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The Focusing Effect in Negotiations 
 
 

Abstract 
 
Two players with preferences distorted by the focusing effect (Koszegi and Szeidl, 2013) 
negotiate an agreement over several issues and one transfer. We show that, as long as their 
preferences are differentially distorted, an issue will be inefficiently left out of the agreement or 
inefficiently included in the agreement whenever the importance of the other issues on the table 
is sufficiently large. Anticipating this possibility, the negotiating parties may negotiate in stages, 
by first signing an incomplete agreement and later finalizing the outcome of the negotiation. 
Negotiating in stages increases the efficiency of the negotiation, despite the fact that the players’ 
preferences are distorted by the focusing effect also when negotiating the incomplete agreement. 
JEL-Codes: C780, D030, D860, F510. 
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1 Introduction

Negotiations often begin with a preliminary negotiation round. For example, the
2012 peace negotiation between the FARC and the Colombian government was pre-
ceded by a preliminary negotiation round aimed at defining the issues to be discussed
during the subsequent peace negotiation.1 Another well known historical exam-
ple is the Panama Canal negotiation between the Panamanian and the American
governments, that was preceded by the signing of some threshold agreements—i.e.,
agreements guaranteeing to the Panamanian government the achievement of mini-
mum outcomes on some issues.2 Similarly, professional negotiators often recommend
starting a negotiation by defining a framework agreement : a document in the form
of an agreement, with blank spaces on each term to be resolved by the negotiation.3

According to practitioners, these preliminary rounds play a key role in deter-
mining the importance of the different issues on the bargaining table. For example,
Fisher, Ury and Patton (1991) in their seminal textbook write: “working out a
framework agreement, however detailed, will help ensure that important issues are
not overlooked during the negotiation”.4 Also, according to Raiffa (1982), page 216,
“the importance of an issue might be lessened by the parties first narrowing the range
of possible outcomes on that issue”. Although, at a superficial level, these observa-
tions may sound quite intuitive, at a closer look they are rather intriguing. They
imply that, absent a preliminary negotiation round, the parties may not assign the
“right” importance to the various issues on the table. Even more intriguing, they
also imply that the bargaining parties may agree on how to shape the importance of
the various issues that will be discussed in subsequent rounds of negotiation.

Motivated by the above observations, in this paper we provide a theory of how the
importance of the different issues on the bargaining table is determined. We do so
by considering a bargaining problem in which the players’ preferences are distorted

1See https://noref.no/Publications/Regions/Colombia/Designing-peace-the-Colombian-peace-
process, accessed on August 10th 2021.

2See Raiffa (1982), “The art and science of negotiation”, p. 178.
3See, for example, Fisher et al. (1991) “Getting to yes”, page 171.
4Ibid, p. 172.
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by the focusing effect (see the next paragraph). We compare the outcome of the
negotiation when the players bargain in one step, to that of a two-step negotiation
in which, first, the players can sign an incomplete agreement and, then, they finalize
the outcome of the negotiation. We model incomplete agreements as constraints
on the future bargaining set. As we will see, our model will largely rationalize
the practitioner’s view discussed above, and hence help us understand the role of
preliminary negotiation rounds.

In choice problems, the focusing effect (or focusing illusion) occurs whenever a
person places too much importance on certain aspects of her choice set (i.e., when
certain elements are more salient than others). Intuitively, an agent’s attention is
unconsciously and automatically drawn toward certain attributes, which are therefore
overvalued when making a choice. Kőszegi and Szeidl (2013) formalize this concept
by assuming that agents maximize a focus-weighted utility

Ũ(x1, x2, .., xn) =
n∑
s=1

hsus(xs)

where x = {x1, x2, ..., xn} is a given good with n attributes. The focus weights hs
are defined as:

hs = h

(
max
x∈C

us (xs)−min
x∈C

us (xs)

)
,

where h() is the focusing function (assumed strictly increasing) and C is the agent’s
consideration set, which is the set of outcomes considered as possible by the decision
maker (see the next paragraph). In this formalization, an agent overweighs the utility
generated by the attributes in which her options differ more, where these differences
are measured in utility terms.5

We introduce the focusing effect in a bargaining problem in which the players
negotiate over n binary issues and a continuous issue which we interpret as a trans-

5There is ample empirical evidence for the focusing effect. See, for example, Schkade and Kah-
neman (1998), Kahneman, Krueger, Schkade, Schwarz and Stone (2006), and Dertwinkel-Kalt,
Gerhardt, Riener, Schwerter and Strang (2017). There is also a recent literature studying contract
and menu design when consumers’ preferences are distorted by the focusing effect; see, for example,
Apffelstaedt and Mechtenberg (2017) and Dertwinkel-Kalt, Köster and Peiseler (2019).
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fer. The main challenge in doing so is defining the consideration set. In choice
problems the consideration set typically coincides with the choice set and is there-
fore exogenous—in particular, prices are exogenously given. Bargaining, however, is
precisely the process by which monetary transfers are determined. For this reason,
we assume that the players’ consideration set is given by the bargaining outcomes
that satisfy the participation constraint of at least one player. Hence, in our model,
the largest possible transfer a player is willing to make (and therefore the salience of
transfers) is endogenous and depends on the importance this player assigns to the var-
ious issues on the negotiating table. Note that, as a consequence of this assumption,
the players’ participation constraints determine the players’ focus weights, while, at
the same time, the focus weights determine the players’ preferences and their partic-
ipation constraints. Hence, solving for the focus weights and the consideration set is
a fixed-point problem for which we show existence and uniqueness.

We derive conditions under which, when the players negotiate in one step, the
outcome of the negotiation is inefficient relative to a rational benchmark in which
all focus weights are equal to 1. We show that an inefficient outcome can occur if
the players’ preferences are differentially distorted by the focusing effect (i.e., the
two players’ focusing functions are not identical) and if there are at least 2 issues on
the negotiating table. When these two conditions are satisfied, a given issue will be
inefficiently exclude from the agreement (or inefficiently included into the agreement)
whenever the value of this issue is sufficiently small relatively to the other issues on
the table. It is even possible that the negotiation will inefficiently end without an
agreement, in what we call a negotiation breakdown.6

Intuitively, by increasing the importance of some issues, the largest transfer that
the players consider possible also increases. By the focusing effect, the players’
attention is drawn more and more toward the transfer dimension, which therefore
becomes more salient for both players. Crucially, if the players’ focusing functions

6An example of negotiation breakdown which is related to our earlier discussion is that of
the peace negotiation between ELN and Colombian government. While negotiating the peace
agreement with the FARC, the government initiated peace talks with a smaller guerrilla group, the
ELN. The parties agreed to an agenda for the peace talks but never reached a peace agreement.
See https://colombiapeace.org/the-eln/#Peace (accessed on August 18th 2021).
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differ, this increase will be stronger for one player than for the other, and therefore
creating a form of disagreement. It is possible that the cost of making a transfer
for a player increases faster than the benefit of receiving it for the other player, in
which case an issue may be inefficiently left out from the final agreement. But it is
also possible that the cost of making a transfer for a player increases slower than the
benefit of receiving it for the other player, in which case an issue may be inefficiently
included in the final agreement.

We then allow the players to negotiate in two stages, with preferences distorted
by the focusing effect in both stages. In the first stage, the players can sign an
incomplete agreement that imposes a constraint on the future bargaining set. We
follow Kőszegi and Szeidl (2013) in assuming that players are consequential, in the
sense that they evaluate actions based on their future consequences (cf. p. 73). In
our environment, this implies that when a bargaining outcome is excluded from the
bargaining set in the first stage, it does not affect the players’ preferences anymore
in the second stage. Similarly, off-equilibrium bargaining outcomes (which are never
reached for any incomplete agreement the players may sign) do not affect the players’
preferences when negotiating incomplete agreements at the first stage.

We show that the possibility of signing an incomplete agreement is welfare im-
proving: if the players agree to either impose a bound on the transfer dimension or
to restrict the set of issues that will be discussed in the future, then the efficiency of
the negotiation will increase (relative to a one-step negotiation). The reason is that
the set of bargaining outcomes achievable by imposing a specific incomplete agree-
ment is, in general, strictly smaller than the full bargaining set. For example, very
large transfers may be in the consideration set of the one-step negotiation but not in
the consideration set when negotiating an incomplete agreement. Hence, even if not
fully rational, the players’ are “closer to rational” when negotiating the incomplete
agreement than when negotiating in one step.

To illustrate this point, we fully solve an example with two issues, in which absent
an incomplete agreement there is an inefficient breakdown of the negotiation. In this
example, the players agree to restrict the set of issues that will be discussed in the final
bargaining round. Interestingly, doing so reduces the future salience of the transfer
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dimension, and hence leads to the inclusion of issues into the final agreement that
would otherwise be excluded—in other words, the players prevent some issues from
being overlooked (as in the above citation from Fisher et al., 1991). Furthermore, as
in Raiffa (1982), the players will further reduce the salience on the transfer dimension
by imposing bounds on future transfers. Therefore, in the example, by imposing an
incomplete agreement the players are able to prevent an inefficient breakdown of the
negotiation.

We structure the paper in the following way. In the remainder of this section
we discuss the relevant literature. In Section 2 we introduce the model. In Section
3 we solve for the one-step negotiation. In Section 4 we introduce an additional
bargaining round. In Section 5 we discuss the robustness of our results to changes in
our assumption, such as, for example, using models of salience different from Kőszegi
and Szeidl (2013). The last section concludes. Unless otherwise noted all proofs are
relegated to the appendix.

1.1 Relevant Literature

There is a small literature studying the impact of behavioral biases and non-standard
preferences on negotiations. For example, Bénabou and Tirole (2009) consider a bar-
gaining model with self-serving beliefs and show that inefficient negotiation break-
down may occur. Inefficient breaksdowns and delays are also possible in models with
heterogeneous beliefs (such as Yildiz, 2004 and Nageeb Ali, 2006). Inefficient delays
also arise in Compte and Jehiel (2003), who introduce reference-dependent utility in
a game of alternating offers. Because we consider a different behavioral mechanism,
the conditions under which inefficiencies arise are different in our paper than in the
papers mentioned above. Furthermore, novel with respect to the literature, we con-
sider multiple issues and hence the possibility that issues are inefficiently included
into or excluded from the final agreement. Also related is Shalev (2002), who shows
that increasing the degree of loss aversion of a player worsens the bargaining outcome
for this player. Here we are interested in the inefficiencies caused by the focusing
effect, rather than in evaluating the bargaining outcome of a single player.
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The literature on incomplete contracts has long argued that behavioral biases
and cognitive limitations may explain why agreements are often incomplete (see, for
example, Segal, 1999; Battigalli and Maggi, 2002; Bolton and Faure-Grimaud, 2010;
Tirole, 2009; Hart and Moore, 2008; Herweg and Schmidt, 2015 and Herweg, Karle
and Müller, 2018). However, to the best of our knowledge, all these explanations
rely on the resolution of some uncertainty: after signing an incomplete contract, the
arrival of new information makes the environment less complex, reduces the number
of possible contingencies, and allows the contract to be either executed or, if rene-
gotiation is allowed, completed in a final negotiating round. Instead, we consider a
deterministic environment. This is justified by the observation that in many negoti-
ations the start of a new bargaining round follows the end of the previous round and
is not determined by the arrival of new information.

An exception are models based on unawareness, such as, for example, Von Thad-
den and Zhao (2012), Auster (2013) and Schumacher and Thysen (2017, forthcom-
ing), in which an informed principal offers a contract to an unaware agent. This
contract determines what the agent will be aware of when choosing an action, which
implies that the principal may want to offer an incomplete contract so to leave the
agent unaware of certain elements. This framework is, however, not directly applica-
ble to the study of negotiations in which both players could be identical. Also related
are papers showing that, if information is perfect but players must write an incom-
plete contract, then the players may decide to leave some potentially contractible as-
pects of an agreements unspecified, therefore making the incomplete contract “more
incomplete” than strictly necessary (see Bernheim and Whinston, 1998, Battaglini
and Harstad, 2016 and Harstad, 2007). In our paper, instead, the bargaining parties
do not need to write an incomplete agreement, in the sense that they can decide
to bargain over the entire bargaining set in the following period (with no cost of
waiting).

Finally, in our model, all transfers and exchanges will realize conditional on reach-
ing an agreement during the last round of negotiation. That is, there is a single
agreement that could be reached via multiple negotiating rounds. This distinguishes
us from Esteban and Sákovics (2008), who allow the negotiating parties to sign sep-
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arate agreements on different parts of the surplus. It also distinguishes us from the
literature on agenda setting in negotiations, in which the players can reach several,
issue-specific agreements.7

2 The Model

Two players a and b bargain over i ∈ {1, ..., n} binary issues and a continuous issue
t. We interpret t > 0 as a transfer t from b to a, while t < 0 is a transfer |t| from
player a to player b. On any given issue i ≤ n, the players may agree to maintain
the status quo, in which case the players’ payoffs from issue i are normalized to
zero. But they also could decide to change the status quo, in which case player a
earns αi while player b earns βi, where αi and βi could be positive or negative real
numbers. We call qi ∈ {0, 1} the bargaining outcome with respect to issue i. If
qi = 0, then the bargaining outcome maintains the status quo on issue i, in which
case we say that issue i was excluded from the final agreement. If instead qi = 1,
then the bargaining outcome changes the status quo on issue i, in which case we
say that issue i was included in the final agreement. The bargaining set is therefore
X ≡ {0, 1} × ... × {0, 1} × R, with x = {q1, q2, ..., qn, t} ∈ X a possible bargaining
outcome.

We make the following parametric assumptions:

1. there is at least an issue i such that αi · βi < 0.

2. there are no issues i ≤ n such that αi < 0 and βi < 0.

As it will become clear later (see Equation A.2), issues that generate costs to both
players will never be included into an agreement, and issues that generate benefits
to both players are always included into the final agreement. The first restriction
therefore excludes from our analysis the uninteresting case in which, independently
of the focusing effect, all issues are included into or excluded from the agreement.

7See Lang and Rosenthal (2001), Bac and Raff (1996), Inderst (2000), Busch and Horstmann
(1999b), Busch and Horstmann (1999a), Flamini (2007), Chen and Eraslan (2017).
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The second restriction is instead without loss of generality. The reason is that issues
that generate costs to both players are irrelevant in determining the shape of the
consideration set (see Equations 3.1 and 3.2).

This environment nests several bargaining problems. For example, it corresponds
to a standard buyer-seller negotiation whenever βi > 0 > αi for all i ≤ n, so that all
benefits accrue to player b and all costs accrue to player a. Alternatively, we could
have an international negotiation in which some benefits accrue to each player.

The negotiation. The players negotiate in stages. In the first stage, the players
can sign an incomplete agreement that imposes a constraint on the future bargaining
set. In the second period, they finalize the negotiation by choosing an outcome from
the constrained bargaining set.

Definition 1 (Incomplete agreements). An incomplete agreement is a set S ⊂ X,
assumed closed and bounded. A negotiation structure S ⊂ P (X) (where P (X) is the
power set of X) is the collection of S that can be chosen in period 1.

Hence, the negotiation structure is an exogenously given collection of subsets of X,
where each of these subsets represents an incomplete agreement that the players may
sign in period 1. Also, because there is no time discounting, a one-step negotiation is
equivalent to a two-step negotiation in which the outcome of the period-1 negotiation
is S = X.

Assumption 1 (Outside options). In period 1, each player can unilaterally decide to
bargain over the unconstrained bargaining set X in period 2. In period 2, each player
can unilaterally end the negotiation, in which case the players utilities are zero.

Hence, S = X constitutes the outside option of the first-stage negotiation.8 Note also
that the above assumption implies that X ∈ S, i.e., if each player can unilaterally
decide to bargain over the unconstrained bargaining set X, then the players can also
jointly decide to do so.

8In Section 5.3, we discuss the alternative assumption that the outside option of the period-1
negotiation is no agreement. That is, if the players fail to agree in period 1, then the negotiation
ends. We show there that all our results continue to hold.
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Finally, to better focus on the sequence of agreements, we solve each negotiating
round via Nash bargaining.9

Assumption 2 (Bargaining solution). Each bargaining round is solved by Nash bar-
gaining.

That is, we assume that, within each bargaining round and for given preferences, the
players will achieve an agreement that is invariant to affine transformations, Pareto
optimal, symmetric and satisfies independence of irrelevant alternatives (see Nash,
1953). Of course, whereas in Nash (1953) the players’ preferences are one of the
primitives of the model, here instead they are endogenous. Once the endogeneity of
preferences is taken into account, irrelevant alternatives might affect the bargaining
solution.

Players’ preferences. In both periods, the players have context-dependent pref-
erences à la Kőszegi and Szeidl (2013).10 We start by writing their preferences taking
as given the consideration set which is the set of outcomes that each player considers
possible. We later derive the consideration set endogenously.

Call ha() player a’s focus function and hb() player b’s focus function, both assumed
strictly positive and strictly increasing, with ha(0) = hb(0) > 0. The utility functions
are

Ua(x) =
n∑
i=1

ha(|αi|)αi · qi + ha(t̄− t)t,

U b(x) =
n∑
i=1

hb(|βi|)βi · qi − hb(t̄− t)t,

where, for all i ≤ n, ha(|αi|), ha(t̄ − t), hb(|βi|), and hb(t̄ − t) are the players’
focus weights. The focus weight on the transfer dimension depends on t̄ ≥ 0 and
t ≤ 0, which are the largest and smallest transfer from player b to player a in the
consideration set. The focus weight on a given issue depends on the utility generated
by including that issue in the final agreement. The focusing effect causes each player

9We argue in Section 5.2 that this modeling choice is without loss of generality.
10Note that other models of salience exist in the literature. We discuss them in Section 5.5.
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to focus more on, and hence to overweight, the dimension of the bargaining problem
with the largest difference in terms of possible bargaining outcomes.

For ease of notation, we define the focus wedge as

∆(y) ≡ ha(|y|)
hb(|y|)

,

which measures the distortion in player a’s preferences relative to those of player b.
In what follows, we consider three cases:

• ∆(y) = 1 for all y, which implies that ha() = hb(). That is: the players’
preferences are equally distorted by the focusing effect. We also say that the
players are “equally focused.”

• ∆(y) ≥ 1 and strictly increasing for all y > 0. That is: player a is always “more
focused” than player b, the more so the larger is y.

• ∆(y) ≤ 1 and strictly decreasing for all y > 0. That is: player b is always
“more focused” than player a, the more so the larger is y.

Having specified the preferences for a given consideration set, we can now define
the consideration set. Kőszegi and Szeidl (2013) argue that the consideration set
should be equal to the agent’s choice set, with the possible exclusion of options that
are dominated (that is, very bad in all attributes; see Kőszegi and Szeidl, 2013,
Section 2.2, remark 2). Here, no issue is “dominated” in the sense that all issues
have positive value for at least one player. But some transfers may be “dominated”
for a player, in the sense that, if included in an agreement, one player will always
prefer his outside option no matter how the other n issues are resolved. The following
assumption implies that those transfers are not part of the players’ consideration set.

Assumption 3 (Consideration set). Consider a bargaining outcome x = {q1, q2, ..., qn, t} ∈
X with t > 0 (respectively t < 0). This bargaining outcome is in the consideration
set if and only if x ∈ S and U b(x) ≥ 0 (respectively Ua(x) ≥ 0).

That is, a bargaining outcome is in the consideration set if and only if it satisfies
any prior incomplete agreement and also satisfies the participation constraint of the
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player making the transfer. Note also that the above assumption implies that prior
incomplete agreements are binding.11

Rational benchmark. The focus-weighted utility introduced above is a decision
utility, because it describes the decision maker’s choice. We will contrast players’
decision utility with their material utility corresponding to a rational benchmark in
which all the focus weights are equal to one. We call the sum of the two material
utilities the material welfare, and we say that an outcome is materially efficient
(inefficient) if it maximizes (does not maximize) material welfare.

3 One-step negotiation

Suppose that no restriction on the bargaining set was imposed by the players in
period 1, that is, S = X and the players bargain in one step. By Assumption 3,
in the one-step negotiation, the bounds on the transfer dimension t̄ and t are given
by the largest possible transfers that satisfy each player’s participation constraint.
To derive those bounds, we consider the best possible bargaining outcome for each
player, which is that containing only the issues in which this player earns positive
utility. We then consider the largest possible transfer that leaves a player indifferent
between such an agreement and his outside option. Mathematically:

n∑
i=1

ha(|αi|) max{αi, 0} = −ha(t̄− t)t, (3.1)

n∑
i=1

hb(|βi|) max{βi, 0} = hb(t̄− t)t̄. (3.2)

The following lemma shows the existence of t̄ and t, and establishes an important
preliminary result: absent a prior incomplete agreement, the salience of the transfer

11We discuss in an extension (Section 5.4) the case of in which an incomplete agreement is binding
only in the current round of negotiation but can be ignored in future rounds if no agreement is
reached in the current round.
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dimension is increasing in the benefit generated by the issues under consideration
and in the number of issues under consideration.

Lemma 1. t̄ and t exist and are unique. Furthermore:

• ∀i ≤ n, t̄− t is strictly increasing in αi if αi > 0, and constant in αi otherwise,

• ∀i ≤ n, t̄− t is strictly increasing in βi if βi > 0 and constant in βi otherwise,

• t̄− t is strictly increasing in n.

Having characterized the players’ focus weights, we can now derive the bargaining
outcome. By Assumption 2, it is given by the Nash bargaining solution:

argmaxx∈XU
a(x) · U b(x),

which, by normalizing each utility function by the focus weight on transfer, be-
comes:12

argmaxq1,...qn,t

(
n∑
i=1

ha(|αi|)αi
ha(t̄− t)

· qi + t

)(
n∑
i=1

hb(|βi|)βi
hb(t̄− t)

· qi − t

)
. (3.3)

Call the solution to the above problem {q∗1, ...q∗n, t∗}. For a given {q∗1, ...q∗n} the
transfer solving (3.3) is:

t∗ =
1

2

n∑
i=1

q∗i ·
(
hb(|βi|)βi
hb(t̄− t)

− ha(|αi|)αi
ha(t̄− t)

)
. (3.4)

In addition, a given issue i is included in the agreement (and hence q∗i = 1) if and
only if

ha(|αi|)αi
ha(t̄− t)

+
hb(|βi|)βi
hb(t̄− t)

> 0. (3.5)

12In this expression, we ignore the constraint that t ≤ t ≤ t̄. The reason is that this constraint
is never binding. If it was, one of the two players would earn zero surplus, which clearly does not
maximize the objective function.
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The left-had side of this expression is the focus-weighted surplus generated by issue i,
that is, the sum of the benefits generated by including issue i in the final agreement,
expressed in monetary equivalent.

Hence, for a given issues included in the agreement, the focusing effect distorts the
equilibrium transfer and how the resulting surplus is shared among the two players.
More importantly, the focusing effect also determines which issue is included in the
agreement and hence the efficiency of the negotiation. In particular, a given issue
is included in the agreement if and only if its focus-weighted surplus is positive (see
3.5), but it is material efficient to do so if and only if αi + βi > 0. It is therefore
possible that a given issue is inefficiently excluded from the agreement, or inefficiently
included into the agreement.

We start the analysis of the efficiency properties of the equilibrium by presenting
sufficient conditions guaranteeing that the outcome of the negotiation is efficient.

Lemma 2. If either n = 1 or ∆(x) = 1 (i.e., the players are equally focused), then
the negotiating outcome is materially efficient. That is, an issue i ≤ n is included in
the final agreement if and only if αi + βi > 0.

Hence, a necessary condition for the outcome to be inefficient is that there are
at least 2 issues on the table. This is similar to what is found by Kőszegi and Szeidl
(2013) (cf. their rationality in balanced trade-offs result in Proposition 3, applied to
two-attribute choices). However, contrary to Kőszegi and Szeidl (2013), inefficiencies
emerge not because the players have preferences that are distorted by the focusing
effect, but rather because players have preferences that are differentially distorted
by the focusing effect. The next lemma shows that inefficiencies may emerge when
the focus weight on the transfer dimension is sufficiently large.

Lemma 3. Assume n ≥ 2, and consider an issue i with αi ·βi < 0. Suppose that the
player who benefits from including issue i into the agreement (i.e. who would make
a larger transfer if issue i was included) is more focused.13

13That is, if αi > 0 then suppose player a is more focused, while if βi > 0 then suppose player b
is more focused.
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• If αi + βi < 0, then issue i is always efficiently excluded from the agreement.

• If αi + βi > 0, then issue i is efficiently included in the agreement for small
t̄− t, but will be inefficiently excluded from the agreement whenever t̄− t > Yi

where Yi is implicitly defined by:

∆(Yi) =
ha(|Yi|)
hb(|Yi|)

:=
ha(|αi|) · |αi|
hb(|βi|) · |βi|

.

Suppose instead that the player who bears the cost of including issue i into the agree-
ment (i.e. who would receive a larger transfer if issue i was included) is more focused.
Then:

• If αi + βi > 0, then issue i is always efficiently included into the agreement.

• If αi + βi < 0, then issue i is efficiently excluded from the agreement for small
t̄− t, but will be inefficiently included into the agreement whenever t̄− t > Yi.

The above lemma shows that, if the player who should make the additional trans-
fer required to include an issue into the agreement is more focused than the other,
then it is possible that such issue is inefficiently excluded from the agreement. If
instead the player who would receive the additional transfer required to include an
issue into the agreement is more focused than the other, then it is possible that such
issue is inefficiently included into the agreement. The inefficient outcome is more
likely to occur whenever the salience of the transfer dimension is large. Intuitively,
the willingness of the players to include an additional issue in the agreement depends
on two elements: the perceived utility of receiving a transfer relative to the perceived
disutility of making a transfer. Both of these elements increase when the salience of
the transfer dimension increases. However, depending on who is more focused, one
will grow faster than the other.

Note that Yi always exists when the surplus generated by issue i is close to zero,
i.e. |αi| ≈ |βi| or αi + βi ≈ 0. Quite intuitively, if it is marginally efficient to include
or to exclude an issue, then even a small distortion in the preferences may generate
an inefficient outcome. Yi also always exists when ∆(y) is unbounded above (and
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player a is more focused) or converges to zero (and player b is more focused). In such
cases, the distortion in one player’s preferences relative to that of the other player
grows arbitrarily large with t̄− t. If instead ∆(y) is bounded above / converges to a
strictly positive number, and at the same time |αi| and |βi| are sufficiently far apart,
then Yi may not exist. In such cases, the negotiating outcome is always efficient with
respect to issue i.

The above lemma has an important implication that will play a central role in
the next section: when the salience of the transfer dimension is reduced, the players
are more likely to behave as rational. We summarize this observation in the following
corollary.

Corollary 1. Suppose that, following a reduction in t̄− t, the focus-weighted surplus
on issue i turns negative (positive). Then it must be that αi + βi < 0 (αi + βi > 0).

The above two lemmas then deliver our main proposition for this section, which
provides conditions on the primitives of the problem for an inefficient outcome to
emerge.

Proposition 1. Suppose n ≥ 2. Consider issue i with αi ·βi < 0 such that Yi exists.
Suppose that the player who should make (would receive) the additional transfer re-
quired to include that issue in the agreement is more focused than the other player
and αi + βi > 0 (αi + βi < 0). Then the agreement will be inefficient with respect to
issue i whenever either

• some βj > 0 with j 6= i is sufficiently large.

• some αj > 0 with j 6= i is sufficiently large.

• n is sufficiently large.

Hence, the outcome on a given issue may be inefficient whenever the value of
agreeing on some other issue is sufficiently large, or if there are sufficiently many
issues on the table. The reason is that, as the value of an unrelated issue or the
number of issues increases, then the salience of the transfer dimension increases (see
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Lemma 1). If inefficiencies are possible for some focus weight on transfer (see Lemma
3), then the outcome of the negotiation will be inefficient. An important implication
is that the players may inefficiently fail to agree on any issue, that is, an inefficient
breakdown of the negotiation is possible. We illustrate this possibility in Section 4.1.

4 Two-step negotiation

In this section we show that material welfare is higher when the negotiation has two
steps rather than a single step, despite the fact that preferences are distorted by
the focusing effect in both periods. We illustrate this result by first fully solving
an example with two issues, in which absent a prior incomplete agreement there is
an inefficient negotiation breakdown. We show that the players will agree in period
1 to restrict their future bargaining set and to impose a bound on the transfer
dimension. By doing so they will achieve the materially efficient outcome. We then
consider the general model and show that when incomplete agreements are used, the
material welfare of the negotiation increases relative to the one-step negotiation (cf.
Proposition 2).

An important preliminary step in solving for the two-step negotiation is specifying
a negotiation structure (see Assumption 1): i.e., what type of incomplete agreements
the players can sign in period 1. Here we restrict our attention to incomplete agree-
ments that:

• commit the players to include an issue in the final agreement.

• commit the players to exclude an issue from the final agreement.

• impose an upper bound T̄ ≥ 0 and a lower bound T ≤ 0 to the transfers that
can be made by the players.

We say that Qi = {1} if the players commit to include issue i in the final agreement,
Qi = {0} if the players commit to exclude issue i from the final agreement, and
Qi = {0, 1} otherwise.
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Restricting our attention to the above negotiation structure is with loss of general-
ity because it does not allow the players to “bundle” issues, that is, the players cannot
decide in period 1 that if their future selves agree on issue i they must also agree on
issue j (or disagree on both issues, or agree on one and disagree on the other). The
problem with bundling issues is that it is unclear how to write the period-2 focus
weights. One could reasonably claim that if two issues become “bundled” then there
should be a single focus weight on both issues (that is, they effectively become a
single issue). We find this idea intriguing but prefer to leave this extension for future
work.

Finally, an important observation is that, no matter what is agreed upon in period
1, in period 2, players may disagree, so that the bargaining outcome 0̄ = {q1 =

0, ..., qn = 0, t = 0} is always in the consideration set. Therefore, agreeing to include
an issue in the future agreement imposes a constraint on the future bargaining set
without affecting the players’ period-2 preferences. On the other hand, both agreeing
to exclude an issue and imposing bounds on the transfer dimension might affect the
period-2 preferences.

4.1 An example: using an incomplete agreement to avoid a

negotiation breakdown

Suppose that there are only two issues with α1 + β1 > 0 and α2 + β2 < 0, so
that material welfare is maximized by an agreement including only the first issue.
Furthermore, for ease of exposition, assume α1 < 0, α2 < 0, β1 > 0 and β2 > 0, that
is, all benefits accrue to player b (that therefore can be seen as the buyer) and all
costs accrue to player a (that therefore can be seen as the seller). We also assume
that player b is more focused, i.e., ∆(y) ≤ 1 and ∆′(y) < 0 for all y > 0.

In this section, we consider a situation in which, absent an incomplete agree-
ment, there is a negotiation breakdown: no issue is included in the final agreement.
By Lemma 3, in a one-step negotiation issue 2 is always excluded from the final
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agreement. Issue 1 is also excluded from the final agreement if and only if

∆(t̄− t) ≤ ha(|α1|)|α1|
hb(|β1|)β1

. (4.6)

By (3.1), (3.2), t = 0 and t̄ is implicitly defined by:

hb(|β1|)β1 + hb(|β2|)β2 = hb(t̄)t̄.

Hence, if β2 is sufficiently large, then (4.6) holds and issue 2 is also excluded from
the agreement, leading to a negotiation breakdown. Intuitively, despite the fact
that issue 2 is never included in the final agreement, it may nonetheless generate a
large benefit and hence be very salient. If it is sufficiently salient, issue 1 may be
“overlooked” and hence excluded from the final agreement. We assume that this is
the case: β2 > β̂2, where β̂2 is the value of β2 such that (4.6) is satisfied with equality.

Consider now the two-step negotiation. First, suppose that, in period 1, the
players exclude issue 2 by setting Q2 = {0} but do not impose any other restriction
on the future bargaining set. In this case, the period-2 focus weight on transfer is β1

and issue 1 is included in the final agreement (see 3.1, 3.2, and Lemma 2, the case
in which n = 1).

Now suppose instead that the players set Q2 = {0} and impose a cap on transfer
T̄ . If T̄ ≥ β1, then the cap on transfer is irrelevant, because it is larger than the
largest transfer player b is willing to make in period 2.14 If instead T̄ < β1, then
the period-2 focus weight is precisely T̄ . In this case, it is possible that the cap on
transfer is not binding—in the sense that the period-2 transfer for given T̄ (as given
by equation 3.4) is below T̄ . For T̄ sufficiently low, however, T̄ will be binding, in
the sense that the period-2 transfer will be exactly T̄ if T̄ ≥ −α1 (so that player a
can cover the cost of including issue 1) and 0 otherwise.

Mathematically, for given Q2 = {0}, Q1 6= {0}, and T̄ ∈ [−α1, β1], the period-2
14By the same logic, if there is also a lower bound on the transfer dimension T ≤ 0, this lower

bound is irrelevant, because the largest transfer player a is willing to make is zero. This is why, in
this example, we can ignore T .
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transfer is:

t∗ = min

{
1

2

(
hb(|β1|)β1

hb(T̄ )
− ha(|α1|)α1

ha(T̄ )

)
, T̄

}
(4.7)

The first term of the minimum in the above expression is the period-2 transfer when
the cap T is not binding, as given by (3.4). It is decreasing in T̄ ∈ [0, β1], because as
the salience of the transfer dimension decreases, the transfer that player b is willing
to make to player a increases (remember that, in this example, b is more focused).
Furthermore, the difference between the two terms of the minimum in the above
expression is positive at T̄ = 0 and negative at T̄ = β1. Hence, the largest possible
transfer achievable via an incomplete agreement is implicitly defined by

t̂∗ ≡ T̄ :
1

2

(
hb(|β1|)β1

hb(T̄ )
− ha(|α1|)α1

ha(T̄ )

)
= T̄

Consider now period 1. In constructing the period-1 context, we maintain As-
sumption 3: a feasible bargaining outcome is in the consideration set if and only if
it satisfies one of the players’ participation constraints. The key, however, is to real-
ize that the bargaining outcomes that are feasible from period-1 viewpoint are only
those that can be achieved as an outcome of the negotiation for some incomplete
agreement.15

Note that issue 2 will never be included in the final agreement for any incomplete
agreement the players may sign. In this sense, issue 2 is not feasible from period-1
viewpoint, and hence it is not part of the period-1 consideration set. Issue 1, instead,
may or may not be included in the final agreement depending on whether issue 2
is excluded, and therefore it is part of the period-1 consideration set. Furthermore,
from period-1 viewpoint, the feasible transfers are those that solve (4.7). This implies
that the largest possible transfer in period-1 consideration set is t̂∗, which is therefore
the period-1 focus weight on transfers.

15In other words, we assume that players are consequential. This assumption is already made in
Koszegi and Szeidl (2013, p. 73) and it basically says that an agent’s consideration set is determined
by the set of future outcomes achievable as consequence of today’s choices.
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We can therefore write the period-1 bargaining problem as:

max
Q1,Q2,T̄

(
ha(|α1|)
ha(t̂∗)

α1 · q∗1 + t∗
)(

hb(β1)

hb(t̂∗)
β1 · q∗1 − t∗

)

s.t.

q∗1 = 1 and t∗ given by (4.7) if Q2 = {0}, Q1 6= {0}, T̄ ∈ [−α1, β1];

q∗1 = 0 and t∗ = 0 otherwise

The focus-weighted surplus generated by issue 1 is

ha(|α1|)
ha(t̂∗)

α1 +
hb(β1)

hb(t̂∗)
β1,

and is strictly positive because t̂∗ < β1. Furthermore, it is easy to see that the
transfer maximizing the period-1 Nash product when issue 1 is included is t̂∗. Hence,
the players agree in period 1 to exclude issue 2 and to impose a cap on transfer
T̄ = t̂∗. As a consequence, in the following period, the players will include issue 1 in
the agreement and agree on the transfer t̂∗.16

In this example, therefore, the players will restrict both the number of issues to be
discussed in the second round of negotiation, and also the range of possible transfers.
They will do so to avoid an inefficient negotiation breakdown. As a consequence, the
efficient bargaining outcome is achieved.

4.2 General Case

We now go back to our general model. We first characterize the period-2 solution
for any given incomplete agreement. We then characterize the period-1 problem of
choosing which incomplete agreement to sign.

16Clearly, with respect to Q1, either Q1 = {1} or Q1 = {0, 1} is a solution.
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4.2.1 Period 2

For a given incomplete agreement, the set of feasible bargaining outcomes achievable
in period 2 is Q1 × ...×Qn × [T , T ] ∪ 0̄. We start by defining t̃ and t

˜
as the largest

and smallest transfer in the consideration set in the absence of explicit bounds on
the transfer dimensions T̄ and T :

n∑
i=1

ha(|αi|) max{αi, 0}1{Qi 6= {0}} = −ha(t̃− t
˜
)t
˜

(4.8)

n∑
i=1

hb(|βi|) max{βi, 0}1{Qi 6= {0}} = hb(t̃− t
˜
)t̃, (4.9)

where 1{.} is the indicator function, so that 1{Qi 6= {0}} = 0 whenever issue i was
excluded via an incomplete agreement, and 1{Qi 6= {0}} = 1 otherwise.

Hence, whenever T̄ ≥ t̃ the players are effectively negotiating without an upper
bound on transfers (and similarly whenever T ≤ t

˜
). In this case, the salience of the

transfer dimension depends on the issues that have not been excluded by a prior
incomplete agreement. If instead either T̄ ≤ t̃ or T ≥ t

˜
, the salience of the transfer

dimension depends on the upper and lower bound on the transfer.
It follows that the solution to the period-2 bargaining problem is the bargaining

outcome x ∈ Q1 ×Q2 × ...Qn × [T , T ] ∪ 0̄ maximizing: n∑
i=1

ha(|αi|)
ha(min{T̄, t̃} −max{T , t

˜
})
αi · qi + t

 n∑
i=1

hb(|βi|)
hb(min{T̄, t̃} −max{T , t

˜
})
βi · qi − t


(4.10)

For a given x∗ = {q∗1, ..., q∗n, t∗} 6= 0 solution to the above problem, the equilibrium
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transfer is

t∗ = max

min

1

2

n∑
i=1

q∗i ·

 hb(|βi|)βi
hb(min{T̄, t̃} −max{T , t

˜
})
− ha(|αi|)αi
ha(min{T̄, t̃} −max{T , t

˜
})

 , T̄

 , T


(4.11)

With respect to the issues included in the agreement, also here an issue i with
Qi = {0, 1} will be included only if it generates positive focus-weighted surplus
(as in condition 3.5). Here, however, this condition is not sufficient to determine
the issues included in the agreement. The reason is that the constraints on the
transfer dimension may be binding and therefore affecting the ability of a player to
compensate the other for the inclusion of an additional issue in the agreement, even
if this issue generates positive focus-weighted surplus.17

4.2.2 Period 1

Call (qOS1 , ..., qOSn , tOS) the bargaining outcome of a one-step negotiation, which con-
stitutes the outside option in period 1 of a two-step negotiation. Call t̂∗ and

ˇ
t∗ the

largest and smallest transfer (as in Equation 4.11) that can be achieved via some in-
complete agreement, and that determine the period-1 focus weight on transfer. The
solution to the period-1 problem is the incomplete agreement {Q1, ..., Qn, T , T̄} that
maximizes:(

n∑
i=1

ha(αi)

ha(t̂∗ −
ˇ
t∗)
αi · (q∗i − qOSi ) + (t∗ − tOS)

)(
n∑
i=1

hb(βi)

hb(t̂∗ −
ˇ
t∗)
βi · (q∗i − qOSi )− (t∗ − tOS)

)

subject to
{q∗1, ..., q∗n, t∗} = argmaxx∈{Q1,...,Qn,T ,T̄} (4.10)

Note that the above problem is mathematically equivalent to the players choosing in
period 1 a bargaining outcome among those that can be reached via an incomplete
agreement.

17That is, we are dealing with a Non Transferable Utility (NTU) bargaining problem.
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The next proposition shows that the difference between t̂∗ and
ˇ
t∗ is, in general,

smaller than the difference between the smallest and largest transfer in the one-step
negotiation. By Corollary 1, this implies that the players’ preferences are “closer”
to rational when bargaining over the incomplete agreement than in the one-step
negotiation. It follows that, if the players impose an incomplete agreement, then the
material efficiency of the negotiation increases.

Proposition 2. Suppose the players impose an incomplete agreement in period 1,
and this incomplete agreement changes the issues included in the final agreement
relative to the one-step negotiation. Then, the material welfare of the negotiation is
strictly greater than in the one-step negotiation.

Hence, the possibility of jointly imposing a constraint on the future bargaining set
is welfare increasing.

The proof of the above proposition derives two conditions under which the salience
of the transfer dimension in the period-1 negotiation is strictly smaller than that in
the one-step negotiation. The first of such conditions emerges when some issues
cannot be included in the final agreement no matter what incomplete agreement the
players impose. In such a case, the issues that are feasible from period-1 viewpoint
are fewer than n, which is the number of issues feasible in the one-step negotiation (as
in the example we solved in the Section 4.1 where n = 2 but only issue 1 was feasible
from a period-1 viewpoint). The second of such conditions emerges when there is
no negotiation breakdown in the one-step negotiation. Remember that in period
1, bargaining outcomes are evaluated relative to what can be earned in the one-
step negotiation (which is the players’ outside option). Hence, if both players earn
strictly positive utility from the one-step negotiation, then the largest transfer they
are willing to make to secure a different agreement in period 1 is reduced (relative to
the one-step negotiation), and with it the salience of the transfer dimension. When
one (or both) of the above conditions are satisfied, then the players are strictly
“more rational” than in the one-step negotiation and Corollary 1 applies. If instead
both conditions are violated (i.e., there is a negotiation breakdown in the one-step
negotiation and all n issues are feasible from period-1 viewpoint), we show that the
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players are nonetheless weakly “more rational” in period-1 of the two-step negotiation
than in the one-step negotiation.

Note that the reverse of the above proposition is not true: the players may
not choose the materially efficient period-1 agreement, nor an incomplete agreement
that increases the material welfare relative to the one-step negotiation. There are
two reasons for this. First, the period-1 preferences are distorted by the focusing
effect, which means that the players may prefer some other agreement to the most
efficient incomplete agreement. Second, the period-1 negotiation is a NTU bargaining
problem: there could be a bargaining outcome that is preferred by both players but
nonetheless is not achievable via any incomplete agreement.

5 Discussion

We now discuss a number of variations to our basic assumptions.

5.1 The consideration set

We assumed that a bargaining outcome is in the consideration set if it satisfies
the participation constraint of the player making the transfer. The alternative is
to assume that a bargaining outcome is in the consideration set if it satisfies the
participation constraint of both players. Here we show that, under this alternative
assumption, if the consideration set exists and is unique, then our results are largely
unchanged. Importantly, however, under this alternative assumption the considera-
tion set may not be unique.

Assume that this alternative assumption holds. Assume also that the considera-
tion set exists and is unique: issues z ≤ n are in the consideration set, with smallest
and largest transfer in the consideration set t and t. Similarly to what discussed
earlier, when only the issues from which player a benefits are included (out of the z
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issues in the consideration set), player a is willing to pay at most −t defined as

z∑
i=1

ha(|αi|) max{αi, 0} = −ha(t̄− t)t. (5.12)

Similarly, when only the issues from which player b benefits are included (out of the
z issues in the consideration set), player a is willing to pay at most t defined as

z∑
i=1

hb(|βi|) max{βi, 0} = hb(t̄− t)t̄. (5.13)

The above conditions are again (3.1) and (3.2), except that here the summation is
over z issues instead of n.

In this case, however, the participation constraint of the other player must also
be satisfied. That is, when only the issues from which player b benefits are included
and transfers are t̄, player a’s participation constraint must be satisfied:

z∑
i=1

ha(|αi|)αi1{β1 > 0}+ ha(t̄− t)t̄ ≥ 0 (5.14)

Similarly, when only the issues from which player a benefits are included and transfers
are t, player b’s participation constraint must also be satisfied:

z∑
i=1

hb(|βi|)βi1{α1 > 0} − hb(t̄− t)t ≥ 0 (5.15)

Consider now an increase in one of the benefits, that is an increase in a βi > 0

or an αi > 0. Clearly, for given z this increase does not affect (5.14) and (5.15),
which continue to hold. Hence, identical to the case considered in the body of the
text, the effect of an increase in one of the benefit is an increase in the salience of
the transfer dimension via equations (5.12) and (5.13). In this case, however, an
increase in βi > 0 or αi > 0 may also lead to an increase in the number of issues
in the consideration set z. That is, because the largest possible transfers increase,
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there may be additional issues that now satisfy the participation constraint of the
player bearing the cost (i.e., equations 5.14 and 5.15). Note, however, that this
additional effect strengthens this result because, as z increases, the salience of the
transfer dimension increases. Overall, also here when a βi > 0 or an αi > 0 increases
Proposition 1 holds.

Consider now a change in one of the costs, that is a change in a βi < 0 or an
αi < 0. Suppose that one of these costs increases (in the sense that its absolute value
increases). Again, if z does not change, then the salience of the transfer dimension
does not change, and Proposition 1 holds. In this case, however, it is possible that
z decreases, leading to a discontinuous drop in the salience of the transfer dimen-
sion. Hence, relative to the body of the text, the difference under this alternative
assumption is that changes in a βi < 0 or an αi < 0 may lead to step-wise changes in
the salience of the transfer dimension (whereas under our working assumption, the
salience of the transfer dimension is constant in a βi < 0 or an αi < 0).

Finally, and perhaps most importantly, under this alternative assumption the
consideration set may not be unique. To illustrate this problem, assume n = 2,
α1 < 0, β1 > 0, α2 > 0, β2 < 0, α1 + β1 > 0, α2 + β2 > 0. In this case, if z = 2 then
(5.12), (5.13), (5.14) and (5.15) become:

ha(α2)α2 = −ha(t̄− t)t

hb(β1)β1 = hb(t̄− t)t̄

ha(|α1|)α1 + ha(t̄− t)t̄ ≥ 0

hb(|β2|)β2 − hb(t̄− t)t ≥ 0

It is possible to find conditions under which one of the above equations is violated,
and therefore it is not possible to have z = 2.18 Following the same steps, we can
show that if only issue 1 is in the consideration set, then t̄ − t = β1 and player a’s

18For example, suppose ha() = 1 (player a is rational) while hb() > 1 and strictly increasing.
Then, the above conditions imply hb(β1)β1 = hb(t̄ + α2)t̄ and t̄ ≥ −α1. The first equality implies
that t̄ is strictly decreasing in α2. Hence, for α2 sufficiently large and/or −α1 sufficiently small the
second inequality is violated.
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participation constraint is

ha(β1)β1 − ha(|α1|)α1 > 0

which always holds under our assumptions. Hence, there is a consideration set that
contains only issue 1 with t̄ − t = β1. However, the same steps show that there is
also a consideration set containing only issue 2 with t̄− t = α2.

In this example, therefore, the players may enter the negotiation thinking that
the only possible agreement is one that includes only issue 1. But they may also think
that the only possible agreement is one that includes only issue 2. As a consequence,
the bargaining problem has multiple equilibria: one in which the players agree only
on issue 1, the other in which the players agree to include only issue 2. There is an
intuitive sense in which, if the two issues differ in the surplus generated, the most
reasonable equilibrium is the one in which the players agree on the most valuable is-
sue. To formalize this intuition, an appropriate equilibrium selection criterion should
be introduced.

To summarize: switching to this alternative assumption has costs and benefits.
The cost is that, because the consideration set may not be unique, it requires the
introduction of an appropriate equilibrium selection criterion. The benefit is that, in
this case, also changes in the costs will affect the salience of the transfer dimension,
although in a step-wise, discontinuous way. We believe the cost is larger then the
benefit, which is why we developed our argument in the main text under Assumption
3.

5.2 The bargaining solution

We assumed that each bargaining round is solved via Nash bargaining. This assump-
tion allowed us to focus on the sequence of agreements signed by the players, without
explicitly modeling the sequence of offers and counteroffers within each negotiating
round. Our results, however, extend to different bargaining solutions, including non-
cooperative ones.

With respect to period 2, we showed that an issue is included in the agreement if
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and only if its focus weighted-surplus is positive. This is the case under most coop-
erative bargaining solution, with the difference being in how the resulting surplus is
split. It is also the case if the period-2 negotiation is modeled as a game of alternat-
ing offers à la Rubinstein (1982). In that game, the benefit and cost of agreeing on a
given issue are the same in every period of the negotiation conditionally on reaching
such period (that is because the disutility of waiting is, at that point, sunk). There-
fore, if the consideration set is defined as in Assumption 3, the consideration set and
the players’ preferences do not change over time. This implies that the solution to
the game of alternating offers is again the Nash bargaining solution.

The period-1 negotiation, instead, involves a positive outside option and non-
transferable utility. Hence the non-cooperative implementation of the Nash bargain-
ing solution is somewhat non standard.19 Nonetheless, Proposition 2 is based on the
observation that the range of possible outcomes from period-1 viewpoint is smaller
than the range of possible outcomes in the one-step negotiation. As a consequences,
the players’ preferences are “closer to rational” in period 1 than in the one-step nego-
tiation. Hence, when they decide to restrict the future bargaining set, they push the
bargaining solution closer to the solution that rational players would prefer. This
remains true independently of the specific bargaining solution used.

5.3 The outside option

In the body of the text, we assumed that the outside option of the period-1 nego-
tiation is the one-step negotiation. That is, each player can unilaterally decide to
negotiate in one step. Here we consider the alternative assumption: if the players
fail to find an agreement in period 1, then the negotiation ends. We maintain that
X ∈ S, that is, the players can agree to impose no constraint on the bargaining set
and therefore negotiate in one step in the following period.

Interestingly, Proposition 2 continues to hold under this assumption as well. We
show this formally at the end of its proof (see the paragraph “additional consid-

19It can be done, for example, via a game of alternating offers with an exogenous probability of
breakdown of the negotiation as in Binmore, Rubinstein and Wolinsky (1986).
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erations”). The reason is that, also in this case, the bargaining outcomes that are
achievable from period-1 point of view are fewer than in the one-step negotiation. For
example, there may be issues that cannot be included in the final agreement for any
incomplete agreement the players may sign. In this case, the salience of the trans-
fer dimensions of the period-1 negotiation will be strictly smaller than that of the
one-step negotiation. As a consequence, the players’ preferences are strictly “closer
to rational” than in the one-step negotiation. If instead all issues can be included
in the final agreement for some incomplete agreement, then period-1 preferences are
identical to those in the one-step negotiation. In this case, the players’ preferences
are weakly “more rational” than in the one-step negotiation.

5.4 Non-binding incomplete agreements

In the text, we assumed that the players must respect a prior incomplete agreement.
However, in most jurisdictions, when facing a sequence of agreements between two
parties, in case a later agreement contradicts an earlier agreement courts typically
enforce the most recent one. When courts are not available (for example, in the
case of international negotiations), the same two parties are free to jointly ignore a
previous agreement.

To rationalize these observations, here we introduce the following modification
to our model: in period 2, the players can either comply with a prior incomplete
agreement, or trigger a third round of negotiation (at no cost). During the third
round of negotiation, they will be bargaining over an exogenously given set. This
set could be equal to the entire bargaining set, but other possibilities are plausible.
For example, in period 3 the players may bargain with the help of a mediator,
and this somehow restricts the set of outcomes that are achievable. Depending on
the situation, triggering this additional negotiation round could be a joint decision,
or even a unilateral decision by a player. In either case, we say that incomplete
agreements are non binding.

Non-binding incomplete agreements may nonetheless affect the outcome of the
negotiation because they will affect the players’ period-2 preferences. The difference
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with the case considered in the main text is that, now, the bargaining solution to the
third negotiating round must be an element of the period-2 consideration set. The
presence of this element imposes a constraint on the way in which period-1 players can
manipulate period-2 preferences. For example, call the transfer solving the period-3
bargaining problem t∗3. If this transfer is positive, then effectively period-1 agents
are restricted to choosing T ≥ t∗3 because a lower cap will not have any effect on
the period-2 consideration set. To summarize, the fact that incomplete agreements
are non binding imposes an additional constraint on the period-1 problem, without,
however, changing our results.

5.5 Other models of salience

We develop our argument using Kőszegi and Szeidl (2013), but other models of
salience have been proposed. The most important ones are Bushong, Rabin and
Schwartzstein (2021) and Bordalo, Gennaioli and Shleifer (2013).

Bushong, Rabin and Schwartzstein (2021) propose a model in which the salience
of a dimension decreases with the range of possible options in that dimension. Math-
ematically, the model is identical to that of Kőszegi and Szeidl (2013), except that
the focus functions ha() and hb() are decreasing. For our purposes, the fact that
the focus functions are decreasing implies that a cap on transfers will increase the
salience of the transfer dimension relative to no cap. It follows that the results
derived in Proposition 1 are now reversed. The salience of the transfer dimension
increases whenever βi > 0 or αi > 0 decreases. Hence, the inefficient outcomes on a
given issue become more likely to occur when the value of reaching an agreement on
other issues are small rather than large.

Applying Bushong, Rabin and Schwartzstein (2021) to our bargaining problem
would lead to a number of counterfactual results. For example, imposing a cap on
the transfer dimension in period 1 increases the salience of the transfer dimension
in period 2. However, as already discussed in the introduction, practitioners believe
that reducing the range of possible outcomes on a dimension reduces the importance
of this dimension within a negotiation (see Raiffa, 1982, p. 216). Similarly, elim-
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inating issues would decrease the salience of the remaining issues relative to that
of the transfer dimension. Again, this seems to run against the practitioner’s view
that eliminating issues via a framework agreement reduces the possibility that the
remaining issues are overlooked (see Fisher et al., 1991, p. 172).

Bordalo, Gennaioli and Shleifer (2013) propose a model of salience in which differ-
ent options are evaluated relative to a reference point. This model could be applied
to our framework by assuming that imposing bounds on transfers shifts the refer-
ence point of the transfer dimension.20 The effect of introducing these bounds will
then depend on whether the transfer dimension becomes more or less salient. If its
salience decreases, then we are back to a logic similar to Kőszegi and Szeidl (2013),
leading to results qualitatively similar to the ones discussed in the body of the pa-
per. If instead its salience increases, then we are back to a logic similar to Bushong,
Rabin and Schwartzstein (2021), leading to results qualitatively similar to the ones
discussed above. We will be in one or the other case depending on how exactly
imposing a bound affects the reference point, which is an issue beyond the scope of
this paper.

5.6 Additional continuous issue

We assumed that there is only one continuous issue, the transfer. Here we provide
an example in which there is a second continuous issue.

Assume that issue 1 is also continuous: instead of agreeing on whether to include
it or not, the players need to agree on its level γ ∈ [0, 1]. When issue 1 is included
in the agreement with level γ, then player b’s utility is γ · β1, and player a’s utility
is γ2 · α1. To avoid triviality, we also assume that β1 > 0 and α1 < 0.21

20This is the case when the reference point is the average of all possibilities available, as in Bordalo,
Gennaioli and Shleifer (2013). However, the reference point may also be defined in other ways. For
example in Bordalo, Gennaioli and Shleifer (2020) the reference point is (at least partially) defined
by what the agents remember about past interactions, in which case the reference point is not
affected by bounds on transfers.

21The fact that the utility of player b is linear in γ while the utility of player a is quadratic in γ is
simply to allow for interior solutions, in which the players agree to include issue 1 with γ ∈ (0, 1). If
both utility functions were linear, then, in equilibrium, γ would be either 0 or 1, and issue 1 would
be, essentially, binary again.

31



In the one-step negotiation, t̄ and t are again given by (3.1) and (3.2). Hence, this
modification to the baseline model does not affect that salience of the transfer dimen-
sion. The focus-weighted surplus generated by including issue 1 in the agreement,
with level γ is

ha(|α1|)γ2α1

ha(t̄− t)
+
hb(|β1|)γβ1

hb(t̄− t)
The players will therefore agree on γ such that

γ∗ =

1 if − 1
2
hb(|β1|)β1
ha(|α1|)α1

∆(t̄− t) > 1

−1
2
hb(|β1|)β1
ha(|α1|)α1

∆(t̄− t) otherwise.

Note that, relative to a rational benchmark in which all focus weights are equal
to 1, the level of issue 1 is too high whenever hb(|β1|)

ha(|α1|)∆(t̄ − t) > 1 and too low if
hb(|β1|)
ha(|α1|)∆(t̄− t) < 1.

Hence, contrary to the model with only binary issues, here the outcome of the
negotiation may be inefficient even if the two players are equally focused. It will also
be inefficient if issue 1 is the only issue on the table, because in that case t̄− t = β1.
In both cases, the level of issue 1 is too high when β1 > |α1|, and is too low when
β1 < |α1|. Hence, here Lemma 1 does not apply: the outcome on issue 1 will be
inefficient also when both players are equally focused, and also when issue 1 is the
only issue.

Furthermore (and similarly to what discussed in the main text) if the players are
differentially focused and there is more than 1 issue, then the salience of the transfer
dimension will also determine the intensity of issue 1. If a is more focused than b, as
the salience of the transfer dimension increases, then the level of issue 1 increases.
If instead player b is more focused, then as the salience of the transfer dimension
increases, the level of issue 1 decreases. The effect of changes in t̄− t may, however,
be non monotonic. That is: it is possible that there is an interior value of t̄− t that
maximizes material welfare, which however monotonically decreases for any larger
or smaller t̄− t.22

22To see this, consider the case in which α1 +β1 > 0 and player b is more focused (all other cases
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To summarize: we have shown in the body of the text that, with binary issues, as
the salience of the transfer dimension increases the material welfare of the negotiation
decreases (in a sense made precise in Lemma 3). We have shown here that, for
continuous issues, this is true only if the salience of the transfer dimension is already
sufficiently large. This implies, for example, that if n is sufficiently large, then as the
importance of an issue i > 1 increases, the outcome on issue 1 moves farther away
from efficiency (as in Proposition 1). But if n is small, then as the importance of an
issue i > 1 increases, the outcome on issue 1 may first become more efficient, and
then moves farther away from efficiency.

5.7 Issue-specific transfers

We described the model as if there is a single transfer. However, introducing issue-
specific transfers will not change our results. This is because in the focusing model by
Kőszegi and Szeidl (2013), focus weights are attached to consumption goods. In our
case, as long as all the transfers are received and consumed in the same period, the
utility functions of the two players depend on “money” (received or spent) rather than
separately on the different issue-specific transfers. As a consequence, in the utility
function all these transfers are weighted by the same focus weight. Such model is
therefore identical to the one presented.

6 Conclusion

We have studied a bargaining problem in which the players’ preferences are distorted
by the focusing effect. When the issues on the bargaining table are uneven in their
importance to the players, some of them may be inefficiently included in or excluded
from the final agreement. The emergence of an inefficient outcome depends on the
strength of each players’ bias relative to that of the other player, and on the number

are analogous). Then hb(|β1|)
ha(|α1|) > 1, which implies that at t̄− t = 0 the level of issue 1 is too high. As

t̄− t increases, the level of issue 1 decreases, possibly reaching the efficient level. Further increases
in t̄− t decrease the level of issue 1 below its efficient level.
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of issues on the negotiating table.
We also allowed the players to negotiate in stages, by first restricting their future

bargaining set via an incomplete agreement, and then finalizing the negotiation out-
come. We show that when players agree on an incomplete agreement, they always
increase the material efficiency of the negotiation (relative to a one-step negotiation).
However, due to an inherent non-transferable utility problem, there is no presump-
tion that players will always manage to agree on an incomplete agreement, even if it
is in principle possible to do so. There is also no presumption that they will agree
on the most efficient incomplete agreement.

We believe our paper improves our understanding of preliminary negotiation
rounds and preliminary agreements (also called framework agreements), which are
widely used in negotiations. In line with the practitioners’ view discussed in the
introduction, our theory shows that preliminary agreements are an important deter-
minant of the importance of the issues on the negotiating table and, as a consequence,
of the outcome of negotiations.

A Appendix

Proof of Lemma 1. (3.1) and (3.2) together yield

t̄− t =

∑n
i=1 hb(|βi|) max{βi, 0}

hb(t̄− t)
+

∑n
i=1 ha(|αi|) max{αi, 0}

ha(t̄− t)
. (A.1)

The LHS is strictly increasing in t̄−t; the RHS is strictly decreasing in t̄−t. Further-
more, when t̄− t = 0 the RHS of the above expression is strictly positive (remember
that, by our initial parametric restrictions, we rule out issues that generate cost for
both players), and hence strictly above the LHS. At the same time, for t̄ − t suffi-
ciently large the LHS must be above the RHS. Taken together, this implies that RHS
and LHS always cross only once.

If t̄ − t exists and is unique, then by (3.1) and (3.2) also t̄ and t exist and are
unique. Also, the RHS of (A.1) is increasing in αi if αi > 0, in βi if βi > 0, and in
n, which implies our statement.
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Proof of Lemma 2. If n = 1, then by our initial parametric restrictions, β1 · α1 < 0.
Suppose β1 > 0 (the case α1 > 0 is analogous). By (3.1) and (3.2) we have t̄ = β1

and t = 0. Hence, by (3.5), there is an agreement if and only if

ha(|αi|)αi + ha(|βi|)βi > 0.

Because ha(|x|) is increasing in |x|, the above condition is equivalent to αi + βi > 0.
Hence, issue i is included in the agreement if and only if it is efficient to do so.

Suppose now that ∆(x) = 1. In this case ha(t̄ − t) = hb(t̄ − t) and hence, by
(3.5), issue i is included in the agreement if and only if

hb(|αi|)αi + hb(|βi|)βi > 0.

Because hb(|x|) is strictly increasing in |x|, the above condition is equivalent to
αi + βi > 0. Hence, issue i is included in the agreement if and only if it is efficient
to do so.

Proof of Lemma 3. We limit our proof to the case that player b is “more focused”
than player a (that is, ∆(x) ≤ 1 and strictly decreasing). The proof of the opposite
case follows by interchanging cases A.) and B.), respectively.

As a preliminary step, remember that equation (3.5) establishes that an issue is
included in the final agreement if and only if

ha(|αi|)αi
ha(t̄− t)

+
hb(|βi|)βi
hb(t̄− t)

> 0.

This condition is equivalent to

∆(αi)

∆(t̄− t)
αi +

hb(|βi|)
hb(|αi|)

βi > 0. (A.2)

The proof proceeds by considering different cases.

Case A.) αi < 0 and βi > 0: Suppose αi + βi < 0, that is, it is efficient not to
include issue i into the agreement. In case t̄ ≤ |αi|, then the largest transfer
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player b is willing to make does not cover the cost for player a of including
issue i. This issue will, therefore, not be included in the agreement. If instead
t̄ > |αi|, then the largest transfer player b is willing to make covers the cost for
player a of including issue i. It follows that issue i will be included into the
agreement if the focus weighted surplus generated by issue i is positive. Note
that, in this case, it must be that t̄ − t > |αi|. Together with the fact that
player b is more focused (i.e., ∆(x) ≤ 1 and decreasing) and with the fact that
αi < 0 implies that the the LHS of (A.2) is always smaller than

ha(|αi|)αi + hb(|βi|)βi

which is negative whenever αi + βi < 0. Hence, if αi + βi < 0, then (A.2) does
not hold and the players do not want to include issue i in the agreement.

Suppose next that αi + βi > 0, that is, it is efficient to include issue i in the
agreement. In this case, we have hb(|βi|) ≥ ha(|βi|) > ha(|αi|) (where the first
inequality follows from the fact that player b is more focused), which implies
that

ha(|αi|)αi + hb(|βi|)βi > 0.

If t̄− t→ 0 then ∆(t̄− t)→ 1, which together with the above expression imply
that (A.2) holds and the players want to include issue i in the final agreement.
However, if there exists a Y such that

∆(Y ) = −ha(|αi|)αi
hb(|βi|)βi

(A.3)

then for t̄− t > Y issue i will be inefficiently excluded from the agreement.

Case B.) αi > 0 and βi < 0: Suppose αi + βi > 0, that is, it is efficient to include
issue i into the agreement. This implies that |βi| < αi, and hb(|βi|) < hb(αi).
Furthermore, by definition of t (see equation 3.1), we have ha(|αi|)αi ≤ −ha(t̄−
t)t. Therefore, ha(|αi|)αi ≤ ha(t̄− t)(t̄− t) which implies that αi ≤ (t̄− t) and
that ∆(αi) ≥ ∆(t̄−t). Taken together, the fact that αi > 0, βi < 0, αi+βi > 0,
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hb(|βi|) < hb(αi) and ∆(αi) ≥ ∆(t̄ − t) imply that (A.2) holds, and issue i is
included in the agreement.

Suppose next that αi + βi < 0. Then,

ha(|αi|)αi + hb(|βi|)βi < 0.

Again, if t̄−t→ 0 then ∆(t̄−t)→ 1, which together with the above expression
imply that (A.2) does not holds and the players will efficiently exclude issue i
in the final agreement. However, if P̄ (as in A.3) exists, then t̄− t > P̄ issue i
will be inefficiently included in the agreement.

Proof of Proposition 1. By Lemma 1, t̄− t is

• increasing in βj, strictly so for βj > 0, for all j ≤ n.

• increasing in αj, strictly so for αj > 0, for all j ≤ n.

• increasing in n.

The statement then follows by Lemma 3.

Proof of Proposition 2. Without loss of generality, order the issues such that:

• issues i ∈ {1, ..., z} are included in the final agreement of the one-step negotia-
tion, (where z ∈ {0, ..., n}, with the convention that if z = 0, then the one-step
negotiation leads to no agreement),

• issues i ∈ {z + 1, ..., w} are excluded from the final agreement of the one-
step negotiation, but can be included in the final agreement of the two-step
negotiation provided that a given incomplete agreement is signed in period 1
(where w ∈ {z, ..., n}, with the convention that if w = z, then such issues do
not exist).
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Issues 1 to w are therefore the feasible issues from period-1 viewpoint. For future
reference, remember that in the one-step negotiation instead all n issues are feasible.

Call the smallest and largest t∗ that can be achieved as a function of an incomplete
agreement (as in Equation 4.11)

ˇ
t∗ and t̂∗, respectively.23 Note that, t ∈ [

ˇ
t∗, t̂∗] is the

set of feasible transfers from period-1 viewpoint.
A feasible bargaining outcome x satisfies the player’s participation constraints if

and only if

Ua(x) =
w∑
i=1

ha(|αi|)αi · qi + ha(min{t̂∗, t̃1} −max{
ˇ
t∗, t

˜
1})t

≥
z∑
i=1

ha(|αi|)αi + ha(min{t̂∗, t̃1} −max{
ˇ
t∗, t

˜
1})tOS

U b(x) =
w∑
i=1

hb(|βi|)βi · qi − hb(min{t̂∗, t̃1} −max{
ˇ
t∗, t

˜
1})t

≥
z∑
i=1

hb(|βi|)βi − hb(min{t̂∗, t̃1} −max{
ˇ
t∗, t

˜
1})tOS.

where t̃1 and t
˜

1 are the largest and lowest transfer in the period-1 consideration set

when the constraint t ∈ [
ˇ
t∗, t̂∗] is not binding. They are implicitly defined as the

transfers leaving each player indifferent between an agreement including only the
issues giving him positive utility and his outside option:

w∑
i=1

ha(|αi|) max{αi, 0} −
z∑
i=1

ha(|αi|)αi = −ha(t̃1 − t
˜

1)(t
˜

1 − tOS) (A.4)

23The existence of
ˇ
t∗ and t̂∗ follows from the fact that, as already discussed in Section 4.2.1,

when T̄ is above a certain threshold, then the period-2 focus weights (and the period-2 solution as
in Equation 4.11) do not depend on T̄ . The same happens when T is below a certain threshold.
Without loss of generality, therefore, we can restrict T̄ to belong to a closed interval (and similarly
for T ). This, together with the fact that the objective function is continuous, guarantees that the
maximum and minimum of (4.11) exist.

38



w∑
i=1

hb(|βi|) max{βi, 0} −
z∑
i=1

hb(|βi|)βi = hb(t̃
1 − t

˜
1)(t̃1 − tOS). (A.5)

The next step is to show that t̃1 and t
˜

1 exist and are unique. To see this, note

that (A.4) and (A.5) together yield

t̃1 − t
˜

1 =

∑w
i=1 hb(|βi|) max{βi, 0} −

∑z
i=1 hb(|βi|)βi

hb(t̃1 − t
˜

1)

+

∑w
i=1 ha(|αi|) max{αi, 0} −

∑z
i=1 ha(|αi|)αi

ha(t̃1 − t
˜

1)
.

(A.6)

The argument is identical to the one presented in the proof of Lemma 1. The LHS is
strictly increasing in t̃1− t

˜
1; the RHS is strictly decreasing in t̃1− t

˜
1, and they always

cross only once. Hence, t̃1 − t
˜

1 exists and is unique. By (A.4) and (A.5), then, also

t̃1 and t
˜

1 exist and are unique.

We now compare t̃1− t
˜

1 with t̄− t, the focus weight on the transfer dimension of

the one-step negotiation (as in (A.1), see the proof of Lemma 1). By simple algebra,
we can show that the RHS of (A.6) is below the RHS of (A.1) at a given range of
possible transfers y whenever

0 <

∑z
i=1 hb(|βi|)βi +

∑n
i=w+1 hb(|βi|) max{βi, 0}
hb(y)

+

∑z
i=1 ha(|αi|)αi +

∑n
i=w+1 ha(|αi|) max{αi, 0}
ha(y)

Note that ∑z
i=1 hb(|βi|)βi
hb(t̄− t)

+

∑z
i=1 ha(|αi|)αi
ha(t̄− t)

is the focus-weighted surplus generated by the agreement in the one-step negotiation.
It is strictly positive whenever z > 0 and zero when z = 0. Hence, whenever either
z > 0 or w < n, then the RHS of (A.6) is below the RHS of (A.1) at y = t̄ − t.
This then implies that the solution to (A.6) must be below the solution to (A.1). If
instead z = 0 and w = n, then the two solutions coincide.

Hence, when either z ≥ 1 or w < n, then t̃1− t
˜

1 < t̄− t. This immediately implies
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that min{t̂∗, t̃1}−max{
ˇ
t∗, t

˜
1} < t̄−t. If instead z = 0 and w = n, then t̃1−t

˜
1 = t̄−t.

This implies that min{t̂∗, t̃1}−max{
ˇ
t∗, t

˜
1} ≤ t̄−t. It follows that period-1 preferences,

although not rational, are “closer” to rational than the preferences in the one-step
negotiation, strictly so if z ≥ 1 or w < n. Hence Corollary 1 applies: because
they “more rational” than in the one-step negotiation, if the players use incomplete
agreements to change the issues included in the agreement (relative to the one-step
negotiation), this change must increase material efficiency.

Additional considerations The above proof can be extended easily to the case
in which the players outside option in the period-1 negotiation is no agreement. The
only difference is that, in this case, we need to assume that z = 0 from the outset.

Hence, if w < n, then the focus weight on transfer in the period-1 negotiation
is strictly smaller than that of the one-step negotiation. If instead w = n, then the
focus weight on transfer of the period-1 negotiation is weakly smaller than that of
the one-step negotiation. Again, Corollary 1 applies.
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