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Substitution Effects in Intertemporal Problems

by Davide Dragone, and Paolo Vanin

NON-TECHNICAL SUMMARY

The law of demand is a basic concept in economics: when the price of a good increases,

one typically expects a reduction in the quantity demanded. This basic insight from static

consumer theory does not necessarily extend to an intertemporal framework, in which cur-

rent choices produce effects that persist over time. Think, for instance, of labor supply

choices that affect human capital accumulation, or medical care affecting individual health.

In this paper we show that the law of demand fails when the effects of current choices

are amplified over time. In this case, after a price increase, the quantity demanded increases

at some point in time. Consider, as an example, the accumulation of health deficits, which

typically happens at a faster rate, the higher the number of existing health deficits. If

medical care becomes more expensive and one reacts by reducing medical care today, health

deficits will accumulate, and this will happen at faster and faster rate over time. Ultimately,

to avoid excessive health deficits, medical care will need to progressively increase until it is

higher than it would have been without the price increase. In this case after a price increase

the quantity demanded falls in the short run and increases in the long run. We show that

this outcome occurs when a consumer is relatively impatient. The opposite case, which

corresponds to an increase in medical care in the short run, and a subsequent reduction in

the long run, occurs if she is sufficiently patient.

The case presented above features self-productivity, which occurs when there is a positive

feedback that amplifies current behavior. When instead the effects of current actions get

dampened over time, a case called self-depletion, we show that price increases induce lower

levels of consumption at any point in time. In this case, the static intuition of the law

of demand extends better to dynamic consumer behavior. Notably, however, consumption

needs not decrease progressively over time. On the contrary, there can be an overreaction in

the short run (i.e., a large consumption drop), which is then followed by a partial recovery

in the long run. To highlight the contrast between static and dynamic consumer theory in

the sharpest way, we characterize dynamic reactions to a price increase abstracting from

income effects, that is in a context in which the law of demand necessarily holds in a static

framework.
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1 Introduction

Price effects and intertemporal choices are at the heart of economic analysis. In static

consumer problems with two goods, it is well known that substitution effects are always

negative, so that consumers respond to an increase in the relative price of a good by re-

ducing its consumption. In dynamic extensions of such problems, in which present choices

affect future conditions through some relevant state variable, such as habit, human capital

or health, consumers’ response may be substantially different. While this has long been

informally known, perhaps surprisingly no general characterization is available.

In this paper, we characterize substitution effects for a broad class of intertemporal

consumer and worker problems. We identify time discounting and self-productivity as key

determinants. A state variable is self-productive or self-depleting, depending on whether

it contributes positively or negatively to its own accumulation. Under self-productivity

we show that dynamic substitution effects have opposite sign in the short and in the long

run, with the discount rate determining whether consumption initially falls and eventu-

ally increases, or the other way around. Under self-depletion, instead, short and long-run

responses have the same negative sign.

As en example, think of an agent that chooses between schooling and working over time.

If human capital is self-productive (i.e., if the net production of new “knowledge” increases

in the agent’s stock of existing “knowledge”), we show that a wage increase induces patient

agents to work less and study more in the short run, in order to work more and reap the

benefits of the larger stock of human capital in the long run; impatient agents respond in the

opposite way. If human capital is instead self-depleting (for instance due to depreciation),

short and long-run responses have the same sign: after a wage increase agents work more

both in the short and in the long run and invest less in human capital.

Our results contribute to different strands of literature. First, we characterize dynamic

substitution effects in a general setup. This sheds light on the key assumptions on self-

productivity and discounting that produce differences and commonalities among the appar-

ently widely different models of health behavior, human capital, endogenous preferences,

addiction and habit formation that originate from Grossman, 1972; Blinder and Weiss, 1976;

Stigler and Becker, 1977; Becker and Murphy, 1988; Carroll et al., 2000.

Second, our paper contributes to the literature on the comparative statics and compar-

ative dynamics properties of intertemporal optimization models (see, among others, Oniki,

3



1973, Epstein, 1978, Otani, 1982, and Caputo, 1990, 1997). We show under which con-

ditions dynamic substitution effects are positive or negative. An empirical implication is

that heterogeneity in individual discount rates can produce an attenuation bias in estimated

price responses. This result is particularly relevant when writing and solving computational

models that estimate the dynamic responses to tax changes or income subsidies (see Hall,

2010, and Ljungqvist and Sargent, 2012, for an overview). An implication for policy making

is that there are conditions under which policies that seem effective in the short run backfire

in the long run, and vice versa.

Third, our paper relates to the literature on taxation in models with endogenous human

capital, which has devoted substantial attention to the role of asymmetric information, age-

dependent taxation and stochastic returns, but less to the aspects that are the focus of the

present paper.1 We take a complementary perspective: we abstract from all those elements

to show in the cleanest way how the short and long-run response to labor income taxes

depend on the interplay between self-productivity and time discounting. More broadly, we

contribute to the large literature on taxation in dynamic models investigating, e.g., health

behavior, addiction or obesity (see Cawley and Ruhm, 2012, for an overview).

The paper is structured as follows. Section 2 presents the general intertemporal problem

and the main results. Sections 3 and 4 specialize the results to consumer and labor supply

problems. Section 5 concludes.

2 An intertemporal consumer/worker problem

Consider the following intertemporal model, which nests consumer and labor supply prob-

lems as special cases:

max
x,y

∫ ∞
0

e−ρtU (x (t) , y (t) , Z (t)) dt (1)

s.t. Ż (t) = f (x (t) , Z (t)) (2)

Ȧ (t) = rA(t) +M (t) + g (x (t) , Z (t) , p)− y (t) (3)

A (0) = A0, Z(0) = Z0 (4)

1See Makris and Pavan (2018) for a discussion, and in particular, among others, the works of Kapička

(2006, 2015); Krause (2009); Best and Kleven (2013); Stantcheva (2017); Kapička and Neira (2019).
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where x ≥ 0 and y ≥ 0 are consumption goods, Z is any form of “capital” (say, human

capital, habit, health or addiction), and A represents assets.2 Equation (2) describes the

law of motion of state variable Z, and equation (3) describes the dynamic budget constraint.

Parameter ρ > 0 is the intertemporal discount rate. To maintain generality, we make no

functional form assumptions on utility or the law of motion of Z.3

Based on equation (2), we introduce the following classification (subscripts denote partial

derivatives):

Definition 1 State variable Z is self-depleting if fZ < 0, and self-productive if fZ > 0.

The case of self-depleting Z covers all intertemporal problems where the state variable

contributes to its dynamics only through depreciation. This is the case, for instance, of

Grossman (1972)’s health accumulation model, Becker and Murphy (1988)’s model of ra-

tional addiction, and the models of habits formation considered in Carroll et al. (2000) and

Chetty and Szeidl (2016), which share the common assumption Ż = f (x)−δZ with f, f′ > 0.

The case of self-productive Z includes the models of human capital considered, among oth-

ers, in Weiss (1972) and Cunha and Heckman (2007), or Dalgaard and Strulik (2014)’s

model of health deficit accumulation, in which the state variable contributes to its own ac-

cumulation according to Ż = f (Z)− x. In richer models where, e.g., Ż = f (x, Z)− δZ, the

state variable can be self-depleting under certain conditions, and self-productive in others,

as shown in the labor supply models treated in Section 4.

Equation (3) represents the dynamics of asset accumulation, where r is the interest

rate, M ≥ 0 is an exogenous instantaneous income flow and y is the numeraire good. The

formulation of (3) is flexible enough to encompass consumption as well as labor supply

choices. In consumer problems, g(x, Z, p) = m(Z) − px, where m(Z) is the endogenous

component of income (if any) and px is expenditure on x at the relative price p. Hence in

a consumer problem the budget constraint equation becomes

Ȧ = rA+M +m(Z)− px− y (5)

In labor supply problems, g(x, Z, p) = pL(x, Z), and the budget constraint is

Ȧ = rA+M + pL(x, Z)− y (6)

2Henceforth the time arguments are omitted to simplify notation.
3The case where the evolution of Z also depends on y, i.e., Ż = f(x, y, Z) is studied in the Appendix.
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where x represents leisure, L(x, Z) is effective labor (which may depend on Z, e.g. if Z is

human capital), Lx < 0, and p is the market wage of effective labor.

Problem (1)-(4) is solved applying Pontryagin’s maximum principle, as detailed in the

Appendix. We assume concavity of the corresponding Hamiltonian function, that the mar-

ket interest rate r is equal to the discount rate ρ, and that price changes are compensated to

keep the marginal utility of assets constant (for a similar approach see, e.g., Heckman, 1974;

Becker and Murphy, 1988). This form of compensation is convenient because it neutralizes

income effects, so that dynamic price effects are entirely driven by dynamic substitution

effects.4 The corresponding system of optimal trajectories for x and y is

ẋ =
Hyy

H2
xy −HxxHyy

[(fZ − ρ) (Ux + gxUy)− fx (UZ + gZUy)] (7)

ẏ = −Hxy
Hyy

ẋ (8)

where H represents the Hamiltonian function associated to the maximization problem.

Equating to zero expressions (2), (3), (7), and (8) yields the steady state
(
xL, yL, ZL, AL

)
.

Our goal is to establish how an unexpected permanent change in price affects consumption

when the system is at a steady state with saddle-point stability. For expositional simplicity,

in the proceeding we focus on x and Z, and we report the corresponding analysis for y and

A in the Appendix.

We investigate dynamic substitution effects over two different time-horizons. The short-

run effect describes the consumption response on impact, when the price change is an-

nounced and implemented. The short-run effect is computed considering the policy function

x̂(Z,A) leading to the steady state and computing xSp ≡ ∂x̂
(
ZL, AL

)
/∂p.5 The long-run

effect describes the change in the steady state values xLp ≡ ∂xL/∂p and ZLp ≡ ∂ZL/∂p.

Proposition 1 Consider an unexpected permanent change in price p, occurring when all

variables are at their saddle-point-stable steady state level, and compensated to maintain the

4The main insights generalize to the case in which the interest rate depends on the level of assets, as it is

common in macroeconomic models, and price changes are not compensated to maintain the marginal utility

of wealth constant (see Dragone and Vanin, 2015).
5Under specific assumptions one can write the closed-form expression of x̂(Z,A) as, e.g., in Becker and

Murphy (1988)’s rational addiction model. For our results, however, this is not needed.
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marginal utility of wealth constant. The short and long-run responses of x and Z are

xSp = a [fxgpZ − (fZ − ρ)gxp] ε (9)

xLp = a [fxgpZ − (fZ − ρ)gxp] fZ (10)

ZLp = −a [fxgpZ − (fZ − ρ) gxp] fx (11)

where concavity and saddle-point stability imply a, ε, fx/fZ < 0.

Term ε is the negative eigenvalue associated to the Jacobian matrix computed at the

steady state, whereas a is a function of the primitives of the model (see equations 65 and 74

in the Appendix). Given that the expression in square brackets is the same in all equations,

the relation between the short and long-run price response is particularly simple:

Proposition 2 The short and long-run price responses are related as follows:

xLp =
fZ
ε
xSp (12)

ZLp = − fx
fZ
xLp . (13)

Hence:

• If Z is self-depleting:

– xSp and xLp have the same sign

– Demand for x is more elastic in the short run than in the long run if fZ > ε,

and more rigid otherwise,

• If Z is self-productive, xSp and xLp have opposite sign,

• ZLp has the same sign as xLp .

These results are general and they highlight the importance of self-productivity and self-

depletion for the sign and magnitude of price responses over time. The following sections,

focusing on consumer and labor supply problems, show how the interplay between self-

productivity and time discounting determines the specific sign of the short and long-run

price response.
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3 Consumer problem

In a consumer problem, the dynamic budget constraint is (5) because gpZ = 0 and gxp = −1.

Hence the price responses (9)-(11) of Proposition 1 simplify as follows

xSp = a(fZ − ρ)ε (14)

xLp = a (fZ − ρ) fZ (15)

ZLp = −a (fZ − ρ) fx (16)

This allows being more specific about the direction of the price responses:

Proposition 3 In a dynamic consumer problem:

1. If Z is self-depleting, price responses of x are always negative and the state variable

Z decreases (xSp , x
L
p , Z

L
p < 0)

2. If Z is self-productive, the sign of price responses depends on ρ relative to fZ . Specif-

ically:

• If the consumer is sufficiently impatient (ρ > fZ) , consumption of x decreases

on impact and increases in the long-run (xSp < 0, xLp > 0); the state variable Z

increases (ZLp > 0).

• If the consumer is sufficiently patient (ρ < fZ) , consumption of x increases on

impact and decreases in the long-run (xSp > 0, xLp < 0); the state variable Z

decreases (ZLp < 0).

The above Proposition shows how the specific sign of the short and long-run price

response depends on the interplay between fZ and ρ. When Z is self-depleting, a forward-

looking agent substitutes consumption away from the more expensive good and, relative to

the initial steady state, she reduces the quantity demanded at any point in time, as shown

in Figure 1.6 This is similar to what happens in a static model.

A common example of this case are consumer problems in which the law of motion is of

the following kind

Ż (t) = xα − δZ (17)

6Whether there is overshooting in the short relative to the long run depends on whether the policy

function is upward or, as in Figure 1, downward sloping.
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x

time

Old steady state

New steady state

Z

time

Old steady state

New steady state

Time path of x Time path of Z

Figure 1: Self-depleting (fZ < 0): Short and long-run response to a price increase. Consumption of

x decreases both on impact and in the long run, with overshooting in the short run if ε < fZ . Left panel:

time path for x. Right panel: time path for Z.

with α ∈ (0, 1] and δ ∈ (0, 1) . The interpretation of x and Z depends on the specific

application. In habit models and in rational addiction models, x is consumption and Z

is the addiction stock or the habit stock (Becker and Murphy, 1988; Chetty and Szeidl,

2016). In health accumulation models, x is health investment, and Z is the health condition

(Grossman, 1972; Galama and Kapteyn, 2011). While the role of x and Z in the utility

function depends on the specific model, these differences are irrelevant for our results.7 In

fact, inspection of the dynamics of Z immediately reveals that Z is self-depleting because

fZ = −δ < 0. Hence using Proposition 3 we can immediately predict that price effects are

negative, both in the short and in the long run.

If instead Z is self-productive, whether the short-run response is positive or negative

(remembering that the long-run response has opposite sign), depends on the time discount

rate ρ. The intuition behind this result lies in the tension between self-productivity and

impatience, because self-productivity amplifies over time the consequences of current behav-

ior, while time discounting reduces the relevance of such future consequences. If impatience

dominates (ρ > fZ), present outcomes matter relatively more than future ones and the

agent immediately reduces consumption of good x when it becomes more expensive. The

7For example, in addiction and taste formation models, consumption capital raises the marginal utility

of x (UxZ > 0): the more I listen to music the more I appreciate it, the more I consume drugs, the more I

crave for them. In habit formation models, instead, UxZ < 0: the more I get used to a good, the less I value

it. See Dragone and Ziebarth (2017) for an analysis of the two cases in the context of consumption of novel

vs familiar goods.
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ρ > fZ

x

time

Old steady state

New steady state

time

Old steady state

New steady state

Time path of x Time path of Z

ρ < fZ

x

time

Old steady state

New steady state Z

time

Old steady state

New steady state

Time path of x Time path of Z

Figure 2: Self-productive (fZ > 0): Short and long-run responses of x to a price increase have opposite

sign. After a price increase, a relatively impatient agent (ρ > fZ) reduces consumption on impact (as in a

static model), and increases it in the long run. A relatively patient agent (ρ < fZ) does the opposite: she

increases consumption in the short run and decreases it (as in a static model) in the long run. Left panel:

time path for x. Right panel: time path for Z.
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emphasis on short-run outcomes, however, produces a persistent increase in the state vari-

able that will eventually lead the agent to reverse her initial choice and, in the long run,

increase consumption of x (Figure 2, upper panel).8 If instead the agent is sufficiently

patient (fZ > ρ), in the long run she aims at consuming less of the relatively more expen-

sive good (as in a static model). In order to do so, she is willing to bear the short-run

cost of higher consumption, which persistently decreases Z and, over time, allows for lower

consumption (Figure 2, lower panel).

As an example of self-productivity in consumer problems, consider the case in which

law of motion is

Ż = δZ − xα (18)

For instance, this is the case of the Dalgaard and Strulik (2014) and Dragone and Strulik

(2017)’s model of health deficit accumulation, where Z is the stock of health deficits and x

is health care investment. Since Z is self-productive (fZ = δ > 0), health care has opposite

short and long-run price effects (Proposition 2). Accordingly, if the agent is sufficiently

patient, after an increase in the price of health care she will demand more health care in

the short run and less in the long run. If instead she is sufficiently impatient, the opposite

holds (Proposition 3).

4 Labor supply and human capital accumulation

Results are slightly more complex, but qualitatively similar for labor supply problems, in

which budget constraint (6) applies. The price responses (9)-(11) of Proposition 1 are

xSp = a [fxLZ − (fZ − ρ)Lx] ε (19)

xLp = a [fxLZ − (fZ − ρ)Lx] fZ (20)

ZLp = −a [fxLZ − (fZ − ρ)Lx] fx (21)

Comparing these expressions to the analog expressions (14)-(16) of consumer problems,

the only difference is the content in square brackets. Accordingly, one can state the exact

8With self-productivity it must be the case that, in steady state, fx < 0. Hence a short-run reduction

in consumption triggers an increase in the state variable, followed by further subsequent increases due to

self-productivity. Since the policy function is upward-sloping, consumption will track the evolution of the

state variable that was originated by the initial change in consumption.
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equivalent of Proposition 3 (which we do not report here for brevity), with the only difference

that here the critical value of ρ is fZ − fxLZ/Lx, rather than just fZ .

Further insights can be obtained considering an example where, unlike equations (17)

and (18), the sign of fZ in steady state depends on the parameters of the model. Consider a

schooling model where Z is human capital and x is time devoted to schooling.9 The agent’s

problem can be written as:

max
{x,y}

∫ ∞
0

e−ρtu (x, y) dt (22)

s.t. Ż = xαZγ − δZ (23)

Ȧ = rA+M + pL (x, Z)− y (24)

where α, γ, δ > 0, effective labor L(x, Z) is increasing in human capital and decreasing in

non-labor (schooling) time (LZ > 0, Lx < 0), and p is the wage rate of effective labor.

Human capital is produced with schooling and existing human capital, and it depreciates

over time. The law of motion (23) thus entails a self-productive component (the first term)

and a self-depleting component (the second term), whose relative value in steady state only

depends on the value of γ: human capital Z is self-productive in steady state if γ > 1

(i.e., when there are increasing marginal returns to “knowledge” in the production of new

“knowledge”) and self-depleting if γ < 1 (i.e., when marginal returns are decreasing).10

Determining which case is empirically relevant is outside the scope of this paper.11 For

our purposes, it suffices to observe that, due to Proposition 2, whether γ is larger or smaller

than one is enough to predict whether in this model the short and long-run response of

labor supply to a wage increase have the same sign (γ < 1) or opposite sign (γ > 1). In the

9Labor supply models fall into two broad classes: training models, which focus on the direct investment in

human capital through either schooling or on-the-job training (as pioneered in Ben-Porath, 1967; Heckman,

1976; Blinder and Weiss, 1976), and learning-by-doing (or experience) models, which consider human capital

accumulation as a byproduct of work activity (see Arrow, 1962; Weiss, 1972, for seminal contributions). Both

classes of models have been very influential in the literature, and they are both described by problem (1)-(4)

and by (6).
10To see it, observe that in steady state the requirement Ż = 0 implies xαZγ−1 = δ. Since fZ = γxαZγ−1−

δ, we can replace and get fZ = δ (γ − 1), which implies that fZ > 0 if and only if γ > 1.
11Heckman et al. (1998) and Kapička (2006, 2015), among others, assume decreasing returns (γ < 1), but

Trostel (2004) presents evidence that marginal returns are increasing (γ > 1) for low levels of human capital

and decreasing (γ < 1) for high levels.
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latter case, under more specific functional assumptions, Proposition 3 allows determining

the conditions under which labor supply first increases and then decreases, or the other way

around.

5 Discussion and conclusion

This paper studies short and long-run price effects for a broad class of dynamic con-

sumer/worker problems. We provide a theoretical answer to the following simple but fun-

damental questions. Are dynamic substitution effects always negative? Can they change

sign over different time horizons? Can demand be more elastic in the short than in the long

run? On what primitives of the model does it depend?

We first characterize short and long-run price responses in a general model that encom-

passes as special cases models of endogenous preferences, health, and human capital. We

find that short and long-run substitution effects may have opposite sign. Under assumptions

that are commonly used in the literature, this possibility materializes when the state vari-

able is self-productive, a condition that can be satisfied, for instance, in models of human

capital accumulation and endogenous preferences, in which “capital” is an input for its own

accumulation. With self-productive capital, after a price increase impatient agents reduce

consumption today and increase it tomorrow, while patient ones do the opposite. If instead

the state variable is self-depleting, as it easily happens in models with capital depreciation

(including those of rational addiction and health capital), both short and long-run price

responses are negative.

In most models used in the literature, our results allow for an immediate assessment of

the sign of price responses over time by simple inspection of the intertemporal problem. We

illustrate this possibility considering workhorse models of consumption and labor supply

that have been extensively used in the literature. For example, in consumer problems with

health capital (Grossman, 1972, Galama and Van Kippersluis, 2018) the law of motion

features self-depletion, hence health investment is predicted to decrease both in the short

and in the long run when its price increases. On the contrary, health deficit accumulation

models feature self-productivity (Dalgaard and Strulik, 2014), hence the price response in

the short and in the long run will have opposite sign. Models of human capital often involve

a self-productive and a self-depleting element (see, e.g., Ben-Porath, 1967, Heckman, 1976,

13



Blinder and Weiss, 1976 and Magnac et al., 2018). In such a case, the determination of

the short and long-run substitution effect depends on which of the two effects dominates in

steady state.

As intertemporal consumer problems are a building block of dynamic macroeconomic

models, our results are also relevant for business cycle and growth theories, although an

explicit analysis of general equilibrium models, possibly with a stochastic component, is

outside the scope of the present paper. While an infinite time horizon is relevant in many

applications and may represent a finite but uncertain life duration, it would be interesting

to extend the analysis to a finite (and certain) time horizon, as well as to the effects of

temporary price changes. This is left for future research.
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Kapička, M. and J. Neira (2019). Optimal taxation with risky human capital. American

Economic Journal: Macroeconomics 11 (4), 271–309.

Krause, A. (2009). Optimal nonlinear income taxation with learning-by-doing. Journal of

Public Economics 93 (9-10), 1098–1110.

Ljungqvist, L. and T. J. Sargent (2012). Recursive Macroeconomic Theory. MIT press.

Magnac, T., N. Pistolesi, and S. Roux (2018). Post-schooling human capital investments

and the life cycle of earnings. Journal of Political Economy 126 (3), 1219–1249.

Makris, M. and A. Pavan (2018). Taxation under learning-by-doing. Mimeo, Northwestern

University.

Mangasarian, O. L. (1966). Sufficient conditions for the optimal control of nonlinear systems.

SIAM Journal on Control 4 (1), 139–152.

Oniki, H. (1973). Comparative dynamics (sensitivity analysis) in optimal control theory.

Journal of Economic Theory 6 (3), 265–283.

Otani, K. (1982). Explicit formulae of comparative dynamics. International Economic

Review 23 (2), 411–419.

16



Seierstad, A. and K. Sydsaeter (1977). Sufficient conditions in optimal control theory.

International Economic Review 18 (2), 367–391.

Stantcheva, S. (2017). Optimal taxation and human capital policies over the life cycle.

Journal of Political Economy 125 (6), 1931–1990.

Stigler, G. J. and G. S. Becker (1977). De gustibus non est disputandum. The American

Economic Review 67 (2), 76–90.

Trostel, P. A. (2004). Returns to scale in producing human capital from schooling. Oxford

Economic Papers 56 (3), 461–484.

Weiss, Y. (1972). On the optimal lifetime pattern of labour supply. The Economic Jour-

nal 82 (328), 1293–1315.

17



A Mathematical appendix

A.1 Solving the general intertemporal problem

In this Appendix we derive the solution for the general intertemporal problem in which the

law of motion depends on both consumption goods and on the state variable Z, i.e.

max
x,y

∫ ∞
0

e−ρtU (x (t) , y (t) , Z (t)) dt (25)

s.t. Ż (t) = f (x (t) , y (t) , Z (t)) (26)

Ȧ (t) = rA(t) +M (t) + g (x (t) , Z (t) , p)− y (t) (27)

A (0) = A0, Z(0) = Z0, (28)

where r = ρ > 0. The case presented in the main text just amounts to assuming that

fy = 0. The associated current-value Hamiltonian function is:

H(x, y, Z,A, µ, λ; p,M) = U (x, y, Z) + λ [rA+M + g(x, Z, p)− y] + µf (x, y, Z) (29)

where λ and µ are the costate variables associated to states A and Z, respectively. The

following conditions are necessary for an internal solution:

Hx = Ux (x, y, Z) + λgx(x, Z, p) + µfx (x, y, Z) = 0 (30)

Hy = Uy (x, y, Z)− λ+ µfy (x, y, Z) = 0 (31)

µ̇ = ρµ−HZ(x, y, Z,A, µ, λ; p,M) (32)

λ̇ = λ (ρ− r) (33)

together with (26), (27), (28), and with the transversality conditions limt→∞ e
−ρtµ (t)Z (t) =

0 and limt→∞ e
−ρtλ (t)A (t) = 0. The above conditions are also sufficient for a maximum if

H(x, y, Z,A, µ, λ; p,M) is concave in state and control variables (Mangasarian, 1966; Seier-

stad and Sydsaeter, 1977). We assume that this is indeed the case and that Hxx and Hyy
are strictly negative.

The first order conditions (30)-(31) determine the optimal value of x and y as functions

of the state and costate variables, of the market price and of the exogenous component of

income:

x∗ = x∗(Z,A, µ, λ; p,M) (34)

y∗ = y∗(Z,A, µ, λ; p,M). (35)

18



Replacing (x∗, y∗) in (26), (27), (32) and (33) yields the optimal dynamics of state and

costate variables:12

Ż = f (x∗, y∗, Z) (36)

Ȧ = rA+M + g (x∗, Z, p)− y∗ (37)

µ̇ = ρµ−HZ (x∗, y∗, Z,A, µ, λ; p,M) (38)

λ̇ = λ (ρ− r) . (39)

The solution {Z (t) , A (t) , µ (t) , λ (t)} of the above system of differential equations repre-

sents the optimal trajectory of the state and costate variables, given the initial values of the

state variables, the transversality conditions, p and M (among the other variables). This

solution, once plugged in (34) and (35), determines the time-path of x and y.

Note that, since in this model r = ρ, equation (39) implies that the shadow price of

assets is constant over time, λ(t) = λ̄ for all t. In general, λ̄ depends on the parameters of

the model, possibly including market prices and the exogenous component of income, i.e.

λ̄ = λ̄ (p,M). Its specific value is obtained by imposing additional constraints. For example,

one can reasonably assume that assets go to zero (or some positive value) in steady state.

With λ = λ̄, the dimensionality of the system of differential equations effectively reduces

to three equations only (36, 37 and 38). Given the initial values of the state variables

and the transversality conditions, the solution {Z (t) , A (t) , µ (t)} of the reduced system of

differential equations represents the optimal trajectory of the state and costate variables,

which depends on p and M, and that determines the optimal path of x and y.

We focus on solutions leading to a saddle-point-stable steady state

xL = x∗(ZL, AL, µL, λ̄; p,M) (40)

yL = y∗(ZL, AL, µL, λ̄; p,M). (41)

where

ZL = ZL(p,M); AL = AL(p,M); µL = µL(p,M); (42)

are the steady-state values of state and costate variables that satisfy (36), (37) and (38)

with equality.

12Alternatively, one could derive the solution in terms of state and control variables. We opt for the

current procedure to highlight the dynamics of the states and the corresponding shadow prices, and to show

how our method can be applied to problems with any number of control variables.
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To assess the saddle-point stability of the steady state, consider the determinant of the

3-dimensional Jacobian matrix J associated to (36), (37) and (38), with λ = λ̄ :

|J | =ρfZ (ρ− fZ) +
ρ

HxxHyy −H2
xy

{
(fyHxZ − fxHyZ)2 −

(
f2yHxx − 2fxfyHxy + f2xHyy

)
HZZ

− (2fZ − ρ) [(fyHxy − fxHyy)HxZ + (fxHxy − fyHxx)HyZ ]} . (43)

The steady state has saddle point stability when the Jacobian matrix J admits one negative

eigenvalue ε (there is at most one), implying |J | < 0.

The response of the steady state to price changes determines the long-run price response.

To determine the short-run response, we consider how the saddle path leading to the steady

state changes after a price shock. Notice that the saddle path can either be expressed as a

function of the state variables (the feedback representation of the solution) or as a function

of time (open loop solution, Dockner et al., 2000; Barro and Sala-i Martin, 2004). Here we

focus on the feedback representation. As λ is fixed, it will be enough to consider how the

saddle path of µ,

µ̂(Z,A; p,M), (44)

changes when p or M change. This information will be used to obtain the short-run response

of x and y. Plugging (44) into (34) and (35) yields the saddle paths of x and y in feedback

form, i.e., the policy functions of x and y as functions of the state variables, given p and M :

x̂ = x̂(Z,A; p,M) = x∗(Z,A, µ̂(Z,A; p,M), λ̄ (p,M) ; p,M) (45)

ŷ = ŷ(Z,A; p,M) = y∗(Z,A, µ̂(Z,A; p,M), λ̄ (p,M) ; p,M). (46)

A.2 Long-run substitution effects

Consider (40) and (41). The change of steady state consumption of x after an increase in

price p is computed as follows:

xLp =
∂x∗

∂p
+
∂x∗

∂Z
ZLp +

∂x∗

∂A
ALp +

∂x∗

∂µ
µLp +

∂x∗

∂λ

∂λ̄

∂p
(47)

yLp =
∂y∗

∂p
+
∂y∗

∂Z
ZLp +

∂y∗

∂A
ALp +

∂y∗

∂µ
µLp +

∂y∗

∂λ

∂λ̄

∂p
(48)

where ∂λ̄/∂p = 0 if the price change is compensated so as to leave the marginal value of

assets λ̄ constant.
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To compute the above equations, apply Cramer’s rule to the first order conditions (30)

and (31). This yields:

∂x∗

∂p
= −gxpλ̄

Ω
Hyy

∂y∗

∂p
=
gxpλ̄

Ω
Hxy (49)

∂x∗

∂Z
=
HxyHyZ −HxZHyy

Ω

∂y∗

∂Z
=
HxyHxZ −HyZHxx

Ω
(50)

∂x∗

∂A
=
∂x∗

∂M
= 0

∂y∗

∂A
=
∂y∗

∂M
= 0 (51)

∂x∗

∂µ
=
fyHxy − fxHyy

Ω

∂y∗

∂µ
=
fxHxy − fyHxx

Ω
(52)

∂x∗

∂λ
= −Hxy + gxHyy

Ω

∂y∗

∂λ
=
Hxx + gxHxy

Ω
(53)

where

Ω = HxxHyy −H2
xy, (54)

which is positive by strict concavity. Then consider equations (36), (37) and (38), which

equal zero in steady state, and apply again Cramer’s rule to obtain:

ZLp =
ρλ̄

Ω |J |
[gxp (fZ − ρ) (fxHyy − fyHxy)

+f2xgpZHyy + f2y (gpZHxx − gxpHxZ) + (gxpHyZ − 2gpZHxy) fxfy
]

(55)

ALp =
λ̄

Ω |J |
{[(HyZ + gZHyy)fx − (Hxy + gx Hyy)fZ ] [(fZ − ρ)gxp − fxgpZ ]

+ [gx (gxpHZZ − gpZHxZ) + gpZ (gZHxx − gxHxZ) + gZ (gx − gxp)HxZ ] f2y

− [gxp (HZZ + gZHyZ)− gpZ (HxZ + 2gZHxy − gxHyZ)] fxfy

− [(Hxx + gxHxy)gpZ − gxp(HxZ + gxHyZ)] fZfy

+(gxHyZ − gZHxy)(fZ − ρ)fygxp}+ gpA
L
M (56)

µLp =
ρλ̄

Ω |J |
[(gxpHyZ − gpZHxy) (fZHxy − fxHyZ)− (gxpHZZ − gpZHxZ)(fyHxy − fxHyy)

+(gxpHxZ − gpZHxx) (fyHyZ − fZHyy)] . (57)

Expressions (55) and (56) describe the long-run price effect on Z and A. The long-run price

responses for x and y are found by replacing the above expressions in (47) and (48), which

for the general case yields

xLp = θ [fxgpZ − (fZ − ρ) gxp] fZHyy +Dfy (58)

yLp = θ [fxgpZ − (fZ − ρ) gxp] (fxHyZ − fZHxy) + Efy (59)
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where

θ = − λ̄ρ

Ω |J |
(60)

D = θ {gpZ(fyHxZ − fZHxy − fxHyZ) + gxp [HyZ(2fZ − ρ)− fyHZZ ]} (61)

E = θ [gpZ(fZHxx − fxHxZ) + gxp(fxHZZ − fZHxZ)] . (62)

These general expressions are not particularly insightful per se. Notably, their formulation

simplifies considerably in specific economic applications of interest.

For instance, when fy = 0, as in the class of models considered in Section 2, the long-run

response of x and Z boil down to equations (10) and (11) in Proposition 1,

xLp = a [fxgpZ − (fZ − ρ) gxp] fZ (63)

ZLp = −a [fxgpZ − (fZ − ρ) gxp] fx, (64)

where

a = θHyy = − λ̄ρ

Ω |J |
Hyy < 0. (65)

Moreover, in a consumer problem gpZ = 0 and gxp = −1, hence (63) and (64) further

simplify to equations (15) and (16):

xLp = a (fZ − ρ) fZ (66)

ZLp = −a (fZ − ρ) fx. (67)

As a side result, note that the same procedure can be used to compute the response to a

change in the exogenous component of income. Consider first the long run response:

xLM =
∂x∗

∂M
+
∂x∗

∂Z
ZLM +

∂x∗

∂A
ALM +

∂x∗

∂λ

∂λ̄

∂M
+
∂x∗

∂µ
µLM (68)

yLM =
∂y∗

∂M
+
∂y∗

∂Z
ZLM +

∂y∗

∂A
ALM +

∂y∗

∂λ

∂λ̄

∂M
+
∂y∗

∂µ
µLM . (69)

Since ∂x∗/∂A = ∂x∗/∂M = ∂y∗/∂A = ∂y∗/∂M = ∂ZL/∂M = ∂λ̄/∂M = ∂µL/∂M = 0,

we obtain that, when the marginal utility of wealth is maintained constant, the long run

dynamic income effects at the steady state are nil.

A.3 Short-run substitution effects

To compute short-run price effects, consider (34) and (35) and recall that in the short run

state variables A and Z are given. Given that λ is fixed, the short-run responses of x and y,
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when all variables are at their steady-state level, only depend on the direct effect of price,

and on its indirect effect through the costate variable µ:

xSp =
∂x∗

∂p
+
∂x∗

∂µ
µSp (70)

ySp =
∂y∗

∂p
+
∂y∗

∂µ
µSp . (71)

The terms ∂x∗/∂p, ∂x∗/∂µ, ∂y∗/∂p, ∂y∗/∂µ are described in equations (49) and (52). To

obtain µSp , we need to assess how the saddle path of µ responds to a price change. Even

without knowing its specific functional form, we can approximate it around the steady state.

Take a first-order linear expansion of (36), (37) and (38):


Ż

Ȧ

µ̇

 = J ·


Z − ZL

A−AL

µ− µL

 (72)

Consider the eigenvector (1, ξ2, ξ3) associated to the negative eigenvalue ε of the Jacobian

matrix J , with

ξ3 =
1

Φ
[(ε− fZ) Ω + fx (HxZHyy −HxyHyZ) + fy (HxxHyZ −HxZHxy)] (73)

ε =
1

2

(
ρ−

√
ρ2 − 4

|J |
ρ

)
< 0 (74)

Φ = −f2yHxx + 2fxfyHxy − f2xHyy > 0. (75)

The particular solution of the system of ordinary linear differential equations (72) is

Z (t) = ZL + αeεt (76)

A (t) = AL + αeεtξ2 (77)

µ (t) = µL + αeεtξ3 (78)

where α is a constant that depends on initial values. Replacing αeεt = Z (t)− ZL in (78),

yields the feedback solution of µ as a function of the state variable Z only,

µ̂(Z) = µL + (Z − ZL)ξ3. (79)

Taking the derivative of (79) with respect to p yields, for any A, the short-run effect of a

price change is

µSp ≡
∂µ̂(Z)

∂p
= µLp − ξ3ZLp + (Z − ZL)

∂ξ3
∂p

. (80)

23



In proximity of ZL, the last term is negligible and the above expression simplifies to

µSp = µLp − ξ3ZLp . (81)

Replacing (81) in (70)-(71) and rearranging yields the short-run price response of x and y:

xSp = C (fxHyy − fyHxy) +
λ̄

Φ
f2y gxp (82)

ySp = C (fyHxx − fxHxy)−
λ̄

Φ
fxfygxp (83)

where

C = εθ
{
gpZ +

gxp
Φ

[(fxHyy − fyHxy)(fZ − ρ) + (fyHxZ − fxHyZ) fy]
}
. (84)

When fy = 0 the above expressions considerably simplify. For example, the short-run

response of x becomes

xSp = aε [fxgpZ − (fZ − ρ)gxp] , (85)

as shown in equation (9) of Proposition 1.

In a consumer problem gpZ = 0 and gxp = −1, hence (85) further simplifies to

xSp = aε(fZ − ρ) (86)

as shown in equation (14).

Note that neither expression depends on assets or income, because income effects are

nil also in the short run. To see it, consider

xSM =
∂x∗

∂M
+
∂x∗

∂µ
µSM (87)

ySM =
∂y∗

∂M
+
∂y∗

∂µ
µSM (88)

Taking the derivative of (79) with respect to M yields

µSM = µLM − ξ3ZLM = 0. (89)

Together with the fact that ∂x∗/∂M = ∂y∗/∂M = 0, we conclude that xSM = ySM = 0.
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