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Abstract

The milk addiction paradox refers to an empirical finding in which commodities that are

typically considered to be non addictive, such as milk, appear instead to be addictive. This

result seems more likely when there is persistence in consumption and when using aggregate

data, and it suggests that the AR(2) model typically used in the addiction literature is prone

to produce spurious result in favor of rational addiction. Using both simulated and real data,

we show that the milk addiction paradox disappears when estimating the data using an AR(1)

linear specification that describes the saddle-path solution of the rational addiction model. The

AR(1) specification is able to correctly discriminate between rational addiction and simple

persistence in the data, to test for the main features of rational addiction, and to produce

unbiased estimates of the short and long-run elasticity of demand. These results hold both

with individual and aggregated data, and they suggest that, for testing rational addiction, the

AR(1) model is a better empirical alternative than the canonical AR(2) model.
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”Solving the Milk Addiction Paradox”

by Davide Dragone and Davide Raggi

Non-Technical Summary

Becker and Murphy (1988)’s theory of rational addiction is the reference model to study addictive

behavior in the economic literature. According to the theory, addictive consumption is predicted

to be positively correlated with past consumption. Addiction is considered to be rational if the

current consumption is affected by future events such as expected price changes, or announcements

of future tax increases or smoking bans.

Since the pioneering papers of Becker et al. (1990, 1994); Chaloupka (1991), the empirical

model used to test whether consumption of a good is consistent with rational addiction is a linear

AR(2) model where present consumption depends on past and future consumption. When used

to estimate the demand of addictive goods, such as cigarettes, the aforementioned model performs

reasonably well, although the estimates are sometimes unstable and often sensitive to the instru-

ments. Auld and Grootendorst (2004), however, observe that the model performs surprisingly

”well” also on goods that are typically considered to be habit forming, but not addictive. In

particular, when applying the model to Canadian data of consumption of milk, oranges, eggs and

cigarettes, Auld and Grootendorst (2004) find that milk consumption is consistent with rational

addiction, and even more addictive than cigarettes. This milk addiction puzzle suggests that the

AR(2) model typically used in the addiction literature is prone to produce false positives in fa-

vor of rational addiction. This result seems more likely to emerge when there is persistence in

consumption and when using aggregated data.

In this paper we claim that there exists a way to reliably discriminate between addictive and

non-addictive goods, and to estimate the associated elasticity of demand, provided one tests the

theory of rational addiction using a different empirical model. In particular, we consider the

AR(1) specification derived in Dragone and Raggi (2018). Such model has desirable theoretical

and econometric properties, and it is simpler to estimate with respect to the canonical AR(2)

model.

To investigate the performance of the AR(1) model, we first work with simulated data. We

consider two different data generation processes, one featuring myopic habit formation, and one

featuring rational addiction. We estimate the corresponding consumption trajectories using the

AR(1) model and measure the corresponding bias. The results show that the AR(1) model cor-

rectly distinguishes between addictive and non-addictive consumption, that no false positives are
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systematically found, and that the estimated short and long-run demand elasticities are unbiased.

Notably, these findings are robust when aggregated data, instead of individual consumption series,

are considered. Moreover, the results are robust even when considering the possible endogeneity

of past consumption, or of prices.

Then, we replicate Auld and Grootendorst (2004)’s exercise, using the same Canadian data,

but estimating the AR(1) model, instead of the canonical AR(2) model. We find that the milk

addiction puzzle disappears. More precisely, milk consumption is consistent with habit-forming

consumption, but not with forward-looking behavior. On the contrary, cigarette consumption is

consistent with rational addiction, as one would expect. We conclude that the milk addiction

paradox is an artifact of using the AR(2) model, and not a general result of the theory of rational

addiction.

Keywords: Adjacent complementarity, Forward-looking behavior, Milk addiction, Rational ad-

diction, Spurious correlation

JEL codes: Dll, D12, I12, L66
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1 Introduction

The milk addiction paradox refers to an empirical finding in which commodities that are typi-

cally considered to be non addictive, such as milk or oranges, appear to be addictive (Auld and

Grootendorst, 2004). This puzzling result seems to be more likely when the data are aggregated

and serially correlated, two common features of time series, and it suggests that the canonical

AR(2) model used to test addiction can produce spurious results in favor of rational addiction.

This finding, and the additional observation that the canonical AR(2) model features an explosive

root, has raised the question of whether the rational addiction model can be estimated altogether

(Laporte et al., 2017).

In this paper we show that the rational addiction theory can be tested, provided one con-

siders the AR(1) addiction model derived in Dragone and Raggi (2018), instead of the canonical

AR(2) specification. Using both simulated and real data, we show that the AR(1) model is able

to correctly discriminate rational addiction from simple persistence in the data, and to provide

unbiased estimates of the short and long-run elasticity of demand, irrespective of whether indi-

vidual or aggregated data are used. These results are likely due to the fact that the AR(1) model

is stationary (while the AR(2) model is explosive) and that it does not suffer of the endogeneity

concerns that arise when including lead consumption in the estimating equation.

To introduce the reader to the theoretical background, in section 2 we briefly present the

rational addition model and the two specifications used in the empirical literature: the AR(1)

equation representing the saddle path solution of the model (Dragone and Raggi, 2018), and

the canonical AR(2) equation. The latter equation represents the Euler equation of the rational

addiction model and it is the empirical specification typically used to test the theory on the data

(Becker et al., 1991; Chaloupka, 1991; Grossman, 1993; Chaloupka, 1996; Chaloupka and Warner,

2000; Cawley and Ruhm, 2012). In section 3 we perform a battery of Monte Carlo experiments and

we show no tendency of the AR(1) addiction model to detect addiction when there is just spurious

correlation in the data. We first generate trajectories that feature no addiction by construction,

then we the estimate the corresponding parameters using the AR(1) addiction model. The results

correctly show that the original trajectories are not consistent with rational addiction. Notably,

the estimation exercise produces unbiased estimates of the short and long-run elasticity of demand.

We also check whether the AR(1) is able to correctly detect rational addiction when, in fact, the

simulated consumption trajectories feature rational addiction. As shown in Laporte et al. (2017),

an analog validation exercise can produce unreliable estimates if one generates and estimates
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addiction trajectories using the canonical AR(2) model. When using the AR(1) model, instead,

the results are reliable and unbiased.

The fact that the simulation results obtained with the AR(1) model hold irrespective of

whether we consider individual or aggregate consumption data, mitigates the concerns about

testing rational addiction using aggregate data. To further explore the sensitivity of the AR(1)

model, and to address some endogeneity concerns that have been raised in the literature, Section

4 performs two additional sets of experiments as robustness checks. In the first set, the price

trajectories have both an exogenous and an endogenous component. In the second set of ex-

periments, lagged consumption is explicitly considered to be endogenous. In the literature these

endogeneity concerns have been addressed using further leads and lags of prices, or taxes, as

instruments (see, for example, Becker et al., 1994; Chaloupka, 1991; Gruber and Köszegi, 2001;

Baltagi and Geishecker, 2006). We proceed along the same lines and we find that the IV estimates

are still unbiased (although, as expected, the IV estimates are less efficient). We conclude that the

AR(1) correctly discriminates between persistence and rational addiction, and that aggregation,

endogeneity of prices and endogeneity of lagged consumption pose no significant threat to testing

the theory of rational addiction.

In section 5 we move to considering real data and directly addressing the milk addiction

paradox. To compare the performance of the AR(1) addiction model with the results of Auld

and Grootendorst (2004), we estimate the demand for milk, oranges, eggs and cigarettes using

the same Canadian dataset analyzed in Auld and Grootendorst (2004). Instead of using the

canonical AR(2) model, however, we estimate using the AR(1) addiction equation. The results

show no evidence of milk being addictive, and we conclude that the milk addiction paradox is

an artifact of using the Euler equation rather than the AR(1) solution of the model. In fact, in

our estimations the consumption of milk, oranges and eggs is not consistent with the theory of

rational addiction, while smoking, as expected, is addictive. Section 6 concludes.

2 The rational addiction model

Consider an intertemporal problem in which an agent allocates income between an addictive

good c and a numeraire good q. Consumption of the addictive good increases the stock A of

addiction according to A (t) = c (t− 1) + (1− δ)A (t− 1) , where δ ∈ (0, 1] describes the degree

of persistence of the state of addiction and t is time. Becker and Murphy (1988)’s model of

rational addiction assumes that the marginal utility of current consumption is higher, the higher

the consumption stock (UcA > 0) . This property, called reinforcement, represents the effect of a
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learning-by-consuming process in which the more an agent consumes, the more she (marginally)

appreciates the good. The marginal utility of addiction is negative if the addictive commodity is

harmful, and positive if it is beneficial. As usual, the per-period utility is increasing in the two

consumption goods, and it is concave.

While reinforcement describes the effect of past choices on current preferences, the second

main feature of rational addiction, forward-looking behavior, implies that current choices take into

account expectations about future events and how current behavior will affect future preferences.

This property is in stark contrast with myopic models, where current behavior only depends on

past events and choices, and not on future events and expectations (see, for instance, the habit

formation model presented in Pollak, 1970, or in Gilleskie and Strumpf, 2005). Finally, agents are

assumed to be time consistent. Accordingly, unless some new information arrives, any optimal

plan will be faithfully implemented and no self-control failure should be observed. This property is

explicitly required by Becker and Murphy (1988) and is formally obtained assuming the existence

of a constant discount factor β ∈ (0, 1) to weight future utilities.1

Under the above assumptions, the rational addiction model can be formalized as the following

intertemporal problem

max
c,q

∞∑
y=0

βtU (c (t) , q (t) , A (t)) (1)

s.t. A (t) = c (t− 1) + (1− δ)A (t− 1) (2)

M (t) = p (t) c (t) + q (t) (3)

where p (t) is the price of the addictive good at time t, M (t) is income and A (0) = A0.
2

Dragone and Raggi (2018) show that the solution of the rational addiction model is the saddle

path leading to a steady state of consumption and addiction. Using a quadratic utility function,

the saddle path can be conveniently written as the following linear AR(1) equation,

c (t) = λc (t− 1) + ϕ1p (t− 1) + ϕ2p (t) +
∞∑
s=1

ϕ3 (s) p (t+ s) + ϕ0 (4)

1To address self-control in a rational addiction context, Gruber and Köszegi (2001) augment the Becker and

Murphy (1988) model and allow for time-inconsistent preferences through quasi-hyperbolic discounting. They show

that forward-looking behavior and the effect of announced tax changes can still be tested, but since the time-

consistent and the time-inconsistent solutions are isomorphic, it is not possible to derive a sharp empirical test that

distinguishes the augmented model from the original one.
2Becker and Murphy (1988) allow for saving and borrowing and consider that case in which the marginal utility

of wealth is constant. This produces the same solution and the same Euler equation of the model presented here,

in which the budget constraint is binding in each period (see Dragone and Raggi, 2018, for details).
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or, when δ = 1,

c (t) = λc (t− 1) + ϕ2p (t) +
∞∑
s=1

ϕ3 (s) p (t+ s) + ϕ0. (5)

Equation 4 (or 5) states that optimal current consumption depends on past consumption and on

current and future prices. The significance and sign of the estimated coefficients allow to test

the main properties of the rational addiction model. Reinforcement implies that λ is expected

to be positive. When this is the case, past and current consumption are positively correlated, a

property called adjacent complementarity (Ryder and Heal, 1973). Saddle path stability further

requires λ < 1. Forward-looking behavior implies that ϕ3 6= 0. A positive value of ϕ3 implies that

a future (expected) price increase triggers an increase in current consumption. This behavior is

consistent with stockpiling today as a response to the announcement or expectation of a future

price increase (see, for instance, Gruber and Köszegi, 2001). A negative value of ϕ3, instead,

reveals the opposite reaction in which consumption today decreases in expectation of a future

price or tax increase.

The solution 4 of the rational addiction model clearly satisfies the necessary conditions for

optimality. In particular, it satisfies the following Euler equation (Becker and Murphy, 1988)

c (t) = α0 + α1p (t− 1) + α2c (t− 1) + α3p (t) + α4c (t+ 1) + α5p (t+ 1) (6)

which, if δ = 1, simplifies to

c (t) = α0 + α2c (t− 1) + α3p (t) + α4c (t+ 1) . (7)

The AR(2) equation 6 (or 7) constitutes the canonical model used in the empirical literature to

estimate the demand for addictive goods (see for example Chaloupka, 1991; Becker et al., 1991,

1994; Baltagi and Griffin, 2001). As shown in Becker et al. (1994), reinforcement implies α2 > 0,

i.e. adjacent complementarity between past and current consumption, analogously to the role

played by λ > 0 in the AR(1) solution. Forward-looking behavior is assessed from the coefficient

α4 of lead consumption and it is expected to be positive. This contrasts with the AR(1) solution,

in which forward-looking behavior implies that lead price can either have a positive or negative

effect on current consumption.3

3In both the saddle path and the Euler equation, current consumption negatively depends on its current price,

so that the (static) law of demand applies. The Euler equation has two roots. One root λ is less than one if

α2 +α4 < 1, which in turn implies the restriction α2, α4 ∈ (0, 1). (Note that the same λ is directly estimated in the

AR(1) equation 4 as the coefficient of lag consumption). In addition, β = α4/α2, a property that has sometimes

been used as a restriction, or as a test of the validity of the rational addiction model (Auld and Grootendorst,

2004; Baltagi and Geishecker, 2006). Importantly, the second root of the Euler equation is always larger than one,
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Despite the general consensus on the empirical validity of the rational addiction model, testing

it using the AR(2) Euler equation can be problematic (see for example Auld and Grootendorst,

2004; Baltagi and Geishecker, 2006; Laporte et al., 2017). In particular, Auld and Grootendorst

(2004) observe that the empirical model based on the AR(2) Euler equation tends to find rational

addiction when in fact the commodity does not feature addiction. For example, when estimating

the demand for Canadian milk, they find the puzzling result that milk would be more addictive

than smoking. Auld and Grootendorst (2004) suggest that this puzzle and, more in general,

the tendency of the Euler equation to produce false positives and to erroneously classify a non-

addiction good as rationally addictive, can be due to the endogeneity arising from the presence

of a lead and lag consumption term in the AR(2) model, and to the use of aggregate data. To

explore these possible explanations, they generate simulated consumption trajectories that feature

persistence, but not rational addiction, and they estimate the corresponding parameters using the

Euler equation to check for possible biases. The results show that the estimates are often unstable

and very sensitive to the choice of the instruments, with a tendency to produce false positives

that is more likely when the data generating process exhibits high serial correlation. This finding

is particularly problematic, since time series typically display high serial correlation, in particular

when data are aggregated. Accordingly, Auld and Grootendorst (2004) conclude that ”time-series

data will often be insufficient to differentiate rational addiction from serial correlation in the

consumption series”. In the following sections we show that the above claims do not hold when

the empirical model is based on the AR(1) equation describing the saddle path, instead of the

AR(2) equation describing the Euler equation. We claim that the better performance of the AR(1)

model over the AR(2) is likely due to the fact that the Euler equation is not the solution of the

model, but an intertemporal necessary condition that the solution of the rational addiction model

must satisfy. Importantly, the Euler equation is intrinsically unstable, because it has at least one

root that is explosive, as shown by Laporte et al. (2017). This violates the basic assumptions

needed to perform econometric analysis of time series and it could produce erroneous estimates.

On the contrary, the AR(1) specification we propose is stationary. Moreover, since it does not

contain the lead of consumption, the endogeneity concerns afflicting the AR(2) model are likely

to be less severe.

which implies that the Euler equation is in general explosive, the only exception being the saddle path (Dragone

and Raggi, 2018).
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3 Monte Carlo experiments

In this section we run a set of Monte Carlo experiments to investigate whether the rational addic-

tion model is able to correctly detect rational addiction, and to distinguish it from non-addiction

models that feature persistence in consumption but no forward-looking behavior. Differently from

the Monte Carlo experiments of Auld and Grootendorst (2004) and Laporte et al. (2017), who

estimate the simulated trajectories using the AR(2) Euler equation, we use the AR(1) addiction

model.

We consider consumption trajectories generated using two alternative data generating pro-

cesses (DGP). The first one corresponds to the process considered in Auld and Grootendorst

(2004). It consists of a static demand model where prices and errors are autocorrelated. Specifi-

cally, consumption is assumed to depend on current price and errors, ct = −ηpt+ut, where prices

and errors are autocorrelated according to pt = 0.9pt−1 + νt and ut = ρut−1 + εt. Parameter

ρ ∈ (0, 1), and ut, νt and εt are sequences of i.i.d. Gaussian shocks. Manipulating the above

equations yields

ct = ρct−1 + γ1pt−1 + γ2pt + γ0 + εt (8)

where γ1 = ηρ and γ2 = −η. Since ρ ∈ (0, 1), the trajectories generated by 8 are stationary and

persistent (in the form of adjacent complementarity in consumption). This model, however, does

not allow for forward-looking behavior. In fact, it formally resembles the solution of a myopic

habit or taste formation model in which current consumption only depends on current and past

variables (see, e.g. Pollak, 1970; Becker et al., 1994; Gilleskie and Strumpf, 2005; Dragone and

Raggi, 2018). In the following we refer to 8 as to the non-addiction DGP.

The second DGP features rational addiction. Based on the saddle path solution 4, the con-

sumption trajectories are generated according to the following process

ct = ρct−1 + γ1pt−1 + γ2pt + γ3pt+1 + γ0 + εt, (9)

while the price and error dynamics follow the same autoregressive processes used for the non-

addiction DGP. As emphasized in Becker et al. (1991), testing for the effects of future prices on

current consumption distinguishes rational models of addiction from myopic models. Accordingly,

the main difference with respect to the non-addiction DGP is that the addiction DGP features

forward-looking behavior (γ3 6= 0).4

Equation 9 is the AR(1) addiction equation used to generate trajectories compatible with the

theory of rational addiction, and it will also be used as the empirical model for testing rational

4With respect to equation 8, in equation 9 the coefficients ρ, γ1 and γ2 are independent. The assumption of

exogenous prices is relaxed in the robustness checks in Section 4.
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addiction. Given that the only difference between the two processes is the presence of the lead

of price, we expect the estimated γ3 to be non statistically significant when the trajectory is

generated by the non-addiction process 8, and to be different from zero when it is generated by

the addiction process 9.

For later reference, the short and long run response of consumption to a permanent price

increase are, respectively,

CS = γ2 + γ3 < 0, CL =
γ1 + γ2 + γ3

1− ρ
< 0. (10)

where γ3 = 0 when the DGP features non-addiction.

3.1 Experiment 1: Estimating non-addictive consumption

In the first set of experiments we generate individual consumption trajectories using the non-

addiction DGP in equation 8. We randomly select ρ and γ1 from a uniform distribution (0, 1),

we assume that prices are strictly exogenous, and we generate 2, 000 different sets of parameters

αi = (ρ, γ1, γ2)i. Each set of parameters represents an individual i and determines the individual

short and long-run elasticity according to equations 10.5 For each set, we generate 1000 different

trajectories of length 500 of consumption and prices, which are meant to represent ’alternative

life courses’ of individual i, depending on the sequence of random shocks experienced by i over

her lifetime. Using the AR(1) addictive model, we use OLS and 2SLS to estimate α̂i over the

1000 alternative life courses of i. Since we know the true values of the DGP, we can compute the

(relative) estimation bias bi for each i using the formula bi = (α̂i − αi)/(1 + αi). Aggregating

these individual biases yields a measure of the average bias b̄i =
∑

i bi that results when using

individual level data.

The left panel of Figure 1 reports the average bias b̄i obtained using OLS.6 The results show no

notable bias in the estimation of the true parameters of the data generating process. In particular,

the AR(1) model correctly finds that the lead price coefficient is not statistically significant, which

is indeed the case because the DGP features non-addiction. If anything, there is a slight downward

bias in the estimation of the parameter of lag consumption, but its is negligible (less than 1%) with

respect to the true value of ρ. The short and long-run elasticities estimated using the individual

trajectories are unbiased. In contrast with the findings of Auld and Grootendorst (2004), these

5Since the DGP is non-addictive, the short and long-run elasticities (eqs. 10) are computed setting γ3 =

0.Paremeter γ2 is computed as = −γ1/ρ.
6The results obtained with IV estimation are presented in Section 4.
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Figure 1: Estimation bias when consumption is not addictive
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Notes: Left panel: estimation of the relative bias b̄i on individual trajectories. Right panel: estimation of the

relative bias b̄k on aggregate trajectories. Non-addictive consumption trajectories are generated according to 8,

and estimated using 9 and OLS. The vertical bars represent the 95% confidence intervals for the estimated bias.

results suggests that the AR(1) empirical addiction model is not prone to wrongly detect rational

addiction when the data display persistence, but no forward-looking behavior.

To assess whether the results above are robust to using aggregate data, we consider a second set

of experiments. We consider 2000 villages k, each composed of 100 individuals j. Each individual

is characterized by a different set of parameters αj
k = (ρ, γ1, γ2)

j
k, j = 1, 2, ...100, k = 1, 2, ...2000,

which are used to generate individual consumption trajectories of length 500. For a given village k,

we aggregate the corresponding 100 individual trajectories to obtain a village-specific trajectory

with average parameters ᾱk =
∑

αj
k and average short and long-run elasticity C̄S,k and C̄L,k.

Generating 1000 alternative life courses for each individual, we generate 1000 alternative life

courses of village k. Using OLS and IV on the aggregate trajectories we estimate α̂k and compute

ĈS,k and ĈL,k, which we compare to the true values to measure the village-specific relative bias

bk = (α̂k − ᾱk)/(1 + ᾱk). (The same formula is used to measure the relative bias for elasticity).

We define b̄k =
∑

k bk as the average bias over the 2000 villages, and we report it with 99%

confidence intervals in the right panel of Figure 1.

The results show that the AR(1) model correctly detects that the aggregated data feature per-

sistence but no forward-looking behavior, as with individual data. Hence it does not erroneously

detect addiction when there is no addiction in the data. Considering the estimated coefficients,

we find an upward bias for the lagged variables, a result that is not surprising because aggrega-

tion tends to increase the persistence in time series (Granger and Morris, 1976; Havranek et al.,
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2017). Importantly, despite the overestimation in the persistence of consumption, the estimated

coefficient of future price is unbiased and equal to zero, which is indeed correct because the

non-addiction DGP features no forward-looking behavior. Moreover, the estimates of short and

long-run elasticity are unbiased. Similar results hold also when we run additional regressions

using 2SLS and prices as instruments for lagged consumption (see Section 4.2). We can therefore

conclude that, even with aggregated data, the AR(1) model is able to properly distinguish pure

autocorrelation from rational addiction, and to correctly detect persistence in consumption and

the absence of forward-looking behavior in the data.

3.2 Experiment 2: Estimating addictive consumption

Laporte et al. (2017) show that generating and estimating consumption series using the AR(2)

Euler equation can produce unreliable estimates. In this subsection, we show that this is not the

case when using the AR(1) model. We run additional Monte Carlo experiments with individual

and aggregate trajectories generated and estimated as in the previous subsection. The difference is

that we now generate trajectories that display forward-looking behavior (with γ2 and γ3 selected

from a uniform distribution with support (−1, 0) and (−1, 1), respectively) and that we use the

AR(1) model both as the DGP and as the empirical model.

Figure 2: Estimation bias when consumption is addictive
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Notes: Left panel: estimation of the relative bias b̄i on individual trajectories. Right panel: estimation of the

relative bias b̄k on aggregate trajectories. Addiction consumption trajectories are generated according to 9, and

estimated using 9 and OLS. The vertical bars represent the 95% confidence intervals for the estimated bias.

The estimated biases using individual and aggregate trajectories and OLS are reported in Fig-

ure 2 (left and right panel, respectively).The results show that the AR(1) model produces unbiased

12



estimates of the parameters and of the corresponding elasticities, both when using individual and

aggregate data. With respect to the previous Monte Carlo experiments, here the coefficient of

lead price is estimated to be different from zero, which is correct because the DGP is addictive,

and the lagged variables are precisely estimated. Given that the estimates of the coefficients are

unbiased, the estimation of the short and long-run elasticity is also unbiased. We conclude that

the AR(1) model is able to correctly detect rational addiction when the data truly feature rational

addiction, and that using aggregated data pose no particular threat for the empirical estimation.

4 Robustness checks

4.1 Endogenous prices

In the previous Section we have shown that the AR(1) empirical model is suitable to test rational

addiction, both with individual and aggregate data. The results were obtained assuming that

prices are exogenous. As a robustness check, in this section we investigate the performance of the

AR(1) model when prices are endogenous. Specifically, we consider the case in which the observed

price can be decomposed as follows

pt = aτ t + (1− a)πt (11)

where a ∈ [0, 1]. The term τ t is exogenous, and it can be interpreted as taxes, or as the effect

of a regulation that affects the opportunity cost of consuming the good (e.g. smoking bans).

The term πt is endogenous and is assumed to be negatively correlated with contemporaneous

consumption.7 Parameter a describes the relative weight of the exogenous with respect to the

endogenous component of price. Accordingly, the limit case where a = 1 implies that prices are

fully exogenous. The case where a < 1 seems to be more common in the empirical applications,

with various degrees depending on the specific application. For example, Gruber and Köszegi

(2001) observe that about 80 percent of the within-state-year variation in the price of US cigarettes

can be attributed to tax changes, while Blanchette et al. (2019) report that for alcohol the median

specific excise taxes account for about one fifth of state alcohol taxes.

In the following we consider two different values of a: a = 0.8 (’almost exogeneity’), and

a = 0.2 (’mild exogeneity’). For each value of a we generate price trajectories and we perform

the same exercise of the previous experiments, both with individual and aggregate data, with the

7We assume πt = 0.7πt−1 + ξt and corr(ξt, εt) = −0.5, where εt is the error used in Section 3 to determine

consumption.
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Figure 3: Estimation bias when prices are endogenous
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Notes: Scenario 1: prices are mildly exogenous (a = 0.2). Scenario 2: prices are almost exogenous (a = 0.8).

The left panel reports the results obtained with a non-addictive data generating process. The right panel reports

results obtained from trajectories featuring addiction. All individual trajectories are estimated using 9 and 2SLS.

The vertical bars represent the 95% confidence intervals for the estimated bias.

difference that we use 2SLS and we instrument for prices using τ t−1 up to τ t+2 (see, for example,

Gruber and Köszegi, 2001; Gruber et al., 2003).

The results using individual data are reported in Figure 3. They show no significant bias,

both when estimating the non-addictive and the addictive trajectories. A possible exception is
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the bias in the coefficient of lagged consumption when prices are almost exogenous and the DGP

features non-addiction (bottom-left panel). This bias, however, is negligible (less than 1%) and,

importantly, it does not bias the estimation of lead terms, nor the short and long-run elasticity

of consumption. When using aggregate data, instead of individual trajectories, the results (not

reported) are similar to those obtained in the previous simulations with exogenous prices. We can

therefore conclude that, even when prices are endogenous, the AR(1) model is able to correctly

distinguish between pure persistence and rational addiction, and to provide unbiased estimates of

the elasticity of demand.

4.2 Endogenous lagged consumption

When estimating rational addiction using the AR(2) model (eq. 7), Becker et al. (1994) observe

that past and future consumption can be endogenous, and they suggest using past and future

prices as instruments. The AR(1) model does not contain future consumption, but the presence

of past consumption can still give rise to endogeneity concerns. To address them, in this subsection

we re-run the analysis presented in Section 3, with the only difference that we use 2SLS, and pt−2

and pt+2 as instruments (overidentification), rather than OLS.

Figure 4: Estimation bias when lagged consumption is endogenous
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Notes: Left panel: estimation on individual trajectories. Right panel: estimation on aggregate trajectories.

Consumption trajectories are generated according to the non-addiction process 8, and estimated using 9

and 2SLS. The vertical bars represent the 95% confidence intervals for the estimated bias.

In Figure 4 we report the estimation bias obtained when the DGP features non-addiction and

the estimating model is the AR(1) equation 9. This experiment is analog to the first one reported

in Section 3, which uses OLS estimation, and the results are similar. We find (i) no significant
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bias when considering individual trajectories, (ii) a positive bias on the lag coefficients when using

aggregate trajectories, and (iii) unbiased estimates of the short and long-run elasticity, both when

using individual and aggregated consumption series. As expected, since IV estimation is less

efficient than OLS estimation, the confidence intervals are wider.

As a final check, we also re-run the experiment when the DGP features rational addiction, as

in the second experiment in Section 3. The IV estimates (not reported here and available upon

request) are similar to those obtained when estimating with OLS and show not significant bias.

We can therefore conclude that the endogeneity concerns due to presence of lag consumption in

the estimating equation does not pose a relevant threat for the empirical estimation.

5 Is Milk really addictive? No

In this section we use real data to investigate the Auld and Grootendorst (2004)’s result about milk

addiction. To allow for a direct comparison, we consider the same Canadian dataset containing

annual aggregate national data on consumption and prices for milk, oranges, eggs and cigarettes

(Auld and Grootendorst, 2004).8 Instead of the AR(2) equation 7 used by Auld and Grootendorst

(2004), here we use the AR(1) empirical model (eq. 9). Accordingly, rational addiction predicts

the coefficient of ct−1 to be positive and less than one, the coefficient of pt to be negative, and

the coefficient of pt+1 to be significantly different from zero. The first prediction reveals adjacent

complementarity and is consistent with reinforcement in preferences, the second one shows con-

sistency with the law of demand, and the third one reveals forward-looking behavior and is the

main test to distinguish between rational addiction and simple persistence in consumption.

As a preliminary analysis, we test whether the commodities are stationary, a necessary condi-

tion for both the rational addiction theoretical model and for the empirical estimation. A battery

of stationarity tests (the Augmented Dickey-Fuller, the GLS Dickey-Fuller, and the Zivot-Andrews

tests) consistently rejects the unit-root hypothesis only for oranges. For milk, eggs and cigarettes,

we are unable to reject the null hypothesis of non-stationarity, both for consumption and prices.

Additional testing shows that there exists a cointegration relationship between consumption and

prices for milk, eggs and cigarettes. Hence, when estimating the parameters for milk, eggs and

8The data were obtained from the Statistics Canada’s CANSIM database. Oranges are observed starting from

1960, Eggs and milk starting from 1961, cigarettes starting from 1968. Prices are expressed in real terms by adjusting

by all-items CPI (1992 = 100). All quantities (liters for milk, dozens for eggs, kilos for oranges) are in per-capita

terms. As in Auld and Grootendorst (2004), cigarette consumption includes cigars and is computed as the sum

of domestic and export sales to account for smuggling between Canada and the USA. Real per-capita outlays on

consumer non-durables are used as a proxy for permanent income. See Auld and Grootendorst (2004) for details.

16



cigarettes, we follow the two-step Engel-Granger procedure for cointegration modeling. We con-

sider the Error Correction Mechanism (ECM) representation of the AR(1) model 9 and we apply

Dynamic OLS for estimation (Stock and Watson, 1993). As shown in the Appendix A.2, this is

relatively easy to implement using our linear AR(1) model. For oranges, we simply use OLS.9

A potential concern for the empirical analysis is that the AR(1) model can suffer of endogeneity,

due to the inclusion of a lag consumption term (Gilleskie and Strumpf, 2005). This concern is also

present (and actually more pervasive) when using the AR(2) Euler equation, due to the existence

of both a lead and lag term, and it has been addressed in the literature using instrumental

variables and GMM (Becker et al., 1991; Chaloupka, 1991; Baltagi and Geishecker, 2006; Auld and

Grootendorst, 2004). The post-estimation analysis (available upon request) shows that the model’s

residuals are uncorrelated, which corroborates the exogeneity assumption of lag consumption. In

addiction, the results of the Monte Carlo simulations reported in the previous sections show that

endogeneity is a minor concern when testing the rational addiction model using the AR(1) model.

According to these preliminary considerations, we consider ct−1 to be exogenous and we run OLS

(or 2SLS) when stationarity is satisfied (oranges), and the two-step procedure described in Engle

and Granger (1987) when the data are non-stationary but cointegrated (cigarettes, milk and eggs).

The empirical results shown in Table 1 suggest that only cigarettes are consistent with the

Becker and Murphy (1988)’s theory of rational addiction. As predicted by the model, the coeffi-

cients of lagged consumption and of current price are negative and significant, and the coefficient

of lead price is different from zero, which implies that law of demand holds and that the demand

for cigarettes features adjacent complementarity and forward-looking behavior.10 On the con-

trary, consumption of milk, eggs and oranges is not forward-looking. Hence it is not consistent

with the rational addiction model, and it is instead compatible with a habit formation (or myopic

addiction) model.

The result that neither milk, or oranges, or eggs are addictive is in sharp contrast with Auld

and Grootendorst (2004)’s puzzling finding. We suspect a main reason for this discrepancy is

9In both models deterministic trends have not been included, because of their irrelevant impact on the results.

As in Auld and Grootendorst (2004), we add outlays as a control variate. Additional information on the unit-root

and cointegration tests is reported in Table 2 in Appendix A.1. Details on the ECM representation and on the

estimation procedure of the AR(1) model are in Appendix A.2.
10Although our goal is not to provide new estimates for the elasticity of demand, note that estimated values of

the short and long-run elasticity are −0.23 and −0.59, respectively. These values are compatible with those found

by Gruber et al. (2003), who report an elasticity of the demand for Canadian cigarettes in the range from −0.45 to

−0.47, as well as with the estimates obtained using US data (Chaloupka and Warner, 2000; Gruber and Köszegi,

2001; Callison and Kaestner, 2014; Zheng et al., 2017).
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Table 1

Coefficient Cigarettes Milk Eggs Oranges

ρ (ct−1) 0.879∗∗∗ (0.100) 0.772∗∗∗ (0.160) 0.832∗∗∗ (0.088) 0.751∗∗∗ (0.134)

γ2 (pt) -0.093∗∗ (0.045) -0.478∗∗ (0.175) -0.087 (0.052) -0.634∗∗∗ (0.142)

γ3 (pt+1) -0.140∗∗∗ (0.015) 0.285 (0.169) 0.021 (0.050) 0.136 (0.120)

Rational

Addiction?

Yes No No No

Notes: Estimation of the demand for cigarettes, milk, eggs and oranges using the AR(1) model 9 and national

annual data from the Statistics Canada’s CANSIM database. Dependent Variable = ct; * p < 0.10, ** p < 0.05,

*** p < 0.01; standard errors in parentheses. Prices are expressed in real terms by adjusting by all-items CPI

(1992 = 100). All quantities are in per-capita terms. Cigarette consumption includes cigars and is the sum of

domestic and export sales to account for smuggling between Canada and the USA. Rational addiction predicts the

coefficient of ct−1 to be positive and less than one, the coefficient of pt to be negative, and the coefficient of pt+1 to

be significantly different from zero. Only cigarettes are consistent with rational addiction. Milk, eggs and oranges

are consistent with persistence in consumption, but do not display forward-looking behavior.

the role played by the lead term of consumption ct+1 in the AR(2) equation used to test rational

addiction. In particular, the instability and sensitivity of the estimates to the choice of the

instruments found in the literature (see, for example, Baltagi and Geishecker, 2006, and Auld

and Grootendorst, 2004) suggests that endogeneity is a serious problem when estimating a AR(2)

model, and that it is empirically difficult to handle it by using instrumental variable estimators.

The Monte Carlo experiments presented in the previous Section suggest that this is not the case

with the AR(1) model. This is further corroborated by a robustness check in which we instrument

for the lagged consumption of oranges (for which we know that non-stationarity can be rejected):

the IV estimates are qualitatively similar to the ones obtained with OLS, but they are more

imprecise, as expected.

An additional reason for the discrepancy between our empirical results and Auld and Grooten-

dorst (2004) is that some of the time series under examination are non stationary. This may have

produced unreliable estimates, even in absence of endogeneity. To address this concern, before

running our analysis we have tested the data for stationarity and cointegration. This has allowed

to distinguish between cases in which stationarity holds and OLS can be used (oranges), and cases

in which one should follow a different route, such as the two-step procedure of Engle and Granger

(1987).
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6 Conclusion

The evidence on milk addiction found by Auld and Grootendorst (2004) has raised the question of

whether the AR(2) model typically used to test the model of rational addiction is an appropriate

empirical specification. The AR(2) model tends to find spurious evidence for rational addiction

and is very sensitive to the choice of the instrumental variable estimators, a result that is more

likely when the consumption series display high persistence (Auld and Grootendorst, 2004). In

addition, Laporte et al. (2017) show that the AR(2) model is intrinsically explosive, which makes

estimating and testing the rational addiction model problematic. In this paper we have shown

that the above results do not hold when, instead of the AR(2) equation, a linear AR(1) model

is used. This specification describes the saddle path solution of the rational addiction model, it

retains the main theoretical predictions that have been investigated in the literature using the

canonical AR(2) model, and it is empirically simpler to estimate.

Using Monte Carlo simulations, we first show that the AR(1) model does not produce false

positives and it is able to correctly detect rational addiction. Moreover, it produces unbiased esti-

mates of the short and long-run elasticity of consumption, and it does not suffer of the endogeneity

concerns that may arise when using lag consumption in the estimating equation. These results

hold both with individual and aggregate data, a finding that is particularly appealing because

consumption series are typically available as aggregate data.

To directly address the milk addiction paradox, we then consider the same Canadian data used

by Auld and Grootendorst (2004) and we proceed with the empirical analysis using the AR(1)

model, instead of the AR(2) model. This allows to show that the milk addiction paradox is only

apparent. In fact, using the AR(1) addiction model, we show that milk is not compatible with

the rational addiction model, while cigarettes are, as expected.

These results allow us to conclude that the AR(1) model is a good candidate to test the theory

of rational addiction. We claim that the better performance of the AR(1) model over the AR(2) is

likely due to the fact that the Euler equation is not the solution of the model, but an intertemporal

necessary condition that the solution of the rational addiction model must satisfy. Moreover, the

Euler equation is intrinsically unstable, because it has at least one root that is explosive (Laporte

et al., 2017). This violates the basic assumptions needed to perform econometric analysis of time

series and it could produce erroneous estimates. On the contrary, the AR(1) specification we

propose is stationary and, since it does not contain the lead of consumption, the endogeneity

concerns afflicting the AR(2) model are likely to be less severe.
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Appendices

A Empirical analysis: Supplementary material

A.1 Unit-root, cointegration tests

Table 2 shows the results of the the Augmented Dickey-Fuller test (ADF, Dickey and Fuller,

1979), the GLS Dickey-Fuller test (DF-GLS, Cheung and Lai, 1995; Elliot et al., 1996), and the

Zivot-Andrews tests (ZA, Zivot and Andrews, 1992), to check for unit-roots in the data analyzed

in the empirical analysis of Section 5. The optimal number of lags is automatically selected.

Since trends appear to be not relevant, in the ZA test we allow for structural breaks only for the

intercept.

Table 2: Unit-root and cointegration tests

Cigarettes Milk Eggs Oranges

price cons. price cons. price cons. price cons.

ADF test -1.208 0.355 -1.745 -1.791 -1.518 -1.533 -3.268 -2.954

z crit. value -2.623 -2.623 -2.614 -2.614 -2.616 -2.614 -2.613 -2.613

DF-GLS test -2.008 -1.107 -1.329 -0.349 -1.811 -1.599 -3.798 -3.016

z crit. value -3.020 -3.020 -2.960 -2.960 -2.960 -2.960 -2.952 -2.952

ZA test -3.227 -2.857 -2.769 -2.998 -3.559 -1.667 -6.635 -5.524

z crit. value -4.58 -4.58 -4.58 -4.58 -4.58 -4.58 -4.58 -4.58

Stationary? No No No No No No Yes Yes

GH/EG test -5.39 -3.651 -3.816 –

z crit. value -4.99 -3.497 -3.497 –

Cointegrated? Yes Yes Yes –

Notes: Unit-root and cointegration tests for the Canadian data analyzed in the empirical analysis of Section

5. z is the critical value of the corresponding test (10% for the unit-root tests, 5% for the cointegration

tests).

For cigarettes we use the Gregory-Hansen cointegration test (GH, Gregory and Hansen, 1996)

to account for potential structural breaks due to the antismuggling policies implemented in the

early 1990s (Gruber et al., 2003). The p-values are smaller than 10% and allow rejecting the
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no-cointegration hypothesis. Similarly, for milk and eggs the Engle-Granger test (EG, Engle and

Granger, 1987) allows rejecting no-cointegration at the 5% significance level.

A.2 AR(1) model and error correction mechanism

Based on the results presented in Table 2, consumption and prices of cigarettes, milk and eggs

are cointegrated. Accordingly, we follow the two-step Engel-Granger procedure for cointegration

modeling. We consider the Error Correction Mechanism (ECM) representation of the AR(1) model

9 and we apply Dynamic OLS for estimation (Stock and Watson, 1993), as explained below.

As a starting point, consider the AR(1) model 9

ct = ρct−1 + γ1pt−1 + γ2pt + γ3pt+1 + γ0 + ξt. (12)

Subtracting ct−1 and manipulating the above equation allows for the following Error Correction

Mechanism representation

∆ct = µ (ct−1 − γ0 + ωpt−1) + γ0ρ+ γ2∆pt + γ3∆2pt+1 + εt. (13)

where µ ≡ ρ − 1, ω ≡ γ1+γ2+γ3
µ , ∆ is the difference operator, and ∆2pt+1 ≡ pt+1 − pt−1.

This representation allows to describe consumption as a combination of a long run relationship

(ct−1 = γ0 − ωpt−1) , and a short run relationship (γ0ρ+ γ2∆pt + γ3∆2pt+1) between consump-

tion and prices.

Considering equation 13, estimates and inference for the parameters can be derived through

the two-step procedure described in Engle and Granger (1987). First, the long run relationship

ct−1 = γ0 − ωpt−1 is estimated using the Dynamic OLS procedure of Stock and Watson (1993),

which produces super-consistent estimators of γ0 and ω. The lagged residuals are then plugged

into equation 13 to obtain estimates of γ2, γ3 and ρ. Finally, using the definition of ω and µ, the

point estimate of γ1 can be computed as γ1 = − (µω + γ2 + γ3) .
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