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Non-technical Summary 

Energy conversion and use are major sources of environmental pollution. Emissions from 

transport or from burning fossil fuels to produce electricity contribute substantially to global 

warming and other environmental problems. In line with the economic theory of externalities, 

several environmental policy measures try to reduce emissions from energy use by 

influencing the costs of energy consumption. The most important environmental policies in 

European energy markets are the European emissions trading scheme (EU ETS), energy 

taxes, subsidies for renewable energy sources, and instruments specifically targeted at the 

transport sector.  

A price increase of energy as an input increases production costs. This reduces the domestic 

and foreign demand for goods and services and, therefore, creates macroeconomic costs. Our 

paper presents a survey on selected studies on macroeconomic costs of environmental 

regulation in European energy markets. As some policy measures are initiated on the national 

level we also include experiences of single Member States, especially Germany.  

The analysed studies show that the environmental regulation affects the European economy, 

particularly the energy intensive industries and the industries that produce internationally 

tradable goods. From a macroeconomic point of view, however, the costs appear to be 

relatively small. The reason for that is that some sectors benefit from the regulation. If, for 

example, the regulation creates government revenues which are used to lower non-wage 

labour costs, this may benefit the labour intensive sectors, such as services. Not surprisingly, 

macroeconomic costs tend to be higher for more ambitious environmental targets. In this case, 

also the efficiency of the regulation becomes a more important issue. There are numerous 

studies on the macroeconomic costs of the EU ETS. Here, the costs depend not only on the 

assignment of reduction obligations to the sectors participating in the EU ETS but also on the 

optimal allocation of emission permits between the sectors participating in the ETS and the 

rest of the economy. The macroeconomic costs are lower if the project-based mechanisms, 

Clean Development Mechanism and Joint Implementation, are less restricted and costly 

domestic emission reduction can be replaced by cheaper reduction abroad. In this case, the 

resulting GDP losses from implementing the Kyoto targets are typically around 0.4% as 

compared to business-as-usual (BAU), but lower than emissions reductions without the EU 

ETS. In the case of energy taxes, particularly the recycling of revenues and tax exemptions 

influence the amount of macroeconomic costs. Many studies conclude that the use of 
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revenues for reductions in labour costs and tax exemptions for energy intensive industries can 

limit GDP losses to well below 0.1% or even lead to slight rises in GDP. The energy taxes 

analysed typically lead to emission reductions on the order of 2 to 3%. Studies on clean 

energy policy in the transport sector cover a wide portfolio of instruments from fuel taxes or 

road charges to efficiency standards. Potential impact on GDP is found to be substantial, up to 

1% by 2020, indicating that emission reductions in the transport sector are relatively 

expensive. Macroeconomic model simulation results for increasing the share of EU 15 

renewable electricity production to 30% in 2020 surveyed in this paper range from roughly 

0.1 to 1% as compared to BAU.  
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1. Introduction 
Energy conversion and use are a major source of environmental pollution. Emissions from 

burning fossil fuels for transport, to generate electricity or to produce industrial goods 

substantially contribute to urban ozone and other air pollution, acid deposition, regional haze 

and visibility problems as well as the build-up of greenhouse gas (GHG) concentration in the 

earth’s atmosphere. The consequences are human health problems, damage of ecosystems, 

crops, and building material, amenity losses, and global warming (cf. European Commission, 

2003). In line with the economic theory of externalities, several environmental policy 

measures try to reduce emissions related to energy use by inducing incentives to increase 

energy efficiency and to use clean energy sources. The most important instruments in 

European energy markets are the European emissions trading scheme (EU ETS), energy 

taxes, policy measures in the transport sector, and the promotion of renewable energy sources. 

All these policy measures typically imply higher energy prices for consumers and often also 

for producers. 

An increase in the price of energy as an input raises production costs. This can reduce the 

domestic and foreign demand for goods and services and thereby create macroeconomic costs. 

This paper analyses the macroeconomic costs of environmental regulation in European energy 

markets. For this purpose, we review the results of selected simulation studies that analyse the 

macroeconomic effects of environmental regulation. Although environmental regulation 

creates external benefits, such as avoided damage from climate change or reduced non-GHG 

air pollution, this paper does not include these benefits but only the internal benefits from the 

reallocation of resources, such as the profit gain of producers of energy efficient technologies.  

In our analysis we focus primarily on policy measures that are implemented or intended at the 

European level. The baseline in all modelling studies is business-as-usual (BAU). As some 

policy measures are initiated on the national level we also include experiences of single 

Member States, particularly Germany. Effects on the sectoral or firm level, e.g. the 

implication of an energy tax for energy intensive sectors or the household sector, are only 

addressed casually. However, due to differences in energy intensity and possibilities to 

substitute energy intensive technologies by more efficient technologies, the costs of 

environmental regulation can differ substantially between countries, sectors and firms. Higher 

energy prices reduce the profitability of energy intensive companies, whereas producers of 
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energy efficient technologies may benefit. As the macroeconomic costs subsume all these 

effects they are usually smaller than the costs in the energy intensive sectors. 

 

2. Theoretical Background 
Energy conversion and consumption (e.g. burning fossil fuels) cause negative external effects 

in the form of environmental pollution and human health damages which a priori are not taken 

into account in production and consumption decisions. This leads to a level of emissions from 

energy consumption above the socially optimal level which considers both private and social 

costs. The solution to the welfare problem in the economic literature is the internalisation of 

external effects via a Pigouvian tax, tradeable permits, or other policy instruments. They tend 

to increase energy prices and try to limit emissions from energy consumption to the socially 

optimal level (Common and Stagl, 2005).  

The aim of this article is to determine the macroeconomic costs of environmental regulation.  

Macroeconomic costs of environmental regulation do not contain external effects, such as 

ecological or human health damages. Similarly, the avoided damages are not taken into 

account. In this analysis, we consider only the economic consequences of higher energy prices 

caused by environmental regulation to quantify what Europe pays for clean energy. What 

Europe gains from clean energy is a question in its own right and beyond the purpose of our 

contribution. Nor are distributional issues of environmental regulation – e.g. the redistributive 

role of green taxation – taken into account. 

According to the standard theory of optimal taxation, taxes levied on commodities generally 

create distortionary effects in form of deadweight losses (Atkinson and Stiglitz, 1980). Hence, 

energy taxes or other policy measures that increase energy prices generally create 

inefficiencies. The distortionary effect of a tax decreases with the elasticity of demand. It is 

zero if the demand is perfectly inelastic. The demand elasticity of electricity, for instance, is 

typically relatively small. The deadweight loss of electricity taxes, therefore, is expected to be 

small as well. Taxes on goods with an inelastic demand, such as electricity, can even have 

positive economic impacts if they replace more distortionary taxes on goods with higher 
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elasticity of demand. This effect is called Double Dividend and it is extensively discussed in 

the economic literature.1  

There are a number of policy instruments that are targeted at changing the costs of energy 

consumption and therefore at influencing the incentives of producers and consumers. They 

include energy taxes, tradeable permits, emissions abatement subsidies, and efficiency 

standards. As these instruments have different requirements in terms of information of the 

regulator, the effectiveness and efficiency can differ substantially on the microeconomic level 

(Perman et al., 2003).  From a deterministic macroeconomic viewpoint, however, their 

economic impact depends essentially on the financial burden they put on input and output 

factors in equilibrium irrespective of the specific policy instrument used to levy the burden.   

In relation to labour and capital costs, energy prices are not very important for most firms and 

rarely a cause for relocation. Nevertheless, higher energy prices increase production costs. 

Thus, if companies face international competition and have only limited possibilities to reduce 

their energy consumption, unilaterally increasing energy prices reduce the profitability and 

competitiveness of these firms.  

It is sometimes argued that higher electricity prices can also have positive impacts if they lead 

to the development and implementation of new energy efficient technologies. This effect is 

commonly known as the Porter Hypothesis. It states that stringent environmental regulations 

can in principal increase the competitiveness of firms, sectors and economies because they 

trigger environmentally benign innovations which may reduce production costs or create other 

competitive advantages. In addition, follower countries that also introduce ambitious 

environmental regulation may buy these new technologies (Porter and van der Linde, 1995; 

Porter 1999).2 To our knowledge, simulation studies have not yet quantified the 

macroeconomic impacts of this effect. 

                                                 
1 For literature surveys see for example Goulder (1995), Bovenberg (1995), and Koschel (2001). 
2 The inclusion of innovations and technological progress in economic modelling is still in its infancy. Most 
simulation models set technological progress as an exogenous variable and therefore cannot testify to the Porter 
Hypothesis. The economic modelling with endogenous technical change is still at the beginning (cf. Löschel, 
2002; Goulder, 2004; Bosetti et al., 2006a; Bosetti et al., 2006b). Many empirical studies that analyse the Porter 
Hypothesis do not find a significant correlation between environmental regulation and competitiveness, neither 
positive nor negative. For literature surveys, see for example Jaffe et al. 1995, Jenkins 1998, Taistra 1999, or 
Kaiser and Schulze 2003. 

 3  



 

3. Results of Selected Simulation Studies 

3.1 Selection of Simulation Studies 

Our literature review is based on macroeconomic simulation studies that calculate the change 

of macroeconomic variables, such as GDP or welfare, caused by the introduction of certain 

environmental policy measures. The focus is on simulation studies using computable general 

equilibrium (CGE) models and macroeconometric models. Both types of models are able to 

quantify the economy-wide impacts and effects in secondary markets in the framework of a 

single-market or multi-market analysis. CGE models calculate a vector of prices such that all 

markets of the economy are in equilibrium. All demand and supply equations are derived 

from microeconomic principles.  Originally, CGE models assumed only competitive markets; 

meanwhile, later versions sometimes also include market imperfections. Based on economic 

theory they show a high level of theoretical coherence. Parameters and coefficients of the 

assumed functional forms are typically calibrated to match a base year dataset. 

Macroeconometric models, in contrast, are structural empirical models and are developed 

fully based on coherent datasets.  In particular, equations may not be derived from a 

microeconomic foundation of the economic relation they describe. The parameters of the 

equations are estimated with econometric methods. 

The baseline scenario which serves as benchmark in all simulation studies is business-as-

usual (BAU).  It denotes the hypothetical scenario where the policy measure was never 

introduced. The macroeconomic costs of environmental regulation can therefore be 

interpreted as price for the improvement of environmental quality that comes along with the 

implementation of the instrument. Note that reaching a given environmental target may be 

more or less costly depending on the instrument and the regulatory design. It is the goal of 

economic instruments in environmental policy to efficiently reach environmental targets. 

Simulation models sometimes assume compliance with certain environmental targets in both 

the baseline scenario and the policy scenario. In these cases the baseline often represents the 

cost efficient way to achieve the targets. Thus, the differences between policy scenario and 

baseline scenario can be interpreted as price for choosing a policy different from the cost 

efficient policy. Such simulation studies are not the focus of this paper.3 

                                                 
3 For further discussion about the role of the baseline see Oberndorfer and Rennings (2007). 
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The remainder of the text is structured along the existing instruments in energy markets, 

namely the EU ETS, energy taxes, policy measures in the transport market, and policy 

measures to promote renewable energy sources. The main focus is on instruments that already 

exist on the national or the European level, e.g. the EU ETS or energy taxation in Germany. 

Some modelling studies analyse the impacts of instruments which exist but concede long 

transition periods to the Member States, e.g. the EU minimum tax rates on energy. A few 

models simulate the introduction of new instruments that would ensure the compliance with 

existing environmental targets, e.g. an EU-wide system of tradeable green certificates (TGC). 

Hence, our review also includes costs that will have to be paid in the future in order to reach 

existing environmental objectives. 

 

3.2 European Emission Trading Scheme (EU ETS) 

The EU ETS was launched at the beginning of 2005 to control the CO2 emissions of the 

carbon intensive industry, mostly power generation and heavy industry. The aim of the EU 

ETS is to ensure emissions reduction at least costs. The cap-and-trade mechanism allows 

emissions reduction to meet the overall reduction target where and how it is cheapest to do so 

and without technical knowledge of the regulator. The initial allocation of emission 

allowances is decided by the Member States. Although they are required to be on the pathway 

to their Kyoto targets and the EU Burden Sharing Agreement, they have discretion over what 

share of their overall emissions reduction they plan to achieve in the EU ETS sectors that 

participate in the trading scheme, and how much they plan to abate in the sectors that do not 

participate (non-ETS sectors). The optimal split between the ETS sectors and the non-ETS 

sectors equals the marginal abatement costs in both sectors. Böhringer and Lange (2005a) 

show that the objectives of economic efficiency and free allocation of emission permits are 

incompatible with harmonized allocation rules which are often called for in order to avoid 

distorting the competition. For the actual allocation of the first phase, Böhringer et al. (2005) 

show that the Member States have failed to implement the optimal split in the first trading 

period from 2005 to 2007. Therefore, the use of the flexible mechanisms of the Kyoto 

Protocol, namely international Emissions Trading, Clean Development Mechanism (CDM), 

and Joint Implementation (JI), becomes an important issue. The cheap emissions reductions 

abroad can replace costly domestic reductions and therefore lower the macroeconomic costs 

of the EU ETS. Böhringer and Lange (2005b) study the EU ETS with a focus on the cost 

burden of different dynamic allocation rules. They find that – especially for high CO2 prices – 
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an emission-based free allocation is more costly than an output-based free allocation. Welfare 

losses tend to be lower than 0.15% for permit prices around 30$US per ton of CO2.    

Oberndorfer and Rennings (2007) review the results of various simulation studies, including 

CGE models, partial models, and macroeconometric models, in order to assess the 

competitiveness effects of the EU ETS. They find small negative effects on the sectoral and 

the macroeconomic level, if the baseline is BAU. The losses in most sectors are modest 

except for the aluminium sector with its particular competitive situation, very limited options 

to reduce electricity consumption, and whose profits highly depend on electricity prices.  

COWI (2004) presents an economic modelling of the EU ETS and calculates the economic 

impacts for the EU25 in the year 2010 under different assumptions about the technological 

change. The analysis uses the CGE model GTAP-ECAT of the world economy with a special 

emphasis on energy use and CO2 emissions. The baseline is BAU where no climate change 

abatement policy has been conducted since 1997. Two policy scenarios are analysed: A 

sluggish short-term technology adaptation and a more rapid long-term technology adaptation.  

The inflow of CDM and JI credits into EU25 is exogenously fixed in the model at permits 

representing 100 Mt of carbon. National governments acquire 46 Mt. It is furthermore 

assumed that the optimal split between ETS sectors and non-ETS sectors can be implemented. 

Therefore, the estimated costs can be interpreted as the minimum costs for bringing the 

emissions into line with the Kyoto reduction requirements. The EU25 GDP is reduced by 

0.36% with long-term technology adaptation and by 0.48% with sluggish short-term 

adaptation. The emissions reduction efforts by the EU ETS reduce the competitiveness of the 

EU25 countries compared with countries where no emission target exists. The reason is that 

increased final energy prices increase the costs of the EU25 output. This reduces the demand 

for goods and services. Total exports from the EU25 countries decline by 0.41% with the 

long-term technology adaptation and by 0.55% with the short-term adaptation.  

Klepper and Peterson (2005) employ the CGE model DART to assess the effects of the EU 

ETS in the year 2012, when the Kyoto targets will have to be met. The baseline is BAU which 

keeps all climate policy measures introduced until the year 2002 in place but does not include 

any new climate policies. The simulation scenario includes the actual National Allocation 

Plan (NAP) of each EU15 Member State for the first trading period 2005 to 2007. The use of 

CDM and JI is unrestricted for the ETS sectors but the government purchases are restricted to 

the existing official plans. For the emissions reductions in the non-ETS sectors a uniform but 

regionally differentiated CO2 tax is assumed. The implementation of the EU ETS leads to a 
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welfare loss of 0.9% compared to the BAU baseline. The welfare loss is partly due to 

distortions between the ETS and the non-ETS sectors. The current NAPs generously endow 

the ETS sectors with emissions rights and thus require large emission reductions in the non-

ETS sectors or abroad making use of CDM and JI. The analysis of alternative reductions 

scenarios shows that an efficient unilateral reduction policy without ETS would lead to 

welfare loss of 0.7%. The EU ETS with an unrestricted use of CDM and JI would cause a loss 

of only 0.1%. The welfare loss of the current ETS without the use of CDM and JI would rise 

to 1.7%. 

Peterson (2006) applies the same CGE model to assess the effects of the NAPs for the second 

trading period, 2008 to 2012. The baseline is BAU without any climate policy measure 

enacted after 2001. It is assumed that both the ETS and the non-ETS sectors contribute a 

proportionate share in order to achieve the Kyoto target. The governmental purchases of 

international carbon credits are restricted to existing official plans. They do not increase the 

allowances allocation to the ETS sectors and therefore reduce the reduction burden of the 

non-ETS sector. The reduction target for the non-ETS sectors in each country is achieved 

through a uniform carbon tax. Total purchases of CDM and JI credits by the ETS sectors are 

restricted to 8% of total allowances in the EU ETS. The welfare loss vis-à-vis the baseline 

amounts to 1.1%. The analysis of other policy scenarios with different allowances allocations 

for the second trading period shows that the welfare loss would be considerably greater if 

more of the reduction burden were shifted from the ETS to the non-ETS sector. 

 

3.3 Energy Taxes 

Most EU Member States have implemented energy taxes on electricity, motor fuels and 

heating fuels. However, the level of taxation differs substantially. The new Member States 

and some southern countries of the EU15, such as Greece, Portugal, and Spain have low tax 

rates whereas Denmark, Germany, the Netherlands and Sweden have relatively high tax rates. 

In order to avoid distortion of competition, most Member States, especially those with 

relatively high tax levels, offer tax exemptions or rebates for the energy intensive industry as 

well as recycling of tax revenues, e.g. through cutting other taxes.  
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3.3.1 The National Level 

As from 1 April 1999 the German environmental tax reform entered into force. It introduced a 

tax on electricity and raised the existing taxes on motor fuels and heating fuels. The tax rates 

were gradually increased each year until 2003. The aim of the tax reform is on the one hand to 

reduce energy consumption and the resulting emissions. On the other hand, as tax revenues 

are used for the most part to reduce pension insurance contributions for employers and 

employees, it is hoped that the tax reform increases employment. The reform contains special 

provisions for the business sector to prevent a distortion of competition. The manufacturing 

sector and agriculture pay a reduced tax rate of 60% of the regular tax rate. Additionally, 

where a manufacturing company’s tax burden is greater than its tax relief from the reduction 

in pension contribution, the company is refunded 95% of the differential amount. As a result, 

the de facto marginal tax rate is 3% (5% of 60%). Kohlhaas (2005) analyzes the effects of the 

German environmental tax reform on GDP, employment and CO2 emissions based on the 

empirical CGE model LEAN2000. The baseline is BAU where the environmental tax reform 

had never been introduced. The study shows that the environmental tax reform reduces CO2 

emissions between 2003 and 2010 by 2 – 3% per year. The economic effects compared to the 

baseline are positive. The change of GDP ranges within the investigated period between 

+0.13 and +0.47% per year. The increase of employment is between 0.41 and 0.76% per year. 

In the short-run the impacts on the trade balance are negative because exports decrease and 

imports increase until 2003. After 2003 imports slightly decrease compared to BAU and 

exports converge to the BAU level. Conrad and Löschel (2005) examine an environmental tax 

reform in Germany focussing on the double dividend hypothesis depending on the way tax 

revenues are recycled. With a fictitious tax on CO2 sufficient to reduce emissions as required 

by the Kyoto Protocol they find welfare losses of about 0.55% and employment losses of 

0.15% if the tax revenues are recycled lump-sum. If the revenues are used to lower non-wage 

labour costs, welfare losses are reduced to 0.38% while the analysis finds employment 

increasing by about 0.43%, thereby presenting some support for a weak double dividend.  

In the United Kingdom, the Climate Change Levy was announced in the 1999 Budget and 

introduced in April 2001. It determines tax rates for electricity, gas, coal, and liquefied 

petroleum gas (LPG). In contrast to the German tax scheme it applies only to industrial and 

commercial energy use and not to the household and transport sector. Most of the tax 

revenues are used to reduce employers’ national insurance contributions. An 80% discount 

from the Climate Change Levy is awarded to energy intensive sectors which have negotiated 

Climate Change Agreement with the government, under which they have taken on collective 
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quantitative targets with regard to energy efficiency and emission reduction. Agnolucci et al. 

(2005) apply the macroeconometric MDM-E3 model of the U.K. to analyse the effects of the 

Climate Change Levy. The baseline is BAU which presumes that the Climate Change Levy 

and the Climate Change Agreement had never been implemented. Total CO2 emissions are 

reduced between 2002 and 2010 by 2 – 2.3% per year compared to the baseline. The effect on 

GDP is very small. By 2010, it is 0.06% above the BAU reference case. Here, the effect of 

higher energy prices is outweighed by the lower industrial costs caused by the reduction in 

employers’ national insurance contributions. Despite the lower industrial costs, the Climate 

Change Levy leads to a slight deterioration of the trade performance because the net effect of 

the tax reform is to slightly raise the costs for those industries producing tradable goods. 

3.3.2 The European Level 

On the European level, the EU Directive 2003/96/EC on the harmonisation of energy taxation 

covers electricity, transport, and heating for private, commercial, and industrial use. It defines 

minimum tax rates for all energy products, namely coal, oil, gas, and electricity, but contains 

a number of general and Member State specific exemptions and allows for transitional periods 

before implementation in the new Member States. The changes of national energy taxation 

due to the EU Directive differ among the Member States. For most EU15 countries energy tax 

rates are above the EU minimum level anyway. The directive will lead to more important 

changes in some southern countries and in most of the new Member States. 

Kohlhaas et al. (2004) investigate the economic effects of the EU directive by means of the 

CGE model GTAP-E. They assume that all EU25 countries fulfil the minimum tax rates and 

all countries with higher tax rates hold them on the higher level. The additional tax revenue is 

allocated to government spending, private consumption, and private savings in the same 

proportions as total spending in the initial situation. The baseline is BAU as if the EU 

directive had never been introduced. After the implementation of the minimum tax rates in 

those countries that have lower tax rates, the CO2 emissions decrease in all Member States, 

particularly in the new Member States. The effects on the national GDPs are very small. They 

range from – 0.01 to – 0.18% for those countries which need to substantially increase their 

energy taxes, namely the new Member States. The reduction in GDP must be due to either tax 

distortions in the economy or a deterioration of terms of trade. Changes in terms of trade play 

a major role only in the Czech Republic and Poland where the terms of trade decrease by 

about 0.1%. These two countries also show the largest reduction in GDP. The effects on terms 

of trade in the other accession countries are negligible.  
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Koschel (2001) demonstrates that within the framework of CGE models it typically depends 

on a number of model assumptions – such as substitution patterns in production, the foreign 

trade specification or the labour market specification – whether employment will increase or 

not in response to an ecological tax reform. For testing the sensitivity of model results she 

uses two versions of the GEM-E3 model: the single-country version for Germany and the 

multi-country EU-14 version. In the standard versions of both models with a neoclassical 

labour market a (unilaterally in Germany or rather EU-widely imposed) revenue-neutral CO2 

tax leads to higher employment, while CO2 emissions are reduced by 10%. These positive 

impacts on employment can be explained by tax shifting effects from labour to the foreign 

sector and towards capital income. In addition, Koschel (2001) shows that the introduction of 

labour market imperfections enlarges the opportunity for an employment double dividend. 

Kouvaritakis et al. (2003) also use the CGE modelling framework GEM-E3 to analyse the 

impacts of three different energy tax schemes in the EU15. The tax schemes apply to final 

energy demand including coal, oil, gas, and electricity. As the demand for motor fuels is not a 

separate category in an Input-output framework, the implementation of the tax on motor fuels 

in GEM-E3 remains approximate. The baseline is BAU including existing energy taxes levied 

for climate change in some Member States. Three policy scenarios are investigated: first, 

minimum energy tax rates corresponding approximately to the above mentioned EU Directive 

2003/96/EC, second, a more climate friendly energy tax scheme that better reflects the carbon 

content of each energy product, and third, the EU minimum energy taxation when the Kyoto 

target is fulfilled by EU ETS and a domestic carbon tax. Tax revenues are directly recycled 

through a decrease of social security contributions. The introduction of minimum energy tax 

rates in the first scenario reduces CO2 emissions by 0.5% vis-à-vis BAU. The induced price 

increase is very small. It is outweighed by the reduction in labour costs. Therefore, GDP does 

not change and welfare increase slightly by 0.01%. The loss on the export market of 0.02% is 

very small. In the case of the more climate friendly energy taxation CO2 emissions are 

reduced by 2.7%. Both GDP and welfare increase slightly by 0.02%. The price increase 

reduces slightly the EU exports by 0.08%. The economic impacts remain rather small because 

the induced price increase is still small and the negative effects on domestic and foreign 

demand are partly compensated by lower labour costs.  As the CO2 constraint is stronger in 

the third policy scenario, the economic impacts become negative. GDP decreases by 0.09%, 

welfare by 0.5% and exports by 0.27%. The efficient design of the EU ETS and the tax 

revenue recycling strategy still allow avoiding high macroeconomic costs even in countries 

where the reduction compared to BAU emissions is high. It is also important to remember that 
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in most countries the intra-EU exports represent more than 50% of total exports and this limits 

the negative effect on exports when a harmonised policy is implemented in the EU. 

These results are confirmed by a more recent study based on the same CGE model 

(Kouvaritakis et al., 2005) which analyses the impacts of an energy tax scheme in the 

enlarged EU.4 The baseline is BAU with minimum tax rates of the EU Directive or national 

tax rates (if they are higher) in the EU15. In the new Member States only the current tax rates 

apply, regardless of whether they are higher than the minimum tax rates or not. As before, 

three policy scenarios are considered: first, the introduction of the EU minimum energy tax 

rates in the new Member States, second, the EU-wide implementation of a more climate 

friendly tax, and third, the EU minimum energy taxation when the Kyoto target is fulfilled by 

EU ETS and a domestic carbon tax. The overall economic effects (GDP, welfare, exports) as 

well as the effects on CO2 emissions are minor in the case of EU minimum energy taxation or 

the more climate friendly energy taxation. The impacts on the EU economy are negative if the 

Kyoto target is to be achieved. An efficient initial allocation of emission allowances and tax 

revenues recycling may limit these negative effects.  

 

3.4 Policy Measures in the Transport Sector 

The former section dealt with broad energy taxes which in part include tax rates on motor 

fuels. This section is devoted to simulation studies on environmental instruments applied 

explicitly to the transport sector. The Member States have implemented or discussed several 

policy measures in order to control emissions of transport activities, including road charges, 

fuel taxes, or fuel efficiency standards.  

3.4.1 The National Level 

The German government uses a combination of fuel taxation, voluntary commitment of the 

automotive industry and road charges for heavy goods vehicles in order to curb the emissions 

of the transport sector. The German environmental tax reform raised the existing tax rates on 

transport and heating fuels gradually over five years until 2003. Further increases did not take 

place due to political and public resistance. Distelkamp et al. (2004) analyse the 

macroeconomic effects if the tax rates on motor fuels had been further increased in annual 

steps until 2008 in order to foster emission reduction in the transport sector. For this purpose 
                                                 
4 For numerical results see table 2 in the conclusion. 
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they extend the macroeconometric model PANTA RHEI by a transport module. By 2020, the 

CO2 emissions are almost 0.4% below the BAU level. The economic impacts of continuing 

the tax reform are small. The calculation for 2020 shows no significant change in GDP. 

Employment increases slightly by 0.2% because the additional tax revenues are used to 

reduce non-wage labour costs. The shift of tax burden from labour to energy benefits in 

particular the labour intensive sectors (the Double Dividend effect).  

Furthermore, the authors analyse the economic implications of a tax on kerosene in Germany. 

They assume a Europe-wide introduction of a tax rate of 0.302 € per litre kerosene in 2005.5 

The tax raises the kerosene price for the aircraft companies by 200% and reduces the gross 

production of this sector by about 7% per year. The impacts for Germany on the 

macroeconomic level are rather small because the tax revenues are assumed to be used for a 

reduction of the non-wage labour costs. The GDP does practically not change. Employment 

increases by around 0.16% from which particularly the service sector benefits. CO2 emissions 

decrease by around 0.2%.  

The German Association of the Automotive Industry (VDA) and the Association of the 

European Automotive Industry (ACEA) have committed to increase the fuel efficiency of 

their automobiles and to limit CO2 emissions to 140 g/km until 2008. Boeters et al. (2003) 

examine the economic implications if this standard is introduced already in 2005. They 

quantify the impacts by means of the CGE model PACE-T covering the EU as well as other 

major world regions, such as the USA or OPEC. Results are reported for the regions Germany 

and Austria. The introduction of the standard in 2005 corresponds to a 30% increase of fuel 

efficiency. It reduces CO2 emissions of the transport sector by roughly 19% in 2015 and 23% 

in 2035. Standards are implemented as an implicit fuel tax to reach the standard. The tax 

revenues are then fully redistributed as (earmarked) subsidies to the transport services sector. 

The standard reduces the welfare of the representative household by 0.3% per year. As it 

applies to all EU Member States there are no distortions within Europe. This work suggests 

that this emissions reduction policy limited to Europe has small effects on large countries 

outside Europe. E.g. in the United States, welfare of the representative household increases 

slightly by 0.01% per year. The CO2 emissions increase by 0.26% in 2015 and 0.56% in 2035. 

This leakage effect is due to globally decreasing oil prices because of the decreasing demand 

                                                 
5 According to the EU Directive 2003/96/EC on the harmonisation of energy taxation, the minimum tax rate for 
kerosene is 0.302 €/l. Article 14 of the Directive, however, allows the taxation of kerosene used in the non-
private air navigation only for domestic flights or between two Member States that have a bilateral agreement. In 
such cases the Member States may apply a level of taxation below the minimum level. 
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for motor fuels in Europe. The remainder of Boeters et al. (2003) investigates the economic 

impacts of a tax on motor fuels. The fuel tax is endogenously determined in the model such 

that the CO2 reduction equals the reduction under the efficiency standard. The tax decreases 

the welfare of the representative household by 0.23%. The macroeconomic costs are slightly 

smaller because the fuel tax reduces CO2 emissions by increasing fuel efficiency and 

decreasing volume of traffic whereas the standard only increases fuel efficiency. 

3.4.2 The European Level 

Schade and Doll (2005) present a macroeconomic analysis of several transport pricing 

policies. The policies differ in terms of where and for which modes charges are introduced 

and how revenues are reallocated to the economic actors. The charging levels are defined on 

the basis of existing European estimates of infrastructure and environmental costs. The 

assessment covers the economic impacts for the EU15 until 2020 using the model ASTRA for 

the transport sector which is able to integrate macro-level modules with micro-level modules. 

The baseline is BAU which includes all transport policies that are implemented in 2005, e.g. 

the Trans-European Networks (TEN) and the EURO IV and V emission standards. The results 

show that the introduction of charges on all modes oriented at levels that would cover the 

social marginal cost (SMC) of each mode, generates revenues of about 330 billion Euros 

annually. The revenues are recycled to the economy through lower labour costs. The 

implementation of charges reduces the GDP by 0.62% and exports by 3.04% relative to BAU. 

The recycling of tax revenues allows limiting the decline of the GDP but it does not outweigh 

the cost effect for the industries that produce international tradeable goods. The CO2 

emissions also decrease by 0.62%. The introduction of interurban roads charges leads to 

revenues of about 70 billion Euros annually. The economic and environmental effects depend 

on the allocation of the revenues. If they are used to reduce labour costs the GDP and CO2 

emissions decrease by 1.79%. Exports decrease by 2.21% against BAU. If, in contrast, 

revenues are used for investments into the road mode GDP and CO2 emissions increase by 

0.35% and exports decline by 1.77%. These values suggest that the charge can deteriorate the 

trade balance. If the revenues are used for investments into road mode, the decline in exports 

is outweighed by additional economic activity. The positive impact on the GDP, however, 

goes along with rising CO2 emissions.   
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3.5 Policy Measures to Promote Renewable Energy Sources 

According to the EU Directive 2001/77/EC on the promotion of electricity produced from 

renewable energy sources, 22% of total electricity consumption of the EU15 is to be produced 

from renewables in 2010, compared to 14% in 1997. Taking into account the national targets 

of the ten new Member States, the collective objective of the EU25 amounts to 21%. The EU 

Directive does not specify any particular instruments in order to achieve the targets but rather 

leaves the responsibility for the implementation of appropriate measures with the Member 

States. The analysis of the policies and measures currently in place in the EU15 indicates that 

they will probably achieve a share of only 18 – 19% in 2010. Only Denmark, Germany, 

Spain, and Finland are on track whereas the remaining countries in the EU15 have to 

implement further measures to reach their targets (European Commission, 2004). A longer 

term target, stated at the Renewables Conferences 2004 in Berlin and Bonn, is a 20% share of 

renewable energy sources in primary energy consumption in 2020.  

The dominating support system in the EU15 are feed-in tariffs which exist for instance in 

Germany, Denmark, and the Netherlands. The second important support system are quota 

obligations associated with a system of tradable green certificates (TGC) which exist for 

instance in the U.K., Sweden or Italy. Feed-in tariffs are specific prices for green electricity, 

normally set for a fixed-term period, which electricity companies have to pay to producers of 

green electricity. The prices are typically differentiated by the type of renewables source, 

namely hydropower, wind, biomass, and solar. The additional costs of electricity generation 

due to a larger use of renewables are usually passed on to power consumers by premiums on 

end-user prices. In the case of a TGC system electricity consumers are required to purchase a 

certain share of green electricity, i.e. green certificates, according to their electricity 

consumption. Alternatively producers can be obliged to produce a certain share of green 

electricity according to their production. In order to exploit the cheapest possibilities 

consumers or producers are free to trade the green certificates. Thus, in addition to the power 

market there is a market for green certificates. The TGC scheme has, at least in theory, the 

advantage that a given share of green electricity can be generated at least costs, whereas a 

feed-in tariff system would require perfect information on marginal generation costs of all 

technologies. Feed-in tariffs instead allow for differentiated treatment of technologies, taking 

other objectives into account than just ‘greening’ of electricity, i.e. it allows for supporting 

long-term technologies which are not yet competitive. 
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3.5.1 The National Level 

The German renewable energy source act (EEG) entered into force at the beginning of 2000 

and it was revised in 2004. It mainly consists of fixed-term feed-in tariffs for renewable 

energy sources differentiated with respect to technology, installed electrical power, and 

commissioning date. The additional costs resulting from a higher share of green electricity are 

distributed among electricity consumers through an explicit premium on electricity prices. A 

special regulation for electricity intensive companies limits the price increase for these 

companies and thereby enforces the price increase for the remaining consumers. Schulz et al. 

(2003) analyse the economic effects of the renewable energy source act over a period from 

2004 to 2010 based on an integrated macroeconometric input-output model. The baseline is 

BAU without promotion of renewable energy sources. The renewable energy source act ends 

in 2003 und the share of green electricity remains at roughly 8%. In the policy scenario the 

renewable energy source act applies to the whole period and the target of 12.5% green 

electricity will be achieved. At first, the GDP increases by 0.11% in 2004 and 0.07% in 2006 

because the additional investments in power plants and the supply system encourage 

economic growth. Afterwards the positive effects of the initial investments are 

overcompensated by the higher costs of electricity. By 2010 the GDP declines by 0.02% 

compared to the baseline. The development of employment is similar. The positive 

developments on the labour market last for a few years but by 2010, the employment is below 

the BAU level. The exports do not change in the beginning. From 2008 on, the simulations 

show a slight decline by 0.01% per year. 

3.5.2 The European Level 

The studies of Uyterlinde et al. (2004 and 2005) survey simulation results with the macro-

econometric NEMESIS model and the CGE model NEWAGE-W to assess the economic 

impacts of a high penetration of renewables in the European electricity sector. The models 

show the consequences of increasing the share of green electricity up to roughly 30% by 

2020, which corresponds to the long term EU target of 20% renewable energy sources in 

primary energy consumption. Similar to a TGC system, the 30% target is achieved through a 

quota financed by either endogenous uniform subsidies or premiums on electricity prices. The 

baseline in all simulation models is BAU including all policy instruments existent by the end 

of 2003 and a moderate carbon tax from 2012 onward, representing the future European 

climate policy. The NEMESIS model assumes uniform subsidies from 2005 to 2020 in order 

to meet the 30% target. The subsidies are passed on to consumers through higher electricity 
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prices. The impacts on macroeconomic indicators for the EU15 are negative. By the end of 

the simulation period in 2020 both GDP and private consumption decrease by about 0.18%, 

employment decreases by 0.15% compared to the BAU baseline. The energy price increase 

reduces the competitiveness in Europe, resulting in a fall of 0.28% for exports. In the 

NEWAGE-W model the introduction of the 30% quota results in substantially higher 

electricity prices and higher product prices. The GDP loss of the EU15 amounts to 0.3% in 

2010 and 0.8% in 2020. One can observe increasing oil imports to Western Europe whereas 

gas and coal imports decrease. The GDP loss in Western Europe is not followed by a 

significant GDP change in neighbouring regions. Böhringer and Löschel (2006) simulate a 

30% quota on renewable electricity production with the CGE model PACE. Here,the quota is 

also achieved through an endogenous uniform subsidy. The result is a relatively modest 

welfare loss for the EU15 ranging from 0.03% in 2010 to 0.08% in 2020. 

4. Summary and Conclusion 
Tables 1 to 4 summarise the results. The last column in each table shows the macroeconomic 

costs of the respective policy instrument as stated in the study. The baseline in all studies is 

BAU. This means that we consider the effects of environmental policy measures in 

comparison to the development of the economy without that policy measure. The costs can 

therefore be seen as price for the improvement of environmental quality if implemented by 

the regulatory instrument which is analysed. The main focus of this survey is not to evaluate 

the efficiency of the regulation but to compare their costs as they result from different 

simulation results.  

Table 1 shows the macroeconomic costs of the EU ETS compared to BAU. All policy 

scenarios assume compliance with the Kyoto targets. Most important for the macroeconomic 

costs of the EU ETS are the National Allocation Plans (NAPs) and the use of the project-

based mechanisms CDM and JI. Both the NAPs and the use of CDM and JI determine how 

the reduction burden is divided between ETS sectors, non-ETS sectors and reductions abroad. 

The costs are the lowest, if the optimal split between ETS sectors and non-ETS sectors is 

implemented and the use of CDM and JI is unrestricted. The comparison of scenarios with 

different NAPs shows that the macroeconomic costs of the EU ETS increase if reduction 

burden is shifted from the (energy intensive) ETS sectors to the non-ETS sectors. Considering 

the restriction of the use of CDM and JI, the more governments and ETS companies can 
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replace costly domestic reductions by cheap reductions abroad the lower are the costs of the 

EU ETS. 

Table 1 Environmental effects and macroeconomic costs of the EU ETS compared to BAU 

Study Model Policy Level Design Year Environmental 
Effect 

Macroeconomic Costs 

Oberndorfer 
and Rennings 
(2007) 

Survey EU ETS EU15   Kyoto 
compliance 

Small negative effects 
on macroeconomic 
variables 

COWI 
(2004) 

GTAP-
ECAT 

EU ETS EU25 Optimal split 
between ETS 
and non-ETS 
sectors 

2010 Kyoto 
compliance 

GDP – 0.36%  
Export – 0.41% (long-
term technology 
adaptation) 

GDP – 0.48% 
Export – 0.55% (short-
term adaptation) 

Klepper and 
Peterson 
(2005) 

DART EU ETS EU15 Restricted use 
of CDM/JI 

2012 Kyoto 
compliance 

Welfare – 0.9% 

Böhringer 
and Lange 
(2005b) 

PACE EU ETS EU15 Permit 
allocation 
rules (output 
vs. emission-
based) 

2010 Kyoto 
compliance 

Welfare – 0.15% 
(for permit price ca. 
30€ per ton CO2) 

Peterson 
(2006) 

DART EU ETS EU25 Restricted use 
of CDM/JI 

2012 Kyoto 
compliance 

Welfare – 1.1% 

 

Table 2 presents the macroeconomic effects of energy taxes on the national or the European 

level. The macroeconomic costs of policy measures that apply solely to the transport sector 

are shown in Table 3. The analysis of these instruments shows that particularly revenue 

recycling and tax exemptions influence the cost burden. The use of revenues for reductions in 

(non-wage) labour costs benefits the labour intensive sectors and limits the negative effects on 

GDP and welfare. In some cases they may even create positive effects (Double Dividend). 

Tax exemptions for energy intensive industries also reduce the macroeconomic costs because 

they disburden companies that otherwise would have been heavily affected. Obviously this 

comes at the costs of environmental effectiveness or reduces the regulatory efficiency because 

comparatively cheap abatement options in these sectors will be ignored.6  

                                                 
6 For discussion of environmental tax differentiation between industries and households see Böhringer 2002. 
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Table 2 Environmental effects and macroeconomic costs of energy taxes compared to BAU 

Study Model Policy Level Design Year Environmental 
Effect 

Macroeconomic 
Costs 

Kohlhaas 
(2005) 

LEAN 
2000 

Energy 
tax 

Germany Tax 
exemptions 
and revenue 
recycling 

2010 CO2 –3.10% GDP +0.13% 
Employment +0.46% 
Exports –0.03% 

Conrad and 
Löschel  
(2005) 

PACE CO2 tax Germany Tax revenue 
recycling 

2010 Kyoto 
compliance 

Lump sum recycling 
Welfare –0.55% 
Employment –0.15% 

Lower labor cost 
Welfare –0.38% 
Employment +0.43 

Agnolucci et 
al. (2005) 

MDM-E3 Energy 
tax 

U.K. Tax 
exemptions 
and revenue 
recycling 

2010 CO2 –2.3% GDP +0.06% 

Kohlhaas et 
al. (2004) 

GTAP-E Energy 
tax 

EU 25  2004 CO2 reductions  
in all MS from  
–0.04% to  
–3.23% 

GDP reductions  
in a few MS from  
–0.01% to –0.18% 

Koschel 
(2001) 

GEM-E3 CO2 tax Germany 
 
 

EU14 

Tax revenue 
recycling 

5 years 
after 
impl. 

1 year 
after 
impl. 

CO2 –10% 
 
 

CO2 –10% 

GDP +0.11% 
Employment +0.59% 
Exports –1.17% 

GDP –0.04% 
Employment +0.58% 
Exports –1.02% 

Kouvaritakis 
et al. (2003) 

GEM-E3 Energy 
tax 

EU15 Tax revenue 
recycling 

2010 CO2 –0.5% 
 
 

CO2 –2.7% 
 
 

Kyoto 
compliance 

GDP +/–0% 
Welfare +0.01% 
Exports –0.02% 

GDP +0.02% 
Welfare +0.02% 
Exports –0.08% 

GDP –0.09% 
Welfare –0.50% 
Exports –0.27% 

Kouvaritakis 
et al. (2005) 

GEM-E3 Energy 
tax 

EU25 Tax revenue 
recycling 

2010 CO2 –0.5% 

CO2 –3.5% 
 
 

Kyoto 
compliance 
 

No effects 

GDP + 0.01% 
Welfare + 0.03% 
Exports – 0.14% 

GDP – 0.10% 
Welfare – 0.13% 
Exports – 0.56% 
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Table 3 Environmental effects and macroeconomic costs of policy measures in the transport sector 
compared to BAU 

Study Model Policy Level Design Year Environmental 
Effect 

Macroeconomic 
Costs 

Distelkamp 
et al. (2004) 

PANTA 
RHEI 

Motor fuel  
tax 

Kerosene 
tax 

Germany Revenues 
used for 
labour costs 
reduction 

2020 CO2 – 0.4% 
 

CO2 – 0.2% 

GDP +/ –  0% 
Employment + 0.2% 

GDP +/ – 0% 
Employment + 0.16% 

Boeters et 
al. (2003) 

PACE-T Efficiency 
standard 

Motor fuel 
tax 

Germany 
& Austria 

 2015 CO2 in transport 
sector – 19% 

Welfare – 0.3% 
 

Welfare – 0.23% 

Schade and 
Doll (2005) 

ASTRA Interurban 
road 
charges 
 

 
 
 
 

Charges 
according 
to SMC of 
each mode 

EU15 Revenue 
used for 
labour costs 
reduction 

Revenue 
used for 
road 
investments 

Revenue 
used for 
labour costs 
reduction 

2020 
 
 
 
 

CO2 – 1.79% 
 
 
 

CO2 + 0.35% 
 
 
 

CO2 – 0.62% 

GDP – 1.79% 
Exports – 2.21% 
 
 

GDP + 0.35% 
Exports – 1.77% 
 
 

GDP – 0.62% 
Exports – 3.04% 
 

 

Table 4 shows the results for policy measures to promote renewable energy sources. 

Regarding the economic effects of the promotion of renewables, it is often assumed that the 

promotion of renewables enhance employment and economic growth. The arguments are that 

renewable energy production is more labour intensive than conventional energy production 

and that renewable energy production requires less imported goods and services. Indeed, 

some studies find positive effects on GDP and employment in the short run. In the long run, 

however, higher generation costs often dominate the net effect.  

Table 4 Environmental effects and macroeconomic costs of policy measures to promote renewable energy 
sources compared to BAU 

Study Model Policy Country Design Year Environmental 
Effects 

Macroeconomic 
Costs 

Schulz et 
al. (2003) 

Input-output 
model 

Promotion of 
renewables 

Germany Feed-in 
tariffs 

2010 12.5% green 
electricity 

GDP – 0.02%  
Exports – 0.01% 

Böhringer 
and 
Löschel 
(2006) 

PACE (Hybrid 
Bottom-up – 
Top-down) 

Promotion of 
renewables 

EU15 Subsidy 2020 30% green 
electricity 

Welfare –0.08%  

Uyterlinde 
et al.  

NEMESIS Promotion of 
renewables 

EU15 TGC 2020 30% green 
electricity 

GDP – 0.18% 
Employ. – 0.15% 
Exports – 0.28% 

(2004) and 
(2005) NEWAGE-W Promotion of 

renewables 
EU15 TGC 2020 30% green 

electricity 

 
GDP – 0.8% 
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Due to a variety of assumptions in the models, the results in the four tables should be neither 

combined to assess total costs of environmental regulation7 nor compared directly with each 

other. The model assumptions differ with regard to the BAU baseline, technological progress, 

time frame, the elasticity of domestic and foreign demand, and – last but not least – by the 

specific regulatory design. 

Considering these results, we can conclude that the environmental regulation affects the 

European economy. The macroeconomic costs, however, appear to be relatively small. Most 

studies find losses clearly below 1%, some even indicate macroeconomic gains.8 The values 

in the tables show only the effects on the macroeconomic level. They do not show the 

distributional effects on the sectoral level. The impacts of environmental regulation are likely 

to be more severe on the sectoral than on the macroeconomic level creating winners and 

losers. Recycling of government revenues raised by environmental regulations in the energy 

sector tends to benefit labour intensive sectors, such as services and the building industry, and 

penalises energy intensive sectors, such as the power industry and agriculture. The effects on 

exports in the simulation studies are typically negative. The loss for the entire economy is 

somewhat smaller because there are also sectors that benefit from the regulation. It is 

important to remember that our analysis contains only the economic costs or benefits. It does 

not include the ecological or indirect economic benefits that result from the regulation in form 

of avoided climate change damages or reduced non-GHG air pollution. On the whole, the 

costs are lower the more flexible the instrument is, i.e. the better it allows for ‘where’, ‘what’, 

and ‘when’ flexibility. 

  

                                                 
7 Such an assessment would have to consider furthermore the overlapping impacts of the policy measures. For 
discussion on overlapping instruments in European carbon emission regulation, see Böhringer et al. (2006). 
8 A recently published review on the economics of climate change (Stern 2006) – albeit disputed – concludes 
that reducing greenhouse gas emissions on a global level to “avoid the worst impacts of climate change” is 
possible at costs below 1% of global GDP per year. 
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