability.

Overall, in the analysis of fuzzy unidimensional indicators, we face two sources
of subjectivity, the choice of k and of the values {µ2, ...,µk−1} and it is therefore
relevant to assess the impact of both these elements on the final indicator.

2.2 Fuzzy multidimensional poverty indicators

Moving from the unidimensional to the multidimensional framework requires to
identify the different inequality factors and to define their number m, thus obtaining
the structural economic, demographic and social factors {X1,X2, ...,Xm} related to
some form of social exclusion and able to describe and interpret the poverty condi-
tion.

Furthermore, within a multidimensional framework, it is essential to derive a
weighting system which allows to rank the m inequality factors.
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The presence of m inequality factors leads to introduce a second subscript j,
where µ(X j)i denotes the degree of membership to B of the i-th unit with respect to
the j-th inequality factor.

Furthermore, m inequality factors imply m indicator functions

µ(X j) = (µ j1,µ j2, ...,µ jk j) j = 1, ...,m

where k j is the number of groups identified for the j-th inequality factor.
The result of the matching between the n units and the m indicator functions is a

matrix M(X) with n rows and m columns, where the generic element represents the
degree of membership to the subset of poor units for the i-th unit with respect to the
j-th factor.

By columns of the matrix M(X), we derive the unidimensional poverty indices
I(X1), I(X2), ..., I(Xm) where

I(X j) =
n

∑
i=1

µ(X j)i ni/
n

∑
i=1

ni (5)

measures the poverty level, that is the fraction of poor units, with respect to the j-th
inequality factor.

By rows of M(X), we obtain a multidimensional index for the i-th unit, I(ai),
which measures the multidimensional degree of membership to the subset of poor
units for the i-th unit.

I(ai) is obtained as a weighted sum of the µ(X j)i

I(ai) =
m

∑
j=1

µ(X j)i w j/
m

∑
j=1

w j.

and ranges between 0, when the i-th unit is considered non-poor with respect to all
m inequality factors, and 1, when the i-th unit is poor with respect to all m factors.

2.2.1 The weighting structure

The weights w j represent the distinctive feature of the multidimensional indicators
and measure the intensity of deprivation and social exclusion related to the j-th
inequality factor: the underlying guideline is that a factor not possessed by any unit
has no effect on the social exclusion, while, on the contrary, if all the units but a few
possess the factor, it represents a relevant source of inequality and social exclusion.
A weighting system consistent with that is [6]

wCZ j = log(n/
n

∑
i=1

µ(X j)i ni) (6)

where w j is equal to 0 for µ(X j)i = 1, i = 1, ...,n, while w j increases for decreasing
∑

n
i=1 µ(X j)i.
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The case w j = 0 deserves a special attention: it corresponds to the exclusion of
the j-th inequality factor X j and implies an indicator function for X j which is always
equal to 1 for all units, that is: µ(X j)1 = µ(X j)2 = ...= µ(X j)n = 1. When µ(X j)i =
1 ∀i, we assume that all units have the same value of X j and that all perceive the
same degree of poverty and social exclusion with respect to X j. Furthermore, since
µ(X j)i = 1, the same degree of poverty shared by all units with respect to X j is
the maximum: all are equally and most poor. If, for example, we do not consider the
educational level, we implicitly assume that all the units have the same qualification,
and that this qualification is also as low as possible: for the educational level it
means to consider all units as without any educational achievement, which clearly
represents a strongly unrealistic assumption.

The effects of w j = 0 are frequently overlooked, while they have a relevant im-
pact, which we need to take into account.

A meaningful review of the issues related to the weighting structure is proposed
by [11], who stress both the relevance and the subtleness of this topic.

In order to assess the role and the effects of the weighting structure, the pro-
posal outlined in (6) can be compared to other contributions, first of all an equally
weighted index where we j = 1/m ∀ j.

A further set of weights can be derived from the budget allocation technique,
where the importance of the different factors is given by their budget share.

A final proposal worth of attention is the structure wUN adopted by the Human
Development Index [16], which assigns the same weight, 0.33, to the educational
domain, the wealth domain, and the living conditions domain, and, within domains,
equal weight across indicators.

In the following we develop the comparison of the unidimensional indicator with
the multidimensional index on the basis of different weighting systems, namely we,
wUN and wUN .

2.2.2 The multidimensional poverty index for the population

The synthesis of the m unidimensional indices I(X j) and of the n multidimensional
indices I(ai) in a multidimensional poverty index for the population can be achieved
quite simply by means of a weighted sum

I =
∑

m
j=1 I(X j)w j

∑
m
j=1 w j

=
∑

n
i=1 I(ai)ni

∑
n
i=1 ni

=
∑

m
j=1 w j ∑

n
i=1 µ(X j)i ni

∑
m
j=1 w j ∑

n
i=1 ni

(7)

As in the fuzzy unidimensional case, also the multidimensional approach does
not possess a poverty line and poor households are still identified on the basis of the
cumulative distribution of the I(ai) in descending order: if F(I(ai)) < I we have a
poor household, while F(I(ai))≥ I indicates a non-poor household.

The definition of the set of the poor units B is a little more complicated in the
multidimensional framework. First, for each poverty attribute X j is obtained B j, the
set of poor units with respect to X j. Second, the set B is given by the intersection
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of B1,B2, ...,Bm, or, more frequently, by the union of the intersections of different
combinations of the B j:

B = (∩B j)∪ (∩Bh).

Since the multidimensional indicator I is also a function of the weight w j it is
not possible to know ex ante the exact list of B j which gives B. This is not to be per-
ceived as a limit, but, on the contrary, as an opportunity of fuzzy multidimensional
indicators, which take advantage of the flexibility ensured by the α cut method,
where we refer to a certain amount α of the population: F(I(ai) = α . By targeting
a given fraction of the poorest unit, we obtain Bα = F(I(ai) = α and the relevant
inequality factors which determine Bα : Bα = UB j. The combination of factors at
the basis of Bα is not necessarily the same over α , but it provides powerful insights
on the inequality structure and a strong support to any social and economic policy
for poverty reduction.

The issue of the subjectivity related to the choice of µ1,µ2, ...,µk, anticipated in
the previous section for the unidimensional indicator, is amplified and more urgent
in the multidimensional framework, where we have m indicator functions to deter-
mine. In order to investigate this point, which is frequently perceived as one of the
weaknesses of fuzzy sets based indicators, in the following we develop a simulation
study.

3 Robustness of fuzzy indicators: a simulation study

With the aim to assess the degree of robustness of the method and to evaluate the
effects of µ(X) on the poverty index, we propose a simulation study where the
scores of the indicator function are not a priori chosen, but endogenously determined
by means of a Monte Carlo experiment.

We randomly extract µ(X) from an uniform distribution within a set of k intervals
determined according to the following scheme:

µ(X j) =


µ j1 with µ j1 ∈ [µ j2 +h,1]
...

µ jk−1 with µ jk−1 ∈ [µ jk j +h,2/k j]

µ jk with µ jk j ∈ [0,1/k j]

(8)

where k j is the exogenous number of classes proposed for X j and h is an exogenous
minimum distance between two different values of µ(X).

By setting, e.g., k = 45 and h = 0.1, on the basis of (8) we obtain

µ(X j) =


µ j1 with µ j1 ∈ [µ j2 +0.1,1]
µ j2 with µ j2 ∈ [µ j3 +0.1,0.80]
µ j3 with µ j3 ∈ [µ j4 +0.1,0.60]
µ j4 with µ j4 ∈ [µ j5 +0.1,0.40]
µ j5 with µ j5 ∈ [0,0.20]

(9)
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that is we extract µ15, the degree of membership to the richest subgroup, from an
uniform distribution within the interval [0,0.20], then we move to µ14, which be-
longs to the interval [µ14 + 0.1,0.4], and so on, up to µ j1, which is randomly ex-
tracted from an uniform distribution within the interval [µ12 +0.1,1].

This scheme represents a perhaps excessive generalization, since the first and
last values, namely the two associated to the poorest and to the richest group, re-
spectively, are almost always 1 and 0, and therefore should not be included in the
simulation. By setting µ j1 = 1 and µ jk = 0, the simulation study refers to the re-
maining k−2 values of the µ(X) function, following a scheme such as

µ(X j) =



µ j1 with µ j1 = 1
µ j2 with µ j2 ∈ [µ j3 +h,(1−h)]
...

µ jk−2 with µ jk−2 ∈ [µ jk−1 +h,2(1−h)/(k−2)]
µ jk−1 with µ jk−1 ∈ [h,(1−h)/(k−2)]

µ jk with µ jk = 0

(10)

By referring to the new scheme (10), where µ j1 = 1 and µ jk = 0, the previous
example, with k = 5 and h = 0.1, results:

µ(X j) =


µ j1 with µ j1 = 1
µ j2 with µ j2 ∈ [µ j3 +0.1,0.9]
µ j3 with µ j3 ∈ [µ j4 +0.1,0.60]
µ j4 with µ j4 ∈ [µ j5 +0.1,0.30]
µ j5 with µ j5 = 0

The main purpose of our Monte Carlo experiment, achieved by comparing ex-
ogenous schemes as in (3) to simulated schemes as in (10), is to investigate the
stability of the fuzzy poverty indices and to evaluate their robustness. By means of
the same experiment we are also able to investigate other aspects of fuzzy methods.
First of all we analyze the effects related to the number of groups k j for the each of
the m inequality factors, second we study the role of h, that is the distance between
consecutive values of the indicator function.

4 Unidimensional and multidimensional comparison

The key point of the comparison between the unidimensional and the multidimen-
sional approaches refers to the set B of poor units and, in particular, to the evaluation
of the intersection between the two sets.

The reference to the set B of poor units is useful also in order to evaluate the ef-
fects of different specifications of the µ(X): to the extent that different µ(X) modify,
or not, the set B, we derive an indication on the robustness of the multidimensional
indicators. A similar pattern can be followed in order to assess the effects of al-
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ternative weighting systems and of various compositions of the multidimensional
index.

From the unidimensional approach, as well as from the multidimensional one
and from the simulations, we first obtain a list of the units, from the poorest to the
richest.

Second, we carry out a correlation analysis on the ranks ui of the list obtained
from the unidimensional approach and on the ranks vi of the list resulted from the
multidimensional approach. Later, the same procedure is used for comparing the
lists obtained during the simulation with different µ(X).

Rank correlation analysis allows to effectively compare the two lists, and also to
investigate the similarity of specific subgroups of units, which is particularly useful
in our case, as we aim to the comparison between the subgroups of the poor units B
and also between subsets of B, that is Bα .

The first standard correlation measure used is the Bravais-Pearson correlation
coefficient r applied to the ranks (ui,vi):

r =
∑

n
i=1(ui− ū)(vi− v̄)

∑
n
i=1(ui− ū)2 ∑

n
i=1(vi− v̄)2 (11)

where ū and v̄ are, respectively, the mean of ui and the mean of vi.
The second correlation measure is represented by Kendall’s τ , which can be ex-

pressed as

τ =
C−D

n(n−1)/2
(12)

where C is the number of concordant pairs of ranks (ui,vi) and D is the number
of discordant pairs of ranks (ui,vi). Kendall’s index does not consider the amount
of differences between ui and vi and therefore can be less informative than other
measures, such as Bravais-Pearson r.

A further important rank correlation measure is represented by the Spearman
index S:

S =
1−6∗∑

n
i=1(ui− vi)

2

n(n2−1)
(13)

Finally, the fourth correlation measure considered is the Gini rank correlation, or
cograduation, index G

G =
∑

n
i=1 |ui− v′i||ui− vi|

n2/2
(14)

where v′i is the rank of the multidimensional list by ascending order, that is from the
richest to the poorest.

All indices range between -1 and 1, reaching their maximum (minimum) value
for perfect positive (negative) correlation and assuming value 0 for the absence of
correlation between ui and vi.

A relevant improvement of the information provided by the correlation indices
refers to the number of the units involved in the analysis. First, we start including
all units into the calculus of the indices, thus achieving a general evaluation related
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to the overall population. In the following step we restrict the correlation analysis
to a fraction α of the available units, thus focusing on specific subsamples of the
population, in primis the set B of the poor units. Since our main interest is related
to the comparison between the sets of poor units suggested by different methods,
this focus is extremely appealing and allows a powerful insight on the robustness of
fuzzy indicators.

Furthermore, in order to compare the two sets of poor units defined by uni- and
multidimensional approaches, it is also possible to derive a similarity index. Our
information set is given by the equivalent income X1, the poverty line z, the set of
poverty units defined by X1, Bu, its size nBu, the multidimensional poverty index I,
the set of poverty units defined by I, Bm, and its size, nBm.

Starting from the unidimensional approach, a similarity index Su can be obtained
as the ratio between the number of poor in the multidimensional approach with
income lower than the poverty line and the number of poor in the unidimensional
approach:

si =

{
0 if xi ≥ z
1 if xi < z and i ∈ Bm

Su =
nBm

∑
i=1

sini/nBu

It is also possible to generalize Su by referring not to the standard poverty line z,
but to a set of poverty lines zα which define the α% poorest of the observations in
the unidimensional approach.

On the basis of the multidimensional approach, a similarity index Sm first requires
to introduce a poverty line z∗, which can be set equal to the income x∗ of the richest
unit among the poor units in the multidimensional approach. Then we can obtain
Sm as the ratio between the number of poor in the unidimensional approach with
income lower than z∗ and the number of poor in the multidimensional approach:

si =

{
0 if xi ≥ z∗

1 if xi < z∗ and i ∈ Bu

Sm =
nBu

∑
i=1

sini/nBm

Analogously to Su, we can generalize also Sm by referring to poverty lines z∗α ,
which define the α% of the poorest of the observations in the multidimensional
approach.

5 Data and results

In order to analyze the robustness of fuzzy sets based methods and to compare uni-
dimensional and multidimensional poverty indicators we resort to the Italian house-
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holds data for the 2016. We illustrate the advantages of fuzzy indicators starting
from the unidimensional case by comparing the traditional head count ratio to a
fuzzy indicator and to a simulated case. By adding further inequality factors we
develop a fuzzy multidimensional poverty indicator and we analyze its robustness.
Finally we provide a comparison between uni- and multidimensional poverty indi-
cators by means of a rank correlation analysis.

5.1 Data

The Survey on Households Income and Wealth performed by the Bank of Italy
provides a powerful database which allows to derive a wide set of both simple and
composite indicators based on individual and household information.

To the first set of indicators, related to the wealth domain, belong the household
equivalent income (I), the ratio between the number of the household members per-
ceiving an income and the household size (II), the value and the occupancy title of
the household residence (III).

We also include two indicators concerning the educational domain: the educa-
tional achievement of the household head and his/her father (IV), and the educa-
tional achievement of the household spouse and her/his father (V).

The further 5 indicators assess the living conditions domain. First a composite
indicator given by gender, age and occupational status of the household head (VI),
second the geographical area of residence (VII), third the household size and num-
ber of bathrooms of the residence (VIII), fourth the household size and dimension
of the residence (IX), fifth the job status of the household head and the other com-
ponents of the household (X).

5.2 Simulation results

Our first step in the presentation of the results refers to the effects on the fuzzy
indicators related to k, the number of subgroups and h, the distance between two
consecutive values of µ(X).

In Table 1 are shown some summary descriptive statistics related to 10000 sim-
ulations of the unidimensional fuzzy indicator I(X), as in (4), computed for each
combination of k and h . The values of µ(X) are obtained as in (10), and the n ob-
servations are randomly attributed to the k classes. We present the results for k = 3,
k = 4 and k = 5 for the number of subgroups, for h = 0.05, h = 0.10 and h = 0.20
for the distance between two consecutive values of µ(X) and we refer to n = 7421
for the number of observations, that is the number of households in the 2016 Bank
of Italy survey used in the following.



14 Michele Costa

Table 1 Mean µ , standard deviation σ , skewness γ1 and kurtosis γ2 indices for 10000 simulated
unidimensional fuzzy indicators I(X) by k, number of subgroups, and h, minimum distance be-
tween two consecutive values of µ(X).

h k = 3 k = 4 k = 5
µ σ γ1 γ2 µ σ γ1 γ2 µ σ γ1 γ2

0.05 0.50 0.08 0.01 -1.16 0.48 0,07 -0.38 -0.50 0.47 0.05 -0.59 0.02
0.10 0.50 0.08 0.00 -1.19 0.48 0,05 -0.39 -0.46 0.48 0.04 -0.61 0.05
0.20 0.50 0.06 0.01 -1.14 0.49 0,03 -0.37 -0.42 0.49 0.01 -0.45 0.01

As h, the minimum distance between two consecutive values of µ(X), increases,
a decreasing standard deviation is observed, as expected, that is a lower variability
of the simulated unidimensional fuzzy indices I(X).

The variability of the simulated I(X) is, as intuitively, also negatively affected
by the number of subgroups k, which also influence the skewness γ1 of the I(X):
for k = 3 we get a symmetric distribution, while for k > 3 the scheme (10) leads
to skewed distributions, with a fat tail for smaller values, i.e. for richer units. For
k = 3 there is an almost uniform distribution, while, as k increases, there is both a
decrease in the importance of the tails, and the presence of negative skewness.

In the following, we exploit the potential of scheme (10) with the aim of carrying
out an in-depth analysis of the fuzzy indicators.

5.3 Unidimensional poverty indicator

The second step of our results concerns to the unidimensional poverty indicators,
where we compare the traditional head count ratio to both a fuzzy income-based
indicator and simulated fuzzy indicators.

We use the OECD equivalence scale and a poverty line z being the 60% of the
median x̄me of the equivalent income: z = 0.6∗ x̄me.

An income based fuzzy poverty indicator, instead to divide total population in
only two subgroups, is based on k > 2 subgroups: for example

µ(X1) =


1.0 if x1i < 0.4x̄1me
0.9 if 0.4x̄1me ≤ x1i < 0.6x̄1me
0.5 if 0.6x̄1me ≤ x1i < 0.8x̄1me

0 if 0.8x̄1me ≤ x1i

(15)

In (15) we allow a greater flexibility with respect to (1): under the poverty line z
we assume two classes, introducing a difference among the poor, and also above the
poverty line we differentiate among the non poor, assigning a positive membership
(µ13 = 0.5) to units with income below 0.8x̄1me.

In order to vary the scores of the indicator function µ(X1), we run a Monte Carlo
experiment, by using the scheme (10) with k = 4 and h = 0.1:
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µ(X1) =


µ11 with µ11 = 1
µ12 with µ12 ∈ [µ13 +0.1,0.9]
µ13 with µ13 ∈ [0.1,0.45]
µ14 with µ14 = 0

(16)

Given the µ(X1), we derive the fuzzy unidimensional indicator I(X1) as in (4),
and we compare the results related to (15) and to (16), thus investigating the effects
of µ(X) on the poverty indicator.

Table 1 reports in the first column the head count ratio, equal to 0.202, in the
second the fuzzy indicator based on (15), equal to 0.264, while in the following
columns are summarized the results of 100000 random extractions of µ(X1) as in
(16). We report, in the first row some values of I(X1), ranging from 0.14 to 0.25,
and from the third to the fifth row the mean of the respective simulated µ(X). It is
possible to observe how extreme values of I(X1) occur only in correspondence with
unlikely values of µ(X): I(X1) = 0.14, for example, requires µ12 = 0.30, which is
clearly an inadmissible value for incomes below the poverty line. When, however,
µ(X) remains within acceptable ranges, the index I(X1) does not show significant
changes.

Table 2 Head count ratio with µ(X)=(2), fuzzy poverty indicator with µ(X)=(5) and fuzzy poverty
indicator with simulated µ(X)=(6), Italian households 2016

I(X1) 0.202 0.264 0.142 0.161 0.181 0.201 0.219 0.238 0.252
µ(X1) (1) (15) (16) (16) (16) (16) (16) (16) (16)
µ11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
µ12 1.00 0.90 0.300 0.420 0.535 0.650 0.725 0.813 0.879
µ13 0 0.50 0.133 0.170 0.212 0.257 0.331 0.389 0.434
µ14 0 0 0 0 0 0 0 0 0

We repeat the same procedure also for the other indicators, still obtaining similar
results: the scores of the indicator functions µ(X j) and the values of the unidimen-
sional fuzzy indicators I(X j) are validated through a Monte Carlo study that ensures
their robustness.

The adopted values of the indicator functions µ(X j) are shown in the Appendix
for the entire set of indicators used in the paper, without adding the simulations
results, which would only repeat the scheme presented in this paragraph for the first
indicator.

Overall, we derive a set of 10 unidimensional fuzzy indicators which provide a
powerful basis for the development of the multidimensional index.
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5.4 Multidimensional poverty indicator

The multidimensional fuzzy poverty index I, obtained as (7), is a function of unidi-
mensional fuzzy indicators and weights.

Our first goal is to evaluate the effects of the weighting system on the multidi-
mensional indicator, for this purpose we analyze three different types of weights:
the case of equal weights we, the structure adopted by the United Nations wUN , a
system based on social exclusion and proposed by Cerioli and Zani wCZ .

In Table 3 are reported, together with the 10 unidimensional indices I(X), the re-
sults for the three (normalized) weighting systems and the related multidimensional
fuzzy poverty index I as in (7).

Table 3 Unidimensional poverty indicators, weights and multidimensional poverty index - Italian
households 2016.

unidimensional indices multidim.
I II III IV V VI VII VIII IX X index

I(X) 0.264 0.037 0.163 0.341 0.184 0.033 0.128 0.094 0.329 0.306
we 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.188
wUN 0.111 0.111 0.111 0.167 0.167 0.067 0.067 0.067 0.067 0.067 0.199
wCZ 0.069 0.170 0.094 0.056 0.088 0.176 0.106 0.122 0.058 0.061 0.144

The unidimensional poverty indicators I(X) in the first row of the Table indi-
cate the fraction of poor units on the total according to the different inequality fac-
tors, ranging from 34.1% of the fourth indicator (educational achievement of the
household head and his/her father) to 3.3% 3per cent of the sixth (gender, age, oc-
cupational status of the household head). Consistent with the intuition underlying
the weights related to social exclusion, wCZ , the higher weights correspond to the
smaller indices.

The last column of the table shows the multidimensional index I, which is equal
to Ie = 0.188 by using equal weights, to IUN = 0.199 by referring to the United
Nations weighting system, and to ICZ = 0.144 on the basis of the weights (6) related
to social exclusion.

Results provided by Table 3 allow interesting insights on the poverty structure.
Multiplying the unidimensional indices I(X j) in the first row by the weights and
dividing by the multidimensional index I in the last column, we obtain the quantity
I(X j)w j/I, that is the influence of the single inequality factors on I.

The ratios I(X j)w j/I, together with the related indicator, are shown in descend-
ing order in Table 4. The fourth indicator, educational achievement of the household
head and his/her father, represents the main source of inequality, followed by a group
of four indicators: dimension of the residence (IX), job status of the household head
and the other components of the household (X), education of the spouse (V), equiv-
alent income (I). The last 5 indicators in order of relevance are the value and the
occupancy title of the household residence (III), the geographical area of residence
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(VII), the household size and number of bathrooms of the residence (VIII), the ra-
tio between the number of the household members perceiving an income and the
household size (II), gender, age and occupational status of the household head (VI).

Equal weights we and social-exclusion related weights wCZ suggest the same
ranking of the inequality factors, while on the basis of United Nations weights wUN
we observe some differences from the second to the fifth position.

Overall, in the second panel of Table 4 we observe how the living conditions
domain accounts for over 45 per cent of the inequality for we and wCZ , while for
wUN the main source of inequality is the educational domain.

Table 4 Ratios I(X j)w j/I and poverty indicator - Italian households 2016.

I(X j)we j/Ie I(X j)wUN j/IUN I(X j)wCZ j/ICZ

0.181 IV 0.286 IV 0.133 IV
0.175 IX 0.155 V 0.133 IX
0.163 X 0.148 I 0.130 X
0.141 I 0.111 IX 0.127 I
0.098 V 0.103 X 0.113 V
0.087 III 0.091 III 0.107 III
0.068 VII 0.043 VII 0.094 VII
0.050 VIII 0.032 VIII 0.080 VIII
0.020 II 0.021 II 0.044 II
0.018 VI 0.011 VI 0.040 VI

0.474 living 0.441 education 0.477 living
0.279 education 0.299 living 0.277 wealth
0.247 wealth 0.260 wealth 0.246 education

In order to address the robustness issue for the multidimensional index, we fur-
ther develop the simulation study, randomly extracting the indicator function µ(X j)
as in (10) for the ten fuzzy indicators and obtaining the multidimensional index on
the basis of the three weighting system used in the paper.

The results related to 30000 simulated indices are illustrated in Figure 1 and
indicate how weights have relevant effects on the multidimensional index: the use
of wCZ leads to the smallest values of the index I, while the highest values are linked
to wUN , thus confirming the pattern already observed in Table 3.

Besides the unidimensional fuzzy indices I(X j) and the multidimensional I, we
also derive the list obtained from the unidimensional approach and the list resulted
from the multidimensional approach, thus allowing a comparison between the two
approaches.
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Fig. 1 Frequency histogram of 30000 simulated multidimensional fuzzy poverty indices by
weights wCZ , we andwUN .

5.5 Unidimensional and multidimensional comparison

In order to compare the unidimensional and the multidimensional approaches, we
start with Tables 5, which reports a subset of observations for the four variables
of interest: the household equivalent income X1i, its rank ui, the multidimensional
poverty index I(ai), its rank vi.

Table 5 Household equivalent income X1i, its rank ui, multidimensional poverty index I(ai), its
rank vi - Italian households 2016.

ui X1i vi Ii vi Ii ui X1i

1 -6763 3785 0.109 1 0.779 6 0
10 0 7 0.706 10 0.667 336 4960
25 0 128 0.463 25 0.605 87 1429
50 0 1556 0.215 50 0.550 424 5840
75 802 2890 0.145 75 0.515 21 0
100 1667 301 0.383 100 0.493 960 8820
7321 57052 5156 0.061 7321 0.00 6940 37333
7346 62854 7160 0.012 7346 0.00 7182 45859
7371 69769 7402 0.00 7371 0.00 7279 52070
7396 85375 7407 0.00 7396 0.00 7343 62000
7411 131831 7414 0.00 7411 0.00 7406 113684
7421 218805 7421 0.00 7421 0.00 7421 218805

First, we rank the observations on the basis of ui, with the left part of Table 5
showing X1i,ui, I(ai), and vi for a subset of selected observations. Observations pre-
senting the same value of X1i are sorted by decreasing size of the multidimensional
indicator I(ai). By comparing column 2 to column 4 in Table 5, we can observe a
strong similarity between the highest ranks, while, on the contrary, the lowest ranks
are quite different.
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Our second step is to rank the observations on the basis of vi, with the right part
of Table 5 showing X1i,ui, I(ai), and vi for the same subset of selected observa-
tions. Analogously to the previous case, observations with the same value of I(a)
are sorted by increasing size of X1i. As before, the highest ranks are almost identical,
while the lowest ranks are quite different.

It is also interesting to note that, for the lowest ranks, the difference between the
values ui and vi is clearly higher in the left part of Table 5 than in the right part.

Further information on the comparison between the two approaches can be pro-
vided by the similarity indices Su and Sm introduced in Section 4 and reported in
Table 6. By referring to wCZ , for the whole population, Su = 0.559 indicates that
only 55.9% of the units with income below the poverty line are also poor accord-
ing to the multidimensional approach, while Sm = 0.889 indicates that 88.9% of the
poor units on the basis of I are also poor on the basis of income. Even analyzing
particular subsets, a difference between the two methods is confirmed: for the poor-
est 5% of the population, Su = 0.775 implies that over 20% of the poorest on the
basis of income are not poor in the multidimensional approach.

The values of the similarity indices Su and Sm obtained by using we or wUN
confirm the previous difference between the indices, with Su steadily lower than Sm.

Table 6 Similarity indices Su and Sm - Italian households 2016.

Su Sm Su Sm Su Sm
α we wUN wCZ

0.05 0.841 0.978 0.771 0.948 0.775 0.975
0.10 0.767 0.941 0.686 0.887 0.667 0.941
0.15 0.717 0.908 0.656 0.811 0.621 0.889
1.00 0.671 0.867 0.616 0.754 0.559 0.889

From Tables 5 and 6 we get a first indication that unidimensional and multidi-
mensional approaches seem to define two different sets of poor households: a more
complete analysis, carried out on the basis of rank correlation, is illustrated in the
following.

5.6 Rank correlation analysis

The highlight of the comparison between the unidimensional and the multidimen-
sional approach is the rank correlation analysis, both overall, and in reference to
subsets of the poorest.

The first results refer to the correlation between the multidimensional poverty
index I and the equivalent income X1. Table 7 shows the indices of Bravais-Pearson
r, Kendall τ , Spearman S and Gini G Pearson; the first column reports selected
values of the cumulative distribution of I, where I is in decreasing order, and the
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following columns show the values of the four correlation indices with respect to
the three weighting systems used. The last rows of the Table contains the indices for
the whole population (F(I) = 100), while the first row refers to the poorest 5% of
total population (F(I) = 5).

Moving from the bottom to the top of the Table it is clearly observable a strong
decrease in rank correlation, thus suggesting that multidimensional and unidimen-
sional approaches define two different subsets of poor units.

Kendall’s and Gini’s measures give quite similar results and report a lower cor-
relation between ui and vi than Bravais-Pearson and Spearman indices. The United
Nations weighting system indicates the lowest values, especially for the poorest sub-
groups, while we and wCZ provide substantially similar results. All indices, however,
clearly signal a decreasing rank correlation for decreasing values of F(I).

Table 7 Rank correlation between multidimensional poverty index I and equivalent income X1 -
Italian households 2016.

we wUN wCZ
F(I) r τ S G r τ S G r τ S G

5 0.227 0.178 0.334 0.168 0.157 0.117 0.285 0.119 0.229 0.164 0.328 0.159
10 0.383 0.232 0.504 0.259 0.299 0.153 0.439 0.199 0.375 0.236 0.492 0.259
25 0.484 0.350 0.568 0.353 0.387 0.258 0.481 0.283 0.469 0.347 0.555 0.339
50 0.691 0.514 0.705 0.552 0.603 0.433 0.618 0.471 0.677 0.504 0.689 0.543
100 0.775 0.589 0.768 0.654 0.725 0.534 0.717 0.601 0.765 0.577 0.755 0.649

Also in the case of correlation analysis, the robustness of the results is assessed by
analyzing the correlation between simulated multidimensional indices I and equiva-
lent income X1. Table 8 summarizes the results of 30,000 simulated indices (10,000
for each of the 3 weighting systems), showing the average of the correlations ob-
tained.

The resulting picture closely resembles that outlined in Table 7, with the con-
firmation of all the main results and, above all, of the decreasing correlation for
decreasing values of F(I).

Table 8 Rank correlation between simulated multidimensional poverty index and equivalent in-
come X1, average of 10000 simulations - Italian households 2016.

we wUN wCZ
F(I) r τ S G r τ S G r τ S G

5 0.202 0.151 0.314 0.147 0.140 0.097 0.274 0.098 0.224 0.158 0.329 0.161
10 0.384 0.230 0.505 0.262 0.318 0.165 0.455 0.214 0.401 0.255 0.513 0.282
25 0.499 0.360 0.582 0.364 0.418 0.283 0.508 0.305 0.520 0.387 0.600 0.377
50 0.643 0.469 0.659 0.511 0.563 0.400 0.580 0.435 0.671 0.496 0.686 0.536
100 0.748 0.560 0.739 0.630 0.701 0.512 0.692 0.577 0.757 0.569 0.747 0.642
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In the last step of the rank correlation analysis we compare the rankings derived
by the simulated multidimensional indices and by I. As before, Table 9 summarizes
the results of 30,000 simulated indices (10,000 for each of the 3 weighting systems),
showing the average of the correlations obtained. From Table 9 we can observe
extremely high values, which suggest that the subsets of poor units identified by the
simulated indices are almost coincident, lending further support to the robustness of
the multidimensional fuzzy indicator.

Table 9 Rank correlation between simulated multidimensional poverty index and multidimen-
sional poverty index I, average of 10000 simulations- Italian households 2016.

we wUN wCZ
F(I) r τ S G r τ S G r τ S G

5 0.974 0.847 0.702 0.830 0.979 0.871 0.654 0.833 0.979 0.869 0.730 0.849
10 0.973 0.846 0.621 0.811 0.980 0.871 0.612 0.828 0.979 0.867 0.660 0.838
25 0.970 0.842 0.697 0.824 0.979 0.866 0.739 0.861 0.976 0.862 0.701 0.834
50 0.973 0.852 0.913 0.884 0.981 0.874 0.929 0.905 0.982 0.881 0.932 0.909
100 0.981 0.867 0.967 0.932 0.988 0.893 0.947 0.943 0.988 0.895 0.997 0.959

Overall rank correlation analysis results point out to two different subsets of poor
units derived from the unidimensional and the multidimensional indicators, suggest-
ing that the two approaches differ not only theoretically, but also as regards data
analysis and empirical findings.

6 Conclusions

The comparison between unidimensional and multidimensional approach to poverty
measurement is carried out by means of a rank correlation analysis, aimed at evalu-
ating the intersection between the set of poor units indicated by the two methods.

The robustness of the comparison is analyzed through a Monte Carlo study, with
particular emphasis on the issues related to the choice of µ(X) and their effects on
the set of poor units. The simulated values suggest an extremely satisfactory ro-
bustness of the fuzzy poverty indicators, thus overcoming the objection related to
the subjectivity of the choice of µ(X). Furthermore, the simulation study proves to
be a particularly powerful tool to investigate further characteristics of the multidi-
mensional fuzzy poverty indicators, such as the weighting system. The main drivers
of poverty, identified and ranked on 2016 Italian household data, are educational
achievement, dimension of the residence, job status and equivalent income, and they
remain remarkably stable over the simulations.

A key point in poverty analyses is not to establish how many are the poor house-
holds, but who are they. We contribute to poverty measurement by comparing the
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sets of poor units identified by traditional unidimensional, fuzzy unidimensional and
fuzzy multidimensional indicators.

The result of rank correlation analysis allow to demonstrate that the two ap-
proaches define two different sets of poor households, and we also show how this
difference increases as poorer population subgroups are targeted. Overall our results
suggest not only two different theoretical frameworks, but also mismatched empir-
ical findings, with the unidimensional indicator providing only partial information
on poverty condition.

Relying on our conclusions, any socio-economic policy to reduce poverty devel-
oped on the basis of income information is likely to no achieve its proposed goals,
being addressed to socioeconomic units which are, in effect, non-poor. Only in the
framework of the multidimensional approach it is possible to correctly individuate
the set of the poor and to formulate actions able to reduce poverty.

Appendix

Table 10 Indicator function µ(X1) for the I indicator: Household equivalent disposable income

µ(X1)

x1i < 0.4x̄1me 1
0.4x̄1me ≤ x1i < 0.6x̄1me 0.9
0.6x̄1me ≤ x1i < 0.8x̄1me 0.5
0.8x̄1me ≤ x1i 0
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Table 11 Indicator function µ(X2) for the II indicator: Ratio between the number of the household
members perceiving an income and the household size

Household size Value of the ratio µ(X2)

1 0 1
1 1 0
2 0 1
2 ≥ 0.50 0
3 0 1
3 ≥ 0.33 0
4 0 1
4 0.25 0.4
4 ≥ 0.50 0
5 0 1
5 0.20 0.5
5 ≥ 0.40 0
6 0 1
6 1/6 0.75
6 2/6 0.25
6 ≥ 0.50 0
≥ 7 0 1
≥ 7 0.14 - 0.29 0.75
≥ 7 0.30- 0.58 0.25
≥ 7 > 0.58 0

Table 12 Indicator function µ(X3) for the III indicator: Occupancy title and value of the household
residence

Value
Occupancy title > 150000 75000 - 150000 ≤ 75000

Owned 0 0 0.5
Rented 0 0.3 1
Occupied under redemtion agreement 0 0.2 0.5
Occupied in usufruct 0 0.2 0.5
Occupied free of charge 0 0.3 1

Table 13 Indicator function µ(X4) for the IV indicator: Educational achievement of the household
head and his/her father

Head of the household
Father None Elementary

school
J. high school S. high school University

None 1 0.6 0.2 0 0
Elementary school 1 1 0.5 0 0
Junior high school 1 1 1 0 0
Senior high school 1 1 1 0.4 0
University degree 1 1 1 0.5 0
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Table 14 Indicator function µ(X5) for the V indicator: Educational achievement of the household
spouse and her/his father

Head of the household
Father None Elementary

school
J. high school S. high school University

None 1 0.6 0.2 0 0
Elementary school 1 1 0.5 0 0
Junior high school 1 1 1 0 0
Senior high school 1 1 1 0.4 0
University degree 1 1 1 0.5 0

Table 15 Indicator function µ(X6) for the VI indicator: Gender, age and occupational status of the
household head

age
< 25 25−65 > 65

Male employed head of the household 0 0 0
Male unemployed head of the household, employed spouse 0.4 0.2 0.3
Male unemployed head of the household, unemployed spouse 1 1 1
Male unemployed head of the household, no spouse 1 1 1
Female employed head of the household, employed spouse 0 0 0
Female employed head of the household, unemployed spouse 0.2 0.5 0.2
Female employed head of the household, no spouse 0 0 0
Female employed head of the household, no spouse, with children 0.5 0.2 0.5
Female unemployed head of the household, employed spouse 0.5 0.3 0.4
Female unemployed head of the household, unemployed spouse 1 1 1
Female unemployed head of the household, no spouse 1 1 1

Table 16 Indicator function µ(X7) for the VII indicator: Geographical area of residence

µ(X7)

north 0
center 0
south 0.4

Table 17 Indicator function µ(X8) for the VIII indicator: Household size and number of bathrooms
of the residence

Household size Number of bathrooms µ(X8)

whatever ≥ 2 0
1 1 0
2 1 0
3 1 0.3
4 1 0.6
≥ 5 1 1
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Table 18 Indicator function µ(X9) for the IX indicator: Household size and dimension (in square
meters) of the residence

Household size Square meters µ(X9)

1 < 50 1
1 50−65 0.5
1 65−80 0.25
1 > 80 0
2 < 60 1
2 60−75 0.5
2 75−90 0.25
2 > 90 0
3 < 70 1
3 70−85 0.5
3 85−100 0.25
3 > 100 0
4 < 80 1
4 80−95 0.5
4 95−110 0.25
4 > 110 0
≥ 5 < 100 1
≥ 5 100−120 0.5
≥ 5 120−140 0.25
≥ 5 > 140 0

Table 19 Indicator function µ(X10) for the X indicator: Professional occupation of the household
head

µ(X10)

Teacher 0
Manager 0
Self employed 0
Office worker 0.2
Blue-collar worker 0.3
Unemployed 1
Job pensioner 0.2
Non-job pensioner 1
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