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High educated individuals are less frequently admitted to hospital for cardiovascular 

diseases and live longer than the lower educated. We address whether the educational 

gradient in the mortality rate can be explained by the educational difference in the timing 

of CVD hospitalisation. We account for possible selective hospitalisation, by using a 

correlated multistate hazard model (a ‘Timing-of-events’- model) and, for selection into 

education, by using inverse propensity weighting based on the probability to attain higher 

education. We use Swedish Military Conscription Data (1951-1960), for males only, linked 

to administrative Swedish registers. Our empirical results indicate a clear educational 

gradient in mortality and in the impact of CVD hospitalisation on mortality. The implied 

educational gain in the number of months lost is, however, mainly due to other factors 

than CVD hospitalisation. Extending the analysis to cause specific mortality reveals that the 

largest educational differences exist in death due to external causes.
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1 Introduction

The strong association between education and health is one of the most widely studied in eco-

nomics. Observational evidence suggests that high educated people live longer (Mazumder,

2008, Clark and Royer, 2013, Fletcher, 2015, McCartney et al., 2013). The recent focus in the

education-health literature is on determining to what extent education causes later mortality

(Galama et al., 2018, Xue et al., 2021). However, uncovering the underlying mechanisms that

produce these causal relationships are mostly ignored. One path to higher mortality for the

low educated is through more (and longer) hospitalisations, in particular hospitalisations for

cardiovascular diseases (CVD). CVD hospitalisation is clearly associated with life-style be-

haviour, as smoking, limited exercise and obesity are all well-known causes for cardiovascular

health problems.

Higher education may have countervailing e↵ects on hospitalisation if it reduces the prob-

ability of negative health conditions that might lead to hospitalisation yet increases the proba-

bility of hospitalisation (e.g., through greater income, more knowledge, or better connections)

for given health conditions. Likewise, higher education may have countervailing e↵ects on

mortality if it increases income and access to health-system care but also increases higher-risk

behaviors and selection into more stressful occupations.

Only a few studies have attempted to identify the causal e↵ect of education on hospital-

isation (Arendt, 2008, Tansel and Keskin, 2017, Meghir et al., 2018). Arendt (2008) found,

for Denmark, using a bivariate probit model, a clear educational gradient in the probability

of ever been hospitalised, but no significant educational impact on the number of days in hos-

pital. Meghir et al. (2018) found, for Sweden using linear Di↵erence-in-di↵erence regressions

and using a regression discontinuity approach both based on a reform in compulsory school-

ing, no impact of education on the total number of days in hospital nor on the probability of

ever been hospitalised for (amongst other diseases) circulatory diseases. Tansel and Keskin

(2017) found, for Turkey using a Tobit and a Double Hurdle model, that an increase in years

of education reduces the number of days hospitalized. However, in all these papers the role

hospitalisation experience plays in explaining mortality is ignored.

The contribution of this paper is threefold. First, it addresses the educational gradient in

the mortality rate and the impact of the timing of entry and discharge of the life-style related
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CVD hospitalisation on the educational gradient. Second, it derives the implied educational

gain, both directly and through CVD hospitalisation, on survival and months lost, of improv-

ing education with one level. Third, it is the first paper that investigates the hospitalisation

and mortality process jointly, through a correlated multistate hazard model.

Most studies investigating the impact of education on mortality have used a linear or a

probit model to estimate the educational gradient, although the age at death (and timing of

CVD hospitalisation process) is clearly a duration outcome. In duration analysis the hazard

rate, the instantaneous probability that an individual enters a certain state (death, hospital-

entry or discharge) at a certain age conditional on surviving (or not in that state) up to that

age, is usually modelled. Accounting for right-censoring, when the individual is only known

to have survived up to the end of the observation window and time-varying variables, e.g.

the age somebody enters hospital, are easy to handle in hazard models, see a.o. Lancaster

(1990) and Van den Berg (2001). A common way to accommodate the presence of observed

characteristics is to specify a proportional hazard (PH) model, in which the hazard is the

product of the baseline hazard, the age dependence, and a log-linear function of covariates.

Neglecting confounding in inherently non-linear models, such as proportional hazard models,

leads to biased inference. To accommodate this (see e.g. Van den Berg (2001) for a discussion

of the importance of this), the mixed proportional hazard model (MPH) extends the PH

model by multiplying it by a time-invariant person-specific random error term. This has been

the main model for analysis of duration data in economics.

Only a few studies on the educational gradient in mortality used a hazard model. Meghir

et al. (2018) used a regression discontinuity-type approach based on a reform in compulsory

schooling, Bijwaard et al. (2017) and Bijwaard and Jones (2019) used an inverse propen-

sity weighting method and, Bijwaard et al. (2015a,b, 2019) a structural modelling approach.

Yet, none of these studies considered the relation between hospitalisation and mortality or

accounted for selective hospitalisation (nor the timing of hospitalisation) in the mortality

process. Bijwaard and van Kippersluis (2016) has shown that education influences both en-

try and discharge from hospitals, and that higher educated individuals are less likely to die

after a hospitalization. When accounting for the role of intelligence using a structural equa-

tion multistate model, this association disappears. In their model the interdependence of

the hospitalisation and mortality process, is solely driven by intelligence. They ignore the
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endogeneity of the timing of hospitalisation.

The richness of our data enables us to go beyond standard modelling of life cycle dura-

tions, and to tackle the complex task of examining jointly the mortality and hospitalisation

processes. Correlation between these two processes might stem from correlated unobserved

heterogeneity, and our model accommodates this. Applying the “timing-of-events” (ToE)

method (Abbring and van den Berg, 2003) allows us to give the estimated e↵ects of the hospi-

talisation dynamics on mortality a causal interpretation. Controlling for unobserved correlated

heterogeneity in the hospitalisation and mortality processes is thus crucial, since otherwise the

resulting endogeneity would confound the causal impact. In particular, (first-time) hospital

entry, hospital discharge, hospital re-entry and mortality durations are modelled as mixed

proportional hazards which incorporate correlated unobservables.

However, the timing-of-events method still fails to correct for possible enodogeity of educa-

tional attainment. The propensity score method (Hirano et al., 2003, Caliendo and Kopeinig,

2008) we employ accounts for such confounding. It is based on the unconfoundedness assump-

tion, which assumes that all variables that a↵ect mortality, hospitalisation and education at-

tainment are observed. This is a stringent assumption, but our data contain important factors

as detailed family socioeconomic background (including paternal- and maternal socioeconomic

status at birth and education level), cognitive skills (IQ-test) and non-cognitive skills (psy-

chological test). However, confounding between the education choice and the hospitalisation-

mortality process may still exist. To test possible violation of the unconfoundedness we use

an extension of the sensitivity approach of Bijwaard and Jones (2019).

We base our (generalised) propensity scores on a multistage sequential model of educa-

tional attainment developed by Cameron and Heckman (2001) with five education levels.

Based on the estimated propensity scores we estimate a weighted Timing-of-events model

(IPW-ToE) with weights based on the inverse of the generalised propensity score (Inverse

Propensity Weighting, IPW, (Hirano et al., 2003)), see Bijwaard and Jones (2019) for an ap-

plication of (a single valued) IPW method for a Mixed Proportional Hazard mortality model.

Based on the estimated model we calculate the educational gain of improving education in

both the survival probability till age 63 (the highest age observed) and in the number of

months lost till age 63. We also decompose these educational gains into a indirect e↵ect, run-

ning through changes in the hospitalisation process, and a direct e↵ect due to other factors.
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Data from the Swedish Military Conscription Data (1951-1960), linked to administrative

Swedish registers, o↵ers the opportunity to investigate the impact of hospitalisation and edu-

cation on (cause-specific) mortality. We have information on about half a million men who are

followed from the date of conscription till the end of 2012, or till death. For those men who

die we observe the cause of death. From the Swedish National Hospital Discharge Register

we observe CVD hospital care from 1964 till the end of 2012. These data include recordings

of demographic and socioeconomic characteristics such as education, parental socioeconomic

status, parental education, along with anthropometric measures, an intelligence test and a

psychological assessment. Educational level was classified in five categories: primary educa-

tion; some secondary education (2 years); full secondary education (3 years); post-secondary

education and higher education.

A couple of other studies have also used data from Sweden to investigate the educational-

mortality gradient. Spasojević (2010), Lager and Torssander (2012) and Meghir et al. (2018)

all used the compulsory schooling reform 1949–1962 in Sweden as an instrument for an increase

in education, Spasojević (2010) using survey data and both Lager and Torssander (2012) and

Meghir et al. (2018) using register data of children born 1940–1955. Lundborg et al. (2016)

used a (linear) twin fixed e↵ects model design, twins born 1886–1958, to address endogeneity

of education choice. Bijwaard et al. (2017) and Bijwaard et al. (2019) both focus on the

educational gradient in cause-specific mortality. Bijwaard et al. (2017) used a cause-specific

months-lost model with IPW and family fixed e↵ects and Bijwaard et al. (2019) used a

structural cause-specific hazard model to account for educational endogeneity. The data used

in these papers is close to the data we used, the Military Swedish Conscription data linked to

the death register and census data. Bijwaard et al. (2017) used the birth cohorts 1951–1983,

but restricted the analyses to men with at least one brother, while Bijwaard et al. (2019)

used, just as we do, only the birth cohorts 1951–1960 but discarded the men without IQ

measurement. However, neither of these papers used information on CVD hospitalisation.

The empirical analyses show that both education and CVD hospitalisation are important

factors influencing mortality. We find a clear educational gradient in the mortality, even after

accounting for the endogeneity of education through inverse propensity weighting. We also

find that mortality is much higher for those in hospital for CVD (39-68 times higher) and

for those who have been in hospital (2.1 to 4.7 times higher). These hospitalisation e↵ects
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also exhibit a educational gradient, with a decreasing impact of hospitalisation the higher the

education level.

Based on these parameter estimates we calculate the educational gains and find that men

with only primary education would gain the most (about 9 months from age 18 to 63) if they

had a higher education level. Only a small part of this educational gain is running through

a change in CVD hospitalisation. Although men with post-secondary education would only

gain 2.3 months if they had higher education most of this educational gain (1.6 months) is

attributable to changes in the CVD hospitalisation for the higher educated.

Evidence suggests di↵erential impact of education on various diseases accumulating in

di↵erent educational cause-specific mortality gradients (Galobardes et al., 2004, Bijwaard

et al., 2017, 2019). As the socioeconomic association seems the largest for cardiovascular

diseases most studies have focussed on socioeconomic di↵erences in mortality on these types

of diseases. Some have indeed found that the incidence of cardiovascular disease is higher for

individuals with low socioeconomic status (Mackenbach et al., 2008, Kulhánová et al., 2014).

However, Bijwaard et al. (2017, 2019) found that most of the educational gains in mortality up

till age 63 (the same maximum age we are using) are attributable to the reduction in mortality

due to external causes and that the reduction in death due to CVDs with improving education

is rather small.

To investigate whether education and hospitalisation for CVD a↵ects di↵erent causes of

death di↵erently we also estimate a model with cause-specific mortality rates, distinguishing

five di↵erent causes of death : 1) Ischemic Heart Disease (IHD); (2) Stroke; (3) other cardio-

vascular causes; (4) External causes, and (5) Other (natural) causes of death. The model is

an extension of the timing-of-events model with IPW. We find that all causes of death show

a clear educational gradient (except between post-secondary and university/PhD), with the

largest educational di↵erences for external causes of death. We also find that death due to

other CVD is a↵ected the most by hospitalisation. However, hospitalisation for CVD also

a↵ects the mortality due to other natural causes and due to external causes.
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2 Data

The data come from several Swedish population-wide registers which are linked using unique

individual identification. The Swedish Military Conscription Data includes demographic in-

formation of the conscripts and information obtained at the military examination, including

a battery of intelligence tests and a psychological assessment. These data are linked to the

National Population and Housing Censuses (1960-1990), containing information on the so-

cioeconomic status and educational levels of the parents. Information on each conscript’s own

education was obtained from the Longitudinal Integration Database for Health Insurance and

Labour Market Studies (LISA) for the 1990-2012 period, and information on cause-specific

mortality as the underlying cause of death was obtained from the Cause of Death Register for

the period up to 2012. The information (timing of admittance and discharge) on hospitalisa-

tion for Cardiovascular Diseases (CVD)1 is derived from the Inpatient Register. Coverage runs

from 1964 to December 31st 2012. The study population consists of men born between 1950

and 1960, who were identified in the Multi-Generation Register, and who were conscripted

for military examination between 1969 and 2001 usually when they were aged 18-20. At that

time in Sweden, military service was mandatory for men only. So, we only observe males. We

selected only those, 517,843, men for whom at least one parent is known and for whom we

observe the conscription date.

These data include recordings of demographic and socioeconomic characteristics such as

education, parental socioeconomic status, parental education, along with anthropometric mea-

sures, an intelligence test and a psychological assessment and health measures (height, weight,

blood pressure, and muscular strength). The intelligence measurement is based on a battery of

IQ tests, which consisted of four subtests that measured logical, spatial, verbal, and technical

abilities. Each subtest was first evaluated on a normalized ninepoint (stanine) scale. The sub-

test scores were summed to obtain an overall score and transformed onto a stanine scale with

a mean of five and standard deviation of two. We only used this final global IQ measurement.

The psychological assessment is also based on a normalized ninepoint (stanine) scale. For

both the inteligence and the psychological assessment measurements we also define a missing

indicator, when this measurement is not observed. The parental socio-economic status has

1ICD 8 and 9: 390-459 ICD 10: I.
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seven categories: Non-manual workers at higher level, Non-manual workers at intermediate

level, Non-manual workers at lower level, Farmers, Skilled workers, Unskilled workers and

Others, not classified. We also define the unknown SES indicator. Parental education has six

categories: primary (< 9 years), primary (9� 10 years), Secondary education (2 years), Full

secondary education (3 years), Post-secondary (University < 3 years) and Higher (University

� 3 years or PhD).2.

We aggregated the observed education of the conscripts into five classes: (i) Less than 10

years of education (only primary schooling); (ii) Some secondary education (2 years); (iii)

Full secondary education (3 years); (iv) Post-secondary education (less than 3 years) and (v)

Higher education (University and PhD). More detailed information on the data can be found

in Bijwaard et al. (2017).

About 80 thousand (of the 518 thousand) men have experienced CVD hospitalisation.

Table 1 presents the distribution of this hospitalisation by educational attainment. The CVD

hospitalisation experience is lower for the high educated and so is the average number of days

spent in hospital for CVD. For men without hospitalisation experience low educated men

have died four times more often than high educated men. While for men with hospitalisation

experience the educational gradient is less steep. Finally, the table shows that hospitalisation

experience clearly increases mortality.

Table 1: Descriptive statistics on hospitalisation and mortality (N = 517, 843)

Primary Secondary education Post-secondary Higher
some full (< 3 years)

% with hospitalisation 18.2% 16.4% 14.9% 13.6% 11.7%
Av.# of days in hospital 7.3 5.9 4.9 4.0 3.1
% died without hospitalisation 9.1% 5.0% 3.7% 2.5% 2.2%
% died with hospitalisation 14.4% 11.4% 9.5% 7.0% 6.1%

Next, we calculate the Kaplan-Meier survival curves. These non-parametric survival curves

for the five education categories are shown in Figure 1 and reflect the mortality di↵erences

by education and by hospitalisation experience. Survival increases with the education level

and the di↵erences between the education levels increase with age. Comparing the survival

curves without hospitalisation (left panel) and with hospitalisation (right panel) shows the

2Full demographic and childhood family characteristics at the time of military examinations by education
level are presented in Table B.1, for men without hospitalisation for CVD and in Table B.2, for men with
hospitalisation for CVD in Appendix B
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large impact of hospitalisation on mortality. The Kaplan-Meier survival curves for the first

admittance to hospital and re-admittance to hospital by education level in given in Figure 2

also show a clear educational gradient.

However, it takes time to experience hospitalisation, which depends on educational at-

tainment and, these mortality di↵erences, therefore, do not necessarily reflect the influence

of education and/or hospitalisation on mortality per se. The observed di↵erences in sur-

vival between low and high educated men could also be induced by a higher IQ or a higher

socio-economic background of the high educated men. For example, understanding a doctor’s

advice and adhering to complex treatments after hospitalisation may be driven by intelligence

rather than education. In the next section we explain how we account for this.

Figure 1: Kaplan-Meier mortality survival curves by education level
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Figure 2: Kaplan-Meier hospitalisation survival curves by education level
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3 Method

Dynamic selection and censoring are inherent to a duration outcome, such as age at death

and the age at (CVD) hospitalisation, and need to be accounted for in the modelling. Our

main outcome measure is the mortality hazard rate, the instantaneous probability that an

individual dies at a certain age conditional on surviving up to that age. Accounting for

right-censoring, when the individual is only known to have survived up till the end of the

observation window, and left-truncation, when only those individuals are observed who were

alive at a certain time (military examination), are easy to handle in hazard models (Van

den Berg, 2001). A common way to accommodate the presence of observed characteristics

is to specify a proportional hazard (PH) model, in which the hazard is the product of the

baseline hazard, the age dependence, and a log-linear function of covariates. In a PH model

it is also easy to incorporate time-varying variables, like hospitalisation and hospitalisation

experience. However, it is hardly ever possible to include all relevant factors, either because

the researcher does not know all the relevant factors or because it is not possible to measure

them. Ignoring such unobserved heterogeneity or confounding may have a huge impact on

inference in proportional hazard models, see e.g. Van den Berg (2001). A common solution is

to use a Mixed Proportional Hazard (MPH) model, in which it is assumed that all unmeasured

factors and measurement error can be captured in a multiplicative random term.

A major methodological concern with the empirical analysis of the impact of hospitalisa-

tion on mortality is that the admittance and discharge processes depend on individual charac-

teristics, both observed and unobserved, that also influence mortality. This implies that any

observed relationship between admittance to (or discharge from) hospital and mortality may

be caused by unobserved factors that influence both the hospitalisation and mortality. For

example, a finding that men with high educated fathers live longer may not necessarily imply

that low socioeconomic background (low educated father) causes higher mortality. Rather, it

may be induced by the higher hospitalisation of men from low socio-economic background. To

account for the interdependence of the hospitalisation process we model the first admittance-,

discharge- and re-admittance hazards of this process simultaneously with the mortality haz-

ard. This is a multistate model with correlated hazards, also called a ‘timing-of-events model’

(ToE) (Abbring and van den Berg, 2003), which explicitly controls for the correlation between
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the hospitalisation process and mortality, to account for this interdependence.

3.1 Timing-of-events method

Let Tm denote the time, age, till death (mortality), T h the age at the start of the first

hospital spell, T d the age at hospital discharge and, T r the age at hospital re-admittance

(after discharge). The durations of a hospital stay and the time after hospitalisation are

denoted by dh = T d � T h and dr = T r � T d. In order to keep track of hospitalisation events,

we also define the associated time-varying indicators: the indicator Ih(t) takes value one if

the individual is in hospital at age t, and Io(t) indicates that the individual has experienced

a period of hospitalisation before age t.

In Figure 3(a) we depict the hospitalisation dynamics and mortality for an arbitrary

military recruit. This recruit is not in hospital (healthy) at the military examination, as

holds for all observed men. At some age th the recruit is admitted to hospital for a CVD.

This implies that the time till first hospitalisation is �h = th. The recruit is discharged from

hospital at age td. Thus, the time he stayed in hospital is �d = td � th . However, at age tr

he is admitted again to hospital for a CVD, which implies the time till re-hospitalisation was

�r = tr � td. At age tm this recruit dies, after a time of �d = tm � tr in hospital. During

hospitalisation the indicator Ih is one and after the first hospitalisation spell indicator Io is

one. Thus, both Ih and Io are one when the recruit is in hospital for the second time.

The most commonly applied multistate model in biostatistics is the illness-death model

(Hougaard, 2000, Putter et al., 2007). In this type of model individuals start out healthy.

From healthy they may become ill (enter hospital) or they may die. Ill individuals may die

or recover (leave hospital) and become healthy again. The timing-of-events model is a special

case of a such a model, in which the mortality not only depends on current illness-status, but

also on illness experience. This model is depicted in Figure 3(b). Another large di↵erence

with standard ill-death models is that in the Timing-of-Events model the transition rates

among the di↵erent states are independent conditional on unobserved random heterogeneity.

We model the first admittance to hospital using a Mixed Proportional Hazard (MPH)

model

✓h(t|x, v) = vh�h0(t) exp
⇣
x�h

x + e�h

e

⌘
(1)
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Figure 3: The Timing-of-events (ToE) Model : how the timing of the hospitalisation processes
a↵ects mortality
(a) ToE: Mortality and hospitalisation processes
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with a baseline hazard, age dependence, �h0(t), unobserved time-invariant characteristics vh,

and observed time-invariate characteristics x and education level e. We assume a Gom-

pertz baseline hazard, which assumes that the hazard increases exponentially with age:

�h0(t) = e↵ht+↵h0 . �h
x captures the impact of exogenous individual characteristics, x on

the hospitalisation hazard and �h
e captures the impact of (possibly endogenous) individual

education, e on the hospitalisation hazard.

As the individual is either in hospital or not, the hospitalisation is alternating, and has

three possible transitions: admittance, discharge and, (the absorbing state) death. The con-

ditional hazards for the discharge and re-admittance spells also follow MPH models:

✓d
�
dh

��x, vd
�

= vd�d0(d) exp
⇣
x�d

x + e�d

e

⌘
(2)

✓r
�
dr
��x, vr

�
= vr�r0(d) exp

⇣
x�r

x + e�r

e

⌘
, (3)

with transition specific Weibull baseline hazards �k0(d) = ↵kd↵k�1, unobserved time-invariant

characteristics vk, and observed individual characteristics x, where k 2 {d, r} denotes the

hospitalisation state.

The mortality hazard, our main outcome, is also of the MPH form. We allow the mortality

hazard to depend on the timing of the hospitalisation process through a direct e↵ect of

hospitalisation, captured by Ih(t) and Io(t), or, indirectly, through correlated unobservable

heterogeneity terms:

✓m(t|th, td, tr, x, e, vm) = vm�m0(t) exp
⇣
x�m

x + e
�
�m

e + �heI
h(t) + �oeI

o(t)
�⌘

. (4)

The age dependence of the mortality hazard is assumed Gompertz. The Gompertz hazard is

known to provide accurate mortality hazards (Gavrilov and Gavrilova, 1991). Our parameters

of interests are �m
e , the e↵ect of the individual education level and the e↵ect of staying in a

hospital, �he, and the e↵ect of hospital experience, �oe (both also depending on the education

level of the individual), on the mortality hazard. For identification we set �m

1 = 0, primary

education, as the reference category.

For the sake of parsimoniousness, we assume that each of the unobserved heterogene-

ity terms is time invariant, remains the same for recurrent durations of the same type, is
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independent of observed characteristics x and, we adopt a discrete distribution (which is

standard in the ”Timing-of-events”-literature), i.e. v has discrete support (V1, . . . , VW ), with

Vw =
�
vh,w, . . . , vm,w

�
and pw = Pr(V = Vw).3 The likelihood function is given in Appendix

A.

The identification of the e↵ect of hospitalisation on the mortality in the ”timing-of-events”

model hinges on two key assumptions. The first assumption is the mixed proportional

structure of the hazard rates, as reflected in the hazard structure defined in (1) to (4). This

assumption is necessary to distinguish between true duration dependence modelled via the

�k0-functions and dynamic selection because the group of men with early entry in hospital has

a di↵erent composition than the group with late entry. Similarity, the group of men with long

hospital stays is di↵erent from the group with much shorter hospital stays. Dynamic selection

is taken into account via observed and unobserved heterogeneity. It is well known that in the

absence of observed heterogeneity, true duration dependence cannot be distinguished from

unobserved heterogeneity (Elbers and Ridder, 1982, Heckman and Singer, 1984).

The second assumption is the no-anticipation assumption, which is defined in terms of the

mortality hazard of the potential outcomes, the mortality rate that would be observed if the

individual entered hospital at age s (including those who never enter, s = 1), ✓(s)m (t|·):

No anticipation Assumption: ✓(s1)m (t|·) = ✓(s2)m (t|·) for all t  min(s1, s2)

In other words, we assume that individuals do not anticipate entering hospital for CVD by

dying before the anticipated event would occur. This assumption does not hold if individuals

died because they know they will enter hospital for CVD. Although we think this is rather

unlikely (but untestable with our data) we are cautious in using a causal interpretation of

the obtained CVD hospitalisation e↵ects. Still, even if the no-anticipation assumption does

not hold the timing-of-events method corrects for possible endogeneity of the hospitalisation

processes.

The identification of the model framework is proven and discussed at length in Abbring

and van den Berg (2003). To provide some intuition, first note that the data can be broken

into three parts: (i) a competing risk part for the duration until either a recruit is admitted

3To assure that the probability is between zero and one we estimate qw with pw = eqw/(1 +
P

eqj ).
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to hospital for CVD or dies, whichever comes first, (ii) a competing risk part for the duration

until either discharge from hospital or until death, and (iii) the residual duration from the

moment of hospital experience until death. From Heckman and Honoré (1989), it follows that

under general conditions the whole model except for �he and �oe is identified from the data

corresponding to the competing risk parts. Subsequently, �he and �oe are identified from the

data corresponding to part (iii) of the model.

To clarify further what drives the identification of �he and �oe, consider individuals who

enter hospital for CVD at age t. The natural control group consists of individuals who have

not been in hospital at t. A necessary condition for a meaningful comparison of these groups

is that there is some randomization in the hospital admittance at t. The duration model

framework allows for such a randomization because it specifies assignment by the way of

the rate of entering hospital. In addition, we have to deal with the selection issue that the

unobserved heterogeneity distribution is di↵erent between the hospitalised and unhospitalised

groups at t. This is handled by exploiting the information in the data on what happened to

individuals who entered hospital or died before age t.

Another way to look at this is to note that the timing of the consecutive events of admit-

tance to and discharge from hospital is informative on the presence of the causal e↵ect of a

hospitalisation. If CVD hospitalisations are often followed very quickly by death, then this

indicates a positive hospitalisation e↵ect. The selection e↵ect does not give rise to the same

type of quick succession of events.

The no anticipation assumption has been used throughout the empirical literature on dy-

namic treatment e↵ects, e.g. van den Berg et al. (2004), Crépon et al. (2018), including health

economics (see a.o. van den Berg et al. (2011), van Ours and Williams (2012), Baert et al.

(2018)). Moreover, it is an implicit assumption in some standard static approaches, such as the

Di↵erence-in-Di↵erence (DiD) and the Synthetic Control approaches. Note that identification

of the model does not require exclusion restrictions or assumptions on the functional form of

the baseline hazards or the distribution of the unobservables {vm, vr, vd, vh}. Identification of

the parameters of interest �he and �oe comes from the extent to which CVD hospitalisation

is followed closely by death, regardless of the other mortality determinants. Monte Carlo

evidence has shown that these models are reliably estimated with samples where as few as a

couple of hundred individuals are “treated” (in our case: experience a CVD hospitalisation);
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Figure 4: Directed acyclic graph of selection through X and U0 and the impact of education
E on the hazard rates ✓k (for k = {h, r, d,m}).

see e.g. Gaure et al. (2007).

3.2 Accounting for selective educational attainment

However, mortality and the hospitalisation process may be influenced by factors that also

determine the education choice. This may render education a selective choice and makes it

endogenous to mortality and hospitalisation. The timing-of-events method still fails to correct

for possible enodogeity of educational attainment.

We follow a propensity score method to account for selection on observed characteristics

and estimate the e↵ect of education on the hospitalisation rates and on the mortality rate.

Figure 4 provides a graphical illustration of the relationship between observed characteristics,

education and the hazards from the timing-of-events model ✓ using a directed acyclic graph,

where each arrow represents a causal path (Pearl, 2000, 2012). It states that observed early

childhood characteristics X, such as parental background and intelligence, influence the ed-

ucation choice E, and the hazards of the hospitalisation and mortality processes. Possible

unmeasured childhood (pre-age 18) factors, U0, may also influence both the education choice

and the hazards.

We base our (generalised) propensity scores on a multistage sequential model of edu-

cational choice developed by Cameron and Heckman (2001) with five education levels e =
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1, . . . , 5 (see also (Heckman et al., 2018b,a)). People start their educational career in primary

school (e = 1) and choose if they wish to finish some secondary school (e = 2). Importantly,

the set of future choices available to them depends on their earlier educational choices. If

people choose to finish some secondary school, they have the choice to graduate secondary

school (e = 3), if they graduate they have the choice to enroll in post-secondary schooling

(e = 4), if they enroll, they have the choice to graduate from post-secondary schooling, if they

graduate post-secondary schooling they have the choice to enroll in higher education (e = 5)

and, if they enroll they have the choice to graduate from higher education.

We assume a Probit model for the probability of attaining a higher education level con-

ditional on having obtained the (previous) lower level, based on the sequential model for

educational attainment. The propensity score of choosing education level e using the sequen-

tial probit assumption is:

Pr(E = e) = �(�⇠e+1X)I(e<5)
Y

1<je

�(⇠jX) (5)

with �(·) is the standard Normal cumulative distribution. In the propensity scores we control

for maternal socio-economic status, paternal education, maternal and paternal age at birth,

birth order, IQ and psychological assessment (all obtained at the military examination, when

the individuals are 18 years of age), see Table C.6 in Appendix C. We check whether the

propensity score is able to balance the distribution of all included variables in all education

groups by calculating the standardized bias, or normalised di↵erence in means, see Table B.3

in Appendix B. The overlap, or common support assumption requires that the propensity

score is bounded away from zero and one, see Figure D.1-D.1 in Appendix D.

First, we discuss the assumptions, common in the potential outcomes literature that uses

propensity score methods, to identify the impact of education on the mortality outcomes.

We use potential hazard rates, the hazard rate that would be observed if the individual had

obtained education level e = 1, . . . , 5, ✓k(t|e) for k = {h, r, d,m}. We observe pre-treatment

(educational level) covariates X that influence the education choice.

Unconfoundedness Assumption: ✓k(t|e)? E|X for e = 1, . . . , 5 and k 2 {h, r, d,m}
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where ? denotes independence. The unconfoundedness assumption (Rubin, 1974, Rosenbaum

and Rubin, 1983) asserts that, conditional on covariates X, the education level is independent

of the potential outcomes. This assumption requires that all variables that a↵ect both the

hazards and the education choice are observed. Thus, there is no U0 in Figure 4. Note that

this does not imply that we assume all relevant covariates are observed. Any missing factor

is allowed to influence either the hazards or the education choice, not both. We check the

robustness of our estimates to this, rather strong, unconfoundedness assumption by assessing

to what extent the estimates are robust to violations of this assumption in Section 4.3.

Rosenbaum and Rubin (1983) show that if the potential outcomes are independent of

treatment (in our case education) conditional on covariates X, they are also independent of

treatment conditional on the propensity score. Hence if unconfoundedness holds, all biases

due to observable covariates can be removed by conditioning on the propensity score (Imbens,

2004). The average e↵ects can be estimated by matching or weighting on the propensity

score. We follow a inverse propensity weighting method to account for this endogeneity

(Hirano et al., 2003). Inverse probability weighting based on the propensity score, or inverse

propensity weighting (IPW), creates a synthetic sample in which the educational attainment

is independent of the included covariates. The synthetic sample is the result of assigning to

each individual a weight that is proportional to the inverse of their propensity score. Note

that the only relation between the assumptions for the propensity score and the assumptions

for the timing-of-events model is that the covariates used to calculate the propensity score

are independent of the unobserved heterogeneity of the timing-of-events model. This implies

that we assume that the unobserved heterogeneity factors in the hazards do not influence the

education choice.

Based on the generalised propensity scores we re-estimate the Timing-of-events models

using a re-weighted pseudo-population based on inverse generalised propensity score weighting

(IPW-ToE) (Frölich, 2004, Feng et al., 2012), see Bijwaard and Jones (2019) for an application

of (a single valued) IPW method for a Mixed Proportional Hazard mortality model.

Misspecification of the propensity score will generally produce bias. Rotnitzky and Robins

(1995) point out that if either the regression adjustment or the propensity score is correctly

specified the resulting estimator will be consistent. To account for this, we also use a doubly

robust estimator, that includes the covariates both in the propensity score and in a regression
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adjustment.

Although the unconfoundedness assumption is not directly testable and clearly a strong

assumption, it may be a reasonable approximation. Bijwaard and Jones (2019) have shown

that intelligence, as measured by an IQ-test, is a principal source of education selection and

including this information in the propensity score is robust to possible unconfoundedness vio-

lation. The literature has developed a few ways to address violation of the unconfoundedness

assumption, e.g. Imbens (2003), Nannicini (2007), Ichino et al. (2008), Bijwaard and Jones

(2019). In Section 4.3 we discuss some sensitivity analyses in detail.

4 Results

We estimate both a timing-of-events model without accounting for endogeneity of education

(ToE-model) and a timing-of-events model that accounts for this endogeneity through in-

verse propensity weighting (IPW-ToE-model), as described in the previous Section. Table 2

presents the estimated e↵ect on the mortality hazard of education and CVD hospitalisation

by education for both models.4 We observe a clear educational gradient. The mortality rate

for men with some secondary education is 44% (= 1� e�0.585) lower than the mortality rate

for men with only primary education. For men with full secondary education the mortality

rate is 60% lower, for men with post-secondary education 70% lower and, for men with higher

education 73% lower.

For all education levels we find that the mortality rate is higher in hospital and also for

those who have experienced CVD hospitalisation. For both hospitalisation e↵ects we find a

clear educational gradient. For example, consider the di↵erence in the estimated e↵ects of

CVD hospitalisation while in hospital on the mortality rate for men with primary education

versus men with higher education. While for men with primary education the mortality

rate in hospital is 68 (= e4.221) times higher, for men with higher education it is 39 times

higher (compared to an individual with higher education not in hospital and without hospital

experience, or 11 (= e3.66 ⇥ e�1.303) times higher compared to an individual with primary

education not in hospital and without hospital experience). Similarly, the mortality rate

for men with higher education is ‘only’ 2 times higher when they have experienced CVD

4A full overview of estimated coe�cients can be found in Table C.1 to Table C.4 in Appendix C.
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hospitalisation (or even 44% lower compared to the mortality rate of men with primary

education without hospitalisation experience).

Accounting for education endogeneity through IPW, reported in the second panel of the

table, slightly a↵ects the estimated coe�cients of education on the mortality rate. The esti-

mated educational impact on mortality for the two highest education groups is smaller when

using the IPW correction. Thus, this reduces the educational gradient in mortality. Ac-

counting for educational endogeneity also changes the estimated impact of hospitalisation.

On the one hand, for the higher education groups the IPW-correction (slightly) increases the

estimated impact of being in hospital on the mortality rate and, therefore, decreasing the

educational gradient in the hospitalisation e↵ect. On the other hand, the IPW correction

reduces, for all education groups, the impact of hospital experience on the mortality rate.

Table 2: Impact of hospitalisation and education on mortality hazard

Education levela

(1) (2) (3) (4) (5)
ToE-model education � �0.587⇤⇤ �0.928⇤⇤ �1.300⇤⇤ �1.443⇤⇤

(0.016) (0.025) (0.028) (0.027)
in hospital 4.213⇤⇤ 4.016⇤⇤ 3.854⇤⇤ 3.642⇤⇤ 3.546⇤⇤

(0.055) (0.053) (0.085) (0.096) (0.106)
hospital experience 1.830⇤⇤ 1.620⇤⇤ 1.400⇤⇤ 1.096⇤⇤ 0.928⇤⇤

(0.108) (0.108) (0.114) (0.116) (0.117)
IPW-ToE-model education � �0.585⇤⇤ �0.863⇤⇤ �1.216⇤⇤ �1.303⇤⇤

(0.016) (0.025) (0.027) (0.027)
in hospital 4.221⇤⇤ 4.038⇤⇤ 3.966⇤⇤ 3.718⇤⇤ 3.660⇤⇤

(0.060) (0.055) (0.084) (0.090) (0.094)
hospital experience 1.546⇤⇤ 1.370⇤⇤ 1.236⇤⇤ 0.837⇤⇤ 0.730⇤⇤

(0.110) (0.109) (0.115) (0.117) (0.118)
a (1) primary education; (2) Some Secondary education; (3) Full secondary education; (4) Post-secondary edu-
cation; (5) University or PhD. +p < 0.05,⇤⇤ p < 0.01.
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4.1 Implied Educational gain

In a single risk (e.g. only mortality) proportional hazard model, the educational coe�cients

have a clear interpretation as providing the proportionality factor of the hazard for a given

education level (or conditionally on the unobserved heterogeneity for a mixed proportional

hazard rate model). However, in our timing-of-events model, when the e↵ect of the education

is also modelled in the hospitalisation process, for the hazard of first hospitalisation (1), the

discharge hazard of discharge (2) and, the admission hazard (3), this does not hold. The

reason is that (total) survival not only depends on the mortality hazard, but also on the

hospitalisation hazards. Hence, the impact of a specific education level on survival not only

depends on the parameter value of this education level on the mortality rate, but also on the

e↵ect of this education level on all hospitalisation hazards. Admission to and discharge from

hospital also show a clear educational gradient, see Table C.1 to Table C.3 in Appendix C.

Including interactions in the hazards between the education level and the status of the hos-

pitalisation process further complicates interpretation. As a result the reported coe�cients

of education and hospitalisation in Table 2 are rather di�cult to interpret. The measures

we derive in this section provide information with clear interpretation on the impact of im-

proving education (by one level) on survival and the length of life, while accounting for the

age dependence of mortality, the impact of education on the mortality and, the educational

di↵erences in the hospitalisation process.

We use counterfactual simulations to assess the educational gain for two such measure-

ments: (1) the educational gain in the survival probability up till age 63 and (2) the ed-

ucational gain in the number of months lost due to early mortality before that age. The

first educational gain estimates the increase in the probability of survival from age 18 (age

at military examination) to age 63, the highest age obtained at the end of our observation

window, if the men had had, contrary to what is observed, (one level) higher education. For

example, we compare the survival probability (implied by the estimated IPW-ToE model) of

men with primary education and what their survival probability would have been if they had

had some secondary education instead. The estimated increase in the survival probability

is the educational gain. The second educational gain measure is based on the months-lost

concept and is defined as the di↵erence (decrease) in the expected number of months lost for
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men if they had improved their education with one level. For example, a men who dies at

age 60 (for CVD or other causes), has lost 36 months of his possible life until age 63. For

example, for men with full secondary education this educational gain shows how much less

months these men would have lost (up till age 63) if they had had post-secondary education

instead.

For both outcomes we decompose the total educational gains into a direct e↵ect and an

indirect e↵ect. The direct e↵ect is the educational gain not running through CVD hospitali-

sation, thus capturing the e↵ect of education on survival or months-lost through other factors

that influence mortality. The indirect e↵ect is the educational gain running through changes

in CVD hospitalisation (due to education), e.g. how much would the survival probability till

age 63 increase when men with primary education had the hospitalisation process of men with

some secondary education.

The simulation is based on a synthetic cohort of individuals, all entering at age 18. The

synthetic cohort consists of 10,000 men not in hospital, for which the distribution equals the

observed distribution at the military examination (ignoring the educational distribution). For

each simulation round (of 100 rounds), we draw a vector of parameter estimates using the

fact that the estimated coe�cients of the IPW-ToE model are normally distributed around

the point estimates with a variance-covariance matrix equal to the estimated one. Then, on

a monthly basis, we simulate the transitions for each member of the synthetic cohort using

the implied transition intensities derived from the simulated parameter values. Originally,

the men can only enter hospital (for CVD) or die and we are using the (first) hospitalisation

and mortality hazards to simulate these events. When a simulated man enters hospital, we

continue to use the discharge hazard from hospital (and adjust the mortality hazard), and

similarly for a man with simulated hospital experience we simulate possible re-admission

(and adjust the mortality hazard). In this fashion we obtain, for each simulation round, the

simulated hospitalisation and mortality process for each of the 10,000 men in the synthetic

cohort. Of course, this also includes (many) men who do not experience (are simulated to)

any hospitalisation and/or live beyond age 63.

The simulated survival outcome is the average (averaged over the rounds and the synthetic

cohort) percentage of simulated men that survives till age 63. The simulated months lost

outcome is the average month lost (months before age 63) for each simulated man. Note that
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when a (simulated) man survives beyond age 63, the survival is censored at age 63, and no

months alive are lost.

For the counterfactual simulations we impose a given education level for the hospitali-

sation hazards and the mortality hazards. Let Y (e1, e2) be the simulated average outcome

(survival probability or months lost) for men with a mortality rate given education level e1

and hospitalisation hazards given education level e2, then the educational gain for improving

education from e to e+ 1 is:

G(e, e+ 1) = Y (e+ 1, e+ 1)� Y (e, e) (6)

=
h
Y (e+ 1, e+ 1)� Y (e, e+ 1)

i
+

h
Y (e, e+ 1)� Y (e, e)

i
(7)

with the direct e↵ect, the educational gain not running through CVD hospitalisation, in the

first term in brackets of (6) and the indirect e↵ect, the educational gain running through

changes in CVD hospitalisation, in the second term in brackets.

Table 3 reports the estimated educational gains by education level. Improving education

(with one level) would lead to 2% to 5.5%-point increase in the survival probability from age 18

to age 63 and 2 to 9 months longer expected life (till age 63). The educational gains (for both

measures) are clearly the largest for men with the lowest education level, men with primary

education. Except for an improvement of education for men with post-secondary education

the direct e↵ect of educational improvement, i.e. from other factors a↵ected by education

than CVD hospitalisation, is statistically significant and the main source of the educational

gain. Only for men who would improve their education level from some to full secondary

education or from post-secondary to university the indirect e↵ect of CVD hospitalisation on

the educational gain in the survival probability is statistically significant. In fact, for the

latter men the educational gain in the survival probability is mostly due to di↵erences in the

hospitalisation process between the two education levels.

For the educational gain in months-lost, the di↵erences in the educational parameters of

the hospitalisation hazards do not significantly contribute to the decrease in months lost when

a man would have had a higher education level. The reason why the educational di↵erences in

the CVD hospitalisation process do not lead to significant educational gain in months alive is

probably due to the early censoring age of 63. We expect that we would have found significant
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educational gains if we could have followed the men until they had reached a higher age.

Table 3: Implied educational gain and its decomposition into a direct and an indirect e↵ect

Education levela

(2) (3) (4) (5)
survival probability till age 63

Total e↵ect 0.055⇤⇤ 0.031⇤⇤ 0.030⇤⇤ 0.019⇤⇤

(0.007) (0.007) (0.007) (0.007)
Direct e↵ectb 0.049⇤⇤ 0.017+ 0.026⇤⇤ 0.005

(0.007) (0.007) (0.007) (0.007)
Indirect e↵ectb 0.005 0.014⇤⇤ 0.004 0.013⇤⇤

(0.007) (0.005) (0.005) (0.005)
months lost 18–63

Total e↵ect 9.08⇤⇤ 4.33⇤⇤ 4.00⇤⇤ 2.02+

(1.19) (0.98) (0.97) (0.89)
Direct e↵ectb 8.53⇤⇤ 2.75+ 3.56⇤⇤ 0.74

(1.14) (1.08) (1.04) (0.89)
Indirect e↵ectb 0.54 1.58 0.43 1.27

(1.02) (0.86) (0.80) (0.78)
a (2) primary education to Some Secondary education; (3) Some Sec-
ondary education to Full secondary education; (4) Full secondary ed-
ucation to Post-secondary education; (5) Post-secondary education
to University or PhD. +p < 0.05,⇤⇤ p < 0.01.

b Indirect e↵ect: e↵ect of education running through CVD hospitali-
sation; Direct e↵ect: e↵ect of education running through other (not
CVD hospitalisation) factors

4.2 Robustness

In this section, we present a couple of robustness checks. First, we investigate whether re-

moving the possibility of reverse causation changes the estimated impact of education (and

hospitalisation) on mortality. Reverse causation might occur as education influences both

psychological fitness and intelligence measured at the military examination. A couple of stud-

ies have shown that additional education improves intelligence (Falch and Sandgren Massih,

2011, Banks and Mazzonna, 2012, Schneeweis et al., 2014, Carlsson et al., 2015, Dahmann,

2017). In that case, intelligence is a mediator in the causal path from education to health

(Bijwaard and Jones, 2019). Ideally, we would have multiple measurements of the (develop-

ment) of intelligence over the life cycle, to account for both the selection and mediation of

intelligence in the causal path from education to mortality. However, in our data, we only

observe intelligence at late adolescence (during the military examination) when measured IQ
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can be either the result of the attained education or a proxy of early childhood intelligence

which influences education choice. Similar reasoning holds for psychological fitness.

To account for this possible ‘reverse causation’ we also estimate models without psycho-

logical assessment or IQ measurement in the propensity score. The results in the first panel

of Table 4 reveal that when leaving out these measurements form the propensity score the es-

timated coe�cients of education and hospitalisation for CVD in the mortality hazard change

significantly. Both the direct educational gradient (except for some secondary education) and

the ”hospital experience”-e↵ect and its implied educational gradient become (significantly)

larger. However, this would violate the unconfoundedness assumption as these measurements

influence both the education choice and the hospitalisation and mortality process. From the

estimated coe�cients of IQ and psychotical assessment, given in Table C.5 and Table C.6

in Appendix C, it is clear that these measurements are very important for both education

attainment and the hospitalisation and mortality hazards. We, therefore, prefer the model

with IQ and psychological assessment measurements included in the propensity score.

Second, throughout we have assumed that the propensity scores are estimated consistently.

Misspecification of the propensity score will generally produce biases. Rotnitzky and Robins

(1995) point out that if either the regression adjustment or the propensity score is correctly

specified the resulting estimator will be consistent. Thus, to improve the robustness of the

proposed methodology we estimate a doubly robust estimator of the model, which also includes

a regression adjustment (using the same control variables as included in the propensity score).

The results in the second panel of Table 4 indicate that these doubly robust estimates are

very similar to the original estimates, reported in the second panel of Table 2.

Third, the association between education and hospitalisation and mortality could also

stem from another type of ‘reverse causality’, in which childhood ill-health constrains ed-

ucational attainment (Behrman and Rosenzweig, 2004, Case et al., 2005). To avoid such

reverse causation, we had left out any health measurements from the propensity score. To

test whether the estimated e↵ects are a↵ected by this choice we estimate a, double rou-

ble robust, IPW-ToE model that includes health measurements at age 18 available in the

data. These additional health measurements include the height (also height-squared), the

BMI (= weight in kg/(length in meters)2), BMI-squared, systolic and diastolic blood pres-

sure (and both squared) and grip strength. The results in the third panel of Table 4 indicate
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that the estimated education and hospitalisation e↵ects on the mortality rate including these

health measurements into both the propensity score and as control vaiables in the hazards

are very similar to the original estimates.

Table 4: Impact of hospitalisation and education on mortality hazard IPW, robustness

Education levela

(1) (2) (3) (4) (5)
without IQ or psychological assessmentb

education � �0.597 �0.965⇤⇤ �1.297⇤⇤ �1.453⇤⇤

(0.016) (0.025) (0.027) (0.028)
in hospital 4.221 3.969 3.793+ 3.668 3.327⇤⇤

(0.055) (0.053) (0.086) (0.094) (0.108)
hospital experience 1.966⇤⇤ 1.713⇤⇤ 1.485+ 1.159⇤⇤ 1.045⇤⇤

(0.107) (0.107) (0.113) (0.115) (0.116)
doubly robustc

education � �0.597 �0.873 �1.238 �1.325
(0.016) (0.025) (0.027) (0.027)

in hospital 4.227 4.002 4.023 3.692 3.614
(0.057) (0.052) (0.082) (0.089) (0.093)

hospital experience 1.637 1.423 1.321 0.915 0.796
(0.108) (0.107) (0.113) (0.115) (0.116)

doubly robust with Health measurementsd

education � �0.604 �0.868 �1.241 �1.398
(0.016) (0.025) (0.027) (0.032)

in hospital 4.174 3.955 3.914 3.658 3.306+

(0.054) (0.048) (0.081) (0.084) (0.116)
hospital experience 1.572 1.356 1.299 0.922 0.664

(0.107) (0.107) (0.112) (0.114) (0.120)
a (1) primary education; (2) Some Secondary education; (3) Full secondary education; (4)
Post-secondary education; (5) University or PhD.

b Without IQ or phycological assessment as control variables in the propensity scores.
c Including all the covariates both in the propensity scores and all the hazards.
d Doubly robust with additional health measurements included: height, height-squared,
BMI, BMI-squared, systolic and diastolic blood pressure (and squared) and grip strength.
Significance of the di↵erence compared to the basic results in the second panel of Table 2
+p < 0.05,⇤⇤ p < 0.01.

In Bijwaard et al. (2017), who also use data on Swedish recruits (more cohorts, but no

hospitalisation data), it is argued that the men in the lowest and the highest educational

groups di↵er too much in their observed background characteristics, which causes severe over-

lap problems in the propensity score. To address this overlap problem, they estimate separate

propensity scores of attaining a higher educational level through pairwise comparisons of ad-
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jacent educational levels. They did not consider the sequential probit model we assume for

the educational attainment. As a fourth robustness check, we investigate whether using only

adjacent education levels would lead to di↵erent results. To this end we estimate an IPW-

ToE model for each pair of adjacent education levels separately: primary vs some secondary

education; some secondary vs full secondary education; full secondary vs post-secondary ed-

ucation and; post-secondary vs university education. The estimated educational e↵ects from

these models, in Table B.4 in Appendix B, are not directly comparable to the original results

and are, therefore, deferred to the appendix. The reason is that for each pair of education

levels the reference group changes. We focus on the implied educational gains instead and

compare them with the original educational gains reported in Table 3. These educational

gains, reported in Table 5, do not di↵er significantly from the original educational gains.

Table 5: Implied educational gain and its decomposition into a direct and an indirect e↵ect,
adjacent educations model

Education levela

(2) (3) (4) (5)
survival probability till age 63

Total e↵ect 0.044 0.030 0.027 0.018
(0.007) (0.008) (0.009) (0.008)

Direct e↵ectb 0.038 0.016 0.021 0.007
(0.008) (0.008) (0.008) (0.008)

Indirect e↵ectb 0.005 0.013 0.006 0.011
(0.007) (0.009) (0.008) (0.008)

months lost 18–63
Total e↵ect 7.38 3.85 3.05 1.80

(1.18) (0.95) (0.93) (0.82)
Direct e↵ectb 6.94 2.39 2.52 0.79

(1.26) (1.01) (0.79) (0.90)
Indirect e↵ectb 0.44 1.46 0.53 1.01

(1.15) (1.11) (0.83) (0.77)
a (2) primary education to Some Secondary education; (3) Some Sec-
ondary education to Full secondary education; (4) Full secondary ed-
ucation to Post-secondary education; (5) Post-secondary education
to University or PhD.

b Indirect e↵ect: e↵ect of education running through CVD hospitali-
sation; Direct e↵ect: e↵ect of education running through other (not
CVD hospitalisation) factors.
Significance of the di↵erence compared to the basic results in Table 3
+p < 0.05,⇤⇤ p < 0.01.
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4.3 Sensitivity

The critical assumption in propensity score weighting is that of no selection on unobserv-

ables. To test the sensitivity of the estimates to this unconfoundedness assumption we build

on the sensitivity analyses of Nannicini (2007), Ichino et al. (2008) and, in particular, Bij-

waard and Jones (2019) and extend these analyses to the Timing-of-events model with IPW.

The two main assumptions for these sensitivity analyses are that the possible unobserved con-

founding factors can be summarised in a binary variable, U , and that the unconfoundedness

assumption holds conditional on X and the additional variable U , i.e. ✓k(t|e) ? D|X,U (for

k 2 {h, r, d,m}. Given the values of the probabilities that characterize the distribution of

U we can simulate a value of the unobserved confounding factor for each individual and re-

estimate the IPW-ToE, including the simulated U in the propensity score. A sensible choice

for the probabilities of the distribution of U is to mimic the outcome distribution implied

by the included covariates (Nannicini, 2007). Although the outcomes are continuous (time

till hospitalisation or death) they have a natural binary transformation using the censoring

indicator(s) (Bijwaard and Jones, 2019). The censoring indicators are �M = 1 when the in-

dividual is still alive at the end of the observation period and �H = 1 when the individual

still has no CVD hospitalisation experience at the end of the observation period. Of course,

the censoring distribution also depends on the education level. With five education levels and

two times two censor indicator values we have 20 probabilities characterising the distribution

of U with

pemh = Pr(U = 1|E = e, �M = m, �H = h,X) = Pr(U = 1|E = e, �M = m, �H = h) (8)

for m,h = 0, 1 and e = 1, . . . , 5.

A measure of how the di↵erent configurations of pemh, chosen to simulate U , translate into

associations of U with mortality is !M (e), the coe�cient of U in a Mixed Proportional Hazard

model for the mortality for each education level (E = e) using U and X as covariates. We

call this coe�cient the ‘mortality e↵ect’. The measures of the association between U and first

(CVD) hospitalisation, hospitalisation discharge and re-admission to hospital are !H(e),!D(e)

and !R(e) respectively, all obtained from estimating a MPH model on the relevant duration

(time till first hospitalisation, time to discharge or time to re-admittance after discharge).
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We call these coe�cients the ‘first hospitalisation e↵ect’, the ‘discharge e↵ect’ and, the re-

admittance e↵ect’. A measure of the e↵ect of U on the relative probability to have chosen

eduction level e is ⇠(e), which is the coe�cient of U in a sequential probit model of choosing

education (E = e) using U and X as covariates. In line with Bijwaard and Jones (2019) we

call this coe�cient the ‘selection e↵ect’.

The probability values of the distribution for U are chosen so that they mimic the dis-

tribution for each included binary variable. For example, consider the probability that an

individual with full secondary education, e = 3, has the highest IQ score, 9. Then, p300 is

the probability for those individuals who died and experienced CVD hospitalisation before

the end of the observation period, p310 is the probability for those individuals who survived

till the end with hospital experience, p301 is the probability for those individuals who died

before the end without hospital experience, and p311 is the probability for those individuals

who survived without hospital experience till the end. For each probability configuration,

pemh, of U we repeat the simulation of U , the estimation of the mortality-, hospitalisation-

and, selection e↵ects M = 100 times and obtain the average of these 100 simulations. The

total variance of these averages can be estimated from (see Ichino et al. (2008)):

Varf = 1
M

MX

m=1

s2m + M�1
M(M�1)

MX

m=1

(f̂m � f̄)2 (9)

with f 2 {!, ⇠} of each pairwise education comparison, f̂m is the estimated f in each simula-

tion sample m and s2m is its estimated variance.

For each probability configuration, pemh and each simulated U we re-estimate the IPW-

ToE model including U in the propensity score to obtain the education and hospitalisation

impact on the mortality hazard, �he and �oe. Again, for each probability configuration the

average impact and its variance, using (9), is calculated.

From the estimated parameters in the doubly robust IPW-ToE model (Table C.5 and

Table C.6 in Appendix C) we see that IQ is the most important control variable, influencing

education choice, the hospitalisation process and, mortality. We, therefore, focus on the

results of the sensitivity analysis when assuming U mimics the observed distribution of the

IQ-measurements, i.e. the observed education choice and censoring probabilities are equal to

the observed education choice and censoring prevalence for individuals with a given IQ level.
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We find indeed that the simulated U ’s that mimic the distribution of the IQ-values lead

to high and significant mortality, first hospitalisation and selection e↵ects, see Table B.5 in

Appendix B.5 Table 6 reports the simulated impact of education and hospitalisation on the

mortality hazard for including these simulated U ’s in the propensity score. We find the largest

changes in our IPW-ToE estimates when U mimics the education-hospitalisation-mortality

distribution of those with the lowest IQ, global IQ = 1. These di↵erences are, however, not

statistically significant.6 This seems to indicate that the applied propensity score adequately

accounts for the endogeneity of education.

5The estimated mortality-, hospitalisation- and, selection e↵ects for the simulated U ’s that mimic the
distribution of the other control variables are given in Table B.6 and Table B.7 in Appendix B.

6The estimated education and hospitalisation impact in the IPW-ToE model using simulated U ’s that
mimic the education-hospitalisation-mortality distribution of the other control variables are given in Table B.8
in Appendix B. Again, for these U ’s we do not find any statistically significant di↵erence with the estimated
original education and hospitalisation impact in Table 2.
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Table 6: Sensitivity analysis U based on IQ-levels (IPW-ToE model with U included)

Educational levelsa

(1) (2) (3) (4) (5)
Education e↵ect

original � �0.585⇤⇤ �0.863⇤⇤ �1.216⇤⇤ �1.303⇤⇤

Global IQb

1 �0.574 �0.820 �1.212 �1.298
2 �0.589 �0.837 �1.223 �1.317
3 �0.589 �0.853 �1.208 �1.254
4 �0.588 �0.863 �1.222 �1.300
6 �0.575 �0.850 �1.199 �1.292
7 �0.589 �0.856 �1.215 �1.300
8 �0.601 �0.865 �1.219 �1.286
9 �0.594 �0.876 �1.224 �1.300
missing �0.577 �0.851 �1.206 �1.292

in hospital e↵ect
original 4.221⇤⇤ 4.038⇤⇤ 3.966⇤⇤ 3.718⇤⇤ 3.660⇤⇤

Global IQb

1 4.231 4.054 4.009 3.672 3.620
2 4.246 4.052 3.983 3.674 3.600
3 4.242 4.053 3.977 3.822 3.673
4 4.230 4.049 3.970 3.726 3.679
6 4.221 4.045 3.976 3.715 3.674
7 4.211 4.034 3.969 3.674 3.689
8 4.219 4.044 3.969 3.690 3.682
9 4.204 4.013 3.953 3.687 3.669
missing 4.215 4.038 3.977 3.730 3.669

Hospital experience e↵ect
original 1.546⇤⇤ 1.370⇤⇤ 1.236⇤⇤ 0.837⇤⇤ 0.730⇤⇤

Global IQb

1 1.533 1.368 1.287 0.775 0.646
2 1.553 1.367 1.260 0.758 0.661
3 1.531 1.349 1.222 0.773 0.746
4 1.527 1.355 1.212 0.790 0.739
6 1.547 1.382 1.253 0.857 0.745
7 1.542 1.374 1.245 0.838 0.748
8 1.525 1.365 1.226 0.823 0.726
9 1.501 1.306 1.201 0.807 0.713
missing 1.546 1.378 1.259 0.856 0.751
a (1) primary education; (2) Some Secondary education; (3) Full Secondary
education 3 years; (4) post-secondary education; (5) Higher

b Running from low to high.
Based on adding discrete U to propensity score with probabilities of U from
observed probabilities for each covariate. Significance of di↵erence with orig-
inal +p < 0.05 and ⇤⇤p < 0.01
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5 Cause of death

In the previous section we have shown that hospitalisation increases and education decreases

mortality. Bijwaard et al. (2017, 2019) have shown that, even after accounting for selective

education choice, education is negatively associated with most major causes of death. How-

ever, these articles ignored the hospitalisation process. Here, we investigate the impact of

education and hospitalisation on cause-specific mortality and how the impact of hospitalisa-

tion di↵ers by education, by extending the timing-of-events model with competing causes of

death.

The data also contain, for those who died, the cause of death. We aggregated the causes

of death into five (the first three reflect death due to CVD) categories: (1) Ischemic Heart

Disease ; (2) Stroke; (3) other cardiovascular causes; (4) external (suicide, tra�c accidents

and homicide) causes of death, and (5) Other causes of death. Table 7 reports the percentage

of individuals that died from a particular cause before the end of the observation window.

Table 7: Percentage who died by education level and hospitalisation experience
Primary Secondary education Post-secondary Higher

Some Full (< 3 years)
All

Ischemic Heart Disease 1.1% 0.8% 0.6% 0.4% 0.3%
Stroke 0.3% 0.2% 0.1% 0.1% 0.1%
Other CVD 0.6% 0.4% 0.3% 0.2% 0.2%
external causes 3.3% 1.7% 1.2% 0.7% 0.6%
Other causes 4.6% 3.0% 2.4% 1.7% 1.5%
Total # of death 11,427 11,396 2,894 2,258 2,166

Never in hospital for CVD
Ischemic Heart Disease 0.9% 0.5% 0.4% 0.3% 0.2%
Stroke 0.1% 0.1% 0.1% 0.0% 0.0%
Other CVD 0.6% 0.4% 0.3% 0.2% 0.2%
external causes 3.7% 1.8% 1.2% 0.7% 0.6%
Other causes 3.9% 2.4% 1.8% 1.3% 1.2%
# of death 8,446 7,881 2,005 1,572 1,575

After CVD hospitalisation experience
Ischemic Heart Disease 2.4% 1.9% 1.5% 1.0% 0.8%
Stroke 0.9% 0.8% 0.6% 0.4% 0.5%
Other CVD 1.6% 1.3% 1.0% 0.8% 0.6%
external causes 1.6% 1.1% 0.9% 0.7% 0.4%
Other causes 7.8% 6.2% 5.4% 4.1% 3.8%
# of death 2,981 3,515 889 686 591

To take the timing of the deaths into account, we also calculated the cumulative incidence
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functions, the probability of dying from a specific cause of death before some age, with or

without hospitalisation. The (non-parametric) Aalen–Johansen cumulative incidence func-

tions Aalen and Johansen (1978) depicted in Figure D.6 in Appendix D for CVD related

causes of death and Figure D.7 in Appendix D for external or other natural causes of death,

show again a clear educational gradient in the probability to die from each of the five causes

of death. Comparing the cumulative incidence curves with and without hospitalisations we

notice two things. First, the shape of the cumulative incidence curves for external causes

(including suicide, tra�c accidents and homicide) without hospitalisation di↵ers substantially

from the cumulative incidence curves for other causes of death without hospitalisation and,

second, only the probability to die from cardiovascular diseases increases after hospitalisa-

tion for CVD. Of course, some caution in interpreting these figures is that the probability

somebody has been in hospital for CVD also increases with age and depends on observed

and unobserved individual factors and this is not accounted for in the cumulative incidence

functions. We account for such dynamic selection in our timing-of-events model.

We use an extension of the timing-of-events model of Section 3 to cause-specific mortality.

Instead of one mortality hazard we have five mortality hazards, one for each cause of death.

For each of these hazards we assume a MPH form as in (4). To account for possible endogeneity

of the hospitalisation process the unobserved heterogeneity of each cause-specific hazard is

possibly correlated with the hospitalisation hazards in (1) to (3) and with the other cause-

specific hazards. Just as for the analysis of total mortality we account for possible endogeneity

of education by using an inverse propensity weighting (in fact the weights are exactly the

same based on the same sequential probit estimation of improving education, see Table C.6

in Appendix C).

The results in Table 8 indicate that all causes of death show a clear educational gradi-

ent (except for stroke or other natural causes of death between post-secondary and univer-

sity/PhD), with the largest educational di↵erences for external causes of death. The results

also indicate that, not surprisingly, death due to all CVD causes is elevated by CVD hospi-

talisation. Death due to stroke and other CVD’s are a↵ected the most by hospitalisation for

CVD. It seems odd that the mortality for external (up to 12 times higher) and other natural

causes (up to 61 times higher) is also higher when an individual is in hospital for CVD. A

reason for this might be that when discharge from hospital occurs in the morning, which
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Table 8: Impact of CVD hospitalisation and education on Cause-specific mortality hazard
(IPW)

Education levela

(1) (2) (3) (4) (5)
IHD education � �0.363⇤⇤ �0.535⇤⇤ �0.832⇤⇤ �1.107⇤⇤

(0.049) (0.072) (0.078) (0.082)
in hospital 4.630⇤⇤ 4.421⇤⇤ 3.803⇤⇤ 3.904⇤⇤ 3.334⇤⇤

(0.138) (0.122) (0.274) (0.257) (0.333)
hospital experience 4.370⇤⇤ 4.292⇤⇤ 4.184⇤⇤ 3.653⇤⇤ 3.954⇤⇤

(0.287) (0.285) (0.296) (0.303) (0.298)
stroke education � �0.183 �0.724⇤⇤ �1.316⇤⇤ �0.826⇤⇤

(0.096) (0.158) (0.193) (0.150)
in hospital 6.671⇤⇤ 6.405⇤⇤ 6.148⇤⇤ 5.914⇤⇤ 5.722⇤⇤

(0.154) (0.147) (0.236) (0.254) (0.280)
hospital experience 3.925⇤⇤ 3.351⇤⇤ 3.345⇤⇤ 2.306⇤⇤ 2.551⇤⇤

(0.632) (0.634) (0.671) (0.744) (0.721)
other CVD education � �0.416⇤⇤ �0.555⇤⇤ �0.947⇤⇤ �0.939⇤⇤

(0.070) (0.102) (0.114) (0.108)
in hospital 5.537⇤⇤ 5.304⇤⇤ 5.120⇤⇤ 4.690⇤⇤ 4.673⇤⇤

(0.135) (0.123) (0.211) (0.249) (0.253)
hospital experience 3.618⇤⇤ 3.685⇤⇤ 3.312⇤⇤ 3.013⇤⇤ 2.542⇤⇤

(0.332) (0.329) (0.347) (0.351) (0.367)
other natural education � �0.460⇤⇤ �0.734⇤⇤ �1.065⇤⇤ �1.050⇤⇤

(0.024) (0.036) (0.039) (0.037)
in hospital 4.110⇤⇤ 3.974⇤⇤ 4.022⇤⇤ 3.806⇤⇤ 3.791⇤⇤

(0.088) (0.080) (0.112) (0.119) (0.120)
hospital experience 2.537⇤⇤ 2.348⇤⇤ 2.239⇤⇤ 1.809⇤⇤ 1.750⇤⇤

(0.155) (0.154) (0.161) (0.164) (0.165)
external education � �0.810⇤⇤ �1.131⇤⇤ �1.514⇤⇤ �1.789⇤⇤

(0.025) (0.043) (0.048) (0.051)
in hospital 2.547⇤⇤ 2.028⇤⇤ 2.685⇤⇤ 1.872⇤⇤ 1.018

(0.261) (0.272) (0.368) (0.525) (0.870)
hospital experience 0.564⇤⇤ 0.184⇤⇤ 0.112 �0.030 �0.756⇤⇤

(0.066) (0.063) (0.111) (0.112) (0.161)
a (1) primary education; (2) Some Secondary education; (3) Full secondary education; (4) Post-secondary
education; (5) University or PhD. +p < 0.05,⇤⇤ p < 0.01.

would imply in the data that the individual is still in hospital on that day, could still lead to

death for other causes during that day (including external causes, such as a tra�c accident

or a fatal fall). Unfortunately, we cannot account for this as we do not observe the discharge

time at the day of discharge. Another reason for this anomaly might be that we only observe

the main cause of death. Co-morbidity could lead to death to other natural causes.
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The educational gradient in the hospitalisation e↵ect (decreasing impact of hospitalisa-

tion with increasing education) is not clearly present for all causes of death, especially when

comparing the highest two education levels. Also surprising is, that for men with the highest

education level CVD hospitalisation experience decreases mortality due to external causes.

This implies that these men have less tra�c accidents and/or suicide after CVD hospitalisa-

tion.

5.1 Implied Educational gain

The coe�cients in a competing risks Timing-of-events model are even more di�cult to in-

terpret than the coe�cients of the ”standard” timing-of-events model, because the impact

of a specific education level on death by a specific cause not only depends on the parameter

value of this education level on the cause-specific mortality rate, but also on the e↵ects of this

education level on all the other causes-of-death hazards (and still also on all hospitalisation

hazards).

We, therefore, derive the implied educational gains, similar to the simulation analysis in

Section 4.1 based on the estimated timing-of-events model for the cause-specific mortality

with IPW. In a competing risk setting for cause specific mortality we can derive the implied

educational gain in months lost for each specific cause of death. If a simulated man dies from

a specific cause of death, say ischemic heart diseases, the simulated months lost due to this

cause for this man is the number of months this man died before age 63. This implies, for

this particular man, he has no months lost for the other causes of death.

Table 9 reports the estimated months lost for each cause of death, decomposed into a direct

e↵ect, the educational gain not running through CVD hospitalisation, and the indirect e↵ect,

the educational gain running through CVD hospitalisation. We do not find any statistically

significant educational gradient in the CVD causes of death. Bijwaard et al. (2017) also found

small, but statistically significant, educational gains for death due to cardiovascular diseases.

Thus, including the CVD hospitalisation process reduces this even further. However, as also

mentioned by Bijwaard et al. (2017), these men are still rather young (max 63) to be really

a↵ected by CVD.

The largest educational gains (also in line with Bijwaard et al. (2017)) are found for
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external causes of death. Men with primary education would gain 5.7 months alive due to

lower external death mortality when their education is improved. Men with some secondary

or full secondary would gain about one month alive due to lower external death mortality

when their education is improved. Men with primary education are the only men who would

gain, about 2.5 months, from educational improvement due to reduced mortality due to other

natural causes. For all these significant educational gains we only find a direct e↵ect of

education, i.e. from other factors a↵ected by education than CVD hospitalisation.

The educational gains in terms of the cumulative incidence functions, i.e. the probability to

die from a particular cause as it evolves over age, are depicted in Appendix D. Figure D.6 and

Figure D.7 present the implied cumulative incidence functions by cause of death. The total

educational gain (decrease in probability) by cause of death is presented in Figure D.9. Again,

they clearly show that men with primary education would gain the most from improving

education, especially in reducing death to external causes (which is in line with the analyses

on the educational gradient in cause of death by Bijwaard et al. (2017, 2019) ). Comparing

Figure D.10 and Figure D.11 shows that. again, the main source of educational di↵erence is

not caused by di↵erence in CVD hospitalisation, but by other factors related to education.
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Table 9: Implied educational gain in months lost 18-63 by Cause of death

Education levela

(2) (3) (4) (5)
Ischemic heart disease

Total e↵ect 0.40 0.19 0.21 0.19
(0.34) (0.31) (0.25) (0.32)

Direct e↵ectb 0.37 0.16 0.19 0.16
(0.34) (0.32) (0.29) (0.34)

Indirect e↵ectb 0.03 0.03 0.02 0.03
(0.32) (0.28) (0.24) (0.30)

stroke
Total e↵ect 0.07 0.21 0.09 �0.05

(0.16) (0.14) (0.13) (0.17)
Direct e↵ectb 0.07 0.16 0.08 �0.08

(0.16) (0.14) (0.14) (0.14)
Indirect e↵ectb 0.00 0.05 0.02 0.02

(0.01) (0.14) (0.12) (0.14)
other CVD

Total e↵ect 0.27 0.10 0.17 �0.02
(0.28) (0.24) (0.25) (0.29)

Direct e↵ectb 0.26 0.07 0.15 �0.02
(0.29) (0.30) (0.24) (0.26)

Indirect e↵ectb 0.01 0.02 0.02 0.00
(0.28) (0.25) (0.24) (0.26)

external
Total e↵ect 5.68⇤⇤ 1.32+ 1.06+ 0.55

(0.77) (0.60) (0.52) (0.59)
Direct e↵ectb 5.72⇤⇤ 1.25+ 1.11+ 0.61

(0.80) (0.63) (0.55) (0.52)
Indirect e↵ectb �0.04 0.07 �0.06 �0.06

(0.60) (0.52) (0.52) (0.42)
other natural

Total e↵ect 2.45⇤⇤ 1.06 1.00 �0.06
(0.82) (0.68) (0.60) (0.67)

Direct e↵ectb 2.38⇤⇤ 1.00 0.94 �0.08
(0.74) (0.71) (0.70) (0.64)

Indirect e↵ectb 0.07 0.06 0.06 0.02
(0.68) (0.70) (0.65) (0.64)

a (2) primary education to Some Secondary education; (3) Some Sec-
ondary education to Full secondary education; (4) Full secondary ed-
ucation to Post-secondary education; (5) Post-secondary education
to University or PhD. +p < 0.05,⇤⇤ p < 0.01.

b Indirect e↵ect: e↵ect of education running through CVD hospitali-
sation; Direct e↵ect: e↵ect of education running through other (not
CVD hospitalisation) factors
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6 Conclusion and discussion

Higher educated individuals are less frequently admitted to hospital for cardiovascular dis-

eases (CVD) and live longer than their lower educated peers. A relevant question is, therefore,

whether the educational gradient in mortality can be explained by the educational di↵erence

in CVD hospitalisation. A common approach to obtain the impact of both education and

CVD hospitalisation on mortality is to estimate a (mixed) proportional hazard model for the

mortality hazard. However, viewing the educational level and the hospitalisation as ordinary

(exogenous) variables may lead to biased inference of the e↵ect of these variables on the mor-

tality hazard. Any observed relationship between admittance to (or discharge from) hospital

and mortality may be caused by unobserved factors that influence both the hospitalisation

and mortality. Educational attainment is also very likely to depend on the same observed

factors. Such confounding renders education and hospitalisation endogenous in the mortality

analysis. We obtain the impact of education and hospitalisation by education on mortality

by accounting for both the selection into the hospitalisation process (both admittance and

discharge) and the selection into education.

In particular, we estimate the e↵ects of the hospitalisation process on the mortality rate

using the “timing-of-events” - method (Abbring and van den Berg, 2003). We control for

correlated e↵ects that arise from correlation between unobservables in the hospitalisation

and mortality processes. To account for the endogeneity of the education attainment we

apply inverse probability weighting (IPW) methods using the propensity score, based on an

estimated sequential probit model for educational attainment. Based on the estimated model

we calculate the educational gain of improving education in both the survival probability till

age 63 and in the number of months lost till age 63. We also decompose these educational

gains into an indirect e↵ect, running through changes in the hospitalisation process, and a

direct e↵ect due to other factors.

We base our results on Swedish Military Conscription Data (1951-1960), linked to admin-

istrative Swedish registers, linked to administrative Swedish registers including information

on CVD hospitalisation and death. We have information on about half a million men who

are followed from the date of conscription till the end of 2012, or till death. For those men

who die we observe the cause of death. Educational level was classified in five categories:
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primary education; some secondary education (2 years); full secondary education (3 years);

post-secondary education and higher education.

The empirical analyses show a clear educational gradient in mortality, even after account-

ing for the endogeneity of education through inverse propensity weighting. We also find that

mortality is much higher for those in hospital for CVD and for those who have been in hospital.

These hospitalisation e↵ects also exhibit a educational gradient, with a decreasing impact of

hospitalisation the higher the education level. From the implied educational gains we conclude

that men with only primary education would gain the most if they had a higher education

level. However, only a small part of this educational gain is running through a change in hos-

pitalisation for CVD. The only exception are men with post-secondary education for whom

the expected gain in months lost if they had higher education is mostly attributable to changes

in the CVD hospitalisation for the higher educated.

We present a couple of robustness checks. We investigate whether removing the possibility

of reverse causation for psychological assessment and IQ measurement changes the estimated

impact of education (and hospitalisation) on mortality. The association between education

and hospitalisation and mortality could also stem from childhood ill-health which constrains

educational attainment. To test whether the estimated e↵ects are a↵ected by the choice to

exclude the health measurement from the propensity score (to avoid such reverse causation)

we also estimate a model that includes health measurements at age 18 available in the data.

We further address the robustness of our results by comparing the estimation results with the

results from a doubly robust model, in which observed characteristics are both included in

the propensity score and as control variables in the hazards. For comparison with Bijwaard

et al. (2017), we investigate whether using only adjacent education levels leads to significantly

di↵erent educational gains. Only for the model excluding IQ and psychological assessments

from the propensity scores we find, slightly, di↵erent estimation results. However, leaving out

these variables from the propensity score would violate the unconfoundedness assumption as

these measurements influence both the education choice and the hospitalisation and mortality

process. We, therefore, prefer the model with IQ and psychological assessment measurements

included in the propensity score.

The empirical results for the cause-specific mortality analysis reveal that all five causes of

death show a clear educational gradient, with the largest educational di↵erences for external

38



causes of death. They also reveal that, not surprisingly, death due to CVD (IHD, stroke and

other CVD) is a↵ected the most by hospitalisation for CVD. The educational gradient in the

hospitalisation e↵ect (decreasing impact of hospitalisation with increasing education) is not

present for all causes of death, especially when comparing the highest two education levels.

The implied educational gains in months lost by cause of death are only significant for external

causes and other natural causes. They do not indicate that hospitalisation (indirect e↵ect)

plays an important role in explaining the educational gain. We do not find any statistically

significant educational gradient in the CVD causes of death.

During the observation period, Sweden had an advanced public health care system provid-

ing services independently of individual income. Educational gains through increasing access

to health services through higher income seem to be less important in the context of the

Swedish health care system, with its broad coverage and access, than in a health-care system

such as that in the United States, in which many individuals are not covered by health insur-

ance. However, the role of education in understanding of health information and in changing

health behaviour, healthy life-style, is still potentially present. This study provides better

insight in the role of CVD hospitalisation, strongly related to healthy life-style, in explain-

ing the educational di↵erence in mortality. Of course, this is only one of the many possible

channels that explain this di↵erence.

A limitation of our data, based on military entrance examination, is that we only observe

men and no information on women is available. Another limitation is that, although military

conscription was mandatory in Sweden, men with severe mental disabilities or severe chronic

diseases were exempted from the military examination. Thus, our results only apply to those

who had no severe chronic diseases at age 18 and are, therefore, likely an underestimate of

the impact of CVD hospitalisation on mortality. Another limitation is that we only observe

mortality before the age of 63. In the future, when these men have been followed for a longer

period, the educational di↵erences in mortality and the relevance of CVD hospitalisation in

explaining this may change as mortality due to CVD plays a larger role.

The main issue is whether we can give our results a causal interpretation. In the literature

three di↵erent approaches have been employed to examine the causal e↵ects of education on

mortality. The first approach exploits changes in compulsory schooling policies as instrumental

variables for educational attainment to control for endogeneity. However, a major limitation
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of using changes in compulsory schooling to detect educational e↵ects on mortality, is that

often only a relatively small part of the population is a↵ected by the laws (Mazumder, 2008,

Fletcher, 2015). Another issue with the instrumental variable methods applied in these studies

is that they implicitly assume that the compulsory schooling reforms only a↵ect long-term

health through their e↵ect on education, ignoring any other contemporary policy changes that

may accompany these reforms. Another identification strategy is to use variation in education

among siblings, often identical (monozygotic) twins, to distinguish the unobserved factors

shared by these siblings. These studies (Behrman et al., 2011, Lundborg, 2013, Næss et al.,

2012, Amin et al., 2015) obtain estimates of the impacts of the di↵erences in schooling within

a pair of identical twins on their health di↵erences at various schooling levels. Although by

using twins it is possible to control for both shared environmental and shared genetic factors,

a major shortcoming of twin studies is that they only analyse twins, yet twins are usually not

representative of the whole population. Using twins will substantially reduce the statistical

power, because only twins with di↵erent education levels are analysed. Not only is it rare

that twins would have the same cognitive ability, they also experience a large number of non-

shared events throughout life, events that may be unobserved and influence both education

and mortality (e.g. accidents). A third approach to account for confounding factors is to

include them directly into the model (Bijwaard et al., 2015a,b, 2019) A disadvantage of these

models is that they impose a rather stringent structure on the relation between education,

mortality and the influence of confounding factors. Another limitation is that estimation of

these structural models can be very computer intensive if a large data set is available.

The IPW method we (and Bijwaard et al. (2017) ) employ also accounts for possible

confounding factors, however, without making any structural assumptions on the relation

between the confounding factors and hospitalization or mortality. However, the unconfound-

edness assumption of no unmeasured confounding influencing both the education choice and

the hospitalisation-mortality process is a strong assumption and nonrefutable. Two findings

may indicate that our results are close to causal. First, recent research (Bijwaard and Jones,

2019) has shown that intelligence can be considered a principal source of education selection

and, that accounting for intelligence (as we do) leaves little room for selection on unobserv-

ables when estimating the impact of education on mortality. Second, the sensitivity analyses

indicate that including additional (unmeasured) binary variables with large impact on both
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the education choice, hospitalisation and mortality do not change our results. However, we

are still cautious in claiming causal interpretation of our results.
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Spasojević, J. (2010). E↵ects of education on adult health in Sweden: Results from a natural

experiment. In Slottje, D. and Tchernis, R., editors, Current Issues in Health Economics

(Contributions to Economic Analysis), pages 179–199. Emerald Group Publishing Limited,

Wst Yokshire, UK.

Tansel, A. and Keskin, H. (2017). Education e↵ects on days hospitalized and days out of work

by gender: Evidence from Turkey. DP 11210, IZA.

Van den Berg, G. J. (2001). Duration models: Specification, identification, and multiple

duration. In Heckman, J. and Leamer, E., editors, Handbook of Econometrics, Volume V,

chapter 55, pages 3381–3460. Amsterdam: North–Holland.

van den Berg, G. J., Lindeboom, M., and Portrait, F. (2011). Conjugal bereavement e↵ects

on health and mortality at advanced ages. Journal of Health Economics, 30(4):774–794.

van den Berg, G. J., van der Klaauw, B., and van Ours, J. C. (2004). Punitive sanctions and

the transition rate from welfare to work. Journal of Labor Economics, 22(1):211–241.

van Ours, J. C. and Williams, J. (2012). The e↵ects of cannabis use on physical and mental

health. Journal of Health Economics, 31(4):564–577.

Xue, X., Cheng, M., and Zhang, W. (2021). Does education really improve health? A meta-

analysis. Journal of Economic Surveys, 35(1):71–105.

46



Appendix A Likelihood function

We have data for i = 1, . . . , nmale recruits in our observation window. LetKid andKir denote

the number of the discharges and re-admittances out/in a hospital for CVD of individual i.

Note that for some individuals Kid = 0 and Kir = 0, i.e an individual who either never entered

a hospital or who died in hospital. An important feature of duration data is that for some

individuals we only know that he or she survived up to a certain time (often the end of the

observation window). In this case an individual is (right) censored and we use the survival

function instead of the hazard in the likelihood function. The three indicators�d

ik
,�r

ik
and�m

i

signal that kth CVD hospitalisation discharge/re-entry or the mortality spell is uncensored.

�h

i
indicates that the first CVD hospitalisation spell is uncensored. Thus, the likelihood

contribution of individual i conditional on the unobserved heterogeneity v = (vh, vr, , vd, vm)

is (suppressing dependence on observed characteristics x and education e), in the light of the

preceding discussions:
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This likelihood naturally separates admittance, discharge, re-admittance and mortality

spells, and for each spell allows for censoring. Ih(t�
ik
) indicates that the individual is in

hospital just before tik and similarly for Io(t�
il
). When Kid = 0 or Kir = 0 the relevant term

becomes 1. Note that the last, and only the last, hospitalisation spell is censored. This is

either because the individual is still alive at the end of the observation period, or has died.

Another feature of duration data is that only individuals are observed having survived

up to a certain age. In our case, mortality follow-up is only available from the conscription

date, around age 18, onwards. In this case the individuals are left-truncated, and we need to

condition on survival up to the age of first observation, t0 = 18. With left-truncated data the
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distribution of unobserved heterogeneity among the survivors (up to the left-truncation time)

changes. When only individuals are observed that have survived until age t0 the likelihood

contribution is

Li =

Z
Li(v) exp

⇣Z t0

0
✓m(⌧ |·, vm) d⌧

⌘
dG(v|T > t0)

with the distribution of the unobserved heterogeneity conditional on survival up to t0
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exp
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�
R
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0 ✓m(⌧ |·, vm) d⌧
⌘
dG(vm, vh, vd, vr)

R
exp

⇣
�
R
t0

0 ✓m(⌧ |·, vm) d⌧
⌘
dG(vm, vh, vd, vr)

(A.2)

with G(ve, vu, vm) is the joint distribution of the unobserved heterogeneity terms implied by

the discussion of vk.

Appendix B Additional tables

For an IPW method to hold we need to check if the propensity score is able to balance the dis-

tribution of all included variables in all education groups. One suitable way to check whether

there are still di↵erences is by calculating the standardized bias, or normalised di↵erence in

means:

100 · x̄e � x̄pp
Var(x)p

(B.1)

With e = 1, . . . , 5 the education group and p is the whole sample population. Table B.3

shows the percentage bias measure before and after adjusting the data in our sample. They

reveal substantial imbalances between those who attained adjacent education levels before

accounting for selective education choice. The biases in columns labelled ‘after’ show that

these imbalances disappear when we use the inverse propensity weights.
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Table B.1: Descriptive statistics men never in hospital for CVD (N = 437, 614)

Primary Secondary education Post-secondary Higher
some full (< 3 years)

SES mother at birth
non-manual (high) 1% 1% 3% 4% 7%
non-manual (intermediate) 2% 2% 4% 5% 9%
non-manual (low) 13% 19% 29% 33% 41%
Farmers 18% 14% 13% 12% 9%
Skilled workers 50% 48% 39% 35% 24%
Unskilled workers 10% 10% 8% 7% 6%
Not classified 5% 5% 3% 3% 3%
Unknown 1% 1% 1% 1% 1%

Education father
Primary (< 9 yrs) 65% 59% 48% 43% 30%
Primary (9–10 yrs) 3% 3% 4% 4% 4%
Secondary education (2 yrs) 11% 15% 17% 17% 16%
Secondary education (3 yrs) 5% 7% 11% 14% 16%
Post-secondary 1% 2% 3% 5% 6%
Higher 1% 2% 5% 6% 18%
Unknown 14% 12% 12% 11% 11%
mother < 20 at birth 10% 9% 7% 5% 4%
father > 40 at birth 15% 13% 12% 12% 11%
birth order 2.3 2.1 2.0 1.9 1.8
global IQa 4.1 4.6 5.7 6.2 6.8
Psychological assessmenta 4.4 4.8 5.4 5.7 5.9
missing IQ 14% 14% 12% 12% 12%
missing Psychological assessment 15% 15% 12% 12% 12%
# of individuals 93,219 156,123 53,654 61,786 72,832

a stanine score 1-9 running from low to high.
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Table B.2: Descriptive statistics men who experienced CVD hospitalisation (N = 80, 229)

Primary Secondary education Post-secondary Higher
some full (< 3 years)

SES mother at birth
non-manual (high) 1% 1% 4% 4% 8%
non-manual (intermediate) 2% 3% 5% 6% 10%
non-manual (low) 14% 19% 30% 34% 42%
Farmers 18% 14% 13% 12% 9%
Skilled workers 48% 47% 36% 33% 22%
Unskilled workers 10% 9% 8% 6% 5%
Not classified 5% 5% 3% 3% 3%
Unknown 2% 1% 1% 1% 1%

Education father
Primary (< 9 yrs) 62% 57% 44% 40% 27%
Primary (9–10 yrs) 3% 3% 4% 4% 4%
Secondary education (2 yrs) 11% 15% 17% 17% 16%
Secondary education (3 yrs) 5% 8% 12% 15% 15%
Post-secondary 1% 2% 4% 6% 7%
Higher 2% 2% 6% 8% 21%
Unknown 15% 12% 12% 10% 10%
mother < 20 at birth 9% 9% 7% 5% 4%
father > 40 at birth 11% 11% 10% 10% 10%
birth order 2.4 2.2 2.0 1.9 1.8
global IQa 3.9 4.5 5.6 6.1 6.7
Psychological assessmenta 4.2 4.6 5.3 5.6 5.8
missing IQ 9% 5% 4% 3% 3%
missing Psychological assessment 10% 6% 4% 4% 4%
# of individuals 20,692 30,737 9,358 9,764 9,678

a stanine score 1-9 running from low to high.
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Table B.3: Standardized bias before and after matching, pairwise comparisons
Educational levelsa

(1) (2) (3) (4) (5)
Before After Before After Before After Before After Before After

Mother’s SES
Unskilled workers 6.41 0.17 3.99 -0.08 -1.99 -0.19 -6.02 0.10 -11.15 0.39
Farmers 12.12 -1.62 1.18 -0.49 -1.89 -0.60 -4.93 -0.11 -13.68 0.73
Non-manual (low) -25.12 0.91 -13.88 0.48 10.93 -0.82 20.54 -0.26 39.95 -1.00
Non-manual (medium) -12.21 0.75 -8.49 0.75 2.44 0.09 8.87 -0.02 26.54 -0.06
Non-manual (high) -10.36 1.97 -9.19 -0.27 4.52 -0.26 4.78 0.06 27.52 -0.30
not classified 3.97 0.30 3.17 -0.10 -3.24 0.25 -4.85 -0.21 -5.99 0.17
missing 1.57 -0.25 -0.47 -0.37 -0.15 -0.16 -1.16 -0.77 0.02 -1.33

Father’s education
less than 9 years 26.27 -1.89 14.54 -0.35 -10.16 0.71 -19.12 0.56 -44.87 2.05
9-10 years -3.56 -0.18 -1.14 -0.19 3.22 -0.13 3.25 0.23 2.23 0.01
Full secondary -15.85 0.20 -7.12 -0.48 6.10 -0.23 16.19 -0.64 19.32 -0.74
University < 3 years -11.29 0.52 -5.75 0.37 3.28 -0.14 10.86 0.08 16.68 -0.36
University � 3 years -18.55 3.54 -16.12 1.97 1.48 0.02 7.70 0.06 54.31 -0.32
PhD studies -6.59 1.00 -6.50 2.11 -0.63 0.13 -0.46 0.07 24.69 -0.03
missing 8.60 -0.88 0.06 -0.79 -1.70 -0.90 -5.83 -0.33 -5.66 -2.12

a (1) primary education to Secondary education (max 2 years); (2) Secondary education (max 2 years) to Sec-
ondary education 3 year; (3) Secondary education 3 years to post-secondary education; (4) Post secondary
education to University or PhD.
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Table B.3: Standardized bias before and after matching (continued)
Educational levelsa

(1) (2) (3) (4) (5)
Before After Before After Before After Before After Before After

Mother < 20 at birth 7.99 1.40 5.33 0.41 -2.91 0.55 -7.83 0.95 -14.10 3.73
Father > 40 at birth 5.78 -0.77 0.41 -0.67 -2.43 -0.71 -3.78 -0.19 -3.77 -1.84
family size 1 -6.02 0.08 -2.49 0.65 4.85 -0.17 4.62 -0.28 6.24 -0.46
family size 3 -2.94 -0.34 -0.61 -0.37 0.25 -0.21 1.81 -0.34 3.68 -0.17
family size 4 6.94 0.19 2.55 0.04 -3.92 0.41 -5.92 0.43 -7.23 0.16
family size � 5 20.21 0.39 5.73 0.06 -10.28 0.78 -15.00 0.99 -20.02 0.42
birth order 2 -2.49 -0.15 0.18 -0.06 1.13 0.09 1.38 -0.19 0.96 -0.24
birth order 3 5.61 -0.31 1.92 -0.32 -2.94 0.30 -4.64 1.12 -5.83 0.71
birth order 4 8.08 -0.58 3.05 -0.21 -4.20 0.27 -6.88 -0.61 -8.89 0.04
birth order � 5 12.84 -0.03 3.26 -0.25 -6.15 0.18 -8.78 0.35 -12.80 -2.26

Global IQb

1 25.10 -0.15 2.38 -0.06 -12.81 0.73 -15.81 0.70 -16.54 -1.50
2 24.61 -0.06 7.38 -0.04 -14.12 0.59 -19.56 1.01 -22.95 0.76
3 20.16 -0.20 9.86 -0.08 -10.82 0.57 -19.06 0.23 -25.38 1.56
4 12.75 -0.28 11.48 -0.04 -6.19 0.59 -14.88 0.33 -25.97 1.65
6 -14.77 -0.32 -1.55 -0.22 11.98 -0.26 12.57 0.02 3.83 -0.09
7 -21.50 0.75 -11.83 -0.04 12.95 -0.14 22.60 0.08 26.99 -0.50
8 -21.17 1.04 -17.25 0.97 8.19 -0.04 21.94 0.07 43.00 -0.50
9 -17.41 4.07 -16.83 1.78 1.23 0.20 12.09 -0.14 50.72 -0.41
missing 4.04 -2.40 2.09 -1.12 -4.64 -1.14 -3.80 -1.50 -3.48 -2.17
Psychological assessmentb

1 13.42 0.84 2.90 0.34 -7.32 1.14 -10.38 2.09 -10.52 3.67
2 15.82 1.22 4.44 0.15 -9.07 0.37 -13.19 0.55 -13.52 0.27
3 13.22 0.70 4.58 0.14 -6.06 0.23 -12.05 0.35 -13.54 0.08
4 6.54 0.33 4.63 -0.12 -2.16 -0.06 -7.46 -0.90 -11.39 0.66
6 -8.89 -0.43 -1.50 -0.13 6.29 -0.01 7.74 0.15 4.16 0.21
7 -14.19 -0.53 -7.07 0.21 7.81 -0.28 13.73 0.39 17.72 -1.01
8 -14.54 0.72 -9.80 0.90 6.08 -0.15 14.73 0.14 24.86 -0.65
9 -10.84 1.22 -8.90 1.55 2.86 0.11 10.30 0.21 24.00 -0.37
missing 4.67 -2.16 2.24 -1.08 -4.90 -1.12 -4.36 -1.16 -4.00 -2.04

birth year
1951 3.92 0.91 -4.04 0.56 5.64 0.38 -1.18 0.78 0.45 1.34
1952 6.66 1.61 -4.13 -0.01 0.23 0.10 -0.37 0.21 0.31 -0.36
1953 8.21 1.30 -4.20 0.56 -1.08 0.18 -0.36 0.84 -0.69 -0.24
1954 -2.08 -0.89 1.67 -0.26 -2.17 -0.28 0.65 -0.01 0.18 0.39
1955 -1.99 -0.45 2.17 -0.38 -2.78 -0.21 -0.29 -0.37 0.21 -0.44
1956 -2.25 -0.85 2.40 -0.12 -3.07 -0.07 -0.14 -0.23 0.14 0.46
1957 -3.73 -0.75 3.10 -0.38 -3.11 -0.04 1.06 0.17 -0.40 -0.56
1958 -5.49 -0.15 3.98 0.27 -3.01 0.13 1.03 -0.17 -0.03 0.99
1959 -7.94 0.76 4.93 -0.68 -1.64 -0.97 0.92 -1.22 0.24 -1.53

a (1) primary education; (2) Some Secondary education; (3) Full Secondary education 3 years; (4) post-secondary
education; (5) Higher

b Running from low to high.
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Table B.4: Impact of hospitalisation and education on mortality hazard IPW, adjacent edu-
cations

Education levela

(1) (2) (3) (4) (5)
base category

education � � � � �

in hospital 4.277⇤⇤ 4.374⇤⇤ 4.536⇤⇤ 4.722⇤⇤ �
(0.059) (0.064) (0.127) (0.134)

hospital experience 1.721⇤⇤ 2.748⇤⇤ 3.074⇤⇤ 3.434⇤⇤ �
(0.123) (0.154) (0.271) (0.305)

second category
education � �0.464⇤⇤ �0.293⇤⇤ �0.338⇤⇤ �0.123⇤⇤

(0.016) (0.025) (0.034) (0.036)
in hospital � 4.131⇤⇤ 4.342⇤⇤ 4.326⇤⇤ 4.650⇤⇤

(0.055) (0.090) (0.132) (0.140)
hospital experience � 1.594⇤⇤ 2.627⇤⇤ 2.797⇤⇤ 3.259⇤⇤

(0.122) (0.158) (0.272) (0.306)
a (1) primary education; (2) Some Secondary education; (3) Full secondary education; (4)
Post-secondary education; (5) University or PhD.
Estimating separate models for (1) and (2); (2) and (3); (3) and (4); (4) and (5); +p <
0.05,⇤⇤ p < 0.01.
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Table B.5: Sensitivity: Mortality, (first) hospitalisation and discharge e↵ect with IQ defining
the distribution of U given education e = 1, . . . , 5 mortality �M = 0, 1 and hospitalisation
experience �H = 0, 1

Educational levelsa

(1) (2) (3) (4) (5)
Mortality e↵ect, !M (e)

Global IQb

1 0.223⇤⇤ 0.449⇤⇤ 0.474 �0.046 �0.565
2 �0.095+ 0.258⇤⇤ 0.276+ �0.056 �0.160
3 �0.118⇤⇤ 0.113⇤⇤ 0.143 0.105 0.351
4 �0.148⇤⇤ �0.013 0.039 �0.051 0.085
6 �0.219⇤⇤ �0.212⇤⇤ �0.048 �0.102 0.023
7 �0.066 �0.199⇤⇤ �0.088 0.037 �0.013
8 0.058 �0.209+ �0.037 0.030 �0.126
9 0.309 �0.264 0.096 �0.117 �0.145
missing 0.546⇤⇤ 0.171⇤⇤ 0.156+ �0.017 0.105

First hospitalisation e↵ect, !H(e)
Global IQb

1 0.290⇤⇤ 0.375⇤⇤ 0.328⇤⇤ 0.379 0.086
2 0.154⇤⇤ 0.213⇤⇤ 0.317⇤⇤ 0.398⇤⇤ 0.073
3 0.103⇤⇤ 0.219⇤⇤ 0.201⇤⇤ 0.188⇤⇤ 0.207+

4 0.085⇤⇤ 0.123⇤⇤ 0.078⇤⇤ 0.149⇤⇤ 0.158+

6 �0.057 0.025 0.105 0.142⇤⇤ 0.177⇤⇤

7 �0.073 �0.009 0.069⇤⇤ 0.046 0.145⇤⇤

8 �0.228⇤⇤ �0.005 �0.048 0.009 �0.003
9 �0.361+ �0.091 �0.002 0.052 0.031
missing �0.526⇤⇤ �1.190⇤⇤ �1.183⇤⇤ �1.372⇤⇤ �1.410⇤⇤

Discharge e↵ect, !D(e)
Global IQb

1 �0.009 �0.028 �0.043 �0.007 0.076
2 0.012 0.000 �0.015 0.032 0.034
3 0.009 0.006 �0.010 0.009 0.006
4 0.005 0.016 �0.001 0.010 �0.006
6 0.020 0.027 �0.001 0.008 0.003
7 0.027 0.020 �0.004 �0.003 0.003
8 0.016 0.011 �0.006 �0.003 0.005
9 0.004 0.040 0.016 0.007 0.016
missing �0.098 �0.089 �0.118 �0.064 �0.079
a (1) primary education; (2) Some Secondary education; (3) Full Secondary
education 3 years; (4) post-secondary education; (5) Higher

b Running from low to high.
Based on adding discrete U to propensity score with probabilities of U from
observed probabilities for each covariate. No e↵ect would give !M (e) =
0,!H(e) = 0 and !D(e) = 0. +p < 0.05 and ⇤⇤p < 0.01
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Table B.5: Sensitivity: re-admittance and selection e↵ect with IQ defining distribution of U
given education e = 1, . . . , 5 mortality �M = 0, 1 and hospitalisation experience �H = 0, 1

Educational levelsa

(1) (2) (3) (4) (5)
Re-admittance e↵ect, !R(e)

Global IQb

1 0.013 0.039 0.036 �0.062 �0.110
2 �0.018 0.011 �0.015 0.003 0.013
3 �0.017 0.003 �0.009 0.001 0.008
4 �0.010 �0.007 �0.010 �0.014 0.009
6 �0.023 �0.023 �0.009 �0.010 �0.000
7 �0.020 �0.005 �0.006 0.006 �0.001
8 �0.025 0.004 �0.012 0.007 0.002
9 �0.054 �0.049 �0.052 �0.004 �0.004
missing 0.117⇤⇤ 0.109+ 0.117 0.087 0.071

Selection e↵ect, ⇠(e)
Global IQb

1 �0.765⇤⇤ �1.238⇤⇤ �0.793⇤⇤ �0.368⇤⇤

2 �0.536⇤⇤ �0.992⇤⇤ �0.636⇤⇤ �0.574⇤⇤

3 �0.362⇤⇤ �0.719⇤⇤ �0.499⇤⇤ �0.437⇤⇤

4 �0.181⇤⇤ �0.504⇤⇤ �0.364⇤⇤ �0.389⇤⇤

6 0.312⇤⇤ 0.172⇤⇤ �0.051⇤⇤ �0.129⇤⇤

7 0.531⇤⇤ 0.561⇤⇤ 0.155⇤⇤ 0.055⇤⇤

8 0.724⇤⇤ 0.958⇤⇤ 0.340⇤⇤ 0.255⇤⇤

9 0.928⇤⇤ 1.405⇤⇤ 0.537⇤⇤ 0.528⇤⇤

missing �0.082⇤⇤ �0.119⇤⇤ 0.015 0.002
a (1) primary education; (2) Some Secondary education; (3) Full Secondary
education 3 years; (4) post-secondary education; (5) Higher

b Running from low to high.
Based on adding discrete U to propensity score with probabilities of U from
observed probabilities for each covariate. No e↵ect would give !R(e) = 0 and
⇠(e) = 0. +p < 0.05 and ⇤⇤p < 0.01
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Table B.6: Sensitivity: Mortality, (first) hospitalisation and discharge e↵ect with psychological
assessment defining distribution of U given education e = 1, . . . , 5 mortality �M = 0, 1 and
hospitalisation experience �H = 0, 1

Educational levelsa

(1) (2) (3) (4) (5)
Mortality e↵ect, !M (e)

psychological assessmentb

1 0.790⇤⇤ 0.909⇤⇤ 0.757⇤⇤ 0.709⇤⇤ 0.689⇤⇤

2 0.222⇤⇤ 0.462⇤⇤ 0.561⇤⇤ 0.625⇤⇤ 0.272
3 �0.024 0.243⇤⇤ 0.173+ 0.241+ 0.170
4 �0.283⇤⇤ �0.100⇤⇤ 0.030 �0.005 0.137
6 �0.403⇤⇤ �0.387⇤⇤ �0.161+ �0.072 �0.104
7 �0.398⇤⇤ �0.298⇤⇤ �0.242⇤⇤ �0.125 �0.111
8 �0.314⇤⇤ �0.325⇤⇤ �0.249+ �0.131 �0.243+

9 �0.198 �0.264 �0.055 �0.270 �0.198
missing 0.554⇤⇤ 0.228⇤⇤ 0.191⇤⇤ 0.007 0.122

First hospitalisation e↵ect, !H(e)
psychological assessmentb

1 0.306⇤⇤ 0.398⇤⇤ 0.230+ 0.152 0.325+

2 0.223⇤⇤ 0.321⇤⇤ 0.245⇤⇤ 0.108 0.257⇤⇤

3 0.135⇤⇤ 0.208⇤⇤ 0.170⇤⇤ 0.181⇤⇤ 0.167⇤⇤

4 0.022 0.091⇤⇤ 0.141⇤⇤ 0.109⇤⇤ 0.127⇤⇤

6 �0.016 0.021 0.049 0.081+ 0.091
7 �0.032 0.038 0.046 0.026 0.025
8 0.052 0.018 0.082 0.086 0.085
9 �0.244 0.125 0.033 0.168⇤⇤ 0.138+

missing �0.460⇤⇤ �1.044⇤⇤ �1.060⇤⇤ �1.241⇤⇤ �1.278⇤⇤

Discharge e↵ect, !D(e)
psychological assessmentb

1 �0.057 �0.049 �0.023 0.008 �0.005
2 �0.010 �0.015 �0.045 �0.020 0.013
3 0.003 0.003 �0.009 0.011 0.010
4 0.020 0.016 �0.007 0.011 0.007
6 0.018 0.026 0.006 0.000 0.004
7 0.038 0.032 0.018 0.009 0.006
8 0.030 0.022 0.016 0.007 0.014
9 0.044 0.022 �0.009 0.032 0.014
missing �0.093+ �0.089 �0.107 �0.051 �0.078
a (1) primary education; (2) Some Secondary education; (3) Full Secondary educa-
tion 3 years; (4) post-secondary education; (5) Higher

b Running from low to high.
Based on adding discrete U to propensity score with probabilities of U from ob-
served probabilities for each covariate. No e↵ect would give !M (e) = 0,!H(e) = 0
and !D(e) = 0. +p < 0.05 and ⇤⇤p < 0.01
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Table B.6: Sensitivity: re-admittance and selection e↵ect with psychological assessment defin-
ing the distribution of U given education e = 1, . . . , 5 mortality �M = 0, 1 and hospitalisation
experience �H = 0, 1

Educational levelsa

(1) (2) (3) (4) (5)
Re-admittance e↵ect, !R(e)

psychological assessmentb

1 0.068 0.067 0.023 0.036 0.008
2 0.012 0.031 0.034 0.036 �0.005
3 �0.008 0.006 �0.006 �0.010 0.002
4 �0.027 �0.009 0.001 �0.013 0.003
6 �0.024 �0.021 �0.017 0.001 0.003
7 �0.045 �0.021 �0.021 �0.009 0.002
8 �0.034 �0.013 �0.033 �0.008 0.000
9 �0.060 �0.010 �0.006 �0.031 �0.001
missing 0.111⇤⇤ 0.107+ 0.108 0.074 0.070

Selection e↵ect, ⇠(e)
psychological assessmentb

1 �0.443⇤⇤ �0.607⇤⇤ �0.251⇤⇤ �0.019
2 �0.364⇤⇤ �0.496⇤⇤ �0.185⇤⇤ �0.018
3 �0.249⇤⇤ �0.328⇤⇤ �0.180⇤⇤ �0.048+

4 �0.103⇤⇤ �0.202⇤⇤ �0.141⇤⇤ �0.088⇤⇤

6 0.177⇤⇤ 0.121⇤⇤ �0.004 �0.056⇤⇤

7 0.314⇤⇤ 0.349⇤⇤ 0.115⇤⇤ 0.056⇤⇤

8 0.457⇤⇤ 0.574⇤⇤ 0.230⇤⇤ 0.152⇤⇤

9 0.606⇤⇤ 0.832⇤⇤ 0.347⇤⇤ 0.273⇤⇤

missing �0.092⇤⇤ �0.127⇤⇤ 0.010 0.004
a (1) primary education; (2) Some Secondary education; (3) Full Secondary educa-
tion 3 years; (4) post-secondary education; (5) Higher

b Running from low to high.
Based on adding discrete U to propensity score with probabilities of U from
observed probabilities for each covariate. No e↵ect would give !R(e) = 0 and
⇠(e) = 0. +p < 0.05 and ⇤⇤p < 0.01
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Table B.7: Sensitivity: Mortality and (first) hospitalisation e↵ect with mother’s ses or father’s
education level defining the distribution of U given education e = 1, . . . , 5 mortality �M = 0, 1
and hospitalisation experience �H = 0, 1

Educational levelsa

(1) (2) (3) (4) (5)
Mother’s SES Mortality e↵ect, !M (e)

Unskilled workers 0.211⇤⇤ 0.213⇤⇤ 0.181 0.037 �0.053
Farmers 0.188⇤⇤ 0.235⇤⇤ 0.122 0.359⇤⇤ 0.221
Non-manual (low) �0.369⇤⇤ �0.255⇤⇤ �0.139 �0.041 �0.084
Non-manual (medium) 0.137⇤⇤ �0.050 �0.031 �0.036 �0.070
Non-manual (high) 0.181 0.101 0.146 �0.104 0.006
not classified 0.258+ �0.052 0.008 �0.178 �0.064
missing 1.046⇤⇤ 0.624⇤⇤ 0.460+ 0.079 0.144

Father’s education
less than 9 years �0.388⇤⇤ �0.131⇤⇤ �0.094 �0.039 0.027
9-10 years �0.120 �0.104 0.133 0.058 0.123
Full secondary 0.004 �0.094 �0.111 �0.019 �0.073
University < 3 years 0.178 0.040 0.036 �0.227 �0.055
University � 3 years 0.218+ �0.032 �0.067 �0.206 �0.191+

PhD studies 0.894⇤⇤ 0.083 0.138 0.115 �0.294
missing 0.643⇤⇤ 0.423⇤⇤ 0.422⇤⇤ 0.281⇤⇤ 0.438⇤⇤

Mother’s SES First hospitalisation e↵ect, !H(e)
Unskilled workers 0.008 �0.000 �0.104 �0.074 �0.017
Farmers 0.040 0.070 0.052 0.130+ 0.187⇤⇤

Non-manual (low) �0.031 �0.062⇤⇤ �0.005 0.015 �0.024
Non-manual (medium) �0.044 �0.020⇤⇤ �0.060 �0.045 �0.070+

Non-manual (high) �0.057 �0.077 �0.160+ �0.175⇤⇤ �0.115+

not classified �0.011 0.023 �0.110 �0.053 �0.044
missing �0.355⇤⇤ �0.129 �0.233 �0.216 �0.123

Father’s education
less than 9 years 0.099⇤⇤ 0.069⇤⇤ 0.128⇤⇤ 0.119⇤⇤ 0.130⇤⇤

9-10 years �0.031 �0.021 0.001 0.023 �0.019
Full secondary �0.081 �0.054 �0.055 �0.085+ 0.032
University < 3 years �0.032 �0.074 �0.191+ �0.112 �0.094
University � 3 years �0.325⇤⇤ �0.166+ �0.238⇤⇤ �0.225⇤⇤ �0.176⇤⇤

PhD studies �0.052 0.009 �0.312 �0.070 �0.298⇤⇤

missing �0.075⇤⇤ �0.023 �0.020 0.020 0.059

a (1) primary education; (2) Some Secondary education; (3) Full Secondary education 3
years; (4) post-secondary education; (5) Higher
Based on adding discrete U to propensity score with probabilities of U from observed
probabilities for each covariate. No e↵ect would give !M (e) = 0 and !H(e) = 0.
+p < 0.05 and ⇤⇤p < 0.01
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Table B.7: Sensitivity: discharge and re-admittance e↵ect with mother’s ses or father’s edu-
cation variable defining the distribution of U given education e = 1, . . . , 5 mortality �M = 0, 1
and hospitalisation experience �H = 0, 1

Educational levelsa

(1) (2) (3) (4) (5)
Mother’s SES Discharge e↵ect, !D(e)

Unskilled workers �0.006 �0.002 �0.031 0.010 0.007
Farmers �0.010 �0.005 �0.030 �0.011 0.010
Non-manual (low) 0.013 0.021 �0.009 0.011 0.016
Non-manual (medium) �0.012 0.009 0.002 �0.011 0.005
Non-manual (high) 0.010 0.004 0.004 0.010 0.010
not classified �0.018 0.021 �0.002 0.018 0.004
missing 0.010 �0.002 0.056 0.008 0.028

Father’s education
less than 9 years 0.006 0.007 �0.001 0.001 �0.003
9-10 years 0.003 0.007 �0.027 0.009 �0.021
Full secondary 0.002 0.016 �0.004 �0.003 0.009
University < 3 years 0.011 0.007 �0.003 0.032 0.023
University � 3 years �0.013 0.008 0.011 0.002 0.019
PhD studies �0.050 0.004 0.018 �0.001 0.033
missing �0.014 �0.006 �0.017 �0.010 �0.011

Re-admittance e↵ect, !R(e)
Mother’s SES
Unskilled workers 0.018 0.013 0.012 �0.002 �0.004
Farmers 0.014 0.019 0.017 0.014 0.005
Non-manual (low) �0.020 �0.012 0.004 �0.011 0.004
Non-manual (medium) 0.011 �0.001 �0.014 0.006 0.002
Non-manual (high) �0.006 0.012 �0.020 �0.003 0.008
not classified 0.027 0.000 �0.008 �0.011 0.005
missing 0.003 0.011 �0.050 0.030 �0.002
Father’s education
less than 9 years �0.012 �0.003 0.003 �0.001 0.004
9-10 years �0.009 �0.001 0.016 �0.007 0.023
Full secondary 0.001 0.001 �0.008 0.003 0.003
University < 3 years �0.004 0.004 �0.010 �0.033 �0.006
University � 3 years 0.020 0.014 �0.035 �0.002 �0.004
PhD studies 0.074 �0.049 �0.031 �0.003 �0.016
missing 0.014 0.015 0.006 0.011 0.016

a (1) primary education; (2) Some Secondary education; (3) Full Secondary education 3
years; (4) post-secondary education; (5) Higher
Based on adding discrete U to propensity score with probabilities of U from observed
probabilities for each covariate. No e↵ect would give !D(e) = 0 and !R(e) = 0.
+p < 0.05 and ⇤⇤p < 0.01
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Table B.7: Sensitivity: selection e↵ect with mother’s ses or father’s education variable defining
the distribution of U given education e = 1, . . . , 5 mortality �M = 0, 1 and hospitalisation
experience �H = 0, 1

Educational levelsa

(1) (2) (3) (4) (5)
Selection e↵ect, ⇠(e)

Mother’s SES
Unskilled workers �0.107⇤⇤ �0.249⇤⇤ �0.079⇤⇤ �0.048
Farmers �0.125⇤⇤ �0.231⇤⇤ �0.170⇤⇤ �0.159⇤⇤

Non-manual (low) �0.220⇤⇤ �0.144⇤⇤ �0.147⇤⇤ �0.200⇤⇤

Non-manual (medium) 0.406⇤⇤ 0.492⇤⇤ 0.221⇤⇤ 0.220⇤⇤

Non-manual (high) 0.467⇤⇤ 0.586⇤⇤ 0.309⇤⇤ 0.305⇤⇤

not classified 0.459⇤⇤ 0.746⇤⇤ 0.258⇤⇤ 0.452⇤⇤

missing �0.089⇤⇤ 0.003 �0.016 0.061
Father’s education
less than 9 years �0.319⇤⇤ �0.463⇤⇤ �0.272⇤⇤ �0.360⇤⇤

9-10 years 0.131⇤⇤ 0.123⇤⇤ �0.010 �0.030
Full secondary 0.409⇤⇤ 0.389⇤⇤ 0.177⇤⇤ 0.044⇤⇤

University < 3 years 0.514⇤⇤ 0.477⇤⇤ 0.239⇤⇤ 0.116⇤⇤

University � 3 years 0.723⇤⇤ 1.010⇤⇤ 0.479⇤⇤ 0.620⇤⇤

PhD studies 0.813⇤⇤ 1.298⇤⇤ 0.568⇤⇤ 0.885⇤⇤

missing �0.167⇤⇤ �0.084⇤⇤ �0.080⇤⇤ 0.002

a (1) primary education; (2) Some Secondary education; (3) Full Secondary education 3
years; (4) post-secondary education; (5) Higher
Based on adding discrete U to propensity score with probabilities of U from observed
probabilities for each covariate. No e↵ect would give ⇠(e) = 0. +p < 0.05 and ⇤⇤p <
0.01
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Table B.8: Sensitivity analysis: IPW-ToE model with psychological assessment, mother’s ses
or father’s education defining the distribution of U given education e = 1, . . . , 5 mortality
�M = 0, 1 and hospitalisation experience �H = 0, 1

Educational levelsa

(1) (2) (3) (4) (5)
Education e↵ect

original � �0.585⇤⇤ �0.863⇤⇤ �1.216⇤⇤ �1.303⇤⇤

psychological assessmentb

1 �0.566 �0.819 �1.171 �1.259
2 �0.580 �0.835 �1.178 �1.276
3 �0.588 �0.857 �1.202 �1.291
4 �0.588 �0.868 �1.220 �1.301
6 �0.574 �0.848 �1.200 �1.288
7 �0.576 �0.844 �1.196 �1.281
8 �0.583 �0.850 �1.200 �1.276
9 �0.586 �0.860 �1.210 �1.293
missing �0.576 �0.849 �1.204 �1.290
Mother’s SES
Unskilled workers �0.585 �0.859 �1.213 �1.300
Farmers �0.584 �0.859 �1.205 �1.288
Non-manual (low) �0.599 �0.879 �1.230 �1.320
Non-manual (medium) �0.598 �0.875 �1.220 �1.306
Non-manual (high) �0.587 �0.870 �1.219 �1.309
not classified �0.587 �0.865 �1.216 �1.301
missing �0.580 �0.858 �1.211 �1.298
Father’s education
less than 9 years �0.625 �0.923 �1.273 �1.364
9-10 years �0.584 �0.863 �1.215 �1.302
Full secondary �0.586 �0.861 �1.214 �1.297
University < 3 years �0.588 �0.868 �1.218 �1.309
University � 3 years �0.591 �0.870 �1.218 �1.290
PhD studies �0.586 �0.868 �1.221 �1.304
missing �0.555 �0.829 �1.180 �1.263

a (1) primary education; (2) Some Secondary education; (3) Full Secondary education 3
years; (4) post-secondary education; (5) Higher

b Running from low to high.
Based on adding discrete U to propensity score with probabilities of U from observed
probabilities for each covariate. Significance of di↵erence with original estimates in
Table 2, +p < 0.05 and ⇤⇤p < 0.01
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Table B.8: Sensitivity analysis IPW-ToE model (continued)

Educational levelsa

(1) (2) (3) (4) (5)
in hospital e↵ect

original 4.221⇤⇤ 4.038⇤⇤ 3.966⇤⇤ 3.718⇤⇤ 3.660⇤⇤

psychological assessmentb

1 4.223 4.053 3.991 3.735 3.678
2 4.226 4.047 3.994 3.792 3.662
3 4.225 4.040 3.969 3.724 3.660
4 4.222 4.037 3.963 3.706 3.651
6 4.224 4.046 3.979 3.716 3.673
7 4.217 4.044 3.984 3.719 3.686
8 4.223 4.044 3.982 3.721 3.684
9 4.218 4.037 3.966 3.715 3.657
missing 4.214 4.039 3.979 3.731 3.670
Mother’s SES
Unskilled workers 4.222 4.039 3.969 3.729 3.667
Farmers 4.222 4.040 3.972 3.733 3.666
Non-manual (low) 4.216 4.027 3.955 3.705 3.640
Non-manual (medium) 4.224 4.024 3.967 3.665 3.719
Non-manual (high) 4.221 4.039 3.966 3.704 3.660
not classified 4.225 4.036 3.965 3.709 3.652
missing 4.225 4.042 3.969 3.722 3.663
Father’s education
less than 9 years 4.201 4.010 3.941 3.703 3.552
9-10 years 4.222 4.039 3.965 3.714 3.658
Full secondary 4.224 4.039 3.970 3.697 3.679
University < 3 years 4.221 4.039 3.965 3.713 3.664
University � 3 years 4.226 4.042 3.969 3.703 3.689
PhD studies 4.220 4.034 3.962 3.715 3.666
missing 4.239 4.060 3.987 3.748 3.683
a (1) primary education; (2) Some Secondary education; (3) Full Secondary education 3 years;
(4) post-secondary education; (5) Higher

b Running from low to high.
Based on adding discrete U to propensity score with probabilities of U from observed prob-
abilities for each covariate. Significance of di↵erence with original estimates in Table 2,
+p < 0.05 and ⇤⇤p < 0.01
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Table B.8: Sensitivity analysis IPW-ToE model (continued)

Educational levelsa

(1) (2) (3) (4) (5)
Hospital experience e↵ect

original 1.546⇤⇤ 1.370⇤⇤ 1.236⇤⇤ 0.837⇤⇤ 0.730⇤⇤

psychological assessmentb

1 1.547 1.389 1.273 0.867 0.765
2 1.547 1.375 1.268 0.861 0.736
3 1.547 1.367 1.234 0.825 0.728
4 1.546 1.366 1.231 0.825 0.725
6 1.555 1.386 1.258 0.854 0.748
7 1.542 1.381 1.262 0.862 0.751
8 1.551 1.386 1.260 0.860 0.756
9 1.542 1.369 1.236 0.847 0.735
missing 1.545 1.378 1.262 0.858 0.754
Mother’s SES
Unskilled workers 1.545 1.369 1.238 0.835 0.731
Farmers 1.546 1.370 1.241 0.844 0.731
Non-manual (low) 1.535 1.351 1.217 0.813 0.708
Non-manual (medium) 1.546 1.352 1.232 0.805 0.725
Non-manual (high) 1.546 1.372 1.235 0.838 0.725
not classified 1.559 1.375 1.240 0.844 0.728
missing 1.554 1.377 1.243 0.845 0.737
Father’s education
less than 9 years 1.494 1.313 1.169 0.763 0.685
9-10 years 1.548 1.372 1.235 0.840 0.730
Full secondary 1.547 1.371 1.238 0.835 0.736
University < 3 years 1.537 1.362 1.225 0.837 0.727
University � 3 years 1.527 1.359 1.215 0.817 0.732
PhD studies 1.538 1.356 1.222 0.825 0.721
missing 1.588 1.416 1.283 0.886 0.783
a (1) primary education; (2) Some Secondary education; (3) Full Secondary education 3 years;
(4) post-secondary education; (5) Higher

b Running from low to high.
Based on adding discrete U to propensity score with probabilities of U from observed prob-
abilities for each covariate. Significance of di↵erence with original estimates in Table 2,
+p < 0.05 and ⇤⇤p < 0.01
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Appendix C Full tables with parameter estimates

Table C.1: Parameters of (first) CVD hospitalisation hazard (Gompertz)

Modela

ToE Toe IPW Toe IPW rob
primary education � � �

Some Secondary education �0.084⇤⇤ �0.043⇤⇤ �0.040⇤⇤

(0.009) (0.009) (0.009)
Full Secondary education �0.248⇤⇤ �0.150⇤⇤ �0.153⇤⇤

(0.012) (0.012) (0.012)
Post-secondary education �0.308⇤⇤ �0.178⇤⇤ �0.180⇤⇤

(0.012) (0.012) (0.012)
University or PhD �0.457⇤⇤ �0.311⇤⇤ �0.318⇤⇤

(0.012) (0.012) (0.012)
� 0.099⇤⇤ 0.098⇤⇤ 0.095⇤⇤

(0.000) (0.000) (0.000)
v1 �9.517⇤⇤ �9.511⇤⇤ �9.410⇤⇤

(0.025) (0.025) (0.032)
v2 �9.436⇤⇤ �9.571⇤⇤ �9.429⇤⇤

(0.084) (0.094) (0.103)
a ToE: Timing-of-events; ToE IPW; Timing-of-events with Inverse propensity
weighting; ToE IPW rob; Robust Timing-of-events with Inverse propensity
weighting.
+p < 0.05,⇤⇤ p < 0.01.
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Table C.2: Parameters of CVD hospitalisation discharge hazard (Weibull)

Modela

ToE Toe IPW Toe IPW rob
primary education � � �

Some Secondary education 0.078⇤⇤ 0.035⇤⇤ 0.046⇤⇤

(0.007) (0.007) (0.007)
Full Secondary education 0.089⇤⇤ 0.026⇤⇤ 0.026⇤⇤

(0.010) (0.010) (0.010)
Post-secondary education 0.149⇤⇤ 0.031⇤⇤ 0.065⇤⇤

(0.010) (0.010) (0.010)
University or PhD 0.206⇤⇤ 0.096⇤⇤ 0.108⇤⇤

(0.010) (0.010) (0.010)
↵ 0.991 0.966⇤⇤ 0.975⇤⇤

(0.010) (0.002) (0.002)
v1 0.753⇤⇤ 0.765⇤⇤ 0.671⇤⇤

(0.006) (0.006) (0.016)
v2 �0.608⇤⇤ �0.631⇤⇤ �0.742⇤⇤

(0.008) (0.009) (0.018)
a ToE: Timing-of-events; ToE IPW; Timing-of-events with Inverse propensity
weighting; ToE IPW rob; Robust Timing-of-events with Inverse propensity
weighting.
+p < 0.05,⇤⇤ p < 0.01.
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Table C.3: Parameters of CVD re-hospitalisation hazard (Weibull)

Modela

ToE Toe IPW Toe IPW rob
primary education � � �

Some Secondary education �0.024⇤⇤ 0.004 0.004
(0.007) (0.007) (0.007)

Full Secondary education �0.117⇤⇤ �0.073⇤⇤ �0.069⇤⇤

(0.010) (0.010) (0.010)
Post-secondary education �0.205⇤⇤ �0.137⇤⇤ �0.142⇤⇤

(0.010) (0.010) (0.010)
University or PhD �0.254⇤⇤ �0.154⇤⇤ �0.155⇤⇤

(0.010) (0.010) (0.010)
↵ 0.348 0.348⇤⇤ 0.348⇤⇤

(0.001) (0.001) (0.001)
v1 �0.603⇤⇤ �0.624⇤⇤ �0.571⇤⇤

(0.006) (0.006) (0.015)
v2 0.148⇤⇤ 0.130⇤⇤ 0.135⇤⇤

(0.008) (0.008) (0.016)
a ToE: Timing-of-events; ToE IPW; Timing-of-events with Inverse propensity
weighting; ToE IPW rob; Robust Timing-of-events with Inverse propensity
weighting.
+p < 0.05,⇤⇤ p < 0.01.
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Table C.4: Parameters of mortality hazard

Modela

ToE Toe IPW Toe IPW rob
primary education � � �

in hospital 4.213⇤⇤ 4.221⇤⇤ 4.227⇤⇤

(0.055) (0.060) (0.057)
hospital experience 1.830⇤⇤ 1.546⇤⇤ 1.637⇤⇤

(0.108) (0.110) (0.108)
Some Secondary education �0.587⇤⇤ �0.585⇤⇤ �0.597⇤⇤

(0.016) (0.016) (0.016)
in hospital 4.016⇤⇤ 4.038⇤⇤ 4.002⇤⇤

(0.053) (0.055) (0.052)
hospital experience 1.620⇤⇤ 1.370⇤⇤ 1.423⇤⇤

(0.108) (0.109) (0.107)
Full Secondary education �0.928⇤⇤ �0.863⇤⇤ �0.873⇤⇤

(0.025) (0.025) (0.025)
in hospital 3.854⇤⇤ 3.966⇤⇤ 4.023⇤⇤

(0.085) (0.084) (0.082)
hospital experience 1.400⇤⇤ 1.236⇤⇤ 1.321⇤⇤

(0.114) (0.115) (0.113)
Post-secondary education �1.300⇤⇤ �1.216⇤⇤ �1.238⇤⇤

(0.028) (0.027) (0.027)
in hospital 3.642⇤⇤ 3.718⇤⇤ 3.692⇤⇤

(0.096) (0.090) (0.089)
hospital experience 1.096⇤⇤ 0.837⇤⇤ 0.915⇤⇤

(0.116) (0.117) (0.115)
University or PhD �1.443⇤⇤ �1.303⇤⇤ �1.325⇤⇤

(0.027) (0.027) (0.027)
in hospital 3.546⇤⇤ 3.660⇤⇤ 3.614⇤⇤

(0.106) (0.094) (0.093)
hospital experience 0.928⇤⇤ 0.730⇤⇤ 0.796⇤⇤

(0.117) (0.118) (0.116)
� hospital experience �0.017⇤⇤ �0.010⇤⇤ �0.013⇤⇤

(0.002) (0.002) (0.002)
� constant 0.072⇤⇤ 0.067⇤⇤ 0.065⇤⇤

(0.001) (0.001) (0.001)
v1 �9.569⇤⇤ �9.398⇤⇤ �9.378⇤⇤

(0.045) (0.046) (0.057)
v2 �7.834⇤⇤ �7.682⇤⇤ �7.841⇤⇤

(0.042) (0.043) (0.054)
p1 0.860⇤⇤ 0.859⇤⇤ 0.864⇤⇤

(0.010) (0.010) (0.012)
a ToE: Timing-of-events; ToE IPW; Timing-of-events with Inverse propensity
weighting; ToE IPW rob; Robust Timing-of-events with Inverse propensity
weighting.
+p < 0.05,⇤⇤ p < 0.01.
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Table C.5: Parameters control variables in Robust Timing-of-events with Inverse propensity
weighting

Hazarda

Mortality First Discharge Re-admit
SES mother at birth

not classified 0.015 0.062⇤⇤ 0.063⇤⇤ �0.020
Unskilled workers 0.110⇤⇤ 0.020 0.041⇤⇤ 0.039⇤⇤

Farmers �0.191⇤⇤ �0.099⇤⇤ �0.001 �0.046⇤⇤

non-manual (low) 0.078⇤⇤ �0.017 �0.012 �0.041⇤⇤

non-manual (intermediate) 0.144⇤⇤ �0.091⇤⇤ 0.034+ �0.029
non-manual (high) 0.129⇤⇤ �0.055+ 0.031 �0.034
missing 0.738⇤⇤ �0.275⇤⇤ 0.045 �0.009

father’s education
less than 9 years �0.055⇤⇤ 0.000 0.003 �0.032⇤⇤

9-10 years �0.001 �0.030 �0.005 �0.067⇤⇤

Full secondary education 0.024 �0.002 �0.016 �0.026+

university (< 3 years) 0.150⇤⇤ �0.007 0.013 �0.014
university (� 3 years) 0.187⇤⇤ �0.137⇤⇤ �0.076⇤⇤ �0.159⇤⇤

PhD 0.199⇤⇤ 0.203⇤⇤ 0.296⇤⇤ 0.240⇤⇤

missing 0.232⇤⇤ �0.048⇤⇤ �0.021 �0.002
IQ measurement

1 0.025 0.146⇤⇤ �0.233⇤⇤ 0.168⇤⇤

2 0.030 0.140⇤⇤ 0.043⇤⇤ 0.075⇤⇤

3 0.090⇤⇤ 0.089⇤⇤ 0.005 �0.032⇤⇤

4 0.027 0.017 �0.005 0.003
6 �0.020 �0.020 0.009 �0.020+

7 0.064⇤⇤ �0.059⇤⇤ 0.072⇤⇤ �0.064⇤⇤

8 0.089⇤⇤ �0.118⇤⇤ �0.001 �0.038⇤⇤

9 0.253⇤⇤ �0.102⇤⇤ 0.049⇤⇤ 0.100⇤⇤

missing 0.233⇤⇤ �0.401⇤⇤ �0.269⇤⇤ 0.188⇤⇤

a Mortality: mortality hazard; First: first CVD hospitalisation hazard; discharge: CVD
hospitalisation discharge hazard; re-admit: CVD re-hospitalisation hazard.
Reference category: mother skilled worker and secondary education (max 2 years) and
IQ level 5. +p < 0.05,⇤⇤ p < 0.01.
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Table C.5: Parameters control variables in Robust Timing-of-events with Inverse propensity
weighting (continued)

Hazarda

Mortality First Discharge Re-admit
Psychological assessment
1 0.843⇤⇤ 0.151⇤⇤ �0.062⇤⇤ 0.186⇤⇤

2 0.460⇤⇤ 0.186⇤⇤ �0.092⇤⇤ 0.046⇤⇤

3 0.239⇤⇤ 0.112⇤⇤ �0.096⇤⇤ 0.074⇤⇤

4 0.098⇤⇤ 0.043⇤⇤ �0.033⇤⇤ �0.009
6 �0.116⇤⇤ 0.014 0.016 �0.014
7 �0.107⇤⇤ 0.018 0.013 �0.026+

8 �0.059+ 0.059⇤⇤ 0.107⇤⇤ 0.028+

9 �0.087 0.023 0.005 �0.071⇤⇤

missing 0.707⇤⇤ 0.326⇤⇤ �0.065+ 0.163⇤⇤

birth year
1951 0.084⇤⇤ 0.012 0.035⇤⇤ �0.005
1952 0.064⇤⇤ �0.002 0.045⇤⇤ �0.026⇤⇤

1953 0.009 0.042⇤⇤ 0.076⇤⇤ �0.094⇤⇤

1954 �0.262⇤⇤ 0.036+ 0.119⇤⇤ �0.072⇤⇤

1955 �0.220⇤⇤ 0.074⇤⇤ 0.088⇤⇤ �0.117⇤⇤

1956 �0.301⇤⇤ 0.015 0.105⇤⇤ �0.143⇤⇤

1957 �0.273⇤⇤ 0.046⇤⇤ 0.125⇤⇤ �0.156⇤⇤

1958 �0.315⇤⇤ 0.080⇤⇤ 0.103⇤⇤ �0.160⇤⇤

1959 �0.711⇤⇤ �1.517⇤⇤ 0.219⇤⇤ �0.086⇤⇤

birth info
mother < 20 at birth 0.123⇤⇤ 0.055⇤⇤ 0.023+ 0.034⇤⇤

father > 40 at birth 0.206⇤⇤ �0.245⇤⇤ �0.010 �0.017
family size 1 0.051+ 0.041⇤⇤ 0.003 0.048⇤⇤

family size 3 �0.020 �0.033⇤⇤ 0.031⇤⇤ 0.017+

family size 4 0.037 �0.030+ 0.048⇤⇤ 0.038⇤⇤

family size 5 or higher 0.056+ �0.051⇤⇤ �0.014 0.043⇤⇤

birth order 2 �0.035+ 0.030⇤⇤ 0.038⇤⇤ 0.011
birth order 3 �0.074⇤⇤ 0.112⇤⇤ 0.051⇤⇤ 0.031⇤⇤

birth order 4 �0.155⇤⇤ 0.128⇤⇤ 0.027+ 0.014
birth order 5 or higher 0.001 0.176⇤⇤ 0.100⇤⇤ �0.052⇤⇤

a Mortality: mortality hazard; First: first CVD hospitalisation hazard; discharge: CVD
hospitalisation discharge hazard; re-admit: CVD re-hospitalisation hazard.
Reference category: 1950, psychological assessment 5. +p < 0.05,⇤⇤ p < 0.01.
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Table C.6: Parameters education choice, sequential probit model

Education choicea

(1) (2) (3) (4)
SES mother at birth

not classified 0.020 0.009 0.020 0.077⇤⇤

Unskilled workers �0.016+ 0.003 �0.004 0.065⇤⇤

Farmers �0.120⇤⇤ 0.046⇤⇤ �0.003 0.039⇤⇤

non-manual (low) 0.178⇤⇤ 0.288⇤⇤ 0.114⇤⇤ 0.187⇤⇤

non-manual (intermediate) 0.228⇤⇤ 0.372⇤⇤ 0.187⇤⇤ 0.247⇤⇤

non-manual (high) 0.230⇤⇤ 0.521⇤⇤ 0.146⇤⇤ 0.369⇤⇤

missing 0.013 0.130⇤⇤ 0.059+ 0.178⇤⇤

father’s education
less than 9 years �0.229⇤⇤ �0.174⇤⇤ �0.065⇤⇤ �0.098⇤⇤

9-10 years �0.080⇤⇤ 0.014 �0.006 0.007
Full secondary education 0.083⇤⇤ 0.168⇤⇤ 0.115⇤⇤ 0.033⇤⇤

university (< 3 years) 0.169⇤⇤ 0.243⇤⇤ 0.165⇤⇤ 0.090⇤⇤

university (� 3 years) 0.303⇤⇤ 0.635⇤⇤ 0.318⇤⇤ 0.462⇤⇤

PhD 0.409⇤⇤ 0.955⇤⇤ 0.436⇤⇤ 0.775⇤⇤

missing �0.195⇤⇤ �0.101⇤⇤ �0.008 0.038+

IQ measurement
1 �0.637⇤⇤ �0.848⇤⇤ �0.526⇤⇤ �0.151+

2 �0.463⇤⇤ �0.657⇤⇤ �0.400⇤⇤ �0.311⇤⇤

3 �0.324⇤⇤ �0.437⇤⇤ �0.265⇤⇤ �0.164⇤⇤

4 �0.183⇤⇤ �0.258⇤⇤ �0.135⇤⇤ �0.120⇤⇤

6 0.224⇤⇤ 0.248⇤⇤ 0.117⇤⇤ 0.094⇤⇤

7 0.441⇤⇤ 0.563⇤⇤ 0.265⇤⇤ 0.216⇤⇤

8 0.651⇤⇤ 0.921⇤⇤ 0.413⇤⇤ 0.352⇤⇤

9 0.841⇤⇤ 1.332⇤⇤ 0.585⇤⇤ 0.571⇤⇤

missing �0.264⇤⇤ 0.136⇤⇤ 0.166⇤⇤ 0.169⇤⇤

a (1) some secondary education over primary education; (2) full secondary education
over some secondary; (3) post-secondary over full secondary education; (4) higher
over post-secondary education.
+p < 0.05,⇤⇤ p < 0.01.
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Table C.6: (continued)

Education choicea

(1) (2) (3) (4)
Psychological assessment
1 �0.240⇤⇤ �0.268⇤⇤ �0.038 0.173⇤⇤

2 �0.196⇤⇤ �0.198⇤⇤ �0.012 0.139⇤⇤

3 �0.145⇤⇤ �0.111⇤⇤ �0.042⇤⇤ 0.088⇤⇤

4 �0.081⇤⇤ �0.063⇤⇤ �0.037⇤⇤ 0.032⇤⇤

6 0.074⇤⇤ 0.094⇤⇤ 0.034⇤⇤ 0.025+

7 0.155⇤⇤ 0.226⇤⇤ 0.097⇤⇤ 0.080⇤⇤

8 0.233⇤⇤ 0.357⇤⇤ 0.151⇤⇤ 0.119⇤⇤

9 0.292⇤⇤ 0.489⇤⇤ 0.201⇤⇤ 0.171⇤⇤

missing �0.189⇤⇤ �0.058+ 0.014 0.113+

birth year
1951 �0.018+ �0.065+ 0.081+ 0.022
1952 �0.042⇤⇤ �0.043⇤⇤ 0.197⇤⇤ 0.019
1953 �0.097⇤⇤ �0.080⇤⇤ 0.195⇤⇤ �0.010
1954 0.138⇤⇤ �0.204⇤⇤ 0.219⇤⇤ �0.028
1955 0.129⇤⇤ �0.230⇤⇤ 0.216⇤⇤ �0.014
1956 0.137⇤⇤ �0.230⇤⇤ 0.230⇤⇤ �0.012
1957 0.172⇤⇤ �0.238⇤⇤ 0.232⇤⇤ �0.049⇤⇤

1958 0.210⇤⇤ �0.259⇤⇤ 0.231⇤⇤ �0.047⇤⇤

1959 0.618⇤⇤ �0.184⇤⇤ 0.203⇤⇤ �0.092⇤⇤

birth info
mother < 20 at birth �0.164⇤⇤ �0.204⇤⇤ �0.172⇤⇤ �0.093⇤⇤

father > 40 at birth 0.028⇤⇤ 0.071⇤⇤ 0.058⇤⇤ 0.047⇤⇤

family size 1 0.014 0.024⇤⇤ �0.003 0.042
family size 3 �0.066⇤⇤ �0.061⇤⇤ �0.006 �0.023
family size 4 �0.140⇤⇤ �0.135⇤⇤ �0.034⇤⇤ �0.053⇤⇤

family size 5 or higher �0.214⇤⇤ �0.243⇤⇤ �0.067⇤⇤ �0.059⇤⇤

birth order 2 �0.050⇤⇤ �0.066⇤⇤ �0.029⇤⇤ �0.008
birth order 3 �0.046⇤⇤ �0.050⇤⇤ �0.031⇤⇤ 0.007
birth order 4 �0.024+ �0.045⇤⇤ �0.041+ 0.016
birth order 5 or higher �0.040⇤⇤ �0.011 �0.034 �0.043
constant 0.925⇤⇤ 0.926⇤⇤

a (1) some secondary education over primary education; (2) full secondary education
over some secondary; (3) post-secondary over full secondary education; (4) higher
over post-secondary education.
+p < 0.05,⇤⇤ p < 0.01.
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Table C.7: Parameters of Cause specific mortality hazard (IPW)

Cause of deatha

IHD Stroke other CVD other natural external
primary education � � � � �

in hospital 4.630⇤⇤ 6.671⇤⇤ 5.537⇤⇤ 4.110⇤⇤ 2.547⇤⇤

(0.138) (0.154) (0.135) (0.088) (0.261)
hospital experience 4.370⇤⇤ 3.925⇤⇤ 3.618⇤⇤ 2.537⇤⇤ 0.564⇤⇤

(0.287) (0.632) (0.332) (0.155) (0.066)
Some Secondary education �0.363⇤⇤ �0.183 �0.416⇤⇤ �0.460⇤⇤ �0.810⇤⇤

(0.049) (0.096) (0.070) (0.024) (0.025)
in hospital 4.421⇤⇤ 6.405⇤⇤ 5.304⇤⇤ 3.974⇤⇤ 2.028⇤⇤

(0.122) (0.147) (0.123) (0.080) (0.272)
hospital experience 4.292⇤⇤ 3.351⇤⇤ 3.685⇤⇤ 2.348⇤⇤ 0.184⇤⇤

(0.285) (0.634) (0.329) (0.154) (0.063)
Full Secondary education �0.535⇤⇤ �0.724⇤⇤ �0.555⇤⇤ �0.734⇤⇤ �1.131⇤⇤

(0.072) (0.158) (0.102) (0.036) (0.043)
in hospital 3.803⇤⇤ 6.148⇤⇤ 5.120⇤⇤ 4.022⇤⇤ 2.685⇤⇤

(0.274) (0.236) (0.211) (0.112) (0.368)
hospital experience 4.184⇤⇤ 3.345⇤⇤ 3.312⇤⇤ 2.239⇤⇤ 0.112

(0.296) (0.671) (0.347) (0.161) (0.111)
Post-secondary education �0.832⇤⇤ �1.316⇤⇤ �0.947⇤⇤ �1.065⇤⇤ �1.514⇤⇤

(0.078) (0.193) (0.114) (0.039) (0.048)
in hospital 3.904⇤⇤ 5.914⇤⇤ 4.690⇤⇤ 3.806⇤⇤ 1.872⇤⇤

(0.257) (0.254) (0.249) (0.119) (0.525)
hospital experience 3.653⇤⇤ 2.306⇤⇤ 3.013⇤⇤ 1.809⇤⇤ �0.030

(0.303) (0.744) (0.351) (0.164) (0.112)
University or PhD �1.107⇤⇤ �0.826⇤⇤ �0.939⇤⇤ �1.050⇤⇤ �1.789⇤⇤

(0.082) (0.150) (0.108) (0.037) (0.051)
in hospital 3.334⇤⇤ 5.722⇤⇤ 4.673⇤⇤ 3.791⇤⇤ 1.018

(0.333) (0.280) (0.253) (0.120) (0.870)
hospital experience 3.954⇤⇤ 2.551⇤⇤ 2.542⇤⇤ 1.750⇤⇤ �0.756⇤⇤

(0.298) (0.721) (0.367) (0.165) (0.161)
� hospital experience �0.059⇤⇤ �0.054⇤⇤ �0.037⇤⇤ �0.025⇤⇤ �

(0.005) (0.012) (0.006) (0.003)
� constant 0.125⇤⇤ 0.079⇤⇤ 0.088⇤⇤ 0.091⇤⇤ �

(0.003) (0.004) (0.003) (0.001)
v1 �14.280⇤⇤ �13.424⇤⇤ �13.328⇤⇤ �11.584⇤⇤ �7.237⇤⇤

(0.136) (0.200) (0.158) (0.073) (0.042)
v2 �13.343⇤⇤ �12.814⇤⇤ �11.937⇤⇤ �9.423⇤⇤ �6.274⇤⇤

(0.146) (0.228) (0.162) (0.067) (0.072)
p1 0.856⇤⇤

(0.014)
a IHD: Ischemic Heart Disease

+p < 0.05,⇤⇤ p < 0.01.
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Appendix D Additional figures

Figure D.1: Propensity score p1 overlap by education level
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Figure D.2: Propensity score p2 overlap by education level
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Figure D.3: Propensity score p3 overlap by education level
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Figure D.4: Propensity score p4 overlap by education level
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Figure D.5: Propensity score p5 overlap by education level
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Figure D.6: Cumulative incidence curves by cause of death (CVD), hospitalisation and edu-
cation level
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Figure D.7: Cumulative incidence curves by cause of death, hospitalisation and education
level, external or other causes
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Figure D.8: Simulated Cumulative incidence curves by cause of death (CVD) and education
level
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Figure D.9: Simulated total educational gain in cumulative incidence curves by cause of death
(CVD) and education level
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Figure D.10: Simulated Direct educational gain in cumulative incidence curves by cause of
death (CVD) and education level
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Figure D.11: Simulated Indirect e↵ect of educational gain in Cumulative incidence curves by
cause of death (CVD) and education level
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