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Abstract 
 
In this paper, we propose a novel approach to the study of international trade that leads to a 
measure of country openness that is quite different from the various alternatives proposed by the 
received literature. In contrast to these, our measure does not use indicators of aggregate trade 
intensity, trade policy, or trade restrictiveness but relies on a broad systemic viewpoint on the 
effects of trade. More specifically, it goes beyond direct trade connections and measures a 
country’s level of integration in the world economy through the full architecture of its second, 
third, and all other higher-order connections in the world trade network. We apply our 
methodology to a sample of 204 countries spanning the period from 1962 to 2016 and perform a 
Bayesian analysis of model selection to identify the most important correlates of growth. The 
analysis finds that there is a sizable and significant positive relationship between our integration 
measure and a country’s rate of growth, while that of the aforementioned traditional measures of 
outward orientation is only minor and statistically insignificant. We perform several sensitivity 
checks and conclude that our baseline findings are very robust to either different data sets or 
alternative variations of the integration measure. Overall, this suggests that a network-based 
approach to measuring country openness may provide a valuable perspective on economic growth. 
Keywords: globalization, trade integration, economic growth, network analysis, dynamic panel 
model, Bayesian model averaging. 
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1 Introduction

What are the main factors that underlie the sharply contrasting growth performance of different

countries? This question has generated a heated controversy in the literature on economic

growth over the last decades. Much of the analysis that has been undertaken – both theoretically

and empirically – to study the issue has revolved around the identification of some appropriate

measure of openness to international trade. In a nutshell, the main objective of this paper is to

revisit the question by adopting a dynamic and systemic (network-based) viewpoint to assessing

the extent to which a country is effectively open to (or integrated in) the world market. And

by doing so, we shall argue, new and valuable insights arise.

Starting with the early work of Baumol (1986) and Barro (1991), the empirical growth lit-

erature has devoted countless efforts to the question of whether some suitable notion of country

openness is one of the essential conditions for fast economic growth. However, despite a long

and intense debate on the issue, no shared position has been reached. At some point in the late

1990s, the so-called Washington Consensus emerged, holding that greater country openness to

international trade leads to faster growth and higher living standards. This view was based

on the influential work by Dollar (1992), Sachs and Warner (1995), and Frankel and Romer

(1999).1 Yet, shortly thereafter, the thorough re-investigation of existing evidence undertaken

by Rodŕıguez and Rodrik (2001) largely dissolved that consensus. In particular, these authors

argued that, in the absence of a supporting theory, all of the received indicators used to mea-

sure a country’s outward-orientation did not convincingly capture truly relevant dimensions of

economic growth2

On the other hand, from a theoretical perspective, it is clear that a fruitful analysis of the

relationship between openness and growth needs to move beyond the traditional (largely static)

Ricardian framework. A first step in this direction was proposed by Melitz (2003), who applies

and intrinsically dynamic viewpoint to study the economic implications of openness. Specifically,

Melitz focuses on the role played by international competition in promoting the (market-based)

selection of more efficient firms.3 Subsequent papers, however, such as those Chaney (2014) and

Alvarez, Buera, and Lucas (2017), have developed alternative theories that, more in line with

ours, highlight the function of cross-border trade flows in transferring economically relevant

information. Thus, while Chaney’s model posits that international trade provides domestic

firms with information that allows them to access to foreign markets, that of Alvarez et al.

assumes that trade with other countries enhances the technology and operational know-how of

domestic firms.

In contrast with the two aforementioned papers, our approach here stresses that a country’s

access to innovation opportunities depends on how well it is integrated in the whole world trade

network, as captured by its proximity to other (important) countries in terms of the overall

1It is also the position supported by more recent studies such as Dollar and Kraay (2003), Alcala and Ciccone
(2004), and Feyrer (2019)

2For a review, see Winters (2004), Rodŕıguez (2007), and Estevadeordal and Taylor (2013).
3See Melitz and Redding (2014) for a comprehensive survey and discussion of this literature.
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(and evolving) network of trade flows. Our approach, therefore, is both dynamic and global

in that not only direct trade connections but also indirect ones are taken to channel valuable

information that generates growth. More specifically, we build on the theory of globalization

developed by Duernecker and Vega-Redondo (2018) to formulate an operational model where

inter-country connections (and hence knowledge flows) are supported by trade. Thus, under the

assumption that foreign ideas are complementary to domestic ones in fueling innovation, a high

rate of growth (which can only be sustained by a high rate of innovation) depends on having a

rich pattern of direct and indirect trade-based connections to other countries.

To test the model, we use a dynamic-panel data set including 204 countries and spanning

the period from 1962 to 2016. On the basis of it we construct the set of evolving matrices of

inter-country trade flows that are central to the theory, which in turn allows us to compute the

empirical counterpart of the variables that measure trade-based integration for each country. A

preliminary study of the data already reveals a number of interesting patterns. One of them is

that, across the time span being considered, the world as a whole has become not only more

integrated but also more unequal. In particular, we find that while the group of most inte-

grated countries shows a persistent tendency to increase their integration, the majority of less

integrated countries stagnates or even displays an opposite trend towards lower integration. An

additional interesting finding is that our measure of trade-based integration is essentially un-

correlated with the classical trade-share variable for openness used by the literature. This early

observation already provides some support to the notion that a systemic/network perspective

to understanding outward orientation is qualitatively distinct from the local one pursued the

received literature and policy discussions.

The paper then proceeds with a systematic analysis of the problem by positing an econo-

metric model where the GDP of each country (in log terms) is conceived as a linear projection

of this same lagged variable and a number of covariates. The latter include our measure of

trade-based integration as well as other 33 variables highlighted by the growth literature as

potentially important factors correlated to country growth. These variables comprise the most

commonly used openness indicators (such as the Trade Share and the Sachs-Warner Index)

along with a wide set of prominent country characteristics (such as, for example, government

share, geographical location, population growth, life expectancy, or political indicators).

The consideration of such a wide range of variables poses the important problem of model

selection. In other words, it raises the question of what is the right model specification in

terms of which the implied conditional correlations must be evaluated. To tackle the problem,

we follow the standard methodology known as Bayesian Model Averaging (BMA). This is a

procedure that, given the empirical evidence, associates to every possible model specification a

posterior probability that it is the correct (or “true”) one. Then, on the basis of those model-

associated probabilities, we can also readily compute the posterior probabilities that each of the

different variables under consideration belongs to the correct model, as well as the corresponding

posterior mean estimates of their regression coefficients. In essence, our main conclusion will

be that, according to both of the former two covariate-associated criteria, the trade-integration
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measure derived from our theory strongly outperforms any other covariate (except for lagged

GDP). This, we shall explain, suggests that the correlation between integration and growth is

indeed a robust one, even when we account for possible model-selection bias. Such a conclusion

is further reinforced through a number of sensitivity checks. For example, we confirm that our

baseline findings are robust to the use of different data sets, or to the application of a number

of variant formulations of our integration measure (e.g. one that restricts to trade in capital

goods alone).

As already indicated, the theory developed in this paper is most closely related to that

proposed by Alvarez, Buera, and Lucas (2017). For, as we do, they also assume that trade is the

channel through which ideas diffuse. In particular, their model posits that “trade puts domestic

producers in contact with (...) foreign and domestic producers from which they can learn and

improve their technologies” (see also Buera and Oberfield (2020)). In the empirical realm, on

the other hand, there has been quite a broad literature that has tested the implications of this

idea in a variety of different contexts and from a diverse set of perspectives. We summarize it

very succinctly, concentrating on just a small set of representative papers.

A seminal contribution to the empirical growth literature was provided by Coe and Helpman

(1995), who showed – for a sample of the 21 OECD countries plus Israel, during the period

1971-90 – that “foreign R&D has beneficial effects on domestic productivity, and that these

are stronger the more open an economy is to foreign trade.” This view has been strengthened

further by Coe et al. (1997) and Coe et al. (2009) by confirming that this finding still holds

when trade is restricted to just machinery and equipment, and it is also robust to controlling

for institutional factors and human capital.4 Their analysis is naturally related to ours, as we

also sustain the notion that trade flows spanning a network across countries transmit knowledge

globally. Moreover, as in Coe et al. (1997, 2009), we also measure openness in terms of the

(GDP-normalized) import volume.

Our approach, however, adds to the aforementioned papers and the received literature along

several dimensions. The key one is that we go well beyond the first-order effects associated to

direct trade flows. As advanced, this provides a much wider view of the problem, which high-

lights that the overall pattern of international trade is indeed prominently related to countries’

performance. We also show that not only trade in capital goods tends to be an important vehicle

for knowledge transmission, but that trade in commodities is not. In general, at an admittedly

high level, our analysis provides a trade-based foundation for the major cross-country spillovers

that are well-known to be a key component of technological change (see e.g. Eberhardt et al.

(2013)). In fact, we find that these effects are not just strong – as found by Etur and Musolesi

(2017) – but also highly heterogeneous across countries, as they are largely dependent on the

position each country occupies in the overall trade network.5

4Keller (1998) challenged the validity of the results in Coe and Helpman (1995) by arguing that similar
findings can be obtained in an analysis where the links of the observed trade network were replaced by randomly
created trade. We address this point in our empirical analysis in Section F.3 were we perform a spurious analysis
that considers random permutations of the trade network.

5We thank an anonymous referee for suggesting this general formulation of the phenomenon.
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The remainder of this paper is structured as follows. Section 2 introduces the theory and

explains the measure of country integration we shall use throughout the paper. Section 3 de-

scribes the data and presents summary statistics of our globalization index across countries and

over time. Section 4 compares our integration measure to other openness measures considered in

the literature. In Section 5, we present the econometric model, while Section 6 reports the main

results. These results are then discussed in Section 7, with a special focus on understanding the

role played by our integration measure. Section 8 discusses our robustness analysis. Section 9

concludes. All supplementary materials are included in Appendices A-I.

2 Theoretical framework

2.1 The model

Our empirical analysis relies heavily on some of the ideas underlying the theory developed by

Duernecker and Vega-Redondo (2018), henceforth designated by DV. Here, we provide only a

concise description of their model, which is discussed in detail in the working-paper version,

Duernecker et al. (2020). At the end of this section, we shall also explain in some detail how

the present approach differs from that of DV, as well as its contrast with other related models

in the literature, such as those proposed by Buera and Oberfield (2016) and Alvarez, Buera,

and Lucas (2017).

The model views the world economy as a directed network defined over a fixed set of nodes,

N = {1, 2, ..., n}, each of these conceived as an individual country. Every such country i ∈ N is

populated by a given number of firms that produce the goods exported by this country, with the

links across countries representing inter-country trading relationships. More specifically, a link

exists from country i to country j if i exports to j. Naturally, we are interested in the intensity

of these trade flows, so those links are weighted accordingly. A natural way to represent the

inter-country pattern of such weighted links is through an adjacency matrix A = (aij)i,j∈N

where each aij ≥ 0 measures the export volume from i to j (if i = j, the transaction reflects

domestic trade). Through appropriate normalization, it is useful to have these flows normalized

to add up to one, so that A becomes a row-stochastic matrix.

The setup is dynamic, with time t modeled continuously in [0,∞], and the state of the

system at any t given by the vector y(t) = (yi(t))
n
i=1 that specifies the current GDP yi(t) of

each country i. The evolution of y(t) depends on the amount (measure) of growth-generating

projects zi(t) that are active in each country i ∈ N . Specifically, we posit the following simple

law of motion:

ẏi(t) = ξ zi(t) (i = 1, 2, ..., n) (1)

for some constant ξ > 0. That is, we assume that the growth rate of a country is proportional

to the mass of its ongoing projects.

In view of (1), a key step in building the model must be to specify the mechanism by which
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the stock of active projects changes over time. In line with DV, we assume that new projects

arise through innovation while old ones dissipate due to obsolescence. These two opposing forces

are formulated as follows.

Innovation: At any t, every firm in each country i receives an innovation opportunity at a

fixed rate η (formally, with probability ηdt > 0 for a time interval of infinitesimal length dt).

This innovation actually materializes only if the firm is able to access some complementary

information (or know-how) that lies somewhere in the world – specifically, information that

originates in country j with probability proportional to the economic size of this country, i.e.

yj(t). Then, the question arises of how that information is transferred from j to i. In line with

existing literature (both theoretical and empirical)6 we posit that such transfer is channeled

through – or embodied by – trade. More precisely, it is assumed to flow downstream from j

to i with a probability proportional to the volume of exports from the former country to the

latter. This gives rise to a diffusion process that, mathematically, defines a random walk on

the directed export network, with the transition probabilities at each stage being determined

by the normalized (i.e. relative) volumes of trade that any exporting country sells to each of its

customer countries. In the end, if the network is connected, every piece of information originating

in each i arrives to every other j. The value of this information, however, is postulated to

decrease with the time it takes to arrive, due to a number of possible complementary factors,

e.g. obsolescence, noisy transmission, or delay. Ex ante, of course, the actual length between

each pair of countries is uncertain (i.e. random), so our focus is on the expected time it takes,

depending on their position in the overall production network.

Formally, if we denote by νij(t) the rate of new projects actually initiated in country i at t

that rely on information available in j, and ż+
i (t) stands for i’s aggregate (gross) rate of project

creation, we can write:

ż+
i (t) =

∑
j 6=i

νij(t) =
∑
j 6=i

η yi(t)
yj(t)∑
k 6=i yk(t)

f(ϕji(A(t))), (2)

where

• η yi(t) is the rate of innovation opportunities arising in country i at t,

• yj(t)∑
k 6=i yk(t) stands for the probability that the complementary information required to ma-

terialize the aforementioned opportunities is available in country j,

• and f(ϕji(A(t))) is the decay associated to the expected length ϕji(A(t)) of the diffusion

path from j to i, with f : R→ [0, 1] being a decreasing function.

Obsolescence: As a countervailing force, we posit that ongoing projects become obsolete and

hence are discontinued at a fixed rate λ. Thus, if ż−i (t) denotes the aggregate (gross) rate at

6On the theoretical side, the two aforementioned papers, Buera and Oberfield (2016) and Alvarez, Buera, and
Lucas (2017), provide good illustrations. Concerning empirical work, on the other hand, we refer to Caselli and
Coleman (2001) or Acharya and Keller (2009) for the study of specific cases.
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which standing projects at t are terminated in country i, we can write:

ż−i (t) = λ zi(t) (i = 1, 2, ..., n). (3)

Then, combining (2) and (3), the net rate of project creation in i at t, żi(t), is given by:

żi(t) = ż+
i (t)− ż−i (t) =

∑
j 6=i

η yi(t)
yj(t)∑
k 6=i yk(t)

f(ϕji(A(t)))− λ zi(t)

= η yi(t)
∑
j 6=i

φji(t)− λ zi(t),
(4)

where [φji(t)]
n
j=1 represents the vector of decay-discounted flows of information that arrive at

country i from every other j 6= i. The sum of all such flows, Φi(t) ≡
∑

j 6=i φji(t), captures how

well integrated is country i with the rest of the world, so we refer to it as i’s Globalization Index

(GI).

Consider now a stationary growth path where, for each country i = 1, 2, ..., n, the number

of projects zi active in every country remains unchanged, so that

żi(t) = 0 ∀i = 1, 2, ..., n, (5)

and such stationarity also applies to its growth rate ρi ≡ ẏi/yi, and its pattern of information

flows Φi. Then, combining (1), (4), and (5), we find that the following relationship holds at a

stationary state:

ρ∗i =
ηξ

λ
Φ∗i (i = 1, 2, ..., n). (6)

Expression (6) highlights the prominent role played in our theory by the information flows

channeled into each country through its trade pattern. Indeed, the central prediction following

from that expression is stark: countries that are better integrated in the world economy (i.e.

have a higher GI) grow faster. Formally, the induced relationship between globalization and

growth can be simply stated as follows:

[GG] ∀i, j ∈ N , ρ∗i ≥ ρ∗j ⇔ Φ∗i ≥ Φ∗j .

Of course, to test this prediction we still need to articulate a useful operationalization of the

theoretical framework. This is the task undertaken in the ensuing subsection.

2.2 Operationalization of the theory

To render the theory operational, we need to construct the matrix A that, as explained above,

governs the information diffusion process and consequently determines the expected path lengths

ϕji that underlie the GIs Φi. The construction of these objects involves the following steps.

The first step of the procedure involves the construction of the matrix of trade flows

X ≡ (xij)
n
i,j=1 between every pair of countries, where xij stands for the exports from i to j.

6



(Naturally, along the main diagonal of X we have xii = 0 for all i ∈ N .) To measure the relative

importance of the trading partners of each country i, we simply normalize i’s export flows (xij)j 6=i

by their total exports so that the induced magnitudes x̃ij ≡ xij∑
j 6=i xij

satisfy
∑

j 6=i x̃ij = 1. This

leads to the row-stochastic matrix X̃ ≡ (x̃ij)
n
i,j=1, which describes the distribution of export

shares across the different countries and is one of the key components in the construction of the

matrix A.

The second step focuses on the computation of a suitable indicator of openness for each

country. To do so we follow Arribas et al. (2009) and measure the openness of any given country

i by

θi ≡
∑

j 6=i xij

(1− βi)yi
(7)

where βi stands for the weight of country i’s GDP in the world economy, i.e. βi = yi/Y , where

Y ≡
∑

j∈N yj . In contrast with the received measures of openness, the denominator of (7)

subtracts from yi the part of a country’s demand that, in the absence of foreign-trade bias,

would be satisfied domestically, i.e. (yi/Y )yi. By doing so, the case where θi = 1 corresponds

to a situation where country i is fully open, in that its trade is “blind” to international borders.

To see this note that, in such a border-blind case, the share of i’s final output that is exported

– i.e. (1/yi)
∑

j 6=i xij – is exactly equal to the weight of the rest of the world in the overall

economy: (1/Y )
∑

j 6=i yij .

The third step combines the previous two as follows. Denote by Θ the diagonal matrix

with the vector (θi)i∈N along its main diagonal and let I be the identity matrix. Then, we

define the matrix A as follows:

A = (I −Θ) + ΘX̃ (8)

The resulting matrix A = (aij)
n
i,j=1 is non-negative and row-stochastic (

∑n
j=1 aij = 1), as

required. Along the main diagonal, the entries aii = 1 − θi capture the extent of closedness

of each country i. In line with our former explanation of θi, we can interpret aii as the fraction

of trade that in an “unbiased” trade pattern would be directed abroad but in the case under

consideration is steered towards the domestic market (hence incapable of channeling useful

information elsewhere). In contrast, off the main diagonal, the entries aij = θix̃ij (i 6= j)

capture how international trade – and therefore the information embodied by it – is diffused to

other countries.

The fourth step computes the expected lengths ϕji required for the information generated

in a country j to arrive, directly or indirectly, to any other country i, when such information

is channeled through trade as reflected by the matrix A in (8). The precise derivation of the

expected lengths
(
ϕji

)
i,j(i 6=j)

can be found in Appendix A. There we show that such expected

path lengths can be computed as follows:(
ϕij

)
i=1,2,...,n

i 6=j

= (I −A−j)−2 (I −A−j) e

= (I −A−j)−1 e,

(9)
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where A−j stands for the (n− 1)× (n− 1)-matrix derived from A by deleting the jth row and

column, and e is the column (n− 1)-vector whose components are all equal to 1.

Recall that, in our theory, such path lengths determine the informational decay f(ϕij) ∈
[0, 1] induced by any indirect connection from any country i to some other country j, where f(·)
is a decreasing function. For concreteness, in our empirical analysis we rely on a variation of the

canonical exponential form typically considered by the network and international-trade litera-

ture: the so-called “iceberg costs.”7 That is, we suppose that a constant fraction of informational

value is lost for every additional order of magnitude traveled, so that that f(s) = δlog(s) for some

0 < δ < 1. The results reported in the paper are obtained for the specific factor δ = 0.93, but

the gist of our analysis is essentially unaffected by the specific value being considered.

Finally, in the fifth step, we compute the Globalization Index of country i, Φi(t), as the

weighted sum of all decay-discounted flows of information that arrive at country i from every

other j 6= i:

Φi ≡
∑
j 6=i

βjf(ϕji). (10)

3 Data

Our data on bilateral trade flows is taken from the United Nations Commodity Trade Statistics

Database (UN Comtrade) and it covers 204 countries on an annual basis for the period from

1962–2016. See Table 11 in the Appendix for the countries included in the sample. For each year

and for every pair of countries, we use the information on the total value of exports, measured

in current USD. The export flows for the countries in our sample cover, on average, 98% of the

total yearly world export flows over the period from 1962–2016. Likewise, the GDP coverage

ratio in our sample is high and very stable over time, with an average of 99% of world GDP. The

high and stable coverage ratios, both in terms of trade flows and GDP, are reassuring because

they suggest that our dataset allows for an accurate description of the world trade network8.

Figure 1 provides a schematic visualization of the world trade flows in the year 2015 through

a discretely represented network where, for the sake of clarity, links are binary (i.e. ignore the

trade-based weight). Thus, in this network each link represents the existence of some bilateral

trade flow between two countries, while the size of a country’s label is taken to be proportional

to the country’s aggregate GDP. A number of observations arise. Most interestingly, the figure

shows that the world trade network is far from complete. That is, many countries are connected

to just a relatively small fraction of other countries and the variation in this respect is not

necessarily related to country size. Even though the figure accounts for no direction in the

trade links, this information could also be provided, with the direction of the links indicating

the origin and destination of the flows. Naturally, this would lead to the distinction between

7This assumption is widely used in the theories of international trade and economic geography. It was first
proposed by Samuelson (1954) and then adopted in the well-known paper by Krugman (1991).

8To cope with missing values, we use the observed import flows from country j to country i to impute the
missing export flow from i to j. On average, 5.8% of the annual trade flows are imputed.
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in-degree and out-degree of any given country, where the former reflects its imports and the

latter its exports. Since both perspectives yield an equivalent representation of the network,9

we choose the import-based one and define simply the degree of a country as the number of

other countries from which it receives its imports.

Figure 1: World-trade discrete network in 2015

Table 1 provides more information on the properties of the trade network for the years

1965 and 2015. The first column – labeled “Avg” – shows the average degree of the discrete

trade network (expressed as the fraction of the total number of countries in the network). For

example, in 1965, countries imported on average from 41.3% of all countries. This value implies

that the global trade network was far from complete. We also have that the connectedness of

countries varied substantially. To show this, the next three columns show the 25th, 50th and the

75th percentile of the distribution of countries according to their degree. The numbers in the

first row indicate that, at the 25th percentile, the countries imported in 1965 from only 26% of

all countries, whereas at the 75th percentile they imported from more than half of all countries.

Avg 25th 50th 75th

All 41.3 26.0 35.8 52.4
1965 Poor 38.8 27.6 36.8 48.6

Rich 74.3 70.5 81.2 91.7

All 63.3 49.7 62.8 76.8
2015 Poor 60.3 49.6 60.4 71.9

Rich 79.0 69.4 82.3 94.8

Table 1: Summary statistics on the degree distribution of the discrete world trade network,
expressed as a percentage of the total number of countries in the sample.

9Note that the aggregate out-degree is equal to the aggregate in-degree, even if the overall distribution in
each case may of course be quite different.
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Table 1 also shows that there is a marked contrast between rich and poor countries. For

concreteness, we classify countries as rich (poor) if, in the year 2015, their GDP per capita was

above (below) 50% of the U.S. level. Then, the second row of the table shows that in 1965 poor

countries imported, on average, from only 38.8% of all countries, while rich countries did so from

an average of 74.3% of countries. Even the most connected poor countries at the 75th percentile

imported from less than 50% of countries whereas at that same percentile the rich countries

imported from almost every country in the world. Overall, the pattern described for the year

1965 is essentially maintained for the year 2015 although the extent of average connectivity

grows, with the increase being especially significant for the poorer countries.

Next, we take a complementary perspective on the description of the data that focuses on

the weight of the links, as given by the normalized row-stochastic matrix A described in Section

2.2. Recall that, in this matrix, each entry aij represents the fraction of the exports of country i

that are imported by country j. We are interested, in particular, on assessing how polarized are

the imports of each country j towards a relatively small subset of other countries, in contrast

with having a more diversified set of import providers. To this end, we consider the following

statistics. First, denoting by mj the median value of the distribution of weights
(
aij
)
i 6=j

, we

define by

λj =
∑

{i:aij≤amjj}

aij (11)

the aggregate import weight of country j for countries i lying no higher than that of the median

mj . On the other hand, we denote by νuj the total import weight of country j associated to

its top u importers, where we consider the specific values of u = 1, 3, 10. Finally, we average

those magnitudes and obtain λ̄ and ν̄u, where the averages are taken either at the whole world

level or are separately computed for rich or poor countries, as defined before. The results are

displayed in Table 2, with the magnitudes expressed in percentage terms over the total import

weight attained by each country.

λ̄ ν̄10 ν̄3 ν̄1

All 3.3 79.6 55.9 34.0
1965 Poor 2.9 81.3 57.6 34.2

Rich 4.4 62.3 36.5 20.0

All 1.3 77.3 54.0 31.2
2015 Poor 1.1 80.9 57.3 33.4

Rich 2.1 64.3 41.7 23.3

Table 2: Summary statistics on the distribution of import weights (expressed in percentage
terms) for the world trade network.

The results show a strong concentration of countries’ imports on only a few links for both

the years 1965 and 2015. For example, according to the values in the first row, the weakest

50% of the import connections in 1965 account, on average (for the population as a whole), for

only about 3% of the total import weight a country. At the same time, the strongest single

10



connection of a country accounts, on average, for 34% of the total weight in that same year.

Again, we observe a quite different pattern for rich and poor countries. The import connections

for poor countries are more highly concentrated than for rich ones, with the patterns being quite

stable across both of the years considered.

4 Trade integration and alternative openness measures

As explained in Section 2, we interpret the Globalization Index (GI) derived from our theory as a

measure of trade-based integration, similar in spirit (although, as we shall see, not in the details)

to other measures of country openness that have been considered in the literature. The objective

of the present section is to rely on the operationalization of this index explained in Subsection

2.2, to compute the GI, Φit, for every country i in our sample and every year t = 1962, ..., 2016,

then contrasting it with two of the leading openness measures proposed in the literature: Trade

Share (TS) and the Sachs-Warner Index (SWI). This exercise should clarify the nature of our

proposed measure of trade integration, and the extent to which it incorporates features that are

quite distinct from those displayed by such alternative measures.

Table 3 shows the value of the GI for a representative set of countries and for the years

1965, 1990 and 2015. The countries in the table are ranked in a descending order according to

their 2015-value of the GI. Quite interestingly, we find that the most integrated countries have

become more integrated over time, and that the ranking among these countries has remained

quite stable, with the important exception of China. In contrast, several of the least integrated

countries have become even less integrated over time, while among countries lying in the middle

range the pattern is a diverse one with some countries becoming more integrated while others

becoming less so. An additional interesting observation transpiring from Table 3 is that our

measure of trade integration appears quite unrelated to either TS or the SWI. We elaborate on

this feature below.

Further insights on our measure of trade integration are provided by Figure 2, where the four

panels display information on its world distribution, its evolution over time, and its correlation

with both economic performance and the trade share. The main observations derived from each

panel can be summarized as follows.

• Panel (a) shows that the world is, and has been, very unequal in terms of the level of

integration, as measured by the GI. The world integration distribution in 1965, 2005 and

2015 is very dispersed but relatively stable over time. If anything, between 1965 and 2015,

there has been a general shift towards more integration at the world level.

• Panel (b) indicates that, with few exceptions, the ranking of countries in terms of integra-

tion has remained rather stable and, generally speaking, the richest countries show higher

integration than poorer ones. (Each circle represents a country and the size of a circle is

proportional to country’s per capital GDP relative to U.S. GDP per capita.)
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Trade integration ∆ Rank RankTS SWI

1965 1990 2015 65-15 1965 1990 2015 2015 1990

United States 0.72 0.76 0.77 0.05 1 1 1 121 1
China 0.59 0.64 0.74 0.15 24 18 2 112 0
Germany 0.71 0.74 0.72 0.01 2 2 3 41 1
United Kingdom 0.70 0.71 0.70 0.00 3 4 4 91 1
France 0.68 0.72 0.69 0.01 4 3 5 84 1

Mexico 0.60 0.64 0.68 0.08 21 15 9 60 1
Hong Kong 0.59 0.65 0.68 0.09 20 12 10 1 1
South Korea 0.54 0.64 0.67 0.12 52 13 12 44 1
India 0.63 0.61 0.66 0.03 14 29 14 109 0
Brazil 0.58 0.60 0.64 0.06 33 31 22 123 0

Argentina 0.58 0.54 0.59 0.01 27 50 40 124 0
Nigeria 0.57 0.55 0.57 0.00 37 48 51 125 0
Guatemala 0.52 0.52 0.55 0.03 66 61 56 96 1
Ghana 0.55 0.49 0.53 -0.02 47 80 68 29 1
Yemen 0.39 0.47 0.52 0.13 123 98 77 119 1

Congo 0.53 0.49 0.51 -0.02 59 79 89 64 0
Liberia 0.56 0.53 0.51 -0.05 44 53 90 15 -
Uganda 0.47 0.47 0.50 0.03 97 92 94 101 1
Gambia 0.43 0.43 0.45 0.02 119 114 119 55 1
Central Afr. Rep. 0.44 0.42 0.41 -0.03 115 117 124 103 0
Rank: Ranking of each country in terms of the GI in a given year, RankTS : Ranking of each country
in terms of the trade share (country with largest trade share is no. 1). ∆ is the absolute change in the
value of the GI between 2015 and 1965. SW: Sachs-Warner dummy variable - is 1 (0) if country is open
(closed) to trade. Rankings are based on the sample of 125 countries for which data are available in
1965, 1990 and 2015.

Table 3: The Globalization Index – summary statistics and comparison with other openness
indices: Trade Share and the Sachs-Warner Index.

• Relatedly, Panel (c), displays a strong relationship between a country’s 1965-2010 average

of the GI (x-axis) and the annual GDP growth rate (y-axis). That is, countries which are

better integrated into the world trade network also grow faster. Section 5 explores this

relationship more systematically and in greater detail.

• Finally, Panel (d) bears on a very interesting and somewhat striking fact. It shows that

trade integration, as measured by the GI, is essentially uncorrelated with the TS, the

classical measure of openness. Each 3-letter acronym in the figure represents a country

and the location of a given country is determined by its position in the ranking of countries

in the year 2015 based on the GI (x-coordinate) and the TS (y-coordinate). Countries that

rank highly according to each measure are considered as open in terms of that measure.

The rank correlation between our measure of trade integration and the trade share is very

low, and equal to -0.06. Furthermore, some of most integrated economies in the world,

such as the United States, France and the United Kingdom are classified as relatively

closed according to the TS measure. Instead, at the opposite end, many of the countries

that display a low GI (thus are not well trade-integrated) rank highly in terms of their TS
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and therefore should be considered open according to it.
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Figure 2: Trade integration - across the world and over time.

In line with the absence of correlation between the GI and TS highlighted in the point

above, we may go back to Table 3 to find that, for the selected set of countries, a similar state

of affairs applies for the SWI. There, we can observe that several of the most (least) integrated

countries according to our indicator are classified as closed (open) – i.e. have an index of 0 or

1, respectively – according to the SWI. Such a disconnect between the two indicators also holds

more broadly for a larger sample of 109 countries for which we have the data on both measures.

Specifically, we find that among the top-50 % of the most integrated countries according to

our measure, one third of the countries are classified as closed according to the SWI. And,

reciprocally, one third of the bottom 50 % of countries are classified as open.

Such a lack of correlation between our Globalization Index and the traditional openness

indicators is a remarkable and somewhat surprising observation. At this point, therefore, we

find it necessary to explore this puzzling issue in greater depth. We start by investigating the

relationship between the GI and the SWI. In their highly influential study, Sachs and Warner
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(1995) construct their dummy variable for openness by classifying a given country as open if

none of the following five criteria hold: (i) the country has average tariff rates above 40 percent;

(ii) non-tariff barriers cover more than 40 percent of its imports; (iii) the country operates under

a socialist economic system; (iv) there is a state monopoly of the country’s major exports; and

(v) the black-market premium on its official exchange rate exceeds 20 percent. In view of

criteria (i)-(v), a useful basis to understand the weak relationship between the SWI and the

Gl is provided by the work of Rodriguez and Rodrik (2001), Harrison (1996) and Harrison and

Hanson (1999). For, as these authors show, most of the explanatory power of the SWI comes

from the two non-trade components: the existence of a state monopoly of the country’s major

exports, and the black-market premium on its official exchange rate. In view of this, Rodriguez

and Rodrik (2001) argue that the SWI acts, in essence, as a dummy variable for Sub-Saharan

countries and therefore should not be regarded as a suitable measure of a country’s outward

orientation.

Somewhat more subtle is the relationship between the GI and TS (defined as the sum of

exports and imports of a country as a fraction of its GDP). To explore the low correlation

between the two measures, we first present a stylized numerical example of a hypothetical world

composed of just three countries which are linked by exports and imports. This example will

be useful to demonstrate what features of trade determine a country’s level of integration and

its trade share, and how a low trade share can coexist with a high integration level and vice

versa. For expositional convenience, we support our discussion through Table 4, where in three

separate columns we specify the key magnitudes involved for the following three cases:

• In column (A) we specify the general expressions that are used in the calculation of the

GI for a world with an arbitrary number n of countries.

• In column (B), we particularize the general expressions to our three-country example when

the three countries are fully symmetric: each country i = 1, 2, 3 has a GDP yi = 1 and its

exports to the other two countries j 6= i are xij = 1/3.

• In column (C), we consider again the three-country example but suppose that while coun-

tries 2 and 3 are as before, country 1 exports less, i.e. x1j = 1/10 for j = 2, 3.

On the other hand, the different expressions listed vertically in Table 4 can be succinctly de-

scribed as follows:

• in row (1), we have the matrix of bilateral trade flows;

• in row (2), the vector of GDP’s for each country;

• in (3), their trade shares;

• in (4), their individual openness;

• in (5), the diffusion matrix;

• in (6), the expect path lengths involved in joining every pair of countries;

• in row (7) the GI of every country.

Naturally, for the symmetric three-country world considered in column (B) all values –

vectors and matrices – listed in rows (1)-(7) are symmetric across the three countries. It may
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(A) (B) (C)
General formula Symmetric case Country 1

exports less

(1) X =


0 x1,2 ... x1,n
x2,1 0 ... x2,n
... ... ... ...
xn,1 xn,2 ... 0


 0 1

3
1
3

1
3

0 1
3

1
3

1
3

0

  0 1
10

1
10

1
3

0 1
3

1
3

1
3

0


(2) yi (i ∈ N) [1, 1, 1] [1, 1, 1]

(3) TSi =
∑

j(xij+xji)

yi
(i ∈ N) [1.33, 1.33, 1.33] [0.87, 1.1, 1.1]

(4) θi =
∑

j xij

yi

1
1−βi

(i ∈ N) [1, 1, 1] [0.3, 1, 1]

(5) A =


1− θ1 θ1x̃1,2 ... θ1x̃1,n
θ2x̃2,1 1− θ2 ... θ2x̃2,n
... ... ... ...

θN x̃n,1 θnx̃n,2 ... 1− θn


 0 0.5 0.5

0.5 0 0.5
0.5 0.5 0

  0.7 0.15 0.15
0.5 0 0.5
0.5 0.5 0



(6) ϕji = (I −A−i)−1e (i, j ∈ N, i 6= j)

 0 2 2
2 0 2
2 2 0

  0 5.1 5.1
2 0 3.6
2 3.6 0


(7) Φi =

∑
j 6=i βjf(ϕji) (i ∈ N) [0.95, 0.95, 0.95] [0.95, 0.9, 0.9]

Table 4: A simple example for a world with three countries.

also be worth noting that their individual openness θi = 1 for all of them since their domestic

trade is proportional to their individual weight in the world as a whole.

In contrast, column (C) considers the more subtle case where country 1 exports less to both

other countries, while everything else remains equal. Consequently, the trade share is lower

than before for all countries, but more so for country 1. Due to lower exports, country 1 is no

longer fully open as reflected by the value of θ1 < 1 and the corresponding change in the first

row of the transition matrix A. Importantly, the pattern of imports of country 1 is as before

and therefore the expected lengths of the diffusion paths from countries 2 and 3 to country 1

are unchanged and so is the value of Φi, country 1’s GI. However, as country 1 is less open than

before, the direct (one-link) diffusion paths flowing from country 1 to 2 and 3 are longer than

before. And, moreover, so are the indirect (multiple-link) paths flowing into countries 2 or 3

since they involve the indirect connection via country 1. As a result, while the GI is unchanged

for country 1, it is reduced for countries 2 and 3.

The simple numerical example described in Table 4 is useful to shed light on the contrast

between TS and the GI. Specifically, it shows that, while for the determination of a country’s

TS what matters is the volume of its exports and imports, for the GI it is its pattern of import

links (direct and indirect) that plays the key role. This means that, in general, a country can

have both a low TS and a high GI – such as country 1 in the example described in column (C)

– or a high TS and a low GI – as for countries 2 and 3 in that same example. To explore at a

broader level whether, in effect, the full pattern of combinations in the relation between the TS
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and the GI is indeed possible in a truly large and complex setup such as the real world, we turn

again to the whole set of countries in our world sample.

It will be useful to divide the sample into four groups that reflect different combinations

of the TS (high/low) and the GI (high/low). Table 5 shows the results for a selected set of

countries belonging to these four groups for the year 2015. Panel (a) [(d)] shows countries with

a high [low] TS and with a high [low] value of the GI. These countries are considered open

[closed] according to both measures. Instead, for the countries in Panels (b) and (c) the two

measures disagree about the countries’ level of openness. One of the important observations that

arises from the table is the following: the countries with a high GI are characterized by many

import links. Thus, in the column labelled “#” that reports the share of all countries that a

given country receives imports from, the most globalized countries import from almost all other

countries. In contrast, we note that the least globalized countries import from substantially less

and in many cases less than half of all countries.

Rank
GI TS IMP

GDP
# āi ā2i ā5i ā25i ā50i

(a) High GI / high TS

Netherlands 8 12 0.91 98 1.03 1.08 1.02 0.96 0.95
Hong Kong 10 2 2.41 93 0.56 0.74 0.92 1.04 1.07
Belgium 13 11 0.71 95 1.34 1.79 1.95 1.76 1.74
Singapore 16 3 2.17 95 0.62 0.58 0.55 0.59 0.60

(b) High GI / low TS

USA 1 168 0.20 98 0.42 0.79 1.73 4.26 4.76
China 2 159 0.19 99 5.35 8.14 11.41 12.30 12.55
France 5 126 0.40 97 1.75 3.07 5.39 6.46 6.19
Japan 6 164 0.22 96 1.73 2.88 4.87 7.79 8.18
Canada 7 115 0.41 96 4.78 8.87 18.51 42.14 46.74

(c) Low GI / high TS
Liberia 114 27 0.80 50 0.02 0.03 0.03 0.02 0.02
Congo 121 10 1.12 52 0.02 0.03 0.03 0.04 0.04
Lesotho 153 28 0.80 26 0.00 0.01 0.01 0.01 0.01

(d) Low GI / low TS

Burkina Faso 123 123 0.54 59 0.01 0.01 0.03 0.07 0.07
Niger 133 131 0.51 57 0.00 0.01 0.02 0.02 0.02
Rwanda 138 143 0.42 58 0.01 0.01 0.05 0.24 0.35
Burundi 157 163 0.33 46 0.03 0.06 0.13 0.16 0.12

Year: 2015, #: Number of import links, āji × 100: mean of import links, āsi : s-order weight of
import links

Table 5: Trade Share, the Globalization Index, and higher-order trading connections.

As a complement of the previous point, it is also important to emphasize that it is not the

volume of imports that determines per se whether a country is considered open according to

our measure. To see this, consider the column labeled “ IMP
GDP ” that shows the import share for

each country. Many of the countries in Panels (c) and (d) display import shares that are higher

than those of the most globalized countries in our dataset, such as the U.S., China, or France.

Nevertheless, the number of import links of these countries is substantially lower, which is the

reason why these countries rank low according to our GI.

But why is the number – not just the weight – of import links important? The reason

is that the number of direct (first-order) links in turn determines the number of higher-order
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links that a country has and therefore the total weight associated to more distant sources of

information. To explore empirically this idea, in the last five columns of Table 5 we list the

total diffusion weight reached by each country through direct import links as well as import

links of order 2, 5, 25, and 50. While the total direct (or first-order) weight of a country i

is given by āi =
∑

j 6=i aji, for any other s ∈ {2, 5, 25, 50} we define the corresponding s-order

weight by āsi =
∑

j 6=i a
s
ji, where the elements asji are the ij entries of the diffusion matrix A

multiplied by itself s−1 times, i.e. As. We observe that it is not only the value of āi for the least

globalized countries in Panels (c,d) that is a small fraction of the value of the most globalized

countries in Panels (a,b). In addition, the countries in the two groups differ even more markedly

in terms of their higher order links, as represented by the total diffusion weight. The value of

āsi is uniformly much higher for the most globalized countries indicating that the indirect links

contribute significantly to those countries’ overall (direct and indirect) connectivity. Instead,

the very low value of āsi for the least globalized countries shows that their trading partners are

not generally well connected themselves.

Having established that the GI embodies a fundamentally different perspective of country

openness than the traditional measures, we now turn to the quantitative analysis to revisit the

empirical debate on the openness-growth nexus. The objective of the analysis is to assess the

relative strength of the relationship between our proposed measure of country openness and

economic growth. To this end, we compare it with a large set of alternative variables (33 of

them) that have been highlighted by the empirical growth literature (see below for details). At

this point, it is important to emphasize that we do not claim to establish a causal connection

between economic growth and the GI – or, for that matter, concerning any of the additional

variables considered. For, as is well known, growth empirics is generally plagued with a number

of serious problems, above all the endogeneity concern. Our primary goal, therefore, is to explore

the correlation patterns between country integration and economic performance, embedding the

analysis into a carefully specified dynamic model that accounts for the whole structure of possible

conditional dependencies on any subset of the alternative variables.

5 Econometric model

The empirical analysis is based on the following econometric model

yit = αyit−1 + βxit + δzi + ηi + ζt + vit. (12)

where yit, which denotes the log of GDP per capita of country i in period t, is modeled as a

linear projection on its own lag and a set of covariates. The vectors xit and zi are vectors of

dimensions k × 1 and m× 1, respectively. with the first being time-varying and the second one

constant over time. On the other hand, ηi is a country fixed effect, ζt is a time effect that is

common across all countries, and vit is the random disturbance term which is assumed to satisfy

E[vi,s · vj,t] = 0 for all i, j, s, t.
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Following Moral-Benito (2013, 2016) we assume that only the time-invariant variables in

z are strictly exogenous and we treat all variables in x as potentially predetermined. Hence,

to complete the model we augment it by an unrestricted feedback process which relates the

predetermined variables in period t, xt, to all lags of the explained variable y, all lags of the

predetermined variables, and the time-invariant variables z. As we explain in detail in Appendix

B, the estimation of parameters of the model pursues a limited-information maximum likelihood

(LIML) approach.

Clearly, a key step in estimating the model in (12) concerns the choice of variables to be

included in x and z. This issue has proven to be a difficult challenge in the empirical growth

literature. Partly, this problem derives from the fact that the theoretical literature lacks guidance

about what factors are ultimately related to growth. As a consequence, researchers have often

specified the empirical model in a more or less ad-hoc fashion. Over the years, this practice has

led to the proposal of a large number of variables as possible growth correlates. For example,

Durlauf et al. (2005) conducted a survey of the empirical growth literature and identified a

total of 145 regressors that were found to be statistically significant in at least one study.

To address such model uncertainty, we apply the approach known as Bayesian model av-

eraging (BMA).10 In a nutshell, its objective is to develop a systematic way of assessing the

probability that a given model specification be the “true” one. More specifically, suppose there

are K candidate regressor variables. Hence, in total, there are 2K possible combinations of

regressors, where each combination gives rise to a different model. Let Mj (j = 1, .., 2K) denote

any given such model that relates the outcome of interest y to a particular set of regressor vari-

ables. Then, given a prior P (·) over the space of those models and any collection of observed

data y, we may apply the logic of Bayesian inference to derive a posterior probability over any

specific model Mj . That is, using Bayes Rule, such a posterior probability P (Mj |y) is computed

as follows:

P (Mj |y) =
p(y|Mj)P (Mj)

P (y)
(13)

where P (y) is the likelihood of the data and p(y|Mj) is their corresponding marginal (or inte-

grated) likelihood.

Ultimately, we are interested in assessing the importance of each of theK candidate variables

in explaining the data variable y. Thus, identifying such measure of “importance” of a variable v

with the posterior probability that this variable belongs in the ”true” growth model we compute:

P (v ∈M|y) =
∑
k∈Mj

P (Mj |y). (14)

10Bayesian model averaging is based on work by Raftery (1995) and was first applied by Sala-i-Martin et al.
(2004) to determine which regressors should be included in linear cross-country growth regressions. An alternative
to BMA is Weighted Average Least Squares (WALS) which was recently introduced by Magnus et al. (2010).
WALS is superior to BMA in several respects; most importantly it outperforms BMA in terms of computational
burden. Hence, it seems to be the preferable tool for model selection. For our purpose, however, it is not an
adequate choice because it cannot (yet) deal with multivariate systems as the one in Expression (18). Moreover,
unlike the BMA, it does not provide a metric that is useful to gauge the overall importance of a variable for
explaining the data. See Moral-Benito (2015) for a survey on model-averaging techniques.
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This probability is known as the (posterior) inclusion probability of variable v. Those variables

with a high inclusion probability may then be considered as robustly related to economic growth.

In practice, as a choice for the model priors P (Mj), we follow Ley and Steel (2009) and

use the so-called Binomial-Beta prior structure (named after the implied model-size prior dis-

tribution) which has been shown to limit the effects of weak priors. Then, on the basis of it,

the implementation of the BMA requires the estimation of all possible models associated to any

given combination of co-variates. Clearly, this is computationally unfeasible when the number

K of regressors is large – for instance, in our case we consider 34 potential regressors, which give

rise to 234 different models to assess. Thus we resort to the approach developed by Madigan

and York (1995) known as Markov-Chain Monte-Carlo Model-Composition (MC3). The MC3

approximates the posterior probability distribution through an ergodic stochastic process that

evolves according to a transition kernel that compares the posterior probabilities of neighboring

models. And when this Markov chain is simulated for a sufficiently long time – so that the

model-to-model transition probabilities become stationary – it can be be taken to have con-

verged to the desired posterior distribution. In Appendix E, we explain this procedure more

precisely and also report on how it performs in our particular case.

The set of regressors considered in our BMA analysis includes variables covering institu-

tional, geographical, economic and demographic factors. Table 10 shows the complete list of

variables. Naturally, among the candidate regressor variables contemplated, we have always in-

cluded our measure of trade integration introduced in Section 2.2. And, of course, all the models

under study consider the same dependent variable: the logarithm of real GDP per capita. To

reduce the problem of serial correlation, we group the data into time intervals. That is, for a

given time period, the dependent variable is the end-of-period value of per-capita GDP, whereas

for the the regressor variables we take their within-period average values. In the benchmark

case we use 10-year intervals, but as a robustness check we also use 5-year intervals.11

Finally, let us mention that we use data from 82 countries (covering all regions of the world

and, as mentioned, 99% of its overall GDP) for the period 1960-2000.12 See Table 11 for the

list of countries in the sample. We have yearly observations for the dependent variable and all

the candidate regressor variables. Using 10-year intervals, gives us a balanced panel with T=4

observations for every country. In Table 10 we report the data source and some descriptive

statistics.

11We follow Caselli et al. (1996) and measure the flow variables (such as population growth) as 10-year
averages while for the stock variables (such as life expectancy), we use the value of the variable in the first
year of each 10-year period. To fix ideas consider, as an example, the period from 1960-1969. In this case,
the dependent variable is the value of real per-capita GDP of a given country in the year 1970 and the lagged
dependent variable is the 1960-value of real per-capita GDP. Moreover, the value of the variable representing a
country’s ”population growth” is the 1960-1969 average of the country’s population growth rate and the value of
the variable representing a country’s ”life expectancy” is the value of the life expectancy in the year 1960.

12Ideally, we would preferred to consider a longer time horizon. However, due to data limitations there is a
trade-off between the length of the time period considered and the number of variables included in the sample.
Extending the time horizon would have considerably reduced the number of observations. For example, the data
for the SWI is not available after 1992.
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6 Main results

The main results of our analysis are reported in Table 6. The rows of this table correspond

to each of the 34 regressor variables considered in our econometric exercise. They are ordered

according to their posterior inclusion probability (PIP ) and the row corresponding to the GI

measure is highlighted for the sake of clarity. On the other hand, concerning the seven columns

in the table, for the moment we focus only on the first four of them that correspond to our

benchmark globalization measure, while the last three columns will be discussed in Subsection

7.4 when we consider an alternative globalization measure relying just on higher-order trade

flows. The four columns under consideration specify, for each of the variables contemplated, the

following values:

• The posterior mean, E(θv|y), of the coefficient θv estimated for the variable v. This

mean is computed as E(θv|y) =
∑

v∈Mj
P (Mj |y)θ̂jv(Mj), where θ̂jk(Mj) denotes the value

estimated under model Mj .

• The posterior inclusion probability, PIP , as computed by (14) for each variable v.

• The fraction of models, %sig, where coefficient estimates are significant at the 5% level.

• The standardized coefficients, “beta”, obtained by using standarized data in the analysis.13

In addition note that, on the first column, we also indicate the statistical significance of

each estimated coefficient by computing the posterior variance, relying on the usual convention:

10% (*), 5% (**), 1% (***).14

A number of interesting observations emerge from the results in Table 6 for the benchmark

case.

1. The posterior mean estimate for the coefficient of the GI regressor is not only positive but

significant at the 1% level. To reinforce the latter point, we also note that the estimate

coefficient is significant in 99% of all the models that include that variable.

2. A sizable PIP of more than 50% is attained by only eight variables. This value is line with

the estimated posterior model size of 8.7. But more importantly for our purposes, our GI

scores a very high inclusion probability of 85%.

13The standardization is achieved by de-meaning and normalizing the original data so that each variable has
mean zero and a unit standard deviation. Doing so, therefore, the value of the coefficient specifies by how many
standard deviations the dependent variable changes when the associated independent variable changes by one
standard deviation.

14Following Leamer (1978), the posterior variance is computed as V (θk|y) =
∑
k∈Mj

P (Mj |y)V (θk|y,Mj) +∑
k∈Mj

P (Mj |y) [E(θk|y,Mj)− E(θk|y)]2 . Sala-i-Martin et al. (2004) note that, having a ratio of posterior mean

to standard deviation of around two (in absolute value) indicates an approximate 95-percent Bayesian coverage
region that excludes zero. Using this ”pseudo-t” statistic, we associate the levels of significance of 10%, 5%, 1%
to the ratios of posterior mean to standard deviation of 1.645, 1.960 and 2.576, respectively.
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Benchmark Higher-order trade

Description of variable E(θk|y) PIP %sig beta E(θk|y) PIP %sig

Lagged logarithm of real GDP per capita 0.8351*** 1.00 100 0.7924 0.8497*** 1.00 99
Investment share of real GDP 0.5903 0.92 17 0.0196 0.6553 0.81 32
1/0 dummy for Sub-Saharan country -0.0789* 0.88 47 -0.0285 -0.0864** 0.85 58

Globalization Index 6.2887*** 0.85 99 0.4361 5.7298** 0.79 95

1/0 dummy for armed conflict -0.0681 0.75 6 -0.0192 -0.0821 0.53 11
Population share in the geographic tropics -0.0538 0.72 25 -0.0195 -0.0635 0.58 42
Land area within 100km of navigable water 13.8364 0.68 97 0.0406 13.8946 0.60 92
Total population 0.4379 0.58 1 0.0197 0.3088 0.42 2
1/0 dummy for Latin-American country -0.0237 0.34 16 -0.0066 -0.0446 0.34 21
Life expectancy at birth 1.3664** 0.23 80 0.1005 1.3966** 0.52 78
Sachs & Warner Index 0.1801*** 0.16 98 0.0661 0.1753*** 0.30 93
1/0 dummy for East Asian country 0.0627 0.15 39 0.0030 0.0881** 0.32 55
Government share of real GDP -1.5067*** 0.11 91 -0.0745 -1.6364*** 0.11 88
Land share in the geographic tropics -0.0327 0.11 15 -0.0116 -0.0538 0.15 27
Land share in Koeppen-Geiger tropics 0.0368 0.11 1 0.0130 0.0287 0.09 2
Labor force participation rate 1.1940* 0.08 54 0.0973 1.1159 0.12 48
Democracy index -0.0869 0.07 4 -0.0204 -0.0983 0.08 7
1/0 dummy for former Spanish colony -0.0609* 0.06 45 -0.0125 -0.0697** 0.11 58
Population share aged 0-14 years -0.6378 0.05 21 -0.0898 -0.5311 0.05 27
Average years of secondary schooling -0.0566 0.05 18 0.0318 0.0206 0.05 25
Land area in km2 -0.0801 0.05 7 -0.0163 -0.1153 0.06 34
Exports plus imports as a share of GDP -0.0668 0.04 19 -0.0311 0.0895 0.04 15
1/0 dummy for Western European country 0.0488 0.04 9 0.0118 0.0780* 0.05 44
Population density -0.0474 0.04 1 -0.0287 -0.0181 0.04 1
Annual growth rate of population -2.1608 0.03 69 -0.0486 -1.2932 0.06 69
Population share aged 65 years and above 2.1308 0.03 38 0.1009 3.2982 0.05 69
Consumption share of real GDP -0.3434 0.03 12 -0.0249 -0.3048 0.02 8
Average years of primary schooling -1.3586* 0.02 71 -0.1976 -1.4052* 0.05 79
Urban population -0.2327 0.02 54 0.0095 -0.5013 0.02 64
Air distance to NYC, Rotterdam, Tokyo -0.0160 0.02 9 0.0058 -0.0506 0.05 12
1/0 dummy for landlocked country -0.0301 0.02 6 -0.0066 -0.0440 0.03 9
1/0 dummy for socialist rule in 1950-95 -0.0103 0.02 0 0.0001 -0.0175 0.02 3
Price level of investment 0.0305 0.01 6 0.0934 0.0271 0.02 1
Timing of national independence -0.0053 0.01 3 0.0030 -0.0101 0.01 3

Table 6: Results of the Bayesian model averaging analysis.

3. The standarized estimates reported in the fourth column also yield a high coefficient for

the GI, several orders of magnitude larger than any other, with the exception of the lagged

value of the dependent variable. This suggests that the estimated effect of the GI is not

only statistically significant but also economically so.

Jointly considered, the above three points provide substantial support to the existence of a

strong positive positive relation between trade integration and income per capita. In fact, note

that this applies not only to the level but also to the growth rate of per-capita GDP, since our

empirical model controls for the initial log-level of that variable in every period.

In contrast with the strong support obtained for the GI trade-integration measure, the

results in Table 6 indicate that the relationship between economic growth and the conventional

openness indicators, such as the TS and the SWI, is quite weak. In particular, both of these

variables display quite low PIPs of 0.16 and 0.04, respectively. As explained in Section 4,
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this is largely in line with the claim put forward by Rodriguez and Rodrik’s (2001) that the

traditional indicators of outward-orientation do not truly embody a notion of openness that

is closely related to economic performance. In the robustness analysis conducted in Section

F.2, we address the concern that the weak support enjoyed by those openness indicators might

be driven by a potential dependence obtained between our GI and the traditional measures.

A priori, such dependence is unlikely, since Section 4 already showed that GI is practically

uncorrelated with TS and SWI. Nevertheless, we find it worthwhile to analyze this issue in the

broader context of the BMA. Concretely, we include into the BMA different combinations of the

different openness measures to check whether the exclusion of some variables significantly alters

the results for the others. As shown in Table 15, by and large the analysis does not uncover any

notable dependencies between the different measures.

Finally, an additional finding of some relevance to growth empiricists, is the discrepancy

observed for some regressor variables in terms of the relevance attributed to them by their

values of the posterior inclusion probability and the %sig-statistic. This applies, for example, to

the variables representing the Government share, the Average years of primary schooling, the

Sachs-Warner Index, or the Annual population growth rate. These are variables characterized

by low values of the PIP – indicating that the models which include these variables receive

only little support from the data – and high values of the %sig-statistic – indicating that the

estimates of the variables’ coefficients are significant in a large (“conditional”) fraction of the

models where the variable is included. For example, the Government share has a PIP of

only 11% but the estimated coefficient is significant in 91% of the models that contain it. In

Appendix G we explore this discordance in some detail and provide an explanation for it. We

then argue that the striking disconnect observed for some of the variables considered illustrates

and underlines the superiority of the model-averaging approach over the traditional approach:

whereas the latter identifies robust estimates with those that are statistical significant within

the models that include the corresponding variables, the former takes into account as well the

support/likelihood that those models receive from the data in the first place (in comparison

with the models that do not include the variables in question).

7 The key features of the Globalization Index

There are two essential features that underlie our theory and also make our measure of trade

integration – the Globalization Index (GI) – stand apart from received measures of openness:

(a) its view of trade as a channel of information flows; (b) its focus on the overall architecture

of the trading network and hence the role of indirect links. In this section we provide some

empirical support for the prominent role played by these two features as correlates of growth.

Concerning (a), we consider two different (complementary) routes. First, in Subsection 7.1

we show that while trading flows in capital goods are positively related to growth, trade in raw

commodities and economic growth are largely unrelated. Since, conceivably, the first kind of

trade embodies much more valuable information and know-how than the second, the indicated
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evidence provides an intuitive basis for feature (a). A more direct support for it is then provided

in Subsection 7.2. There we find that if we approximate the flow of ideas across two countries

with the volume of patents in one that are cited in the other, such a variable is closely related

to the corresponding trade-based distance from the former to the latter and therefore.

Pertaining to the feature of GI described by (b), on the other hand, we again explore two

different avenues to assessing it. First, in Subsection 7.3, we measure the network distance from

either only direct links or only indirect paths. Then we find that the latter capture the bulk of

the relationship between trade-integration and growth while the former is relegated to a very

subsidiary role. Finally, in Subsection 7.4, we arrive at a different, but similarly motivated,

point by constructing a pseudo-measure of “globalization” that replaces the direct links that

reflect trade with links that weigh geographic proximity alone. We then arrive at the conclusion

that the induced measure of “trade-integration” that abstracts from direct-trade links enjoys a

support from the data that is very close to that provided by our benchmark measure.

7.1 Good-specific trade flows

As advanced, here we investigate to what extent the relationship between trade integration and

growth is associated to varying intensities to trade in different types of goods. Recall that our

measure of country integration, the GI index, has been computed by using the total bilateral

trade flows. Consequently, it treats, say, Brazilian coffee exports to Japan and Japanese com-

puter equipment shipped to Brazil equivalently (conditional on having the same dollar value).

Arguably, however, not all kinds of trade are equally meaningful and should have the same rela-

tion to a country’s economic performance. In other words, if trade involves sophisticated goods

(for example capital goods) it can be expected to embody valuable information and know-how

and therefore have a stronger connection to long-run growth than trade in low-tech goods (say,

raw materials). As a first step towards exploring this question, we consider here trade flows at

the one-digit product level and separate it into the following two broad categories:

• Capital goods: Chemicals, Manufactured goods, Machinery and transport equipment,

Miscellaneous manufactured articles

• Commodities and processed raw materials: Food and live animals, Beverages and

tobacco, Crude materials (except fuels), Mineral fuels, lubricants and related materials,

Animal and vegetable oils, fats and waxes.15

In analogy to how we compute our baseline GI measure, we use data on bilateral trade flows

for each product type to obtain the corresponding type-specific GI. Such an index measures the

connectedness of each country to global trade for that product type. Then, we include each of

these type-specific GI measures in a separate BMA to explore how trade in the different product

15The classification scheme and the data on bilateral goods-specific trade are taken from the UN Comtrade
database.
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types is related to growth. Table 7 reports the posterior inclusion probability and the posterior

mean of the GI coefficient for each product type.

E(θk|y) PIP %sig

Benchmark 6.2887*** 0.85 99

Capital goods 6.3352*** 0.82 98
Machinery equipment 8.4218*** 0.92 93
Manufactured goods 6.7548*** 0.85 91
Chemicals 5.6109*** 0.73 89
Other manufct goods 6.6491*** 0.67 98

Raw material goods 1.8306*** 0.21 42
Beverages, tobacco 0.8214*** 0.43 87
Mineral fuels 1.4935*** 0.38 52
Oils and fats 0.7790*** 0.29 28
Crude materials 2.8673*** 0.18 82
Food, live animals 1.4357*** 0.15 19

Table 7: Statistics derived by BMA analysis for the various product-based globalization indices.

A number of observations are worth highlighting. First, the GI computed for the broad

category of capital goods has a very high inclusion probability of 0.82 and a posterior mean

for the regression coefficient that is somewhat higher than in the benchmark case. At the one-

digit level, we find that Machinery equipment and Manufactured goods have by far the highest

posterior mean and inclusion probability. The situation is drastically different for commodities

and processed raw materials. For most of the product types in this category, the posterior

inclusion probability is considerably lower than that for capital goods. Also the posterior mean

is mostly insignificant.16 Thus, taken together, these empirical findings suggest, in an admittedly

indirect manner, that high growth is mostly associated to trade in goods that are expected to

embody a larger amount of information and hence also diffuse more of that information. A

complementary analysis of the phenomenon that focuses explicitly on information diffusion

itself is discussed next.

16Our results on product-specific trade are complementary to those in Hausmann et al. (2007). In particular,
they show that the composition of a country’s production portfolio plays an important role for growth. That
is, countries which specialize in the type of goods that rich countries typically export grow faster than countries
that specialize in other goods. In order to put our result into the same perspective, we follow their approach
and compute (for 2005) the weighted average of per-capita GDPs of the countries exporting a one-digit product
type, where the weights are the revealed comparative advantage of each country in that product. According to
this measure, a product type that is produced primarily by rich countries is associated with a higher income
level than a product that is produced by poor countries. Interestingly, we find that there is a strong positive
relation between the income level associated with a product and the posterior inclusion probability associated to
the corresponding product-based GI. The results are available upon request. Elaborating upon Hausmann et al.
(2007), a possible interpretation is that a country’s growth is not only favored by having a production portfolio
of goods that are similar to those of rich countries but also by being well-connected to world trade in terms of
those goods as well.
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7.2 Trade and the flow of ideas

In this section we aim at testing directly the postulated theoretical relationship between a

country’s trade integration and its global access to ideas. The challenge in this pursuit is how

to operationalize the concept of the ”global flow of ideas”. For a long time economists have

advocated the view that the global flow of ideas is inherently hard to track. For example,

Krugman, in his Geography and Trade, stated that ”knowledge flows [...] are invisible; they

leave no paper trail by which they may be measured and tracked”. However, Jaffe et al. (1993)

reacted to the previous statement by suggesting that

”[...] knowledge flows do sometimes leave a paper trail, in the form of citations

in patents. Because patents contain detailed geographical information about their

inventors, we can examine where these trails actually lead.”17

Here, we espouse the view of Jaffe et al. and use patent citations as a proxy for the flow

of ideas. More specifically, we utilize the NBER’s patent database which contains detailed

information on all U.S. patents granted between 1963-1999 (roughly three million patents) and

all citations made to these patents between 1975-1999 (over 16 million citations).18 Furthermore,

the data set also includes, for each patent (either if it is created by a single inventor or by a

whole team of inventors), the identity and the address (country, city, zip code and street) of

every inventor that was involved in it. Based on the aforementioned information, we construct

two variables, Avgij and Probinvij (see Appendix I for the details). On the one hand, the variable

Avgij measures how many patents of country j are cited, on average, by patents of country i.

On the other hand, the variable Probinvij specifies the fraction of cross-country co-patenting

(bilateral) relationships of inventors from country i to involve a co-inventor from country j.

If a country’s trade integration is positively related to the global flow of ideas, then we would

expect that the closeness (in the trading-network sense) of two countries should be associated

with an intensified exchange of knowledge and more joint innovation activities. To test this

hypothesis, we estimate by OLS the following model:

yij = α+ βf(ϕji) + γXij + εij (15)

where yij ∈
{
Avgij , P rob

inv
ij

}
, α is a constant term and f(ϕji) is the measure of (network)

closeness between countries j and i defined in Section 2.2. Our choice of covariates Xij con-

trols for the intercountry characteristics highlighted by Gravity Theory, the workhorse of much

empirical work in international trade. According to the gravity equation the bilateral economic

interaction between two countries is proportional to the size of the countries and inversely pro-

portional to the distance between the countries. Thus, we include in Xij the relative size of

countries as measures by their relative GDP and the geographical distance between countries

expressed in kilometers.

17Jaffe et al. (1993), p. 578
18See Hall et al. (2001) for a comprehensive description of the dataset.
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The results for the baseline specification are in the columns labeled ”All” in Table 8. Most

importantly, we find that the estimate of β is highly significant and positive in both cases,

suggesting that countries which are closer together in a network sense (as reflected by a higher

value of f(ϕji)) are more likely to engage in joint innovation efforts (Probinvij ) and are more likely

to cite each others patents (Avgij). The (relative) size of the foreign country is also strongly

and positively related, which is in line with the logic of the gravity equation. Interestingly,

however, the coefficient estimate on kmji is insignificant suggesting that the knowledge flow

between countries is unrelated to geographical distance.

Model 1: Avgij Model 2: Probinvij

All Cap Raw All Cap Raw

α -0.813** -0.238 0.775*** -0.398*** -0.488*** -0.086
(0.317) (0.295) (0.239) (0.078) (0.092) (0.073)

f(ϕji) 2.836*** 1.845*** -0.321 0.618*** 0.814*** -0.026
(0.615) (0.616) (0.549) (0.154) (0.193) (0.168)

yj/yi 0.092*** 0.135*** 0.201*** 0.023*** 0.023*** 0.049***
(0.023) (0.020) (0.019) (0.006) (0.006) (0.006)

kmji 0.481 0.267 -0.014 0.053 0.091 0.019
(0.325) (0.321) (0.331) (0.085) (0.093) (0.099)

N 3041 3041 3041 1812 1320 1344
R2 0.18 0.19 0.18 0.25 0.26 0.25

Dependent variable in Model 1: Avgij average number of citations that a patent from country i
makes to patents from country j; Dependent variable in Model 2: Probinvij probability that inventor
from country i has a joint patent with inventor from country j. Independent variables: α: constant,
f(ϕji): , yj/yi:, kmji: distance in 100,000 km between countries i and j. All: Total trade, Cap:
Trade in capital goods, Raw: Trade in raw materials. All variables are expressed as the 1975-1999
average.

Table 8: Country distance and patent citations.

In the spirit of our analysis of Subsection 7.1, we also explore matters further and check

whether the bilateral knowledge flow between countries is related to the countries’ involvement

in trade in different types of goods. To this end, first we separately calculate the measure of

bilateral network distance f(ϕji) using data on the combined trade in all capital goods and

in all raw materials (applying the same classification of goods listed in as in Table 7). Then

we include these goods-specific closeness measures into the empirical model given by (15) and

reestimate it. The results are in the columns labeled with ”Cap” (for capital goods) and ”Raw”

(for raw materials) in Table 8.

The following interesting observations arise. While, the coefficient estimates for country size

(yj/yi) and geographical distance (kmji) are largely similar across product types – in terms of

sign and significance – they differ fundamentally for countries’ closeness measure. In particular,

we find that for capital goods there is a robust and positive relation between countries’ closeness

and the bilateral knowledge exchange. In contrast, for raw materials, the coefficient estimates
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suggest no significant relation.

Overall, our findings in this section provide some empirical support to the idea that, at

least in part, trade integration is correlated with growth due to the knowledge flows embodied

in the cross-country trade. More concretely, they show that close proximity between countries

is significantly related to the bilateral exchange of ideas. There is, however, the important

qualification that, as suggested also by the analysis of Subsection 7.1, such a phenomenon arises

only when the goods traded are of the type we have generically labeled as capital goods, i.e.

when they are likely to embody valuable information and know-how.

7.3 The role of direct and indirect trade links

As explained, a distinctive feature of our GI is that it measures a country’s level of integration

not only by its set of direct trade connections but also through the full architecture of its higher-

order connections in the world trade network. An important question in this context is to what

extent the countries’ direct trade links as opposed to the indirect ones matter for the positive

relationship between trade integration and growth.

In this section, we compare the results of two experiments that allows us to shed light on

the relative role of direct and indirect links. In the first experiment, we calculate the network

distance ϕji between any pair (j, i) from a modified adjacency matrix A where we remove the

direct connection between j and i by setting aji = 0. In that way, we compute the expected

number of steps that it takes to get from j to i - without going through the direct connection

between j and i. Then, we calculate the GI, Φi, as described above and include it (instead of the

baseline index) in the Bayesian analysis. The second row in Table 9 shows that the results for

this modified measure are almost the same as those for the baseline measure. In other words,

the correlation of our baseline GI with growth does not seem to depend on the direct trade

connections between countries.

E(θk|y) PIP %sig

Baseline 6.289*** 85 99
Only indirect links 6.136*** 82 97
Only direct links 0.874 22 39

Table 9: Direct versus indirect links.

In contrast, in the second experiment we use only the direct trade connections of countries

to compute the GI. More concretely, we compute the expected number of steps that it takes to

get from any j 6= i to i via the direct link as follows:(
ϕ̃ji

)
j 6=i

= diag
(
I −A−i

)−2
(·×)

(
aji

)
j 6=i
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where A−i is the adjacency matrix A from which we have deleted the ith row and the ith

column, diag
(
·
)

denotes the vector of elements on the main diagonal of the matrix, and (·×) is

the element-by-element multiplication of two vectors.19 Then, we compute the GI as described

in Section 2.2 and include it into Bayesian model averaging analysis.The results are reported in

the third row of Table 9.

A comparison of the results obtained when only indirect, or only direct, links are allowed

suggests that the positive relation between trade integration and growth is largely driven by the

countries’ higher-order trade connections. That is, the direct links matter significantly less.

7.4 Globalization Index on higher-order trades

To approach the issue studied in the preceding section from a different perspective, here we

study the implications of a variation of the baseline Globalization Index that uses only the

higher-order trade connections of a country and replaces the first-order connections by a link

that reflects purely exogenous (geographical) considerations.20 More specifically, we first define

ϕjm,−i as the expected number of steps required to reach country m 6= i from country j through

trade-weighted links, conditional on not using any of the (direct) such links that involve country

i. In place of those direct connections, we use the geography-based links whose weights ωmi

(appropriately normalized so at to add up to unity for each i across all m 6= i) are inversely

proportional to the distance geomi. Thus, formally, we have:

ωmi =
1/geomi∑

m′ 6=i 1/geomm′
(16)

Finally, we compute the expected number of steps from country j to country i as the weighted

average over ϕj,m,−i, where we use ωi,m as weights, i.e.

ϕ̃ji =
∑
m 6=i

ωmi ϕjm,−i.

This is a directed-distance measure that computes the expected length of all trade-weighted

paths arriving to country i through the countries m that export to it, directly and indirectly,

then assessing the connection of j to those countries by exogenous (geographic, hence not trade-

based) considerations.

On the basis of those magnitudes for every pair of countries, i and j, we have computed a

Modified Globalization Index as before, then including it into the BMA analysis to investigate

19Notice that this formulation considers the connections from j to any other k 6= j, k 6= i and back from k
to j. Also note that for aji = 0 we obtain ϕ̃ji = ∞. This would render the computation of Φi infeasible. To
resolve this issue, we replace ϕ̃ji by largest finite distance that prevails for country i in the given year. In addition
to such largest finite distance, we also experimented with other imputation methods including, for example, the
maximum distance across countries and years. None of these had any significant quantitative effect on the results.

20In Appendix H.2, we further advance on the approach of using geographical distance as an exogenous proxy
for bilateral trade flows. More concretely, following the approach by Frankel and Romer (1999) we construct a
modified GI, which relies on the geographical distance between each pair of countries i and j, and we use this
measure to instrument for the baseline GI. We thank an anonymous referee for suggesting this exercise.
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its relation to growth. The results, which are reported in the column labeled Higher-order trade

in Table 6, are very similar to those of the baseline benchmark measure. This provides further

support (complementary to that of Subsection 7.3) to our suggestion that higher-order links

play a prominent role in capturing the essential component of the relationship between trade

integration and growth.

8 Robustness analysis

We have conducted a broad robustness analysis of our baseline results and explored various

extensions. In the interest of space, we relegate the details and results of this analysis to

Appendix F, providing here just a succinct advance of it. First, we test the robustness to

different data inputs by considering alternative data sources and utilizing different waves of

datasets. Second, we apply alternative ways of measuring the degree of trade integration of a

country. More concretely, while our baseline measure of integration reflects a notion of network

centrality that is known as closeness centrality, in our robustness analysis, we have considered

other prominent notions of centrality such as PageRank centrality. Third, we have modified

the set of regressor variables and experimented with the model priors. Overall, the analysis

confirms our main finding that trade integration is strongly positively correlated with economic

growth, and that this result is not sensitive to different data sources, data treatment, alternative

measures of network centrality, or assumptions about priors and the set of covariates included

in the empirical model.

9 Conclusion

In this paper, we propose a new approach to evaluating a country’s outward orientation, and then

investigate the relationship of the induced measure to its growth performance. Previous work has

mostly used indicators involving aggregate trade intensity, trade policy, or trade restrictiveness

of the country in question. Instead, we offer a broader perspective on the phenomenon as a

country’s level of integration is assessed not only through its direct trade connections with the

rest of the world but also uses the whole architecture induced by its second and higher-order

connections.

We use trade data from the United Nations Commodity Trade Statistics Database and apply

our methodology to a sample of 204 countries spanning the period from 1962 to 2016. A first

descriptive analysis of the data reveals that our measure of integration is largely uncorrelated

with the conventional indicators of openness (such as the trade share or the Sachs-Warner

openness index). It also shows that, across the period being considered, the world as a whole

has become more integrated. It has also become more unequal in this respect because the

group of rich and most integrated countries has shown a persistent tendency to increase their

integration, while the majority of poor and less integrated countries have been stagnating or
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falling behind.

Then we pursue a systematic econometric analysis that revisits the long-standing debate

in the empirical literature concerning the relationship between countries’ outward orientation

and their different growth experiences. To address model-selection concerns, we do it through

a comprehensive Bayesian model-averaging analysis that considers all possible specifications in-

volving any subset of 34 different variables as candidate regressors. The key finding is that our

network-based measure of trade integration is strongly correlated with cross-country income

differences, while the traditional indicators of country openness is only marginally so. In fact,

trade integration stands out from all other regressors (except own lagged GDP) with a substan-

tially larger posterior inclusion probability than for all those that are statistically significant. To

check the robustness of our conclusions, we perform an extensive battery of sensitivity analyses

and find that our baseline findings are largely unaffected if we use other data sets or rely on

different variants for computing trade integration.

To sum up, we suggest that our analysis sheds new light on the nexus between openness

and growth, pointing as well to a possible explanation for why the long debate that it sparked

has remained largely inconclusive. The reason may be that trade-based integration in the world

market – a natural and theoretically founded measure of a country’s openness – requires a

systemic evaluation of higher-order trade connections that goes well beyond (and tends to be

only weakly related to) the direct trading magnitudes exclusively considered by the received

openness indicators.
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[44] Magnus, J.R., O. Powell and P. Prüfer (2010): “A comparison of two model averaging

techniques with an application to growth empirics”, Journal of Econometrics, 154, 139-153.

[45] Melitz, M. J. (2003), ”The Impact of Trade on Intra-Industry Reallocations and Aggregate

Industry Productivity”, Econometrica, 71, 1695-1725.

[46] Melitz, M.J. and S.J. Redding (2014), ”Heterogeneous Firms and Trade”, in Gopinath–

Helpman–Rogoff eds., Handbook of International Economics, 4, 1-54

[47] Moral-Benito, E. (2013): “Likelihood-based Estimation of Dynamic Panels with Predeter-

mined Regressors”, Journal of Business and Economic Statistics 31, 451-472.

[48] Moral-Benito, E. (2015), ”Model Averaging in Economics: An Overview”. Journal of Eco-

nomic Surveys, 29, 46-75.

[49] Moral-Benito, E. (2016) Growth Empirics in Panel Data Under Model Uncertainty and

Weak Exogeneity. Journal of Applied Econometrics, 31, 584-602.

[50] Raftery, A. (1995): “Bayesian Model Selection in Social Research”, Sociological Methodology

25, 111-163.

[51] Raftery, A.E. and S.M. Lewis (1992): “How many iterations in the Gibbs sampler?”,

Bayesian Statistics 4, 763-773.

[52] Rodriguez, F. (2007): “Openness and growth: what have we learned?”, United Nations,

Department of Economics and Social Affairs, Working Papers 51.

[53] Rodriguez, F., and D. Rodrik (2001): “Trade Policy and Economic Growth: A Skeptics

Guide to the Cross-National Evidence”, NBER Macroeconomics Annual 2000, ed. by B.

Bernanke and K. Rogoff.

[54] Sachs, J. D., and A. Warner (1995): “Economic Reform and the Process of Global Integra-

tion”, Brookings Papers in Economic Activity 1, 1-118.

33



[55] Sala-i-Martin, X. (1997a). ”I just ran 4 million regressions”. NBER, Working Paper No.

6252.

[56] Sala-i-Martin, X. (1997b). ”I just ran 2 million regressions”. American Economic Review

87 (2), 178-183.

[57] Sala-I-Martin, X., G. Doppelhofer and R.I. Miller (2004): “Determinants of Long-Term

Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach”, American Eco-

nomic Review 94, 813-835.

[58] Samuelson, Paul (1954): “The Transfer problem and transport costs, II: Analysis of effects

of trade impediments”. Economic Journal 64, 264-289.

[59] Winters, L.A. (2004): “Trade Liberalization and Economic Performance: An Overview”,

Economic Journal 114, F4-F21.

34



Appendix

A Computation of the Globalization index

Our starting point is an (n × n)-matrix A, which is row-stochastic, as the one constructed in

Section 2.2. We think of it as the adjacency matrix of a weighted directed network over n nodes.

Thus each entry aij is the relative weight with which node i connects to node j. Viewing such

normalized weights as probabilities, the directed distance ϕij from i to j is then identified as

the expected number of steps required to reach j from i when, at every node k = 1, 2, ..., n, each

possible link kl is chosen with probability akl. In our model, those paths reflect the transfer of

information (or know-how) from one country to another, which occur with intensities that are

proportional to the trades in the goods and services that embody that information.

To compute such expected magnitude, it is useful to consider the (n− 1)× (n− 1) matrix

A−j obtained from A by deleting the jth row and the jth column. (This matrix, of course, is

no longer a stochastic matrix.) Then, it can be easily seen that the probability that a path that

started at i is at k 6= j after r steps is simply [(A−j)
r]ik, where (A−j)

r is the rth-fold composition

of Aj with itself and [·]ik stands for the ik-entry of the matrix [·]. Thus, the probability that it

visits node j for the first time in step r + 1 is simply

γij(r + 1) =
∑
k 6=j

[(A−j)
r]ik akj .

Therefore, the expected number of steps ϕij can be obtained as follows:

ϕij =
∞∑
r=1

r γij(r) =
∞∑
r=0

(r + 1)
∑
k 6=j

[(A−j)
r]ik akj (17)

=
∑
k 6=j

∞∑
r=1

r
[
(A−j)

r−1
]
ik
akj =

[( ∞∑
r=1

r (A−j)
r−1
)
ik

]
k=1,2,...,n

k 6=j

(
akj

)
k=1,2,...,n

k 6=j

Using now a standard formula from linear algebra we have:

∞∑
r=1

r (A−j)
r−1 = (I −A−j)−2

so that, in an integrated matrix form, the (column) vector
(
ϕij

)
i=1,2,...,n

i 6=j

can be written as

follows (
ϕij

)
i=1,2,...,n

i 6=j

= (I −A−j)−2
(
aij

)
i=1,2,...,n

i 6=j

.

Finally, note that, because A is a row-stochastic matrix, it follows that
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aij = 1−
∑
k 6=j

aik

and therefore (
aij

)
i=1,2,...,n

i 6=j

= (I −A−j) e

where e is the column vector (1, 1, ..., 1)>. Hence the vector
(
ϕij

)
i=1,2,...,n

i 6=j

can be computed

from the following simple expression:(
ϕij

)
i=1,2,...,n

i 6=j

= (I −A−j)−2 (I −A−j) e

= (I −A−j)−1 e.

B Empirical model

We follow the approach developed in Moral-Benito (2013, 2016) and augment the dynamic

panel model of Section 5 by a feedback process which relates the predetermined variables to

all lags of the explained variable, all lags of the predetermined variables, and the exogenous

variables. Moreover, we transform the augmented model to obtain a simultaneous-equation

representation. This representation has proven useful because it facilitates the estimation of the

model by allowing a concentration of the parameters of the model’s log-likelihood. Thus, for

each country i, the model consists of a system of T + (T − 1)k equations, where T is the total

number of time periods. Using matrix notation, we can write the model compactly as:

ARi = BZi +U i (18)

where the following definitions are used:

Ri = (yi,xi)
′ yi = (yi1, yi2, ...., yiT )′

xi = (xi2,xi3, ...,xiT )′ xit =
(
x1
it, x

2
it, ..., x

k
it

)′
Zi = (yi0,xi1, zi)

′ zi =
(
z1
i , z

2
i , ..., z

m
i

)′
U i = (εi + vi, ξi)

′ vi = (vi1, vi2, ..., viT )′

ξi = (ξi2, ξi3, ..., ξiT )′ ξit =
(
ξ1
it, ξ

2
it, ..., ξ

k
it

)′
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A =

(
A11 A12

0 I

)
A11 =



1 0 0 · · · 0

−α 1 0 · · · 0

0 −α 1 · · · 0
...

...
...

. . .
...

0 0 0 −α 1


A12 =



0 0 · · · 0

−β 0 · · · 0

0 −β · · · 0
...

...
. . .

...

0 0 · · · −β


where I is an identity matrix of dimension (T − 1)k × (T − 1)k, εi can be interpreted as an

individual-specific effect and ξit is a k × 1 vector of prediction errors. Furthermore, we have:

B =

(
B1

B2

)
B1 =


α+ γy β + γ δ

γy γ δ
...

...
...

γy γ δ

 B2 =


π2y π2x π2z

π3y π3x π3z

...
...

...

πTy πTx πTz



β =
(
β1, β2, ...., βk

)
γ =

(
γ1, γ2, ...., γk

)
δ =

(
δ1, δ2, ..., δm

)

πty =


π1
ty

π2
ty
...

πkty

 πtx =


π11
tx π12

tx . . . π1k
tx

π21
tx π22

tx . . . π2k
tx

...
...

...

πk1
tx πk2

tx . . . πkktx

 πtz =


π11
tz π12

tz . . . π1m
tz

π21
tz π22

tz . . . π2m
tz

...
...

...

πk1
tz πk2

tz . . . πkmtz

 .

Under normality of the random disturbances, the model in (18) gives rise to the following

log-likelihood function:

L(y,X|Z,θ) ∝ −N
2

log |Ω| − 1

2
tr
(
Ω−1UU′

)
(19)

where y, X and Z are the observations on yi, xi and zi for all N countries in the sample, θ is the

vector of model parameters, and U = [U1,U2, ...,UN ]. Moreover, Ω is the variance-covariance

matrix of U and tr(·) denotes the trace of the corresponding matrix. Notice that the following

simplification was made
∑N

n=1 U′nΩ−1Un = tr(Ω−1UU′). Also notice that the determinant of

A is equal to unity.

C Integrated likelihood

The integrated likelihood used in Equation (13) is defined as follows:
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p(y|Mj) =

∫
p(y|Mj ,θ)f(θ|Mj)dθ (20)

where p(y|Mj ,θ) is the conditional likelihood of the data. The expression in (20) is typically

hard to evaluate, but there exists a simple and accurate approximation of it, the so-called

BIC approximation which makes use of Laplace’s method. Let m(θ) = log(p(y|Mj ,θ)f(θ|Mj))

denote the posterior mode, and construct a Taylor-series expansion of m(·) around θ̃, where

θ̃ = arg max
θ

m(θ):

m(θ) = m(θ̃) + (θ − θ̃)
′
m′(θ̃) +

1

2
(θ − θ̃)

′
m′′(θ̃)(θ − θ̃) (21)

where m′ and m′′ are the first and second derivative of m, respectively. m(θ) reaches its

maximum at θ̃, therefore m′(θ̃) = 0, and Equation (21) becomes

m(θ) = m(θ̃) +
1

2
(θ − θ̃)

′
m′′(θ̃)(θ − θ̃) (22)

Inserting (22) into the integral gives:

p(y|Mj) =

∫
em(θ̃)+ 1

2
(θ−θ̃)

′
m′′(θ̃)(θ−θ̃)dθ = em(θ̃)

∫
e

1
2

(θ−θ̃)
′
m′′(θ̃)(θ−θ̃)dθ (23)

The integral is a Gaussian integral and, therefore we get the following expression:

p(y|Mj) = em(θ̃)(2π)
k
2 | −m′′(θ̃)|−

1
2 (24)

where k and | − m′′(θ̃)| are, respectively, the rank and the determinant of −m′′(θ̃). In large

sample θ̃ ≈ θ̂, where θ̂ is the maximum likelihood estimator of θ. By taking logs, we obtain:

log p(y|Mj) = log p(y|Mj , θ̂) + log f(θ̂|Mj)) +
k

2
log(2π)− 1

2
log | −m′′(θ̃)| (25)

Following Raftery (1995), in large samples, −m′′(θ̂) ≈ NI, where N is the number of

observations and I is the expected Fisher information matrix. Using that, we get | −m′′(θ̂)| ≈
Nk|I| and:

log p(y|Mj) = log p(y|Mj , θ̂) + log f(θ̂|Mj)) +
k

2
log(2π)− k

2
logN − 1

d
log |I| (26)

The first and the fourth term on the right-hand side of this expression are of order N and

logN respectively, whereas all other terms are of order 1 or less. When we remove these terms

we arrive at the following expression for the (approximated) integrated likelihood:

log p(y|Mj) = log p(y|Mj , θ̂)− k

2
logN (27)
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This expression is well-known and it is very similar to the Akaike information criterion.

With this expression at hand, we are almost ready to compute the posterior model probability

given in (13). One more step is required since the model in (18) does not give us p(y|Mj , θ̂) but

rather p(y,Xj |Mj , θ̂), which is the joint conditional likelihood of (y,Xj), with Mj containing

the relevant Z-regressor variables.

In the BMA, we consider different models each consisting of a particular combination of

regressor variables. If we were to use the joint likelihood p(y,Xj |·) we would compare different

likelihoods, for instance, p(y,X1,X2, ...Xk|·) and p(y,X4,X5, ...Xk|·) which are, in fact, not

comparable. Thus, instead, we proceed as follows. For a given model Mj , we, first, maxi-

mize (19) to obtain the maximum likelihood estimate of θj . Then we compute the likelihood

of the outcome variable y conditional on the estimated model, that is p(y|Mj , θ̂j). Most im-

portantly, this statistic is comparable across the different models and hence we can use this

expression to compute the posterior probability of the underlying model. The conditional like-

lihood p(y|Mj , θ̂j) can be obtained in a relatively straightforward manner by transforming the

model given in (18) as follows:

Given θ̂, we, first, substitute the feedback process into the outcome-equation which yields:

yn,1 = (α̂+ γ̂0)yn,0 +
(
γ̂ + β̂

)
xn,1 + δ̂zn + εn + vn,1 (28)

and for t = 2, ..., T , we get:

yn,t = α̂yn,t−1 +
[
γ̂0 + β̂π̂t0

]
yn,0 +

[
γ̂ + β̂π̂t1

]
xn,1 +

[
δ̂ + β̂π̂t2

]
zn + β̂ξn,t + εn + vn,t (29)

For each country observation i, the model in (28)-(29) is a system of T equations which can

be compactly written as:

Ayi = BZi + CUi (30)

where the following definitions are applied:

A = Â11 B =

[
0(

IT−1 ⊗ β̂
)
B̂2

]
+ B̂1 C =

[
I,−Â12

]
.

IT−1 is an identity matrix of order T − 1. The variables yi, Zi and Ui are defined as above

in (18) together with the matrices Â11, β̂, B̂2, B̂1, Â12 which are evaluated at the ML-estimate

θ̂. Finally, we write the log-likelihood of observation y, conditional on Z and θ̂ as follows:

log p(y|Mj , θ̂) ∝ −N
2

log |CΩ̂C′| − 1

2
tr(Ω̂

−1
UU′). (31)

The expression in (31) is substituted into (27) to obtain the approximated integrated likelihood.
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D Data

Mean Median Std Min Max

1.

Logarithm of real GDP per capita 8.35 8.39 1.30 5.19 10.72
Total population (mill.) 38.9 7.98 124 0.35 1148
Annual growth rate of population 0.02 0.02 0.01 -0.01 0.06
Price level of investment 0.93 0.64 2.06 0.11 21.5
Exports plus imports as a share of GDP 0.53 0.46 0.36 0.04 2.90
Consumption share of GDP 0.72 0.72 0.15 0.23 1.32
Investment share of GDP 0.22 0.21 0.09 0.03 0.57
Government share of GDP 0.10 0.08 0.06 0.02 0.39
Labor force participation rate 0.39 0.39 0.08 0.19 0.57

2.

Life expectancy at birth, in years 59.9 61.8 12.0 30.3 78.8
Population density, people per km2 120 37 391 1.4 4547
Urban population, % of total 0.45 0.43 0.24 0.02 1.00
Population aged 0-14, % of total 0.38 0.41 0.09 0.16 0.50
Population share aged 65+, % of total 0.06 0.04 0.04 0.01 0.18

3. Sachs & Warner openness measure 0.50 0.50 0.50 0.00 1.00

4. Democracy index 0.58 0.70 0.38 0.00 1.00

5. 1/0 dummy for former Spanish colony 0.21 0.00 0.41 0.00 1.00

6. 1/0 dummy for armed conflict 0.16 0.00 0.37 0.00 1.00

7.

Land area in km2 (thousand) 1026 272 2115 0.61 9590
Land share in the geographic tropics 0.55 0.95 0.48 0.00 1.00
Population share in the geographic tropics 0.51 0.78 0.49 0.00 1.00
Land area within 100km of navigable water 0.48 0.38 0.37 0.00 1.00
Land share in Koeppen-Geiger tropics 0.38 0.06 0.42 0.00 1.00
1/0 dummy for landlocked country 0.16 0.00 0.37 0.00 1.00
Air distance to NYC, Rotterdam, Tokyo 4205 4065 2594 140 9590
Timing of national independence 0.96 1.00 0.97 0.00 2.00
1/0 dummy for socialist rule in 1950-95 0.10 0.00 0.30 0.00 1.00

8.
Average years of primary schooling 2.87 2.63 1.79 0.02 7.51
Average years of secondary schooling 1.06 0.72 1.05 0.01 5.09

9. Globalization Index 0.56 0.55 0.08 0.39 0.76

10.

1/0 dummy for Western European country 0.18 0.00 0.39 0.00 1.00
1/0 dummy for Latin-American country 0.26 0.00 0.44 0.00 1.00
1/0 dummy for East Asian country 0.11 0.00 0.31 0.00 1.00
1/0 dummy for Sub-Saharan country 0.26 0.00 0.44 0.00 1.00

Data sources: 1. Penn World Tables, 2. World Development Indicators, 3. Sachs and
Warner: ”Trade Openness Indicators”, Dataset: sachswarneropen.xls, 4. Polity IV Project:
Regime Authority Characteristics and Transitions Datasets: p4v2010.xls, 5. Centre d’Etudes
Prospectives et d’Informations Internationales (CEPII) geo cepii.xls, 6. Uppsala Conflict
Data Program (UCDP), Dataset: 64464 UCDP PRIO ArmedConflictDataset v42011.xls,
7. Gallup, Mellinger, Sachs, Harvard University Center for International Development,
Datasets: physfact rev.csv (Physical geography and population), kgzones.csv (Köppen-
Geiger Climate zones), geodata.csv (Geography and Economic Development), 8. Barro and
Lee 2000, Dataset: appendix data tables in panel set format.xls, 9. UN Comtrade

Table 10: Data: Sources and descriptive statistics.
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Asia: Afghanistan, Armenia, Azerbaijan, Bahrain, Bangladesh, Bhutan, Brunei, Cambodia, China,
Georgia, Hong Kong, India, Indonesia, Iran, Iraq, Israel, Japan, Jordan, Democratic Republic of Korea,
Republic of Korea, Kuwait, Kyrgyzstan, Laos, Lebanon, Macao, Malaysia, Maldives, Mongolia, Myan-
mar, Nepal, Oman, Pakistan, Philippines, Qatar, Saudi Arabia, Singapore, Sri-Lanka, Syria, Tajikistan,
Thailand, Turkey, Turkmenistan, United Arab Emirates, Uzbekistan, Vietnam, Yemen, Former Yemen

Europe: Albania, Andorra, Austria, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia,
Cyprus, Former Czechoslovakia, Czech Republic, Denmark, Estonia, Finland, France, Germany, East
Germany, Former USSR, Gibraltar, Greece, Hungary, Iceland, Ireland, Italy, Kazakhstan, Latvia, Lithua-
nia, Luxembourg, Macedonia, Malta, Moldova, Netherlands, Norway, Poland, Portugal, Romania, Russia,
San Marino, Serbia-Montenegro, Slovakia, Slovenia, Spain, Sweden, Switzerland, Ukraine, United King-
dom, Former Yugoslavia

Africa: Algeria, Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde, Central
African Republic, Chad, Comoros, Democratic Republic of Congo, Republic of Congo, Cote d’Ivoire,
Djibouti, Egypt, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau,
Kenya, Kiribati, Lesotho, Liberia, Libya, Madagascar, Malawi, Mali, Mauritania, Mauritius, Morocco,
Mozambique, Namibia, Niger, Nigeria, Rwanda, Senegal, Seychelles, Sierra Leone, Somalia, South Africa,
Sudan, Swaziland, Tanzania, Togo, Uganda, Tunisia, Zambia, Zimbabwe

North America: Antigua & Barbuda, Bahamas, Barbados,Belize, Bermuda, Canada, Costa Rica, Cuba,
Dominia, Dominican Republic, El Salvador, Grenada, Greenland, Guatemala, Haiti, Honduras, Jamaica,
Mexico, Netherlands Antilles, Nicaragua, Former Panama, Panama, Saint Kitts-Nevis, Saint Lucia, Saint
Vincent, Trinidad-Tobago, United States

South America: Argentina, Aruba, Bolivia, Brazil, Chile, Colombia, Ecuador, El Salvador, Guyana,
Paraguay, Peru, Suriname, Uruguay, Venezuela

Australia: Australia, Fiji, French Polynesia, Marshall Islands, Micronesia, New Caledonia, New Zealand,
Palau, Papua New Guinea, Solomon Islands, Samoa, Tonga, Tuvalu

Countries in italic are included in the Bayesian model averaging analysis.

Table 11: Sample of countries

E Markov chain - Monte Carlo - Model Composition

Here we describe the first-order Markov that, as explained in Section 5, approximates the

posterior probability distribution induced by our BMA analysis. This Markov chain evolves

according to the following transition kernel. Suppose the current state of the chain is Mj .

Then, a candidate model is sampled from the neighborhood of Mj , where the neighborhood

consists of the set of models with either one variable more or one variable less than in Mj . The

candidate model, denoted by Mj′ , is then ”compared” to Mj and it is accepted with probability

min{1, P (Mj′ |y)

P (Mj |y) }. If the candidate model is accepted then the Markov chain moves to Mj′ ,

otherwise it stays at Mj . The ratio
P (Mj′ |y)

P (Mj |y) is the posterior odds ( = prior odds × Bayes

Factor) and it measures how much the data supports one model over the other. The posterior

odds for Mj and Mj′ is given by:

p(Mj′ |y)

p(Mj |y)
=
p(y|Mj′)

p(y|Mj)
×
p(Mj′)

p(Mj)

Here, p(y|M·) and p(M·) are the integrated likelihood and the prior probability of a given model,

respectively.
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To check the mixing and convergence properties of the simulated chain, we compute the fol-

lowing diagnostic statistics. First, we compute the statistic Corr(Π, F req) tests for convergence

of the Markov Chain, which consists of the following steps: (1) discard the first S0 steps of the

simulated Markov chain to eliminate possible effects from influential starting values; (2) split

the remaining chain into two parts: the first S1 steps and the subsequent S2 steps; (3) compute

the transition matrix T1, where an element of T1, say tij , records how many times the chain has

moved from model mi to model mj . The dimension of T1 is equal to the number of different

models in S1; (4) convert T1 into the transition probability matrix P1. An element of P1, say pij ,

is determined as tij/
∑dim(T )

k=1 tik and it measures the probability of the chain to move from mi to

mj , conditional on being in mi; (5) calculate the ergodic probability of being in mi (from P∞1 ),

which gives the unconditional probability of observing model mi; (6) derive, for every mi ∈ S1,

the empirical frequency in S2 as ci/ dim(S2), where ci counts how often model mi is visited in

S2; (7) denote by Corr(Π, F req) the correlation coefficient between the ergodic probabilities of

all models in S1 and their empirical frequencies in S2. Corr(Π, F req) approaches one when the

Markov chain reaches stationarity. This is because any two subsets of a stationary chain give

rise to the same stationary distribution, and the stationary distribution is (in a large sample)

identical to the empirical frequency of each state.

Second, we also compute the statistic Corr(Bayes, Freq) which is another stationarity test

that involves the following steps: (1) eliminate a burn-in period from the simulated Markov chain

and identify the model with the highest posterior probability, denoting it by m̄; (2) compute the

empirical frequency for each model in the chain and denote it by fi; (3) calculate the relative

frequency for each model with respect to the best model: fi/fm̄; (4) determine the Bayes factor

for each model with respect to the best model: bi/bm̄ [the Bayes factor is the ratio of the posterior

probabilities of two models]; (5) compute the correlation coefficient Corr(Bayes, Freq) between

fi/fm̄ and bi/bm̄. Corr(Bayes, Freq) approaches 1 as the chain reaches stationarity. This is

because the model selection along the chain is based upon the Bayes factor (the probability

that the chain accepts to move to a candidate model is equal to the Bayes factor between the

current model and the candidate model), and as a result, the chain visits those models more

often which have a high posterior probability.

Thirdly, we derive the Raftery-Lewis dependence factor which is a measure for the mix-

ing behavior of the Markov chain. Dependence factors above 5 are critical and indicate bad

mixing of the chain or influential starting values – see Raftery and Lewis (1992) for details

(the parameter values required in the test are as in Raftery and Lewis (1992) and given by

q = 0.025, r = 0.005, s = 0.95, ε = 0.001). To obtain an accurate representation of the posterior

distribution, it is important that the chain explores those areas in the model space which have

a high probability mass. We follow George and McCulloch (1997) and use a capture-recapture

algorithm to estimate what fraction of the total posterior probability mass the Markov Chain

has visited.

In Table 12, we report a number of statistics describing the properties of the simulated

Markov chain. Markov Steps refers to the total number of steps (in 1000) of the simulated
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chain. Posterior model size refers to the posterior model size. Models covering 50% is the

number of models with the highest posterior model probability which, in sum, account for

50% of the posterior model probability. P(max) is the maximum posterior model probability

achieved by a single model. Visited probability refers to the estimated fraction of the total

posterior probability mass that the Markov Chain has visited. This number is computed by using

the capture-recapture algorithm described in George and McCulloch (1997). The remaining

statistics describe the convergence and mixing properties of the simulated chain. Generally, the

values of these indicators indicate very good mixing and convergence properties of the simulated

Markov chain. For example, the values of Corr(Π,Freq) and Corr(Bayes,Freq) are very close to

unity, suggesting that the simulated Markov chain has reached stationarity. Furthermore, we

obtain a Raftery-Lewis factor equal to 3.38 which indicates fast mixing of the process. Factors

above 5 are critical and indicate bad mixing of the chain or influential starting values. Lastly,

the estimate for the total posterior probability mass that the Markov Chain has visited is very

high and equal to 98%. The high value is reassuring because an accurate representation of the

posterior distribution requires that the Markov chain reaches the areas in the model space with

high probability mass.

Benchmark Higher-order trade

Markov steps (× 1000) 836 996
Posterior model size 8.7 8.3
Models covering 50% 58 97
Pr(best model) 7.20 4.78
Visited probability 98.0 95.7
Corr(Π,Freq) 0.997 0.909
Corr(Bayes,Freq) 0.998 0.966
Raftery-Lewis factor 3.38 3.42

Table 12: MC3 statistics.

F Robustness

As advanced in Section 8, here we explore the sensitivity of the findings in Section 6 to variations

in the data input, as well as to modifications of the underlying model assumptions, and to

alternative measures of network centrality.

F.1 Data

Raw data vs. cleaned data: In our baseline approach, we use the raw trade data from

the UN Comtrade to compute the GI. There exists, however, a National Bureau of Economic

Research project led by Robert Feenstra that has systematically cleaned the UN Comtrade

data from a number of inconsistencies. The resulting data set is available from the Center for

International Data and a detailed description of it is provided in Feenstra et al. (2005). As a
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robustness check, we use these data instead of the raw trade data to compute our Globalization

Index. Then, we perform a BMA analysis where we include this new measure. The row labeled

Feenstra in Table 13 shows the resulting findings are very similar to the baseline results.

E(θk|y) PIP %sig

Benchmark 6.289*** 85 99

Feenstra 5.497*** 77 97
IMF DOTS 6.084*** 88 96
PWT 6.2 5.589*** 83 99
PWT 6.3 4.387*** 95 88
PWT 7.0 7.318*** 80 97
PWT 7.1, 60-09 5.823*** 71 96
PWT 7.1, 5 yrs 2.169*** 79 97

Table 13: Robustness: Data.

IMF DOTS: The International Monetary Fund (IMF) publishes the Direction of Trade

Statistics (DOTS) which provides detailed data on bilateral trade flows. We use these data

instead of the UN Comtrade data to compute the GI. Again, the results are largely unchanged

– see row ”IMF DOTS” in Table 13.

Penn World Tables: A number of the variables included in the empirical analysis are

constructed from data taken from the Penn World Tables (PWT). Ciccone and Jarocinski (2010)

raise the important concern that the results of growth empirics are often sensitive to revisions in

the PWT data. We address this concern by using different releases of the PWT to compute the

relevant variables. Table 13 compares the results. By and large, our baseline finding are robust

to revisions of the PWT. An advantage of the recent releases of the PWT is that they extend

the time period covered by the data, which allows us to consider a longer period in the BMA.

Specifically, we can use the period from 1960-2010, which gives us a total of five observations for

each country. Again, the results are very similar to the baseline findings. As yet another check,

we also organize the data into five year time intervals (instead of using 10-year intervals) which

gives us a total of 10 country observations. As can be seen in Table 13, the higher-frequency

data do not lead to noteworthy changes in the sign and significance levels of the results

F.2 Model specification

In the baseline approach we use a Binomial-Beta structure as the model prior distribution.

We test the robustness of this choice by using a uniform prior as in Moral-Benito (2016).

Accordingly, all models are equally likely a priori, and P (Mj) = 2−K , where K is the number of

potential regressor variables. The results of the BMA analysis with the uniform prior are very

close to the results of the baseline case, as can be seen from Table 14. Hence we conclude that
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the assumption on the model prior distribution does not have a significant effect on the results.

E(θk|y) PIP %sig

Benchmark 6.29*** 0.85 0.99

Uniform prior 6.46*** 0.95 0.97
Rich 9.52*** 0.98 0.99
Poor 4.18*** 0.79 0.84
15 best covariates 6.41*** 0.99 0.99
10 best covariates 6.37*** 0.99 1.00
15 worst covariates 4.93*** 0.99 0.98
10 worst covariates 4.61*** 0.99 1.00

Table 14: Robustness: Model.

Next, we note that there is a large degree of heterogeneity among the countries in our

sample. To account for this heterogeneity, we include into the empirical analysis a large set of

covariates, as well as a full set of dummy variables to control for country-, region-, and time-fixed

effects.

Despite these efforts we cannot exclude the possibility of additional dependencies that we

have not properly controlled for. Two particularly relevant concerns are the existence of spatially

correlated shocks that affect geographically-proximate countries, and the potentially differential

effect of the covariate for developed and undeveloped countries. We address these concerns in

various ways. First, we cluster the data by splitting the sample into rich and poor countries.

More concretely, we consider countries as poor (rich) if their GDP per person in 1960 was less

(more) than 1/5 of the U.S.-level. The resulting samples consist of 48 poor countries and 34

rich countries. Then, we perform the BMA analysis on both samples separately and report the

results in Table 14. Importantly, the positive relation between openness and growth is found to

be very robust for both rich and poor countries but it seems somewhat stronger for the rich.

In a similar vein, we have also interacted in a separate experiment the trade share with the

region fixed effect to assess whether the relation between the traditional openness measure and

growth varies across regions. Interestingly, we find that the insignificant relationship between

the trade share and growth that arises in the baseline case also holds across all five regions that

we consider. Moreover, to account for spatially correlated shocks we interacted the region-fixed

effect with time-fixed effects. And again we arrive at the conclusion that the results are very

similar to the baseline results, especially for the estimate of the Globalization measure. For

conciseness we do not report the results of the last two experiments here but they are available

upon request.

As an additional robustness test, we check whether our main findings are sensitive to the

number of regressor variables included in the empirical model. In the baseline case, we consider

34 candidate regressors. Now we include only a subset of these variables into the model. In

particular, we pick those 10 (15) variables which had the highest posterior inclusion probability
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in the baseline case. As an additional experiment, we select - together with the GI and initial

GDP per person – those 10 (15) variables which had the lowest posterior inclusion probability.

The results of the BMA analysis are in Table 14, and again we observe no significant change

with respect to the baseline findings.

Finally, we recall that the analysis in Section 6 reveals a weak relationship between the

traditional measures of openness – such as the trade share and the Sachs-Warner indicator –

and economic growth, as indicated by low values of their posterior inclusion probability. Now

we want to address the concern that this result may driven by a potential dependence between

our GI and the traditional measures. Table 15 shows the posterior mean and the inclusion

probability (rows) of the openness measures for the baseline case and for different combinations

of included variables (column). The results in the table do not reveal any notable dependencies

between the different measures.

Baseline Include
GI GI GI TS
S&W TS S&W

GI E(θk|y) 6.29*** 6.21*** 6.15*** 6.11***
PIP 0.85 0.83 0.81 0.80

TS E(θk|y) -0.07 -0.04 0.10
PIP 0.04 0.04 0.05

S&W E(θk|y) 0.18*** 0.18*** 0.13**
PIP 0.16 0.36 0.07

Table 15: Robustness: Openness measures.

F.3 Alternative measures of network centrality

Our Globalization index reflects a notion of network centrality that is known as closeness central-

ity. Other prominent notions of centrality considered in the literature are PageRank, Bonacich,

Eigenvalue, or Betweenness centralities – see e.g. Bloch, Jackson, and Tebaldi (2017). Since

they all behave quite similarly for the relevant parameter ranges, in order to avoid unneces-

sary redundancies we focus on PageRank centrality. According to PageRank centrality, a cen-

tral/influential node is identified as one that is largely connected to central/influential nodes.

If we denote by ν = (νi) the vector specifying such an “impact” for every node i, the centrality

condition can then be written as

ν = (Ã)T ν,

where Ã is a perturbation of the adjacency matrix A defined by Ã = αA + (1 − α)U , where

0 < α < 1, and U is a (stochastic) matrix with entries all equal 1/n. The matrix Ã can still be

formally interpreted as the transition probability matrix of a Markov process. Such a Markov

process is clearly ergodic and thus has a unique invariant distribution. This allows PageRank
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to identify the centrality of any given node i as its weight in that invariant distribution, so that

we may write

ν =
1− α
n

(I − αA>)−1e (32)

where n is the dimension of A and e is a column vector of all 1’s. The notion of centrality given

by (32) implicitly presumes that all nodes in the network are symmetric and command the same

value. But, of course, just as we did for our baseline measure introduced in Subsection 2.2, we

want to account for the fact that countries are very different in relative size within the world

economy. Again, this can be captured by replacing the uniform weighting embodied by the

vector e by the alternative vector β (also used by our baseline measure) where each βi captures

the fraction of country i’s GDP in world economy. This leads to the following modified notion

of PageRank centrality:

ν =
1− α
n

(I − αA>)−1β, (33)

which is the measure of integration we apply to our full sample of 200 countries and all years

from 1962 to 2012. Table 16 below reports the outcome of the BMA exercise for different values

of α. There we observe that the magnitude of the posterior mean estimate of the PageRank

coefficient, the corresponding inclusion probability, and the %sig statistic all grow monotonically

with α, only achieving truly high values when this parameter is also high. These results are

very much in line with those obtained for our benchmark measure of country integration, since

the parameter α plays in the present case a role analogous to δ for our benchmark integration

measure. Here, α determines how much PageRank is dependent on the network architecture,

hence depending on the full set of paths that, directly and indirectly, join each pair of nodes.

The results of Table 16, therefore, are again a manifestation of the importance that long-range

indirect connections on growth even if integration were measured by the notion of PageRank

centrality.

E(θk|y) PIP %sig

PageRank centrality

α = 0.95 2.6332*** 0.63 76
α = 0.75 2.0135*** 0.34 71
α = 0.50 0.7264*** 0.11 52
α = 0.25 0.0506*** 0.08 44

Table 16: Global vs. local connections: PageRank centrality.

In addition to PageRank centrality, we have experimented with a number of other integra-

tion measures that belong to none of the aforementioned centrality concepts. Most noteworthy

among those is the approach suggested by Arribas et al. (2009). One of the indicators they use

to assess a country’s integration is what they call Degree of Connection (DTC), which compares

the trade of a given country in the actual world with what would prevail in an ideal and perfectly

integrated one. More specifically, DTC measures whether a country has its international flows
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match the weight of the other countries, being equal to 1 in case of a perfect match. Clearly, this

approach is conceptually very different from ours. Arribas et al. (2009) also consider the Degree

of Openness (DO) which, for each country, is equivalent to 1 minus its corresponding diagonal

element in our adjacency matrix A. These two different indicators capture a country’s aggregate

trade flows but not its architecture of first- and higher-order trade connections. Consequently,

it is not surprising that the correlation between our integration indicator and DO and DTC is

generally very low (just as we showed to be the case with the traditional measures of openness

in Section 4). For example, in the year 2004, it is equal to -0.03 and -0.05, respectively. We

also find an insignificant role for these indicators when included in the BMA. For instance, the

posterior mean associated with the indicator DO is not significant (even at the 10% level) and

the posterior inclusion probability is only 6%.21

Lastly, we consider three different versions of random perturbations to the diffusion matrix

A in order to address the criticism expressed in Keller (1998) that a spurious version of the trade

network is likely to have the same implications for the global transmission of information than

the actual trade network. At the same time, the analysis below allows to assess the importance

of different dimensions of the network structure for the relationship between the GI and growth.

In the first case, we keep the structure of the original matrix A as in the baseline case - in

terms of the number of each country’s links and the set of its partners - and we just perturb the

weight of existing links. In particular, we randomly assign a weight between 0 and 1 to each

existing link and re-normalize the resulting matrix so that it is row-stochastic. This approach

implies only a small modification to the original transition matrix A because the structure of the

matrix is preserved. Using this modified version of the transition matrix, we compute the GI

according to the approach described in Section 2.2. Clearly, the values of the GI depend on the

realization of the random draws of the link weights. To eliminate the variation in the GI that

is due to this randomness, we compute the GI for 100 different sets of realizations and average

over the outcomes. Lastly, we include the resulting GI into the BMA analysis. The estimated

coefficient of the GI comes out significant only at the 10 percent level and the posterior inclusion

probability drops from 85% in the baseline case to 42%.

The second case that we consider involves a more substantial modification of the matrix A.

For each country we keep the number and the weight of existing links but we assign the links to

a randomly selected set of trading partners. That is, we reshuffle the existing links of a given

country. As before, we use the perturbed transition matrix to compute the GI, then we average

over 100 different realizations and include the resulting GI in the BMA. The estimated coeffi-

cient of the GI becomes insignificant and the posterior inclusion probability of only 2 percent

is significantly below the baseline value. In the last case we allocate the total weight of each

21In another experiment, we identify the first principle component (FPC) of trade openness and compare it
to the GI. To conduct this comparison, we compute the correlation between the two variables and, in addition,
include the FPC instead of the GI into the BMA. We find a correlation coefficient of -0.36 which is slightly higher
(in absolute terms) than that for trade openness and the GI of -0.10. Still, the value is rather low, indicating a
relatively weak relation between the two variables. When including the FPC into the BMA we find a posterior
inclusion probability for this variable of less than 1 percent.
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country’s links to a randomly selected set of trading partners. That is, we keep the outward

orientation of countries as in the baseline case but perturb the number of links. Also in this

case we obtain in the BMA an insignificant coefficient estimate and very low posterior inclusion

probability for the GI of 2 percent.

We interpret these findings as reflecting the importance of both, the structure of the trade

network - in terms of the number of links of a country and the set of its trading partners - as

well as the intensity of trade connections between countries for the explanatory power of the

GI. If we keep the structure but modify the intensity of trade connections (as in the first case)

then the posterior inclusion probability of the GI declines substantially but it is still higher

than for 26 out of 34 the included covariates. Instead, if we perturb the set of trading partners

(second case) and, in addition, also the number of links (third case), then the relation between

the modified GI and growth becomes very weak.

G Explaining discordance within the BMA analysis

As can be seen from Table 6, for some of the regressor variables there is a marked misalignment

between the posterior inclusion probability and the %sig-statistic for several of the variable

included in the BMA analysis. For example, the Government share has a PIP of only 11%

but the estimated coefficient is significant in 91% of the models. To understand this pattern

it is useful to consider Figure 3, which focuses on the variables Government share, and Armed

conflict. It shows the posterior probability mass over the whole range of coefficient estimates

(bars) as well as, for each value of the estimated coefficient, the share of models where the

estimation is significant at the 5% level (crosses) and the posterior inclusion probabilities of the

respective models (circles). The solid line and the broken lines represent the posterior mean

and the 95% confidence bounds, respectively.
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(a) Government share (PIP = 0.11 ; %sig = 91%)
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(b) Armed conflict, (PIP = 0.75 ; %sig = 6%)

Figure 3: Discordance between PIP and %sig.
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A comparison of the two panels yields some useful insights. It illustrates, in particular,

that the posterior inclusion probability of a variable and the share of significant coefficient

estimates can be very different. In Panel (a) we observe that the coefficient associated with the

Government share is typically estimated very precisely across models (crosses are close to the

top of each bar), while the models which contained this variable are generally characterized by a

low goodness-of-fit (circles close to the bottom). As a result, the posterior inclusion probability

of these models is rather low across the entire range of the estimated coefficient. The opposite

can be observed in Panel (b), which shows the same set of statistics for the variable Armed

conflict. We find that the coefficient for Armed conflict is generally very imprecisely estimated,

whereas the models which include it have a high goodness-of-fit and thus provide this variable

with a high posterior inclusion probability.

Thus, in sum, the point here is that the identification of robust covariates according to the

posterior inclusion probability (as done by model averaging approach) can lead to conclusion that

are very different from the traditional (single-equation) growth empirics that typically evaluates

variables on the basis of the significance level of the estimated coefficient for a certain model

specification. As a result of this practice, much of the empirical growth literature considers

the variable Government share as robustly related to growth (see for example, the work by

Barro (1991, 1996) and Caselli et al (1996)) whereas the results above lead to conclude the

exact opposite. The same applies (but in reverse order) to the variable Armed conflict. With

a posterior inclusion probability of 75% this variable is found to be strongly related to growth.

This result is in stark contrast to much of the existing empirical work which interprets the

mostly insignificant coefficient estimates for this variable as evidence for a limited explanatory

role. See, for example, Barro and Lee (1994) and Easterly and Levine (1997). Such contradictory

assessment can be established also for several other candidate regressors, such as the Investment

price (Easterly (1993)), the Life expectancy Barro and Lee (1994), Democracy (Barro (1996),

Dollar and Kraay (2003)), Landlocked (Easterly and Levine (2001)), or Former Spanish colony

(Barro 1996), all of which have been suggested to be important for economic growth. Instead,

according to our results, these variables are characterized by low values of the posterior inclusion

probability, hence indicating a weak relationship to growth. For yet other variables, our results

are in line with the findings of the traditional empirical growth literature. This includes, for

example, the Investment share and the dummy variable for Sub-Saharan countries.22

H Geography and the Globalization Index

H.1 Modified Globalization index

The computation of the modified GI presented in Section 7.4 for a given country i involves the

following steps. First, we denote by ϕm,j,−i the expected number of steps required to reach j

22See Barro (1991, 1996), Barro and Lee, (1994), Caselli et al. (1996), Easterly and Levine (1997) and Sala-i-
Martin (1997a, 1997b).
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from any country m 6= i, conditional on not utilizing any of the links that involve country i.

ϕm,j,−i can be derived as follows:

ϕm,j,−i =
∑
k 6=i,j

∞∑
r=1

r
[
(A−i,−j)

r−1
]
m,k

ak,j (34)

Here A−i,−j is a (n − 2) × (n − 2) matrix obtained from the original adjacency matrix A by

deleting the ith and the jth column, and the ith and the jth row. [·]m,k indicates the elements of

the mth row and the kth column of the array [·]. Rearranging equation (34) yields the following

expression:

ϕm,j,−i =

( ∞∑
r=1

r (A−i,−j)
r−1

)
m,k


k=1,2,...,n; i 6=k 6=j

(ak,j)k=1,2,...,n; i 6=k 6=j (35)

where (ak,j)k=1,2,...,n;k 6=i,j is an (n−2)×1 vector that is obtained from the jth column of matrix

A by deleting the ith and the jth element. We use
∑∞

r=1 r (A−i,−j)
r−1 = (I −A−i,−j)−2 and

substitute it into (35), to obtain

ϕm,j,−i =
[
(I −A−i,−j)−2

m,k

]
k=1,2,...,n; i 6=k 6=j

(ak,j)k=1,2,...,n; i 6=k 6=j (36)

We compute ϕm,j,−i for all combinations of (m, j), where m = 1, 2, ..., n and j = 1, 2, ..., n, with

m 6= i, j 6= i. This yields the (n− 1)× (n− 1) dimensional matrix (ϕm,j,−i)
n
m=1,j=1;m6=i 6=j . An

element of which specifies the expected number of steps from any country j to each of country

i’s potential trading partners m = 1, 2, ..., n,m 6= i. The key difference to the related matrix in

the benchmark case, i.e. (ϕm,j)
n
m=1,j=1, is that here all connections from and to country i are

disregarded. The remaining steps of the calculations involve the aggregation of ϕm,j,−i using

the distance-related weighting factors as described in the main text.

H.2 The Frankel-Romer approach

The volume of trade of a country is potentially affected by its rate of economic growth, which

renders the matrix At = (aijt)
n
i,j=1 induced by the trade flows of year t and the resulting GI,

Φit, possibly endogenous to growth. In this section, we take a step to alleviate this endogeneity

issue. More concretely, in the spirit of the approach pursued by Frankel and Romer (1999), we

construct a modified GI measure that is based on bilateral geographical distance alone, and rely

on it to instrument for Φit.

More concretely, the procedure implements the following steps. Let geoij denote the ge-

ographical distance (measured in kilometers) between countries i and j. In the first step, we

replace the elements of the transition matrix, aijt, with the inverse of the geographical distance,

1/geoij , between countries i and j. Naturally, after this step, the sum of each row is no longer
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equal to one. Thus, to make the matrix row-stochastic, we normalize the elements of each row

by the sum of each row. Let Ãt denote this modified transition matrix. An element of this

matrix, denoted by ãijt is given by
1/geoij∑
k 1/geoik

. Clearly, ãijt is exogenous to growth. Next, we

use the modified transition matrix, Ãt, to compute the GI as described in Equations (9) and

(10). Let by Φ̃it denote the value of the modified GI for country i in period t. A key step of our

approach is to use Φ̃it as an instrument for the potentially endogenous GI, Φit. Specifically, we

estimate by OLS the following first-stage regression:

Φit = α+ γΦ̃it + µi + ζt + εit

where µi and ζt represent country and time fixed effects. We also consider a version where we do

not include fixed effects. We compute Φ̃it for all countries in our sample and for all years, which

gives us a total of 9553 observations. The estimated value of γ obtained from the regression is

equal to 0.45 and is highly significant with a 95% confidence interval of [0.42, 0.47]. Moreover,

the F-statistic of this regression is equal to 768.1 and, thus, it far exceeds the value of 10 which

is typically considered the critical value for indicating weak instruments. Let by Φ̂it denote the

predicted values of the regression. In the final step, we include Φ̂it instead of the baseline GI

measure, Φit, into the BMA. Importantly, the estimated coefficient of the modified GI is highly

significant and the posterior inclusion probability of 62 percent is only slightly below that of the

baseline GI.

Two remarks are in order. First, even though the geographical distance between countries

is time invariant, the values of the modified GI are not necessarily constant over time. This is

because, the number and the distribution of links in the trade network can change from year to

year. Second, and relatedly, while the modified GI alleviates the endogeneity issue - by using

geographical distance as a measure of bilateral trade intensity - it does not completely remove

it. For, arguably, we cannot exclude the possibility that the number of a country’s links is

endogenous to its growth performance. That is, our approach does not tackle the endogeneity

of whether two given countries engage in bilateral trade at all (extensive margin of trade) but

only how much they trade (intensive margin). As a result of the latter observation, we do not

interpret the results of the BMA with the modified GI as causal per se.

I Analysis of the patent data

In our analysis in Subsection 7.2, we focus on the patents originating in a sample of n = 149

countries that cite at least one other patent from a foreign country. That is, we disregard

patents which (i) cite no other patent, or (ii) cite only patents of the same country. The latter

condition derives from the fact that we are interested on the flow of ideas between countries and,

naturally, own-country citations are not taken to contribute to it. The analysis has centered

on two variables, Avgij and Probinvij , that measure, respectively, the average number of cited
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patents from j cited in every citing patent from i, and the fraction of cross-country patenting

relationships that connect an inventor from i with another in j. Here we provide a precise

description of how these variables are derived.

First, we explain the computation of each Avgij . It is based on two matrices, P and C, of

the following form:

P =


0 p12 p13 ... p1n

p21 0 p23 ... p2n

. . . ... .

pn1 pn2 pn3 ... 0

 C =


0 c12 c13 ... c1n

c21 0 c23 ... c2n

. . . ... .

cn1 cn2 cn3 ... 0

 .

The elements pij in matrix P represent the number of country-i patents that cite at least one

country-j patent. Notice that, in general, pij 6= pji and, of course, we may also find that many

elements in P for which pij = 0. That is, cross-country patenting need not be symmetric and

the cross-citing patent network could be quite sparse. In fact, in our case the total number of

elements for which pij > 0 is equal to 3376 (thus much lower than the maximum n(n−1)) while

the total number of patents that cite a foreign patent is equal to
∑n

i=1

∑n
j=1 pij = 2.98MM .23

On the other hand, the elements cij in matrix C count how many country-j patents are

cited in total by country-i patents. Notice that this is a conditional statement as we include

only those country-i patents in cij which cite at least one country-j patent.
∑n

j=1 cij is the total

number of foreign patents cited by country-i patents. For our sample, we obtain that the total

number of citations to foreign patents is equal to
∑n

i=1

∑n
j=1 cij = 5.82mill. The element-by-

element division of both matrices C and P gives Avgij = cij/pij which is the average number

of country-j patents cited per country-i patents.

Next, we explain how the variables Probinvij are obtained. Their computation relies on the

following matrix:

T =


0 t12 t13 ... t1n

t21 0 t23 ... t2n

. . . ... .

tn1 tn2 tn3 ... 0

 .

An element tij in matrix T specifies the total number of bilateral co-patenting relationships

between inventors from countries i and j. To fix ideas, consider two patents: Patent 1 was

created by a team of 4 U.S. inventors, 2 French inventors and 2 German inventors. Patent

2 was created by 2 U.S. inventors and 3 French inventors. Then, for this example, we would

get tUS,FRA = tFRA,US = 8 + 6 = 14, tUS,GER = tGER,US = 8, tFRA,GER = tGER,FRA = 4.

In our sample, the number of entries in the matrix T for which tij > 0 is equal to 1918 and

the total number of collaborations between international inventors is
∑n

i=1

∑n
j=1 tij = 286, 168.

Computing the fraction tij/
∑n

j=1 tij for each i, j = 1, 2, ..., n we arrive at the corresponding

23Note that if a country-i patent cites country-j and country-k patents, then this country-i patent will be
counted in both pij and pik. Due to this multiple counting of patents, we get that the row-sum

∑n
j=1 pij is higher

than the total number of country-i patents.
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Probinvij .

54


	9319abstract.pdf
	Abstract




