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Abstract 
 
We employ a new version of the ABC macro-epidemiological agent based model presented in 
Delli Gatti and Reissl (2020) to evaluate the effects of vaccinations and variants on the epidemic 
and macroeconomic outlook. Vaccination plays the role of a mitigating factor, reducing the 
frequency and the amplitude of contagion waves, while also significantly improving 
macroeconomic performance. The emergence of a variant, on the other hand, plays the role of an 
accelerating factor, increasing the volatility of epidemic curves and worsening the macroeconomic 
outlook. If a more contagious variant emerges after vaccination becomes available, therefore, the 
mitigating factor of the latter is at least partially offset by the former. A new and improved vaccine 
in turn can redress the situation. Vaccinations and variants, therefore, can be conceived of as 
drivers of an intertwined cycle impacting both epidemiological and macroeconomic 
developments. 
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1 Introduction

Since the fall of 2020, two crucial V-words have changed the epidemiological (and macroe-

conomic) landscape worldwide: Vaccines and variants. Since the outbreak of Covid 19,

vaccination has been considered the ultimate weapon against the virus. The emergence

of virus variants has put this belief to the test as mutations may eventually reduce the

efficacy of the vaccine. In this paper we explore the consequences of these phenomena

using a new version of ABC, the agent based macro-epidemiological model of Covid-19

put forward in Delli Gatti and Reissl (2020).

We proceed in two steps. First, we analyze the effects of vaccination in the absence of

any variant. We then introduce and study the effects of variants in the presence of the

original vaccine and of an improved vaccine.

From the epidemiological point of view vaccination may affect the spread of the disease

along three dimensions. First and foremost, vaccination may reduce the probability for

a vaccinated person to get the disease. The lower this probability, the higher the efficacy

of the vaccine along this dimension. We term this Vaccine Efficacy of type 1 (V E1).

Second, the vaccine may reduce the probability for a vaccinated person to develop serious

symptoms and eventually die if they are infected. The lower this probability, the higher

the efficacy of the vaccine along this dimension, which we term Vaccine Efficacy of type

2 (V E2).

Third, the vaccine may reduce the probability for a vaccinated but infected person to

infect a susceptible individual. The lower this probability, the higher the efficacy of the

vaccine along this dimension, which we term Vaccine Efficacy of type 3 (V E3).

Ample evidence shows that that V E1 for vaccines against Covid 19 is not complete;

estimates of the induced immunity to infection vary from 60 to 90%, also depending on

the vaccine type (smaller for traditional vaccines, higher for mRNA vaccines). It is also

widely observed that V E2 is very high (in the neighborhood of 90%): in the summer of

2021, in fact, the vast majority of people hospitalized and dying from the disease were

unvaccinated. Finally, there is some evidence that vaccinated but infected individuals

can still infect susceptible individuals but estimates still differ widely.1

We expect the epidemiological consequence of vaccination to be a decline in (a) the

incidence/morbidity and (b) the mortality of the disease. The magnitude of these effects

may of course also depend on the particular configuration of the vaccination campaign,

and we experiment with different prioritization rules in order to investigate this.

As the macroeconomic dynamics of our model are strongly affected by epidemiological

developments, we expect vaccination (1) to reduce the duration and amplitude of the

output loss due to the epidemic; (2) to alleviate the burden of public sector deficit and

1In our simulations we have assumed that vaccine efficacy of type 1 and 2 are V E1 = 70% and
V E2 = 90% respectively. As to vaccine efficacy of type 3 we put ourselves in the worst case scenario and
suppose that it is zero: a vaccinated infected individual is as infective as an unvaccinated one.
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debt.

We obtain a rich set of results from the simulation of the vaccination campaign. First of all

we infer that the vaccine significantly contributes to containing the epidemic and saving

lives, in line with expected results (a) and (b) above. Regardless of the prioritisation

strategy, in fact, both the cumulative number of infections and of deaths is substantially

lower than in the absence of a vaccine.

Second, simulations show that in the presence of a vaccine, while there are additional

waves of infections (due also to the fact that vaccine-induced immunity is temporary),

both the frequency and amplitude of these waves are reduced. Moreover, in the presence

of the vaccine the curve of new deaths remains mostly flat while there are multiple

endogenous waves of newly deceased in the absence of a vaccine. Vaccination is hence

a significant mitigating factor of the cyclical dynamics of infections and deaths, leading

to a reduction of the frequency and the amplitude of subsequent waves once the vaccine

becomes available.

Third, the epidemiological results of different prioritization strategies do not differ as

starkly as on might expect: in our simulations, the magnitude of the mitigation effect

of vaccination is similarly strong across different prioritization strategies. Priority given

to the old, however, allows to save a somewhat higher number of lives at the cost of a

slightly higher number of infections. A vaccination strategy aimed at prioritizing the old

protects individuals with higher exposure to the risk of dying while younger agents are

more exposed to infection due to interactions at the workplace.

Fourth, the vaccine has a relatively small but significant and persistent positive effect on

GDP, particularly since the lower number of infections reduces the (negative) consump-

tion shock associated with social distancing.

We then turn to virus variants. A variant may change the epidemiological scenario

along four dimensions: it may (i) increase the probability for a susceptible individual to

be infected if in contact with an infectious individual; (ii) increase the probability for

an infected individual to develop serious symptoms and eventually die; (iii) reduce the

duration of the immunity acquired by people who have recovered from the disease; (iv)

reduce the efficacy of the vaccine along one or more of the dimensions outlined above.

For simplicity, we assume that variants alter the epidemiological scenario only along

dimensions (i) and (iv). In particular, we experiment with two variants. Both of them

are more contagious than the original virus. In addition, both variants reduce the efficacy

of the original vaccine in preventing infection (V E1). The second variant in addition also

reduces the efficacy of the original vaccine in preventing serious symptoms and death

(V E2). We explore the effects of both variants both in the absence and presence of an

improved vaccine which eliminates these latter effects of the variants.

Simulations show that in all cases, the variant replaces the original virus very soon, driving

a new wave of infections. This increase in infections also leads to an increase in deaths

3



even in the case of variant 1 which does not affect the vaccine’s ability to prevent serious

disease. As one would expect, however, the death toll increases even more strongly in the

case of variant 2. Variants hence act as an accelerating factor, leading to an increase of

the frequency and amplitude of waves of contagion, partly offsetting the positive effects of

the original vaccine. If the vaccine is adapted to the variant, the amplitude and frequency

of these waves is once more mitigated.

The paper is structured as follows. After a brief review of the literature (section 2),

we present a synthetic overview of the ABC model in section 3. We provide a detailed

description of the model in appendices A and B. Section 4 discusses the calibration and

validation of the baseline scenario. Section 5 presents the epidemiological scenarios while

section 6 focuses on the macroeconomic effects of these scenarios. We discuss the effects

of vaccination in section 7. Section 8 introduces the emergence and spread of variants.

Section 9 concludes.

2 Related literature

Even before the outbreak of Covid 19, many papers highlighted the economic benefits

of vaccination. Smith et al. (2009) use a computable general equilibrium model to show

that the availability of an effective vaccine is key in determining the economic impact of

influenza in the UK. Similarly, Keogh-Brown et al. (2010) use a multi-sector computable

general equilibrium model to examine the potential economic cost of a modern epidemic.

They find some evidence that vaccinations, antivirals or a mix of the two, may be a

cost-effective strategy.

Since the outbreak of the current pandemic, some studies have specifically analyzed the

macroeconomic effects of a vaccine against Covid 19. Using a SIR model to address

the question of prioritization in vaccination, Forslid and Herzing (2021) find a trade-off

between economic gain and fatality reduction. Economic gain is maximised when the

middle-aged are given priority. When instead the elderly prioritised, deaths are min-

imised. Policy choices therefore depend on priorities: reduction of fatalities or maximi-

sation of the economic gain. In a different framework, Babus et al. (2021) reach similar

conclusions. They suggest a vaccine distribution that puts more emphasis on the risk

of mortality than on the loss of economic output. Gollier (2021) also use a SIR model,

concluding that it is key for the number of lives saved and for the economy to vaccinate

older people first. According to Matrajt et al. (2021), prioritization depends on vaccine

efficacy. In order to minimize deaths, when vaccine efficacy is “low”, it is optimal to

allocate vaccines to the old first. On the contrary, when vaccine efficacy is high, priority

should be given to younger age groups.

Lindskog and Strid (2020) assess the economic gains of a rapid vaccination programme

against a benchmark consisting of the economic costs of the epidemic in terms of loss of
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production, higher public debt and decline in employment that the Swedish economy has

faced in 2020. They identify as most important the indirect costs deriving from lockdowns

and social distancing measures. They focus on the effects that rapid vaccination has on

central macroeconomic variables and find that shortening the duration of the epidemic

through vaccination would allow to recover major economic losses.

Finally, Saad-Roy and Wagner (2020) find that contagion dynamics can be altered sub-

stantially by a mass roll-out of vaccines in a SIR model. The impact, however, is strongly

dependent on the efficacy of the vaccine and the response of the immune system. But

even with imperfect immunity and moderate vaccination rates, vaccination could be key

in strengthening the control of the epidemic.

With this paper we contribute to a small but growing literature on joint economic and

epidemiological dynamics in agent-based settings (e.g. Mellacher, 2020; Basurto et al.,

2021). The model presented by Basurto et al. (2021) includes the possibility of vacci-

nation, but the authors do not conduct experiments to discern the specific impact of

vaccines on economic performance or epidemiological dynamics as it is assumed that all

agents are immediately vaccinated once the vaccine becomes available, and that the latter

is fully effective. They do however show that the emergence of a more contagious variant

may have substantial impacts both in terms of epidemiological and economic outcomes.

3 An overview of the model

3.1 The environment

The model economy we analyze is populated by households, firms, the banking system

and the public sector. The unit of time for the macroeconomic sub-model is a month. The

epidemiological sub-model instead runs at the basic frequency of one week, with every

month in the model containing exactly four weeks. In the macroeconomic submodel,

the time subscript t indicates a month while in the epidemiological sub-model the time

subscript τ indicates a week.

There are NH households which fall into two categories: NW workers and NF firm owners.

There is a single owner per firm. For simplicity we assume that only workers can become

ill, both in “normal times” and during an epidemic. During “normal times” workers

may become ill but this illness is neither lethal nor can it be transmitted to others,

such that all who become ill eventually recover and the population of living workers will

not change. During the epidemic the population of living workers may change since

the epidemic disease is potentially lethal. If some worker h ∈ NW dies they essentially

become dormant, and all their assets are written off. Over time, dead agents are replaced

by newly born ones which take their place, such that the population of living workers

may once more reach NW .
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There are NF firms which fall into three categories: Nk
F producers of capital goods (K-

firms), N b
F producers of basic (or essential) consumption goods (B-firms) and N l

F pro-

ducers of non essential consumption goods or luxury goods (L-firms). In the following

we will consider also the set of all consumption goods producers (C-firms) which is the

union of the sets of B-firms and L-firms, denoted N c
F . The number of active firms may

change over time due to entry and exit. A firm exits if it goes bankrupt, i.e., if its equity

turns negative. Over time, bankrupt firms may be replaced by new entrants in the same

sector, but the total number of firms never exceeds NF .

The banking system is represented by a single bank, collectively owned by firm owners.

In principle the bank can go bankrupt. If the bank’s equity turns negative we assume

that its owners will provide an equity injection in order to make it survive.

3.2 The macroeconomic sub-model

In this section we succinctly describe the macroeconomic sub-model. We present be-

havioural rules for the four groups of economic agents (households, firms, the banking

system and the public sector) and market protocols that govern transactions. A more

detailed description is given in appendix A.

3.2.1 Households

A household indexed with h ∈ (1, NW ) is a worker. If alive, workers can be either

economically active or economically inactive. Chiefly for epidemiological purposes, the

population of workers is divided into three age groups: young, middle-aged and old.

All old agents are assumed to be retired and hence economically inactive. All young

and middle-aged agents are initially economically active and constitute the labour force

(either employed or unemployed). When an economically active worker falls ill they

become economically inactive until their illness ends.2

Each economically active worker supplies 1 unit of labour inelastically. If employed, they

receive a uniform wage and pay a fraction (the tax rate on wages) of this wage to the

Government. If unemployed, they will receive an unemployment subsidy. Workers (both

employed and unemployed) who fall ill receive sick-pay. Retired workers receive pensions.

A household indexed with h = NW + f is the owner of the f -th firm, f = 1, 2, ..., NF .

The income of this household consists of dividends, which, in turn, are equal to a fraction

(the pay-out ratio) of the after-tax profit of the firm owned by that household. The firm

pays out dividends only if profits are positive. Moreover, the firm owners are assumed to

jointly own the bank and consequently each one of them receives an equal share of the

dividends distributed by the bank.

2In normal times, illness always ends with recovery, during an epidemic it may end either with
recovery or with death.
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In addition, all households receive interest income on any deposits held at the bank,

which represent the only financial assets owned by households.

A household’s consumption budget, i.e., the sum it wishes to spend on consumption goods,

is given by a weighted average of past disposable incomes and a fraction of its financial

wealth (deposits). The fraction of the consumption budget allocated to B-goods depends

on the relative price of B-goods and L-goods. The consumer shops first at B-firms and

then at L-firms.

The consumer visits two B-firms: the “go-to” supplier and a randomly drawn potential

new shopping partner. If the price charged by the former is lower than or equal to that

of the latter they will first buy from the go-to supplier and resort to the new seller only

if the consumption budget devoted to B-goods is not completely exhausted with the

first purchase. Otherwise, they will switch to the new partner (and reverse the order of

purchase) with a probability which is increasing with the price set by the go-to partner

relative to that of the potential new partner. If the consumer actually switches to the

new partner, the latter becomes their new go-to supplier. If a firm goes bankrupt and

exits (see below), all the households who purchased at this firm as their go-to supplier

will randomly choose a different one. The market protocol for L-goods follows the same

rules as that for B-goods.

This market protocol does not guarantee equilibrium. Queues of unsatisfied consumers

(involuntary savers) at some firms may coexist with unsold goods at some other firms.

3.2.2 Firms

B-firms and L-firms are consumption goods producers (C-firms for short) and follow the

same behavioural rules. An active firm indexed with f ∈ (1, N c
F ) has market power and

sets the individual price and quantity under uncertainty..

The decision process is based on two rules of thumb which govern price changes and

quantity changes respectively. Excess demand and the relative price
Pf,t
Pt

– where Pt is

an aggregator of the prices set by C-firms – dictate the direction of price adjustment:

the firm will increase (reduce) the price next period if it has registered excess demand

(supply) and has underpriced (overpriced) the good in the current period. Otherwise it

will leave the price unchanged. The magnitude of price adjustments is stochastic. We

also assume that the firm will never set a price lower than its average cost.

Both the direction and the magnitude of quantity adjustment are determined by excess

demand. The firm will increase production next period if it has registered excess demand

(in the form of a fringe of unsatisfied consumers) in the current period; it will downsize

production if it has registered excess supply.

Technology is represented by a Leontief production function the arguments of which are

capital and labour. Once a decision has been taken on desired output, the firm retrieves
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from the production function how much capital and labour it needs to reach that level

of activity. If actual capital is greater than the capital requirement, the desired rate of

capacity utilization will be smaller than one. If actual employment is smaller than labor

requirement, the firm will post vacancies. If the opposite holds true the firm will fire

workers. In this scenario, provided there are no bottlenecks on the labour market, the

firm can reach the desired level of production.

On the other hand, if actual capital is smaller than the capital requirement, the former

will be utilized at full capacity (the rate of capacity utilization will be equal to 1) but

desired output will not be reached and scaled back accordingly.

Actual capital in the current period is determined by capital investment carried out in

the previous period and the firms’ undepreciated capital stock. We assume that a C-firm

may carry out investment in any given period with a probability πk < 1. In order to

determine its investment demand, the firm calculates a target capital stock based on past

utilisation and the target utilisation rate, also taking into account the depreciation of

capital and the probability of investing. It invests in capital goods so as to reach this

target capital stock.

Once investment demand has been determined, C-firms visit the market for K-goods.

The market protocol for this market follows the same rules as those for B-goods and

L-goods.

The price adjustment rule for capital goods producers is the same as that of C-firms. The

quantity adjustment rule departs from the one adopted by C-firms to take into account

the assumption that K-goods are durable and therefore storable: inventories of capital

goods can be carried on from one period to another and sold in the future. We assume

that K-firms are endowed with a linear production function with labour as the only input.

Once the price-quantity configuration has been set, a K-firm may post vacancies or fire

workers in order to fulfil labour requirements.

The market for labour is characterized by search and matching. Unemployed workers visit

a subset of firms chosen at random. Once an unemployed worker finds a firm with an

unfilled vacancy they stop searching and the match occurs. The uniform nominal wage is

set on the basis of labour market conditions captured by the distance between the current

unemployment rate and a threshold unemployment rate. Whenever the unemployment

rate is above (below) the threshold the wage will decrease (increase).

3.2.3 The banking system

Firms register a financing gap when outlays (to pay for wages and capital investment) are

greater than their available liquidity in the form of accumulated bank deposits. Firms

which cannot self-finance their costs demand bank loans.

The bank sets the interest rate on loans and the quantity of credit supplied to firms. The
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interest rate on loans is set adding a mark up (external finance premium) on the risk free

interest rate. The external finance premium, in turn, is increasing with the borrower’s

leverage. Moreover, the bank determines a maximum amount it is willing to lend to a

given borrower, again based on that borrower’s leverage. This means that a firm may

be credit rationed and therefore forced to scale down production and/or investment. In

every period, borrowers repay a fraction of their outstanding loans.

Households and firms hold deposits at the bank. The interest rate on deposits is a fraction

of the fixed risk free interest rate which coincides with the interest rate on Government

bonds. If the bank’s profit at the end of a period is positive, it pays a fraction of its

after-tax profit as a dividend, which is divided up equally among all firm owners.

3.2.4 The public sector

The public sector collects taxes on wage income and profits and provides transfers in the

form of unemployment subsidies, sick-pay and pensions, all of which are given by fractions

of the current nominal wage. Government expenditure consists of public provision of

healthcare services. In case of a public sector deficit, the Government issues bonds. It is

assumed that the bank purchases all issued bonds at a fixed interest rate.

3.2.5 Demand and supply of healthcare

Real government expenditure on healthcare is given by a constant fraction of full employ-

ment output, calculated using the initial labour force. We assume that the government

uses this amount to spend on the output of both K-firms and C-firms. This expendi-

ture may be interpreted as purchases of equipment necessary for healthcare provision

and consumption of medical workers (who are not explicitly modelled). The goods thus

purchased are converted one-for-one into a supply of healthcare.

We assume that even in the absence of an epidemic, a healthy worker may become ill

with some probability in any period, but that such illness is neither potentially lethal nor

infectious to others. As long as an agent is ill, they generate a demand for healthcare

which is increasing with their age. They enter the healthcare system to receive treatment.

If the remaining supply of healthcare in a given period is insufficient to accommodate the

agent’s demand, they join a randomised queue to receive treatment.

In the case of an epidemic, agents who contract the epidemic disease and develop serious

symptoms will also demand healthcare, making it more likely that demand will exceed

supply.

3.2.6 Entry and exit

While during ‘normal times’ the population of living workers is constant, the epidemic

disease may lead to the death of workers. If a worker dies, their assets are written off, and

9



they may be replaced in each future period by a young worker with a constant probability.

During the epidemic, the flow of new deaths may hence at least for some time exceed the

flow of new ‘births’, meaning that the population of living workers is smaller than NW .

If a firms’ equity becomes negative, it is assumed to go bankrupt and exit.3 In every

future period, the exiting firm may then be replaced by a new firm operating in the same

sector, with a probability that is increasing in the average profit rate in the sector in

question. The new firm receives any fixed capital remaining from the bankrupt firm and

receives an injection of liquidity from the owner of the bankrupt firm, who becomes the

owner of the new firm.

The bank’s equity may become negative due to persistent loan defaults. If this is the

case, a bail-in procedure is applied: all firm-owners (who collectively own the bank) make

a transfer to the bank until its equity becomes positive.

3.3 The Epidemiological sub-model

In this section we briefly describe the epidemiological sub-model. We present a taxonomy

of epidemiological segments of the population, the transmission of the disease and the

possible outcomes for each infected agent and for the composition of the population. A

more detailed outline can be found in appendix B.

3.3.1 The taxonomy of epidemiological groups

The epidemic is characterised by the outbreak of an infectious disease which spreads

from one subject to the others through contagion. At a certain point during the model

simulation, a small number of workers are exogenously infected with the epidemic disease.

These people are the initial infected (and infectious). The susceptible agents after the

appearance of the infected are simply the difference between the initial population and

the initial infected.

Infected agents can be either non-symptomatic or symptomatic. The former are infected

agents who do not have symptoms or develop only mild symptoms. In this case the infec-

tion can be detected only if the agent is subjected to a test. The probability of detecting

an infected non-symptomatic agent is exogenous in the scenario of Uncontained Epidemic

(UE) and endogenous in the scenarios of (spontaneous) Social Distancing (SD) and Lock-

down (LD), becoming a function of the number of newly detected cases in the past week.

The scenarios are described in detail in section 5. Detected non-symptomatic infected

agents are quarantined and therefore cannot spread the disease. Non-symptomatic and

3If a firm’s liquidity (bank deposits) is negative but its equity is positive, it receives a transfer from
the firm owner up to the financial wealth of the owner. If the firm’s liquidity is then still negative, the
bank takes a loss equal to the negative balance and the firm’s deposit become zero, but the firm does
not exit.
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un-detected infected people can still spread the disease. For simplicity, we assume that

the infected remain contagious for the entire duration of the illness.

By assumption, all symptomatic infected agents develop serious symptoms and are de-

tected with certainty. The probability to develop serious symptoms is increasing with

age. All agents whose infection is detected (both non-symptomatic and seriously ill) will

be inactive (and receive sick pay if they are not retired) and will not have social contacts

for the entire duration of the disease. Only people developing serious symptoms express

demand for healthcare services. For simplicity, we assume that people who are quaran-

tined at home do not need healthcare. Non-symptomatic infected agents recover with

certainty after a certain number of weeks. The only agents who may die from the disease

are those who develop serious symptoms.

3.3.2 Contagion

We adopt a granular approach to contagion focusing on networks in order to depict the

transmission of the epidemic among agents. Contagion takes place in three networks:

the workplace (employment network), the marketplace (shopping network) and social

relations (social network). Employed workers are nodes in the employment network.

Each employed workers is linked to all co-workers in the firm they work for. If a worker

is infective, they can spread the disease to their (susceptible) co-workers. If a firm goes

into smart-working (see below), a fraction of all the possible workplace connections at

that firm will be eliminated.

In addition, all workers are nodes in the shopping network. A certain number of house-

holds shop at a given C-firm. If one of these buyers is infective, they may spread the

disease to other households shopping at the same firm. We list all possible connections

between the customers of a given firm and assume that a fixed share of those encounters

actually take place (not all customers visit the firm at the same time). This share is

reduced if there is a lockdown in place or people engage in social distancing.

Contagion also occurs during leisure time. To capture this process we build a social

network. Each worker has a set of social connections consisting of family and close friends.

The total number of social connections is a (very small) fraction of the maximum number

of possible undirected connections between workers.

We assume that each infected agent meets all the agents they are connected to (at work,

while shopping and during leisure time) in every week. Given the number of connections

in week τ which involves exactly one infected and one susceptible agent, we assume that

only a fraction (the transmission rate) of these connections may lead to a new infection.

This set of potential new infections is constructed by randomly drawing from the set of

all connections involving one infected and one susceptible agent. We assume that the

different types of connections have different probabilities of being drawn, being highest
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for social connections, second highest for workplace connections and lowest for market

connections.

Each of these potential new infections leads to an actual new infection with a probability

which changes with the epidemiological scenario: it is one in the scenario of Uncontained

Epidemic (UE) and potentially smaller than one in the scenarios of Social Distancing

(SD) and Lockdown (LD).

3.3.3 Recovery, death, re-infection

For each infected agent, the duration of the disease is governed by a random variable

with finite support. Non-symptomatic agents recover with certainty after this duration.

Agents with serious symptoms may die in each period in which they are infected, with a

probability which increases both with age and their excess demand for healthcare.

When the healthcare system becomes overburdened, the demand for healthcare is rationed

and an agent who develops serious symptoms may be forced to join a randomised queue of

ill agents who have an excess individual demand for healthcare. If an agent with serious

symptoms has not died after the duration of the disease, they will recover. We assume

that both the effect of age and of excess demand for healthcare on the probability of

dying decrease over time as the healthcare system is partly able to adapt to dealing with

the novel disease.

Recovered agents who became economically inactive due to the disease will re-enter the

labour force as unemployed workers and look for a job. The recovered may become

susceptible to the epidemic disease again in each future period with a low probability.

4 Calibration and baseline simulation

We construct a baseline scenario of the model which corresponds to Normal Times,

i.e., a situation in which there is no epidemic but people may become ill without dying or

being able to infect others. In order to calibrate the parameters for the macroeconomic

sub-model, we make use of data for real GDP, consumption, gross fixed capital formation

and employment for the Lombardy region from 1995 to 2017, available from the website

of the Istituto Nazionale di Statistica (Istat).4

At the regional level, data for GDP and its components are available only at annual fre-

quency. We use moments and statistics calculated from these data in order to calibrate

and validate the model. We apply the HP filter (λ = 100) to the empirical time series

and then calculate the standard deviations (relative to the trend component) and auto-

correlations of the filtered series. Table 1 shows the empirical statistics we obtain as well

4We follow the same calibration methodology used for the original ABC model presented in Delli
Gatti and Reissl (2020). Since the current model differs from ABC both in terms of the number of agents
and some behavioural assumptions, the results of this calibration procedure are also somewhat different.

12



as 95% confidence intervals (in parentheses) which we generate using bootstrapping.

Table 1: Empirical moments & statistics for Lombardy (1995-2017)

Statistic GDP Consumption Investment Employment rate
Std.
deviation

0.015722
(0.01566; 0.01578)

0.01488
(0.01485; 0.01491 )

0.05100
(0.05087; 0.05113)

0.00711
(0.00708; 0.00713)

1st order
autocorr.

0.15342
(0.14964; 0.15720)

0.40094
(0.39885; 0.40303)

0.39838
(0.39562; 0.40115)

0.42836
(0.42574; 0.43098)

2nd order
autocorr.

-0.12215
(-0.12637; -0.11793)

-0.24278
(-0.24566; -0.23990)

0.03476
(0.03174; 0.03778)

-0.05605
(-0.05958; -0.05253)

After identifying a region of the parameter space in which the model gives rise to rea-

sonable macroeconomic dynamics, several parameters are fine-tuned in order to replicate

the moments and statistics shown in table 1 with the simulated time series. The values

of many parameters turn out to be quite similar to those shown in Delli Gatti and Reissl

(2020) while others differ somewhat. The full set of parameter values is shown in table 5

in appendix C.

The model is simulated 100 times with different seeds for a duration of 756 periods,

equivalent to 63 years. Simulated monthly time series are transformed into annual ones

and then filtered in order to construct the simulated equivalents of the empirical moments

and statistics. The simulated moments are shown in table 2 as means across Monte Carlo

runs along with the associated confidence intervals.

As in Delli Gatti and Reissl (2020), the model is able to closely reproduce the empir-

ical standard deviations of GDP and consumption. Simulated investment however is

significantly more volatile than its empirical counterpart. Since simulated GDP consists

solely of private consumption and investment (along with constant public expenditure for

healthcare) in our model and there is no role for net exports, the empirical volatility of

GDP and consumption can only be reproduced if simulated investment is more volatile

than empirical investment.

Similarly, the simulated employment rate is much more volatile than in the empirical

data. This is due to the simplified nature of the labour market in our model which leads

to employment being tied to current production much more closely than it is in reality.

Table 2: Simulated Moments & Statistics

Statistic GDP Consumption Investment Employment rate
Std.
deviation

0.01564
(0.01466; 0.01662)

0.01524
(0.01432; 0.01616)

0.09254
(0.08738; 0.09769)

0.01536
(0.01441; 0.01632)

1st order
autocorr.

0.59272
(0.56285; 0.62259)

0.58364
(0.55346; 0.61381)

0.47737
(0.44081; 0.51393)

0.59020
(0.56015; 0.62025)

2nd order
autocorr.

0.07775
(0.03137; 0.12412)

0.05158
(0.00415; 0.09901)

0.04948
(0.00680; 0.09217)

0.07511
(0.02866; 0.12157)

The model does reasonably well at reproducing most of the first order autocorrelations but

performs less well on second and higher-order autocorrelations especially regarding GDP

and consumption. Similarly to Assenza et al. (2015) and Delli Gatti and Reissl (2020), we

plot the autocorrelations of output, consumption, investment and the employment rate
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up to lag 6 in figure 1, while figure 2 shows the cross-correlations of output, consumption,

investment and the employment rate with output.

Figure 1: Empirical and simulated autocorrelations

Figure 2: Empirical and simulated cross-correlations

5 Epidemic scenarios

In this section we analyse the epidemiological dynamics produced by the scenarios also

analysed in Delli Gatti and Reissl (2020). The next section will be devoted to effects of

the epidemic on macroeconomic variables. In what follows, we denote with tE the month

and τE the week of that month in which the epidemic begins. In addition, let τ sL and τ eL
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denote the weeks in which the lockdown begins and ends respectively. All the scenarios

described below begin by changing the status of a small number of agents from susceptible

to infected in τE. The disease then initially spreads slowly before infections begin to pick

up.

The Uncontained Epidemic scenario (UE) considers a case in which the infectious

disease breaks out but this does not lead to any change in the behaviour of agents or

to any countermeasures (Non-Pharmaceutical Interventions, NPI herafter) taken by the

government, e.g., a lockdown. Under these circumstances, the disease can spread freely

throughout the population. This scenario is of course completely hypothetical, but pro-

vides a benchmark against which the effects of behavioural changes or government mea-

sures can be evaluated.

The (voluntary) Social Distancing scenario (SD) denotes the case in which agents

spontaneously engage in “social distancing”. As in Delli Gatti and Reissl (2020), social

distancing is modelled as a discrete choice by individual agents (see also Baskozos et al.,

2020). We define a distancing index dτ which is governed by the law of motion:

dτ = ιdτ−1 + (1− ι)N×Dτ , (1)

where N is a row vector containing three parameters describing the intensity of choice

and Dτ is a column vector containing three indicators influencing agents’ decision to

distance. The first is a measure of the severity of the epidemic, given by Dc,τ − Dc,SD
where Dc,τ is the number of currently infected and detected individuals and Dc,SD is a

fixed threshold value.5 The second captures social influence and is given by φd−φnd, that

is the difference between the share of agents which are already socially distancing (φd)

and those who are not (φnd). The third is a perceived cost of social distancing, denoted

by cSD which is multiplied by −1. The probability for an agent to distance is then given

by

πdτ =
1

1 + exp(−dτ )
, (2)

meaning that it is increasing in the index d and asymptotically tending to 1. In words:

an agent is more likely to distance (i) the higher the number of currently detected cases,

(ii) the higher the fraction of agents who are already distancing, and (iii) the lower the

perceived cost of social distancing. In each period we draw a random number nh from a

uniform distribution U(0, 1) for each agent and if πdτ > nh, the agent will engage in social

distancing. Social distancing has a range of important effects on both the economic and

the epidemiological dimensions of the model.

5In the simulations we set Dc,SD = 5.
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First of all, SD affects the probability of infection conditional on an encounter between

a susceptible and an infected individual. Recall that in the (uncontained) epidemic, a

fraction (transmission rate) of meetings between susceptible and infected agents leads

to a new infection with probability 1. Under SD, when an infectious agent i meets

a susceptible agent j, we assume that the meeting between these agents generates an

infection with probability

πdi,j = 1− β1πdτ>ni − β1πdτ>nj (3)

where 1πdτ>nz is an indicator function which takes value 1 if agent z is socially distancing

and 0 otherwise, z = i, j.6 For each of these meetings, therefore, the probability goes

down to 1−β if one of the agents involved is distancing, and 1−2β if both are distancing.

Second, SD reduces the overall number of connections. In the presence of social distanc-

ing, for all t > tE + 2, the number of social connections and shop connections is reduced

by (1− φd).7

Third, the SD scenario is also associated with an increased effort to detect asymptomatic

cases. Recall that in the (uncontained) epidemic scenario the detection probability (πr)

is exogenous. Under SD the detection probability becomes endogenous and time vary-

ing. When t > tE + 2, under SD the detection probability in week τ is given by

πrτ = min(πr, πr + γdḊτ−1), where Ḋτ−1 is the number of newly detected cases in the

previous week and πr is an upper bound. In the lockdown scenario (LD), the detection

probability follows the same law of motion once τ > τ eL.

Last but not least, social distancing affects agents’ demand for consumption goods. The

first time any agent socially distances, their demand for L-goods receives a negative shock

while their demand for B-goods receives a positive shock. The shocks are calibrated such

that in percentage terms, the demand for luxury goods declines more strongly than that

for basic goods increases. The shocks are given by

sB = 1 + σBτ Dc,τ
sL = 1− σLτ Dc,τ ,

(4)

where

σBτ = max(σB, σB ∗ exp(−z ∗ τ̂))

σLτ = max(σL, σL ∗ exp(−z ∗ τ̂)),
(5)

and σB < σL as well as σB < σL. In the absence of a lockdown τ̂ is equal to 0 (as long

6To assess whether agent z actually distances we draw a random number from a uniform distribution
with unit support. The z-th agent engages in social distancing if πdτ > nz where nz is the number drawn
pertaining to z.

7The number of connections, however, cannot go below a lower bound given by the exogenous share
of connections which take place during the lockdown, described below.
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as t ≤ tE + 2), and then increases by 1 in each week. The rationale is that the size of

the consumption shock gradually declines over time as households become accustomed

to the new epidemic environment.

In the Lockdown scenario (LD), alongside voluntary social distancing there is also a

(government mandated) lockdown. The lockdown comes into force in week τ sE, when the

number of newly detected infections reaches the (exogenous) threshold8 Ḋlock and ends

in week τ eL. If the situation does not improve, the LD ends after a maximum duration

of dlockmax weeks. If the situation improves prior to dlockmax – i.e., if the average of newly

detected cases over the previous 2 weeks falls below a floor Ḋend – the lockdown is lifted.9

We assume that the lockdown is enforced only once. In other words, if a lockdown has

been imposed and subsequently lifted, there are no subsequent lockdowns even if detected

infections rise beyond the threshold again in future periods. The lockdown triggers the

following events in the model:

• At the beginning of the month following the institution of the lockdown, a fraction

of firms producing luxury goods (L-firms) are shut down completely (and their

production is halted).10 They become unable to sell any goods they may have

already produced during that period. All firms which are closed in lockdown lose

all of the customers who are using them as their “go-to” firm. Firms producing basic

goods and capital goods (B-firms and K-firms respectively) continue producing.

• All firms immediately move into “smart working” meaning that a subset of workers

of each firm work from home.

• The lockdown eliminates part of the connections at the workplace: the number of

connections at every firm (in smart working) is reduced by a fixed factor (uniform

across firms). The exact subset of connections which does take place is sampled

anew in every period. The fraction of L-firms which are closed completely do not

give rise to any workplace connections during the lockdown.

• The lockdown limits social gatherings, eliminating a part of the connections in

the social network of agents. Hence the number of social connections in the LD

scenario is a fraction of the corresponding number in normal times. Connections

occurring in the shopping network are also reduced by the same factor. This may be

interpreted as agents making fewer shopping trips than they otherwise would and,

for instance, increasingly relying on deliveries of goods.11 In addition, we assume

8In our simulations we set Ḋlock = 30 newly detected cases.
9In our simulations dlockmax = 12, i.e., the maximum duration of the lockdown is 3 months. The

lockdown is lifted if the average of new detected cases over the previous 2 weeks falls below Ḋend = 12.5.
10In the simulations we assume that one third of L-firms are shut down during the lockdown.
11In the simulations we assume that only one fourth of social and shop connections survives during

the lockdown.
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that the lockdown lowers the perceived cost of social distancing, making it more

likely, ceteris paribus, that any individual agent will engage in social distancing.

• Once the lockdown has ended, previously closed firms are re-opened but remain in

smart working mode. Expected demand is re-initialised for all L-firms to account

for the re-entry of the reopening firms.12 After the lockdown, each firm moves

out of smart working after a stochastic number of periods. Encounters between

agents slowly adjust back to their previous level, as does the perceived cost of

social distancing.

This lockdown policy is designed to mimic, in a stylised way, the policies implemented by

the Italian government during spring of 2020 which, in addition to restrictions of social

contacts and mandated remote working, also involved the temporary closure of a range of

economic sectors deemed as “inessential”, including in manufacturing and non-customer-

facing services. The vast majority of these restrictions had been lifted by June 2020.

A second, ‘softer’ set of lockdown measures based on the division of the country into

different zones with different levels of restrictions was implemented during autumn 2020

to combat the second wave (cf. Reissl et al., 2021; Ferraresi et al., 2021). For simplicity

we do not implement this second set of lockdown measures in the model but instead

assume that after the end of the (first) lockdown and from the second wave onward, only

voluntary social distancing stands in the way of the epidemic disease. The LD scenario

can hence be considered to mimic the actual institutional setting in Lombardy up to the

start of the second wave and a counterfactual scenario from that point onward.

The effects of the lockdown on the network of connections between agents is illustrated

using figures 3 and 4 which show an example of the network (encompassing all three types

of connections, i.e., workplace, shops and social) during one period in normal times and

one in lockdown. The reduced number of connections is immediately obvious, and is also

demonstrated by an examination of two simple measures of connectivity. The network

depicted in figure 3 has a density of 0.0021 and the largest eigenvalue of the corresponding

adjacency matrix is equal to 66.11. In figure 4, by contrast, the density has declined to

0.00027 and the largest eigenvalue is equal to 25.05.

12Expected demand for each previously open L-firm is set to the minimum between the mean produc-
tion of open L-firms in last period and that firm’s own production in last period. Re-opening L-firms’
expected demand is set to equal the mean production of open L-firms in the previous period. Firms’
expectations regarding capacity utilisation are adjusted in line with this.
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Figure 3: Network of agents during normal times

Figure 4: Network of agents under lockdown

In figure 5 we show the simulated epidemic curves at weekly frequency. We run the model

100 times with different random seeds and compute the mean of the simulated data for

each period along with 95% confidence intervals. The top left panel shows the number

of cumulative infections in the three scenarios while the top right panel shows the flow

of new infections. The bottom panels show the same curves for detected cases. Figure 6

instead compares the dynamics of deaths, showing both cumulative and new deaths. In

all cases, the numbers have been scaled by a factor of 1
0.003

in order to transform infection

and death number emerging from our model with a population of 30000 into equivalents

for the case of Lombardy which has a population of around 10 million.
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Figure 5: Comparing the epidemic scenarios (weekly)

Figure 6: Comparing the epidemic scenarios (weekly)

In the UE scenario, cumulative infections grow extremely fast before reaching a plateau

(let’s label it the “herd immunity” number of infections) around week 25 (top left panel).

At the plateau most of the (surviving) agents have been infected and have therefore

left the population of susceptibles. In the absence of sufficient hosts, infections almost

disappear for a prolonged period of time (approximately until week 150). In terms of flows,

we observe a first wave of per-week new cases characterized by remarkable amplitude.

Herd immunity comes at the price of a very high number of deaths as shown in Figure 6.

In 3 out of 4 simulation runs herd immunity is not sufficient to eradicate the disease. In

the present model, in fact, the population of susceptibles increases over time due to the
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newly born and to the temporary nature of immunity: previously infected and recovered

people may become susceptible again in any future period with a small probability. Once a

sufficient number of agents have become susceptible again, a second wave will occur and,

with the passing of time, additional but milder – in terms of duration and amplitude

– waves of the disease will break out, further increasing the number of infections and

deaths.13

In the SD scenario, the initial trajectory is similar to that of UE but the exponential trend

is broken slightly earlier such that the cumulative number of infections at the plateau is

lower than in the UE case. The flow of new infections per period, therefore, reaches a

lower peak than in the UE scenario. The smaller number of infections in and of itself

naturally also translates into a smaller number of deaths. In addition, the reduced strain

on the healthcare system relative to the UE case due to the lower number of infections

leads to a further reduction of deaths.

Total detected infections in the SD case exceed those detected in the UE case after the first

wave due to the assumed positive correlation between the detection probability and the

flow of new detected infections in the SD scenario. Due to the lower number of cumulative

actual infections, however, in the SD scenario the second wave breaks out earlier than

in UE as there is a smaller number of agents who have acquired natural immunity. In

addition, these dynamics are driven by the seasonality of the base transmission rate.

Once the effect of social distancing has caused the first wave to abate, the share of agents

engaging in social distancing declines, enabling infections to grow again. Like the UE

scenario, the SD case is subsequently characterised by a succession of milder waves as the

disease becomes endemic. In contrast to the UE case, the disease does not die out in any

of the 100 runs we perform of the SD scenario.

In the LD scenario, the adoption of mandated lockdown measures is able to break the first

wave much earlier and at a considerably lower level of cumulative infections and deaths

than in the UE and SD scenarios. In our model, the lockdown is hence highly effective at

containing the first wave of the disease, hence also preventing a large number of deaths.

The lagged adjustment of social and workplace connections following the lockdown as

well as the remaining effects of voluntary social distancing are then able to contain new

infections at a low level for some time until gradual relaxation together with the assumed

seasonality of the base transmission rate lead to the emergence of a second wave. Since

we assume that there is no second lockdown in this scenario, and since there is a much

smaller number of agents who have acquired natural immunity, this second wave is in

fact more severe than the first one. The LD scenario then continues for some time to

produce slightly higher infection numbers than the SD case until the two eventually line

up and produce very similar-looking dynamics

13The previous version of ABC (see Delli Gatti and Reissl (2020)) did not feature either newly born
or reinfections so that there was only one wave.
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Figure 7 compares the empirical dynamics of cumulative detected infections and per-week

detected infections in Lombardy to the simulated epidemic curves from the LD scenario

for the first year of the epidemic, beginning in calendar week 9 of 2020 (first week of March:

this is week zero in the diagram). Overall, the model does a good job at reproducing both

cumulative and newly detected infections throughout the first wave, although it appears

to slightly under-estimate the number of infections taking place between the first and

second waves. The model also correctly reproduces the timing of the outbreak of the

second wave. Once the second wave has started, simulated infections naturally peak at

a higher level than in the empirical data as we do not model the second set of lockdown

measures.

Figure 7: Comparing empirical and simulated infection data (weekly)

Figure 8 compares the simulated and empirical numbers of cumulative deaths for the same

time-period as that shown in figure 7. While the model does a good job at reproducing

the cumulative number of deaths at the end of the first wave, it can be seen that during

the first and particularly during the second wave, simulated deaths increase prior to their

empirical counterparts. This is due to the fact that in the model, deaths lag infection

numbers by fewer periods than in the real world: for a given capacity of the healthcare

system, a patient who develops serious symptoms in the model is as likely to die during

the first week in which they are ill as in the last whereas in the real world, fatalities due

to Covid-19 typically take place considerable time after the contraction of the disease.
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Figure 8: Comparing empirical and simulated deaths (weekly)

Table 3 compares the actual numbers of cumulative deaths and detected infections in

Lombardy in calendar week 39 of 2020 to the simulated numbers 30 weeks after the

outbreak of the disease in the model. Once again it can be seen that the lockdown

scenario comes very close to reproducing the empirical numbers.

Table 3: Cumulative epidemic data 30 weeks after outbreak

Simulated Lower Upper Empirical
Total Detected 94593 90034 99153 104752
Total Deaths 17473 16459 18488 16922

6 The macroeconomic effects of the epidemic

In this section, we briefly examine the macroeconomic effects of the epidemic under the

same scenarios presented in the previous section. As we said, we run the model 100

times with different random seeds under the scenarios of uncontained epidemic (UE),

social distancing (SD) and lockdown (LD). For a given run r, for each macroeconomic

variable in levels – say x – we compute the percent deviation of the variable in scenario

i = UE, SD,LD from the baseline scenario of Normal times (NT): x̂r,it =
xr,it − x

r,NT
t

xr,NTt

.

Then we compute the mean of this percent deviations across 100 runs: x̂it =
∑100

r=1 x̂
r,i
t .

For variables that are already expressed in percent terms (government debt to GDP and

the bankrupcty rate) – say y – we compute the absolute deviation ∆yr,it = yr,it − y
r,NT
t

and the mean of the absolute deviations ∆yit =
∑100

r=1 ∆yr,it . The time series of these
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means – i.e., x̂it and ∆yit, t = 0, 1, ....120 – are plotted in figures 9 and 10 (along with 95%

confidence intervals). Month zero is the first month of the epidemic.

We begin by examining the UE scenario. Recall that in this setting, it is assumed that

agents do not alter their behaviour in response to the epidemic and there are also no

measures taken by the government to contain the epidemic. As such, this experiment

should not be viewed as a plausible empirical scenario; instead it serves as a purely hypo-

thetical case to be compared to the more plausible settings of voluntary social distancing,

coupled with or in the absence of a government-mandated lockdown. In the UE scenario,

GDP, consumption and investment all decline during the initial phase of the epidemic

and remain below their pre-epidemic levels for the entire period plotted in the figures.

This decline is chiefly due to the reduction in the size of the population. As illustrated

in the previous section, the UE scenario leads to a high number of deaths. While dead

agents are replaced in the model, this process is very gradual such that the population

remains well below the baseline for an extended time in the UE case. In addition to

reducing potential aggregate output, the consumption expenditure coming from the peo-

ple who die from the disease is “removed” from aggregate demand as long as they are

not replaced. The lower level of overall economic activity also leads to a lower price

level relative to the baseline. The relative price of luxury goods, on the other hand, is

hardly affected in the UE scenario. The default rate initially increases slightly due to

the decline in economic activity but then returns toward the baseline. While transfers

to households for income support increase in the short term due to the high number of

agents who fall ill, transfers for pensions decline permanently as most of the agents who

die from the disease are inactive. With unchanged tax rates, tax revenue also declines

due to some economically active agents dying from the disease. The decline of pension

outlays, however, more than offsets the short-term increase of benefit payments and the

reduction of tax revenues. Hence, government debt declines both in absolute terms and,

eventually, as a share of GDP.

The SD scenario gives rise to a sharp contraction in GDP that is much more pronounced

than the one produced by the UE setting. This decline is chiefly driven by a collapse in

aggregate consumption, due to the assumed effect of social distancing on consumption

demand. Since social distancing on its own is not able to contain infections as effectively

as when coupled with a lockdown, the high resulting infection numbers make the negative

shock to consumption larger than in the LD scenario. Firms respond by reducing their

investment, and the bankruptcy rate increases in the short run due to firms’ sales declining

sharply. The price level at first declines, before increasing and slightly overshooting during

the recovery of consumption, the latter being driven by the smaller numbers of infections

in subsequent waves as well as the assumed decline in the size of the consumption shock

over time. As the disease becomes endemic, GDP and consumption remain depressed

for an extended period since the effect of infections on consumption demand continues
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to exert an influence. This in turn also appears to lead to a permanently lower price

level. Since the shock to consumption demand is assumed to also feature a substitution

effect from luxury toward basic goods, the relative price of luxury goods initially declines

strongly and then increases for some time as the demand for luxury goods rebounds.

The economic downturn leads to a sizeable increase in government debt both in absolute

terms and as a share of GDP.

Recall that in the LD scenario, one third of all L-firms are shut down and cease to produce

any output during the lockdown. This large supply shock is immediately reflected in the

aggregate data, leading to a sharp decline in GDP. In addition, firms which are forced

to close are unable to sell the output they have already produced, leading to a spike in

the bankruptcy rate. There is also a decrease in consumption, partly driven by social

distancing and partly by reduced output of luxury goods, as well as in investment. While

social distancing leads to a decline in the demand for luxury goods, the supply of these

goods decreases even more strongly due to mandated closures during the lockdown. This

leads to an increase in the relative price of L-goods which in turn also drives an increase

in the price level. Recall that in the LD scenario (and in contrast to the SD case),

due to the successful suppression of the first wave of the disease the second wave of the

epidemic ends up being more severe than the first. Due to the high number of infections

during the second wave, there is hence a second large shock to consumption after a brief

recovery period, which drives a renewed decline in GDP and investment. GDP recovers

slowly following the second wave and then overshoots for some time. This overshooting of

GDP (along with consumption and investment), which is also present to a smaller degree

in the SD scenario, is due to the adaptive rules of thumb underlying agent behaviour

in the model. Investment in particular overshoots the baseline quite strongly due to

firms rebuilding capacity lost during the previous recession. In addition, the rule of

thumb which firms use to make their investment decision leads them to over-react to

both positive and negative changes in capacity utilisation. Eventually, GDP returns to

a level slightly below the baseline due to the disease having become endemic. The LD

scenario also leads to a sizeable increase in government debt, exceeding that observed for

the SD scenario.
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Figure 9: Economic impact of the disease under different scenarios

Figure 10: Economic impact of the disease under different scenarios

The first panel of figure 9 shows the percentage deviation of GDP in absolute terms from

its value in the baseline. Since in the various epidemic scenarios, the population of the

model is not constant, it is useful to also consider the dynamics of GDP per capita relative

to the baseline, shown in figure 11.
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Figure 11: Economic impact of the disease under different scenarios

It can be seen that in the UE scenario, while GDP decreases in absolute terms, GDP per

capita in fact exhibits an increase, i.e. the decline in population outweighs the decline

in economic activity, particularly in the early stage of the epidemic. This result can be

explained by the fact that the epidemic primarily leads to the deaths of economically

inactive agents who do not contribute to the productive capacity of the model economy

and whose consumption demand financed by pension income is lower than that of an

economically active and employed agent. This result does not, however, make the UE

scenario desirable even from a purely economic viewpoint as the increase in per capita

GDP does not necessarily imply that any individual economically active agent is better

off; instead it is purely driven by the fact that a share of the population which on average

contributes less to GDP is removed. Beyond economic considerations, recall that the UE

scenario implies an extremely high number of deaths and moreover, as stressed above,

should be considered as a purely hypothetical case which we discuss only for comparative

purposes.

In the SD setting, the dynamics of GDP per capita initially look very similar to those

of GDP in absolute terms, but GDP per capita returns all the way back to its baseline

value after the initial decline, whereas GDP in absolute terms remains below the baseline

for a more extended period. As above, this effect can be explained by the distribution of

fatalities across the population.

In the LD scenario, the dynamics of GDP per capita closely resemble those of GDP in

absolute terms, suggesting that population dynamics do not play a large role in driving

the macroeconomic aggregates in this setting.

In all three scenarios, it can be seen that toward the end of the time horizon depicted in

figure 11, GDP per capita appears to tend to a level slightly below its baseline value, with
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this tendency being strongest in the UE case and weakest in the LD case. The reason for

this is that the epidemic, by overwhelmingly leading to the deaths of old agents who are

eventually replaced by young ones, leads to a demographic change. Pension payments

are permanently lower, while tax rates are unchanged, such that the government budget

balance tends to increase. This in turn represents a slight but noticeable drag on aggregate

demand which leads to a lower GDP. Due to the high number of deaths compared to the

SD and especially the LD case, this effect is strongest in the UE scenario.

7 Vaccination

Having analyzed the effects of the epidemic disease under different scenarios, the current

and following sections address the economic and epidemiological impacts of vaccination,

both in the presence and absence of variants of the epidemic disease. In what follows, we

take the LD scenario as the new benchmark against which the effects of vaccination and

variants will be assessed.

7.1 Vaccine efficacy

As in reality, immunity to the epidemic disease in our model can take two forms: natural

immunity is acquired by means of infection and recovery; vaccine-induced immunity is

generated by vaccination. Vaccination may have three distinct effects: it may reduce

the susceptibility of vaccinated individuals to infection, it may reduce the exposure of

vaccinated individuals to serious disease (and hence mortality), and it may reduce the

transmissibility of the infection by a vaccinated individual who has become infected.

Vaccine Efficacy may hence be measured with respect to:

1. susceptibility (V E1)

2. lethality (V E2)

3. transmissibility (V E3)

With regard to vaccines against Covid-19, there is ample evidence that vaccine-induced

immunity of type 1 is not complete: the estimates vary from around 60 to around 90%

(60% < V E1 < 90%) depending on the vaccine (lower for traditional vaccines, higher

for mRNA vaccines). Hence, a vaccinated person may still be infected, but with a lower

probability. To capture this feature, we assume that when an infectious agent i meets a

susceptible agent who has received the vaccine v, the probability πt that i will transmit

the disease to v is reduced by 0 < V E1 < 1. The probability of transmission in case of

vaccination, therefore, is described by a modified equation (3), namely:

πti,v = (1− V E11τ,v)(1− β1πdτ>ni − β1πdτ>nv) (6)

28



where 1τ,v is an indicator function which takes value 1 if v is vaccinated and 0 otherwise.

Clinical evidence suggests that the existing vaccines’ ability to prevent serious disease

(V E2) is sizable and somewhat higher than V E1; estimates range from 90 to 95%. In the

model, the subset of agents who will develop serious symptoms if infected is defined at the

beginning of the simulation.14 Agents in this subset will develop serious symptoms with

a probability equal to 1 in the absence of vaccinations. We assume that if an individual

that is part of this subset is vaccinated, they will develop serious symptoms only with

probability 1− V E2.

On the basis of the evidence collected so far, it is unclear whether vaccines are effective

also in reducing the probability that a vaccinated individual who has nevertheless got

Covid-19 infects other people. Estimates of V E3 vary considerably across studies. We

set ourselves in the worst case scenario assuming that a vaccinated infected individual

is as infectious as an unvaccinated one.15 Therefore we set V E1 = 0.7; V E2 = 0.9 and

V E3 = 0.

We assume that a single dose of the vaccine provides an immunity, the duration of which

(in weeks) is given by a random draw from a normal distribution with mean equal to

52. In other words, we assume that vaccine-induced immunity lasts on average for one

year. Thereafter the protection disappears (V E1 = V E2 = V E3 = 0) and the individual

goes back to the status of susceptible. We rule out for simplicity the presence of people

who refuse to get vaccinated: all individuals eligible for vaccination (i.e., susceptibles,

recovered and undetected infected) accept the vaccine when it is offered to them.

14The shares of agents (in each age class) who will develop serious symptoms are denoted with πhz ; z =
y,m, o. The numerical values of these parameters are in table 6. Agents who are newly born during the
simulation fall in the category of young people.

15As to V E1, data submitted by Janssen to the FDA, from a randomized control trial for their
single-dose vaccine showed a vaccine efficacy of type 1 of 67% when considering cases occurring at
least 14 days after the single-dose vaccination. In December 2020, a study on the effects of Moderna
found that vaccination implied a lower risk of symptomatic Covid-19 of 94%. For the Pfizer BioNTech
vaccine the most remarkable example of its efficacy are the results obtained in Israel through the mass
vaccination campaign that began in December 2020. The Clalit Institute for Research, in a study that
took place between December 2020 and February 2021, found that two doses of Pfizer vaccine reduced
symptomatic cases by 94%. On March 22 2021 a report containing the results of the Phase III trial of
the AstraZeneca vaccine in the US showed a vaccine efficacy at preventing symptomatic COVID-19 of
76%, that occurred 15 days or more after receiving two doses with an interval of four weeks between the
two. In addition, results were comparable across age groups, with an increased vaccine efficacy of 85% in
adults 65 years and older. As to V E2, the efficacy of Moderna in terms of lower risks of hospitalisation
due to severe Covid-19 symptoms was estimated to be of 89%. Pfizer reduced the risk of hospitalisation
by 87% and severe Covid-19 symptoms by 92%. With regard to preventing severe or critical disease and
hospitalisation, the Astra Zeneca vaccine demonstrated 100% efficacy. These data are collected with
reference to the original virus. However they seem to apply also to the variants emerged so far. As to
V E3 at the time of writing (August 2021), evidence from the US points to setting the transmissibility of
the virus by vaccinated individuals to the same level of that of non-vaccinated individuals. This seems
to suggest no efficacy of type 3, at least with respect to the delta variant.
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7.2 Vaccination strategies: three scenarios

There are two key features which characterize a vaccination policy:

• the coverage rate, i.e., the fraction of the population which can be vaccinated in

one unit of time;

• the priority rule, i.e., the procedure defining which target groups (if any) should be

prioritized for vaccination, e.g. old or young.

Both dimensions can affect the efficacy of the vaccination campaign, the evolution of the

epidemic and the resulting effects on the macroeconomy.

We define the coverage rate as the share of the population which can be vaccinated in

every week. This may be influenced by vaccine availability as well as the technical and

organizational capacity of the vaccination authorities, both of which tend to improve over

time. In the simulations, in order to replicate the actual time-line in Italy, we assume that

the vaccine is introduced 11 months after the outbreak of the epidemic (corresponding

to December 2020) – i.e., well after the end of the first lockdown. We also assume that

the coverage begins at a low level (0.01) and then increases by 0.001 in every period until

reaching an upper bound (0.05). The pool of agents eligible for the vaccine consists of

susceptible, recovered and undetected infected agents. The order in which agents are

selected from the pool in a given period is defined by the priority rule. The latter may

be designed in a way to place more weight to certain conditions than others, say health-

demographic versus economic factors, depending on the particular strategy adopted by

the policy maker.

We compare three alternative vaccination strategies based on different priority rules:

Randomized Vaccination (RV); Priority by Age (PA); Priority to Workers (PW). In the

RV scenario, agents are randomly sampled from the pool of eligible individuals. In the

PA scenario, the probability of being drawn from the pool increases (exponentially) with

age, thus giving priority to the old. Finally, in the PW scenario, the probability of being

drawn is highest for economically active workers, that is young and middle-aged, and

lowest for economically inactive, i.e., the old.16 As the vaccination campaign progresses,

however, the strategies become essentially equivalent because the number of available

doses per week will eventually exceed the number of unvaccinated agents.

From an epidemiological point of view, we would expect vaccination to reduce both the

number of infections which occur every week, as well as the mortality of the disease.

16In the PA scenario, the sample weights are given by exp(1), exp(2) and exp(3) for young, middle
aged and old respectively, such that the probability of being drawn for vaccination increases exponentially
with age. Since all the old are inactive by assumption – meaning that the labour force consists only of
young and middle aged agents – in PW the weights are given by exp(1) for the old and exp(3) for the
young and middle-aged.
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From an economic point of view, we would therefore expect vaccination to reduce the

duration and amplitude of the output loss due to the epidemic, and consequently also the

resulting public sector deficit and debt. Moreover, our framework allows to gain insights

about the effects of alternative vaccination strategies both at the macro level, in terms

of aggregate health and economic outcomes, and at the meso level, by comparing the

number of infected and fatalities between age groups.

7.3 Economic and epidemic effects of vaccination

Figure 12 compares the simulated epidemic curves under the different vaccination strate-

gies to the baseline, that, in this section, is the LD scenario without vaccination. As

in the previous experiments, we run the model 100 times with different random seeds

and compute the mean and 95% confidence intervals for each time period. In the figure

we consider a time window consisting of 100 weeks (which correspond to more than 2

years in our simulations)17 starting from the beginning of the vaccination campaign. The

left panel shows the cumulated number of (detected) infected individuals computed from

the beginning of the epidemic which would have occurred with and without the vaccine.

The right panel shows the first difference of this number, i.e., the per week flow of new

infections. Since vaccination started well after the end of the (first) lockdown in Italy

(June 2020), the time series shown in the figure start when the lockdown and the first

wave have already ended. The waves shown in the right panel are therefore the (latter

part of the) second and subsequent ones.

Figure 12: Impact of vaccination by strategies (weekly)

17We assume that there are 4 weeks per month so that a year consists of 48 weeks in the simulation.
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Figure 13: Impact of vaccination by strategies (weekly)

From the left panel, it can be seen that the vaccine significantly contributes to reducing

contagion. Given the axis scale, the differences among prioritization strategies are not

appreciable to the naked eye. Regardless of the prioritisation strategy adopted, however,

one year after the start of the vaccination campaign the cumulative number of infected

individuals in the presence of a vaccine is about 400 thousand units (approximately

23%) lower than in the absence of it. Moreover, the gap between cumulative detected

infections with and without vaccine is widening over time. As shown in the right panel,

the introduction of the vaccine slightly accelerates the decline of the second wave.18 In

the absence of a vaccine, there will also be multiple subsequent waves, endogenously

determined by reinfections, albeit much less pronounced than the second one. With the

vaccine, in the time window considered we observe only one additional wave which starts

approximately one year after the beginning of vaccination and peaks six months later at

a much lower level than the second wave. This is because the vaccine-induced immunity

is not complete, thus leaving vaccinated agents partially exposed to the risk of contagion.

The vaccine acts as a mitigator leading to a reduction both of the frequency and the

amplitude of subsequent waves of contagion.

As expected, the decline in the cumulated number of infections due to vaccination, cou-

pled with the vaccine’s ability to prevent serious disease, triggers a significant reduction

in fatalities, as shown in figure 13. The left panel shows the cumulated number of de-

ceased individuals since the beginning of the epidemic which would have occurred with

and without the vaccine in the same time window as in figure 12 while the right panel

shows the first difference of this number, i.e., the weekly flow of new deaths. The vaccine

18Note that, as already stated, we do not have a second lockdown in place in our simulations. Hence
the number of infections in the simulations are much higher than in reality.
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significantly contributes to saving lives. From the left panel we infer that, regardless of

the prioritisation strategy adopted, one year after the start of the vaccination campaign

the number of deceased individuals stabilizes while it keeps growing (with oscillations) in

the absence of a vaccine. One year after the start of the vaccination campaign the cumu-

lative number of deceased individuals in the presence of a vaccine is about 27 thousand

units (approximately 30%) lower than in the absence of it. As shown in the right panel,

after the second wave, in the presence of the vaccine the curve of new deaths remains

substantially flat at zero while there are multiple endogenous waves of deceased in the

absence of a vaccine. The reason of this disconnect between the dynamics of infections

and deaths lies in the fact that the vaccine efficacy at preventing serious symptoms is

higher than that at protecting from contagion (V E1 < V E2).

From the figures above it is difficult to discern a clear difference in the epidemic dynamics

across vaccination strategies. Table 4 takes a snapshot of the epidemiological situation

after the first year of the vaccination campaign (from week zero to week 48). It shows

the total number of deaths and detected infections (averaged across simulations) which

occurred during the first year of the vaccination campaign19 under different priority rules,

for the whole population and by different age groups. First and foremost, the table con-

firms that, independently of the prioritization strategy, vaccination leads to a sizable

improvement in the epidemiological situation. Comparing the level of each epidemiolog-

ical group (in the lockdown scenario) in the absence of a vaccine with the average level

across vaccination strategies in the presence of a vaccine, we observe a large reduction in

the number of detected cases, and an even more dramatic one in the death toll.

From the same table we infer that prioritization by age group with priority given to

the old allows to save more lives – in particular among the old for obvious reasons – at

the cost of a somewhat higher number of infections. On the other hand, prioritization

by economic activity with priority given to active workers leads to lower infections but

higher fatalities. The reason for this is quite straightforward. Contrary to old and inactive

agents who meet only with social and marketplace connections, employed workers also

interact with colleagues. Therefore, a vaccination strategy aimed at prioritizing workers,

by protecting individuals with greater connectivity, reduces the overall level of contagion,

but at the same time leaves the elderly, i.e., the subjects with the highest likelihood of

developing serious symptoms, more exposed to the risk of dying.

19In the left panels of figures 12 and 13 we show the cumulative numbers of detected infections and
fatalities since the beginning of the epidemic. The numbers in table 4 are not comparable with those used
to produce the figures, since the former do not include detected infected or deceased from the beginning
of the epidemic to the beginning of the vaccination campaign.
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Table 4: Number of deaths and infections in the 1st year, with and without vaccination (average across
simulations; extremes of the 95% confidence interval in parentheses)

No Vaccine Random Old Workers

Total Deaths 43927
(42932, 44922)

16553
(15746, 17360)

15737
(14896, 16577)

17040
(16174, 17906)

Total Detected 1091697
(1055116, 1128277)

676730
(644038, 709422)

704047
(672028, 736065)

654537
(622000, 687074)

Dead (young) 477
(399, 554)

283
(223, 344)

243
(184, 303)

203
(152, 255)

Dead (middle) 12147
(11688, 12605)

5820
(5443, 6197)

6257
(5855, 6658)

5970
(5570, 6370)

Dead (old) 30813
(30060, 31567)

10413
(9848, 10979)

9197
(8640, 9754)

10847
(10189, 11504)

Figure 14: Differences in fatalities across age groups under alternative vaccination strategies

The box plots in figure 14 provide a clearer idea of the differences in fatalities across

age groups under alternative vaccination strategies. Once again, the differences between

different priority rules are more pronounced among the elderly, who benefit most from an

age-oriented priority rule. The within-group variation between strategies is very limited

among the young and middle-aged since the absolute number of fatalities among these

age groups is relatively small across all vaccination scenarios.
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Figure 15: Impact of vaccination by strategies (monthly (top) and weekly(bottom)

Figure 15 shows the deviation of GDP, government debt as a share of GDP (both at

monthly frequency), cumulative deaths and detected infections (both at weekly frequency)

under different vaccination strategies from the lockdown scenario with no vaccine, start-

ing from the first period of the vaccination campaign. The introduction of the vaccine

leads to a small but significant and permanent effect on GDP which after one year of vac-

cination campaign amounts to nearly 1%. This is essentially due to the positive impact

on consumption and aggregate demand resulting from the reduced number of deaths and

infections brought about by the diffusion of the vaccine-induced immunity. In particular,

the lower number of infections reduces the probability to engage in social distancing as

well as the size of the (negative) consumption shock associated with it. In addition, the

lower number of deaths results in higher aggregate consumption because the consumption

of the old who survive due to the vaccine is not temporarily “removed” until they are

replaced by young agents. This boost in GDP also leads to a reduction in government

debt as a share of GDP relative to the lockdown scenario.

8 Variants

Finding a vaccine is certainly the most effective way to combat the epidemic, but it may

not be sufficient to eradicate it. Viruses, in fact, evolve rapidly to ensure their own

survival. To do so, some pathogens mutate the shape of their proteins, to avoid being

targeted by antibodies that would prevent them from infecting cells (Zimmer, 2021). This

has happened to the SARS-CoV-2 virus and has immediately became a matter of concern

for scientists and governments.

A succession of variants of SARS-CoV-2 has emerged around the world over the course of
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the Covid-19 pandemic.20 At the time of writing (August 2021), according to the Italian

National Institute of Health, almost all infections in Italy are with the Delta variant.

Variants may enhance the infectiousness of the virus and/or its lethality. One feature that

variants so far have in common is enhanced transmissibility, while evidence on changes

in lethality to date is mixed (also depending on the particular variant). Importantly, the

variants appear to have an impact on vaccine effectiveness, both in preventing infection

and serious disease.

8.1 Variant types, timing, spreading

To capture these diverse aspects, we model two types of variant. Both variants are more

contagious than the original virus, as reflected in a higher transmission rate ρc (+50%)

and a lower effectiveness of endogenous social distancing β (-75%); the fatality rate, πm,

instead, is left unchanged. The variants differ with respect to their degree of resistance

to the original vaccine. While Variant 1 is able to reduce only the vaccine’s ability to

prevent infection – i.e., V E1 – Variant 2 reduces both V E1 and V E2, i.e., the vaccine’s

efficacy in preventing serious disease which may eventually lead to death. The vaccine in

our model may however be adapted over time to be fully effective against the variant, in

which case agents need to be re-vaccinated with the new vaccine. Accordingly, for each

variant we study two alternative scenarios depending on whether or not a new vaccine

becomes available.

The variant is injected into the model in period τV , a few weeks before the start of the

vaccination campaign – the timing in the model therefore approximately mimics the time

at which the Alpha variant was detected in the United Kingdom – through a small set

of “super-spreader” agents Iv,τV , i.e., households with a high number of connections to

susceptible agents. This group constitutes the agents who are initially infected with the

variant and spread it throughout their network of interactions. At first the variant can

coexist with the original virus, implying that susceptible agents may be infected with

either one of the two. Given the higher transmission rate, however, the variant becomes

dominant fairly quickly and endogenously replaces the original virus. In the scenario

featuring an improved vaccine, the new vaccine becomes available 24 weeks after the

emergence of the variant, meaning that it takes half a year to adapt the old vaccine and

make it available to the public. Once available, the new vaccine is first administered to any

agents who are completely unvaccinated and subsequently to those who had previously

received the old vaccine.

20At the time of writing, there are as many officially detected variants as there greek letters between
α and λ. The major identified variants “of concern” are: B.1.1.7 (Alpha) and B.1.351 (Beta) initially
detected in September 2020 in the United Kingdom and in South Africa respectively; P.1 (Gamma) and
B.1.617 (Delta) initially detected in December 2020 in Brasil and in India respectively.
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The diffusion of Variant 1 is illustrated21 in figure 16.

In the figure we consider a time window consisting of 200 weeks (which correspond to

more than 4 years in our simulations) starting from the week in which the epidemic

begins (week zero). The baseline in this section is the PA scenario, i.e., the LD scenario

augmented with vaccination in the case of priority given to the old. The solid line in

the left panel shows the flow of per-week new infections due to both the original virus

(beginning in week zero) and the variant (emerging approximately one year later) in

the absence of an improved vaccine. The dotted line represents the flow of individuals

infected with the variant. The right panel shows the same variables in the presence of

an improved vaccine (which is introduced approximately half a year after the variant

emerges). The first wave in the figure therefore is due exclusively to the original virus.

The variant emerges just after the peak of the second wave and after 12 weeks accounts

for nearly 30% of new cases (as shown by the dashed line). It takes less than half a year

for the variant to become dominant and replace the original virus.

Figure 16: Spreading of Variant 1 with and without improved vaccine

The variant acts as an accelerator leading to an increase of the frequency and amplitude

of the waves succeeding the second one. Therefore, it partially offsets the effects of the

vaccine. If the vaccine is improved and adapted to the variant, as shown by the right

panel, the amplitude of the subsequent waves is mitigated again.

8.2 Economic and epidemic effects of variants

In what follows, we analyze the effects of the emergence of Variant 1 and Variant 2,

with and without an improved vaccine, on epidemic and economic dynamics. Figure 17

21Since it has the same transmission rate, the pace of diffusion of Variant 2 is broadly similar.
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compares the simulated epidemic curves under different combinations of vaccinations and

variants to the baseline, that, in this section, is the vaccination scenario with the age-

oriented priority rule where only the original virus circulates. In the figure we consider

a time window consisting of 100 weeks starting from the week in which the original

vaccination campaign begins, i.e. just after the peak of the second wave. The left

panel shows the cumulative number of (detected) infected individuals (computed since

the beginning of the epidemic) which occur with and without the variant and with or

without an improved vaccine in this time window. The right panel shows the weekly flow

of newly detected infections.

From figure 17 it is clear that the emergence of Variant 1 leads to a significant increase

in the number of infections due to a slower decline of the second wave and a stronger

upsurge in new cases during the third wave. The negative impact of virus mutation is

partly contained by the introduction of the new vaccine, which takes six months to be

produced and another six months to fully unfold its effects. When infections rebound

during the third wave, the new vaccine significantly reduces the peak of weekly detected

infections, though infection numbers are still much higher than in the absence of a variant.

Figure 17: Impact of Variant 1 with and without improved vaccine
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Figure 18: Impact of Variant 1 with and without improved vaccine

Despite the variant not being inherently more lethal than the original virus, the increased

number of infections also leads to a higher number of deaths, as shown by Figure 18.

The left panel shows the cumulative number of deceased individuals (computed since the

beginning of the epidemic) which occur with and without the variant and with or without

an improved vaccine in the same time window as in Figure 17. The right panel shows

weekly new deaths.

Within one year from the emergence of the variant the number of deceased increases

by around 8 thousand units compared to the scenario without a variant. Interestingly,

the improved vaccine does not appear to have a significant impact on fatalities. This is

because Variant 1 does not affect the vaccine’s ability to prevent serious symptoms (V E2);

it only reduces the vaccine’s efficacy at protecting from infections (V E1). Therefore, the

increase in the number of deaths that we observe in figure 18 is entirely due to the higher

level of contagion occurring once the variant circulates. As the share of population who

receives the vaccine expands, the immunity induced by the (old) vaccine is strong enough

to reduce the level of deaths, also in the presence of Variant 1 without an improved

vaccine.

The situation is different in the presence of Variant 2, which undermines both dimensions

of vaccine efficacy. As expected, figure 19 shows that the contagion dynamics under

Variant 2 are similar to those under Variant 1. The reason is that, by assumption, the

two variants have the same transmission rate, i.e., 50% higher than the original virus.
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Figure 19: Impact of Variant 2 with and without improved vaccine

Figure 20: Impact of Variant 2 with and without improved vaccine

However, the outbreak of Variant 2, by reducing vaccine’s ability to prevent serious

symptoms, leads to a considerable increase in the death toll. In this case, the third wave

of contagion is accompanied by a resurgence in new deaths, which can be avoided only if

the healthcare sector is able to swiftly produce and distribute a new and more effective

vaccine.
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Figure 21: Impact of Variant 1 with and without improved vaccine

Figure 22: Impact of Variant 2 with and without improved vaccine

The macroeconomic consequences of the variants are illustrated in figure 21 and 22. The

plots report the deviation of each variable from the baseline which in this case is the

scenario with an age-prioritized vaccination policy is in place but without a variant.22

Under both variant types, the economy experiences an additional decline in output of

nearly 0.8% during the second wave which is also reflected in the dynamics of govern-

ment debt as a share of GDP, thus largely neutralizing the positive economic impact of

vaccination shown in figure 15. The reduced number of infections due to the adoption

22The deviations from the baseline are computed as described at the beginning of section 6.
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of a new vaccine is able to abate the negative effects of the third wave, which otherwise

would imply a further economic downturn.

9 Conclusion

In this paper we studied the epidemiological and macroeconomic effects of vaccines and

variants using simulations of a macroeconomic-epidemiological agent-based model.

As expected, simulations show that other things being equal, vaccination significantly

slows down the pace of the epidemic and saves lives. Over the medium run both the

number of infections and of deaths drop substantially in the presence of a vaccine.

Simulations also show that vaccination is a significant mitigating factor of the cyclical

dynamics of infections and deaths. In the absence of a vaccine, the epidemic will follow

a pronounced cyclical trajectory with subsequent waves of infections and deaths. In the

presence of a vaccine, both the amplitude and frequency of additional waves are decreased.

We experimented with different priority rules in vaccination. Contrary to our expecta-

tions, different prioritization strategy do not translate into sizable differences in epidemi-

ological outcomes. In our simulations, the size of the mitigation effect of vaccination on

contagion is almost identical across different prioritization strategies. Priority given to

the old allows to save more lives at the cost of more infections but the magnitude of this

effect is relatively small.

We also experimented with two types of variants of the model virus, labelled 1 and 2.

We assumed that both types are more contagious than the original virus and reduce the

efficacy of the vaccine in preventing infection but variant 2 also reduces the efficacy of

the vaccine in preventing serious symptoms and death.

The outbreak of variant 1 in the presence of a vaccine targeted to the original virus (a

scenario that corresponds to the real world situation at the time of the outbreak of the

Delta variant of Covid 19) leads to a rapid replacement of the original virus in the host

population, driving a new wave of infections. Even though, by assumption, variant 1

is not more lethal than the original virus, the increasing flow of infections also leads to

a significant increase in deaths. Variant 2 generates an even higher death toll because

by assumption this variant is capable of also weakening the efficacy of the vaccine in

preventing serious symptoms and death, sparking a third wave of deaths in the absence

of an improved vaccine.

A variant hence acts as an accelerating factor, counteracting the mitigating effects of the

vaccine until the latter can be adapted to the variant. In reality, vaccines and variants

de facto co-exist and alternate in time. In fact, the probability that a variant emerges is

increasing with the incidence of the disease and the availability of a vaccine against the

original virus. These intertwined endogenous dynamics of vaccines and variants represent

a fruitful topic for future research.
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Appendix A The macroeconomic sub-model

A.1 Households

The economy is populated by NH households, of which NW are workers and NF are firm

owners. Households will be indexed with h = 1, 2...NW , NW + 1, ..., NH . Households

indexed with h ∈ (1, NW ) are workers; households indexed with h ∈ (NW + 1, NH) are

firm owners. Of course, the cardinality of the set of firm owners is NF = NH −NW . As

there is one owner household per firm, it coincides with the cardinality of the set of firms.

A.1.1 Workers

Workers can be economically active (employed or unemployed) or inactive (sick or re-

tired). Each active worker supplies 1 unit of labour inelastically. If employed, they

receive the uniform nominal wage wt and pay a fraction tw (the tax rate on wages) of this

wage to the Government.

If unemployed, the worker searches for a job visiting a subset ze of firms chosen at random.

Once an unemployed worker finds a firm with an unfilled vacancy they stop searching

and the match occurs. Unemployed workers who have not succeeded in finding a job

receive an unemployment subsidy from the Government equal to a fraction of the wage:

suwt. A sick worker receives sick-pay sswt. Each retired worker receives a pension spwt.

The parameters su, ss, sp are the replacement rates in the case of unemployment subsidy,

sick-pay and pension.

A.1.2 Firm owners

The household indexed with h = NW + f is the owner of the f -th firm, f = 1, 2, ..., NF .

The income of this household consists of dividends, which, in turn, are equal to a fraction

ω (the pay-out ratio) of the after-tax profit (1 − tΠ)Πf,t−1 where tΠ is the tax rate on

profit and Πf,t−1 is profit generated in the previous period. The firm pays out dividends

only if Πf,t−1 > 0. If a firm faces a loss, its net worth will go down correspondingly and

the firm will not distribute dividends. Moreover, the firm owners are assumed to jointly

own the representative bank and consequently each firm owner receives an equal share of

the dividends distributed by the bank: ω(1− tΠ)Πb,t−1.

A.1.3 Households as consumers

Households receive income and interest payments rdDh,t−1 where rd is the interest rate

on deposits and Dh are deposits. Hence the disposable income of household h ∈ (1, NW )
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is:

Yh,t =



(1− tw)wt + rdDh,t−1 if h is employed,

suwt + rdDh,t−1 if h is unemployed,

sswt + rdDh,t−1 if h is sick (but not retired),

spwt + rdDh,t−1 if h is retired

(7)

while the disposable income of household h ∈ (NW + 1, NH) is

Yh,t = (1− tΠ)ω

(
Πh,t−1 +

1

NF

Πb,t−1

)
+ rdDh,t−1 (8)

A household’s consumption decision proceeds in four steps. First, the household con-

structs a proxy of permanent income Y h,t using an adaptive algorithm: Y h,t = ξY Y h,t−1 +

(1 − ξY )Yh,t where ξY ∈ (0, 1) is a memory parameter. Y h,t is hence a weighted average

of past disposable incomes with exponentially decaying weights.

Second, the household determines the desired consumption budget :

Ch,t = Y h,t + cWDh,t−1 (9)

where cW ∈ (0, 1) is the propensity to consume out of financial wealth, which, in this

setting, coincides with deposits.

Third, the consumer allocates cb ∈ (0, 1) of Ch,t to the consumption of basic goods (B-

goods hereafter). Therefore (1 − cb) of Ch,t will be devoted to purchasing luxury goods

(L-goods).23 We assume that cb is a decreasing function of the (average) price of B-goods

relative to L-goods.24

Fourth, the consumer goes to the market to purchase consumption goods (C-goods) which

can be either B-goods or L-goods. Consider first the market for B-goods. B-firms are

indexed with f ∈ (1, N b
F ) where N b

F is the cardinality of the set of B-firms.

In period t, the consumer visits two firms in this set: a “go-to” supplier and a potential

new partner, the latter being randomly drawn from the population of B-firms (excluding

the ‘go-to supplier). The consumer then compares the prices. If the price charged by

the go-to firm (say P0) is lower than or equal to that of the potential new partner (P1),

23This is the desired allocation of the consumption budget to B-goods and L-goods. If the household’s
consumption budget turns out to be larger than available liquidity (deposits inherited from the past plus
current income) the desired allocation will be unfeasible. In this case we assume that the consumer will
first spend up to cbCh,t on B-goods and then allocate any remaining liquidity to the consumption of
luxury goods.

24In symbols: cb =
N b
F

N c
F

P lt−1

P bt−1

where N c
F = N b

F +N l
F is the cardinality of the set of C-firms (the union

of B-firms and L-firms) while P b (resp: P l) is an aggregator of the individual B-prices (L-prices). If
the relative price is 1, i.e., if on average B-firms charge the same price as L-firms, the fraction of the

consumption budget allocated to B-firms is
Nb

F

Nc
F

, i.e., it is equal to the fraction of B-firms in the population

of C-firms.
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they will stick to the former and will shop at the latter only if the consumption budget is

not completely exhausted with the first purchase. Otherwise, they will switch to the new

partner (and reverse the order of purchase) with a probability πc which is increasing in the

price set by the go-to partner relative to that of the potential new partner: Rb
0,1 = P0/P1.

In symbols:

πc =

1− exp γp(1−Rb
0,1) if Rb

0,1 > 1,

0 if Rb
0,1 ≤ 1

(10)

where γp > 0. If the consumer actually switches to the new partner, the latter becomes

their new go-to partner in period t+1.

This partner selection mechanism implies an implicit negative elasticity of the demand

for the good produced by the f-th firm with respect to the price it charges relative to

that of its competitors. Consider firm f, f ∈ (1, N b
F ). The higher is Pf relative to P b

t ,

the higher the probability that the customers of the f-th B-firm will switch to a new

shopping partner, reducing the demand for the f-th B-good accordingly.25 If a firm goes

bankrupt, all the households who have this firm as their go-to supplier will randomly

choose a different go-to B-supplier.

If, at the end of their visits to B-firms, the household has not spent the consumption

budget allocated to B-goods, they will save involuntarily. This market protocol does

not guarantee equilibrium. Queues of unsatisfied consumers (involuntary savers) at some

firms may coexist with involuntary inventories of unsold goods at some other firms.

The market protocol for L-goods follows the same lines as that of B-goods. L-firms are

indexed with f ∈ (N b
F + 1, N c

F ) where N c
F = N b

F + N l
F is the cardinality of the set of

C-firms (the union of B-firms and L-firms). The consumer has one “go-to” L-supplier

(who sets the price P0) and one potential partner (P1). They will stick to the former and

shop at the latter only if the budget allocated to L-goods is not completely exhausted

with the first purchase in the case in which Rl
0,1 = P0

P1
≤ 1. They will switch to the new

partner (and reverse the order of purchase) with probability πc = 1− exp γp(1−Rl
0,1) if

Rl
0,1 > 1. If the budget allocated to L-goods has not been entirely spent, the household

will add the residual to their savings.

Total saving is equal to the sum of voluntary or desired saving (i.e., the difference between

disposable income and the budget allocated to consumption) and involuntary saving.

This is tantamount to saying that actual saving is equal to the difference between current

income and actual consumption of B-goods and L-goods. Savings are used to accumulate

financial wealth in the form of deposits.

25Delli Gatti et al. (2010) and Caiani et al. (2016) adopt a similar algorithm for partner selection.
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A.2 Firms

There are NF firms, of which N b
F produce B-goods, N l

F produce L-goods and Nk
F produce

capital goods (K-goods). Firms will be indexed with f = 1, 2, ...N b
F , N

b
F + 1, ...N c

F , N
c
F +

1, ....NF where N c
F = N b

F + N l
F . In words: firms indexed with f ∈ (1, N b

F ) produce

B-goods; firms indexed with f ∈ (N b
F + 1, N c

F ) produce L-goods; firms indexed with

f ∈ (N c
F + 1, NF ) produce K-goods.

A.2.1 C-Firms

B-firms and L-firms are consumption goods producers (C-firms for short) and follow the

same behavioural rules. In this section we describe the behaviour of a generic C-firm.

The firm has market power and sets the individual price and quantity under uncertainty.

It knows from experience that if it charges higher prices it will receive smaller demand

but it does not know the actual demand schedule (i.e., how much the consumers would

buy at any given price). Hence the firm is unable to maximize profits since the marginal

revenue is unknown. We assume that the firm charges a price as close as possible to the

average price and sets a quantity as close as possible to (expected) demand. In this way

the firm minimizes overproduction (in case of excess supply) or the queue of unsatisfied

customers (in case of excess demand).

The f -th firm, f ∈ (1 : N c
F ), must choose in t the price and desired output for t+1, i.e., the

pair
(
Pf,t+1, Y

∗
f,t+1

)
. Desired output is determined by expected demand Y ∗f,t+1 = Y e

f,t+1.

The firm’s information set in t consists of (i) the relative price
Pf,t
Pt

– where Pf,t is the

price of the f-th good and Pt is the average price level – and (ii) excess demand

∆f,t := Y d
f,t − Yf,t (11)

where Y d
f,t is the demand for the f-th good and Yf,t is actual output. ∆f,t shows up as

a queue of unsatisfied customers if positive; as an inventory of unsold goods if negative.

By assumption C-goods are not storable. Therefore involuntary inventories cannot be

employed to satisfy future demand.

The firm makes use of two rules of thumb which govern price changes and quantity

changes respectively.

The price adjustment rule is:

Pf,t+1 =

Pf,t(1 + 1uρp) if ∆f,t > 0

Pf,t(1− 1oρp) if ∆f,t ≤ 0
(12)

where ρp is a random positive number, ρp ∼ U(0, ρp). 1u is an indicator function which

takes value equal to 1 if the firm has underpriced the good (i.e., if
Pf,t
Pt

< 1), 0 otherwise.

Analogously 1o is equal to 1 if the firm has overpriced (i.e., if
Pf,t
Pt

> 1), 0 otherwise.
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Excess demand ∆f,t and the relative price
Pf,t
Pt

dictate the direction of price adjustment:

the firm will increase (reduce) the price next period if it has registered excess demand

(supply) and has underpriced (overpriced) the good in the current period. The magnitude

of the adjustment is stochastic. The upper bound of the support of ρp limits the admissible

price change. We also assume that the firm will never set a price lower than the average

cost.

Since the quantity to be produced is equal to expected demand, the quantity adjustment

rule takes the form of an updating rule for expected demand:

Y ∗f,t+1 = Y e
f,t+1 =

Yf,t + ρq∆f,t if ∆f,t > 0

Yf,t + ρq∆f,t if ∆f,t ≤ 0
(13)

where ρq ∈ (0, 1). Both the direction and the magnitude of quantity adjustment are

determined by excess demand.

Technology is represented by a Leontief production function, giving the maximum output

the firm can produce in t: Ŷf,t = min(αNNf,t, αKKf,t) where αN and αK represent labor

and capital productivity respectively. Once a decision has been taken on desired output

in t + 1, the firm retrieves from the production function how much capital it needs

in t+1 to reach that level of activity (capital requirement): K∗f,t+1 = Y ∗f,t+1/αK . If

actual capital Kf,t+1 is greater than the capital requirement, the desired rate of capacity

utilization xf,t+1 =
K∗
f,t+1

Kf,t+1
will be smaller than one. The labour requirement will be:

N∗f,t+1 = αK
αN
K∗f,t+1. If actual employment in t, Nf,t, is smaller than the labor requirement

in t+ 1, the firm will post vacancies. If the opposite holds true the firm will fire workers.

In this scenario, provided it is able to hire any additional required labor, the firm can

reach the desired level of production.

On the other hand, if actual capital is smaller than the capital requirement, the former

will be utilized at full capacity (the rate of capacity utilization will be xf,t+1 = 1 but

desired output will not be reached: Yf,t+1 = αKKf,t < Y ∗f,t+1.

Given a stock of undepreciated capital, actual capital in t+ 1 Kf,t+1 will be determined

by investment carried out in t, If,t. By assumption, in planning investment, the firm

sets a benchmark equal to the capital stock used in production “on average” since the

beginning of activity Kf,t. This, in turn, is computed by means of an adaptive algorithm,

i.e., the weighted average of past utilized capital from the beginning of activity until t

with exponentially decreasing weights. In computing this weighted average, the firm

employs a memory parameter ξK ∈ (0, 1). Capital depreciates at the rate δ. Moreover we

assume that C-firms may invest in each period with a probability πk. Hence investment

necessary “on average” to replace worn out capital is δ
πk
Kf,t+1.

We assume, moreover, that the firm plans to maintain, in the long run, a capital stock

buffer. Therefore the target capital stock is equal to KT
f,t+1 = 1

x̄
Kf,t where x̄ ∈ (0, 1) is
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the desired long run capacity utilization rate. Net investment is KT
f,t+1−Kf,t. Therefore

gross investment in t is:

If,t =

(
1

x̄
+

δ

πk

)
Kf,t −Kf,t (14)

Once investment has been determined, C-firms go to the market for K-goods. The market

protocol for this market follows the same lines as those of B-goods and L-goods. The

f -th C-firm, with f ∈ (1, N c
F ), has one go-to K-supplier (which sets the price P0) and one

potential new partner (which sets the price P1) in the population of K-firms, indexed with

f ∈ (N c
F + 1, NF ). If Rk

0,1 = P0

P1
≤ 1 the C-firm will stick to the go-to supplier and shop at

the new partner only if the investment budget If,t is not completely exhausted with the

first purchase. It will switch to the new partner (and reverse the order of purchase) with

probability πc = 1− exp γp(1−Rk
0,1) if Rk

0,1 > 1. If the C-firm’s demand for K-goods has

not been completely satisfied, it is forced to “save” the unspent portion of the investment

budget. Therefore actual investment may turn out to be lower than planned investment.

The uniform nominal wage is set on the basis of labour market conditions captured by

the distance between the current unemployment rate ut and a threshold uT . Whenever

the unemployment rate is above (below) the threshold the wage will decrease (increase).

The wage updating mechanism therefore is:

wt+1 =

wt
[
1 + uup

(
uT − ut

)]
; ut − uT > 0

wt
[
1 + udown

(
uT − ut

)]
ut − uT < 0

(15)

where uup and udown are positive parameters. We will assume that uup > udown to capture

the downward stickiness of nominal wages.

A.2.2 K-firms

Firms indexed with f ∈ (N c
F + 1, NF ) are capital goods producers. The price adjustment

rule followed by the f-th K-firm is equation (12) but the indicator functions should be

re-interpreted. Denoting with Pf,t the individual price and with P k
t the average price of

capital goods, the function 1o is equal to 1 if the K-firm in question has overpriced the

good (i.e., if
Pf,t
Pkt

> 1), 0 otherwise. Analogously, 1u takes value equal to 1 if the K-firm

has underpriced the good (i.e., if
Pf,t
Pkt

< 1), 0 otherwise.

The quantity adjustment rule departs from the one adopted by C- firms (see equation

(13)) to take into account the fact that K-goods are durable and therefore storable:

inventories of capital goods can be carried on from one period to another, depreciating
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at a rate given by δk in each period. The quantity adjustment rule of the f -th K-firm is:

Y ∗f,t+1 =

Yf,t + ρq∆f,t − Y k
f,t if ∆f,t > 0

Yf,t + ρq∆f,t − Y k
f,t if ∆f,t < 0

(16)

where Y ∗f,t+1 is the desired scale of activity, Yf,t+ρq∆f,t = Y e
f,t+1 is expected demand, Y k

f,t

is the inventory of firm f and ∆f,t is excess demand for the K-good produced by firm f

at time t. K-firms are endowed with a linear production function with labour as the only

input.

A.3 The banking system

Once the quantities to be produced have been set and the cost of inputs determined, firms

have to deal with financing. Consider a generic firm f . If the firm’s internal liquidity

(i.e., the current deposits held at the bank) Df,t are greater than the costs to be incurred,

the firm can finance production and investment (if any) internally. If, on the other hand,

liquidity is not sufficient to carry out production and investment up to the desired level,

the firm applies for a loan to fill its financing gap which is given by

Ff,t = wNf,t + 1cP
k
t−1If,t −Df,t (17)

where 1c is an indicator function which assigns value 1 to C-firms and 0 to K-firms (since

only C-firms purchase capital goods). We assume that C-firms assess the financing gap

(and the demand for loans) before accessing the market for capital goods. Hence capital

goods to be bought in t are priced with the “average” price of capital goods P k
t−1.

For simplicity we assume there is only one bank which collects deposits from firms and

households, supplies credit to firms and purchases government bonds. The bank decides

(i) the interest rate to be charged to each borrower and (ii) the size of the loan (which

may be different from the borrower’s financing gap). Both decisions are affected by the

borrower’s leverage λf,t:

λf,t =
Lf,t

Ef,t + Lf,t
(18)

where Lf,t is the firm’s debt and Ef,t is equity or net worth.

The bank makes an assessment of the probability of default, which is increasing with

leverage. The perceived probability of default for the f -th C-firm, f ∈ (1, N c
F ), is:

πbf,t =
eb0c+b1cλf,t

1 + eb0c+b1cλf,t
(19)

with b0c < 0 and b1c > 0. Analogously, the assessed probability of default for the f-th
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K-firm, f ∈ (N c
F + 1, NF ), is:

πbf,t =
eb0k+b1kλf,t

1 + eb0k+b1kλf,t
(20)

with b0k < 0 and b1k > 0. The interest rate charged by the bank to each firm is determined

by adding an external finance premium (Bernanke et al., 1996) to the exogenous risk free

interest rate r. The external finance premium is increasing with the probability of default

which in turn is (non-linearly) increasing with leverage. The interest rate charged to the

generic f -th firm is:

rf,t = µf(r, λf,t) (21)

where the function f(.) is increasing in both arguments.26

In order to determine the size of the loan given to a firm f , the bank first sets a tolerance

level for the potential loss Γb,t on credit extended to any individual borrower as a fraction

φb of its net worth: Γb,t = φbEb,t. The borrower’s total debt in t will be Φf,t + Lf,t−1

where Φf,t is the new credit line to be supplied in t. We assume the bank sets the new

credit line in order to equate the expected loss on loans extended to the f -th firm to the

tolerance level: (Φf,t + Lf,t−1)πbf,t = φbEb,t. Therefore the new credit line is:

Φf,t =
φb
πbf,t

Eb,t − Lf,t−1 (22)

Given the current exposure of the bank to the firm, the new credit line is increasing

with the bank’s net worth and decreasing with the firm’s leverage. The size of the loan

actually granted to firm f at time t will be the minimum between the new credit line and

the financing gap:

L̇f,t = min(Φf,t, Ff,t) (23)

If the latter is greater than the former the firm will be rationed on the credit market and

therefore forced to scale down its investment and/or production. In addition to making

interest payments, firms in each period repay a fraction ζ of their total debt to the bank.

The bank remunerates deposits and earns interests on loans and on Government bonds.

The interest rate on deposits is determined by marking down the risk-free interest rate.

A.4 Net worth updating

In every period, each firm’s net worth Ef is updated by means of retained net profits:

Ef,t+1 = Ef,t + (1− tΠ)(1− ω)Πf,t (24)

26For the specification of f(.) see Assenza et al. (2015).

52



Also the bank’s net worth is updated by means of retained profits:

Eb,t+1 = Eb,t + (1− tΠ)(1− ω)Πb,t −BDt (25)

where Πb,t is the bank’s profit and BDt is bad debt, i.e., the book value of non-performing

loans.

A.5 Entry-exit mechanism

If the liabilities of a firm exceed its assets (so that its equity turns negative), it is assumed

to go bankrupt and exit.27

As to entry, a newly born firm will enter sector j = B,L,K and replace a bankrupt firm

in the same sector with probability πej,t =
[
1 + exp(γeκ

j
t)
]−1

, which increases with the

average profit rate prevailing in the sector κjt . The firm owner of the previously bankrupt

firm being replaced will provide the initial equity injection to the entrant firm. In a

sense, a firm which goes bankrupt is ‘dormant’, remaining inactive for a variable number

of periods until a new firm succeeds in entering and replacing it. At any given time,

therefore, the number of active firms may be smaller than NF . NF itself is fixed and the

number of active firms cannot exceed it.

Regarding the bank, we assume that if its equity becomes negative due to losses on bad

debt, a bail-in procedure will immediately be applied: all firm-owners (who collectively

own the bank) make a transfer to the bank to make its equity positive again.

A.6 The Public Sector

The public sector taxes wages and profits, provides unemployment subsidies, sick-pay

and pensions (to workers), makes interest payments on government bonds (to the bank)

and carries out government expenditure on healthcare. The latter is a constant fraction

g of full employment output, taking the initial population of active workers NA as a basis

for calculation. In symbols:

G = gαNNW (26)

We assume this expenditure translates one for one into a supply of healthcare services to

the population via the public healthcare system. G is in the first instance allocated to

firms according to their relative revenue in the previous period.28

27The firm can also be illiquid. If a firm’s liquidity (bank deposit) is smaller than zero at the end of
the period but its equity is positive, it receives a transfer from the firm owner to make up the negative
balance. If, after the transfer, the firm’s liquidity is still negative, the bank takes a loss equal to the
negative balance and the firm’s deposit become zero. However, the illiquid firm does not exit the economy
unless its equity also turns negative.

28The f-th firm receives demand from the public sector equal to the fraction
Rf∑NF

f=1 Rf

where Rf

represents the firm’s revenue. If, after the first round of expenditure, the government has been unable to
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A public sector deficit occurs when taxes turn out to be lower than the sum of subsidies,

interest payments and government expenditure on healthcare. In this case, the govern-

ment will issue new bonds. For simplicity, we assume that all government bonds are

purchased by the bank at the fixed risk-free rate r.

A.7 Demand and supply of healthcare

We assume that economic decisions are taken every month while the health component

of the model runs at a weekly frequency. We will indicate the current week with the

subscript τ .

First we define a benchmark case, the Normal Times (NT) scenario. We assume that

during normal times, in any given week, a healthy agent may catch a non-infectious

disease with a certain probability πi. The presence of this disease in turn generates a

demand for healthcare services. The non-infectious disease is also not lethal: after a fixed

number Dn
d of weeks29 the sick recover. Recovery does not imply immunity: recovered

agents may randomly become susceptible again in the future. This assumption implies

that the non-infectious disease is endemic.

For simplicity we assume that only workers (both active and inactive) may get ill with the

non-infectious or the epidemic disease (described below). Since, as outlined below, age is

an important factor affecting the course of the epidemic disease, we divide the population

of workers into three age-segments. We denote with φy, φm and φo the fractions of the

population consisting of young, middle-aged and old workers.30 The variable ageh assumes

value 1 if the agent is young – i.e., if they belong to the fraction φy of the population –

2 if middle-aged and 3 if old. The h-th sick agent, h ∈ (1, NW ), generates a demand of

healthcare in week τ – denoted with Hd
h,τ which is increasing with age and affected by an

idiosyncratic shock:

Hd
h,τ = h1ageh + h2uh,τ (27)

where uh ∼ U(0, 1).

The total supply of healthcare services in every period τ is given by G. In the first

instance, this is allocated to agents who were already ill and receiving healthcare in the

previous period and who still require it. The residual is then allocated to patients who

have fallen ill in the current period: A randomised queue of all agents requiring and

not already receiving healthcare is formed and agents are admitted into the healthcare

spend the entire amount G (because some of the firms did not produce sufficient output), the remaining
demand is redistributed between those firms which still have goods available until the exact amount G
has been spent.

29Dn
d = 4 in the simulations shown below.

30In our calibration, φy = 0.15, φm = 0.65 and φo = 0.2. These parameter values roughly capture the
current composition by age of the population of Lombardy.
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system until the residual supply is exhausted. Hence the demand for healthcare may be

rationed. If an agent’s demand exceeds the remaining supply of healthcare, that agent is

rationed and receives only a fraction of the desired supply. All subsequent agents in the

queue are rationed completely. All rationed agents will queue again in the next period if

they still require care.

Sick agents who were previously in the labour force become inactive and receive sick-pay.

Old people are inactive by assumption and receive pensions. Retired agents who become

sick will continue to receive the pension instead of sick-pay.

Appendix B The epidemiological sub-model

In this section we describe the dynamics of an epidemic, i.e., an infectious disease.31 The

epidemic differs from the non-infectious disease because of the transmission from one

subject to the others through contagion. Despite being based on contagion through a

network structure of contacts between agents, the epidemiological sub-model is similar

to classic compartmental models in that agents can be classified into various states. The

notation is as follows:

Iτ denotes the cumulative number of (both detected and undetected) infections from the

beginning of the epidemic up to period τ . İτ denotes the number of new infections in τ .

Ic,τ denotes the stock of currently infected agents in τ . ∆Ic,τ denotes the change in the

stock of currently infected in τ . Note that in general, ∆Ic,τ 6= İτ , since the former includes

newly recovered agents (and hence may be negative) whilst the latter only includes new

infections and hence must be ≥ 0. Similarly, let Dτ denote the cumulative number of

detected infections, with Ḋτ , Dc,τ and ∆Dc,τ having the equivalent interpretations of the

variables defined above. Mτ is the cumulative number of deaths , Hτ the cumulative

number of agents requiring healthcare due to the epidemic disease, andRτ the cumulative

number of recoveries from the epidemic disease. For all three, we also define the respective

derivative variables as above.32 Finally, Sc,τ denotes the stock of agents who are currently

susceptible to the disease and ∆Sc,τ the change in this stock.33

The epidemic begins in an exogenously determined week labelled τE, in which a small

number of workers are exogenously infected with the epidemic disease. These people are

the initial infected (and infectious) and will be denoted with Ic,τE .34 The (healthy and)

31In the following we will not use the notion of a pandemic because we model a closed economy and
there is no diffusion of the epidemic across borders.

32Since agents in the model can be infected multiple times with the epidemic disease, provided that
they recover in-between, and given that dead agents can be replaced by newly born ones, it makes sense
to define the stocks of currently recovered and dead agents as distinct from the respective cumulative
values.

33Obviously, it makes little sense to define a cumulative stock of susceptible agents or a change therein.
34In the simulations, we set Ic,τE = 5. The fraction of the infected in the initial population therefore
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susceptible agents after the appearance of the infected are Sc,τE = NW − Ic,τE since at

the beginning of the epidemic, all NW workers in the model are alive. These susceptibles

may then be infected by the initial infected in τE and subsequent periods as described

below.

Some infected agents develop mild symptoms or do not develop symptoms at all (non-

symptomatic for short). In this case the infection can be detected only if the agent is

subjected to a test. In each period, every undetected infected agent may be detected with

a probability πrτ which, as explained in the main text, is fixed in the uncontained epidemic

but becomes endogenous in the social distancing and lockdown scenarios. Agents who test

positive are quarantined and therefore cannot spread the disease. Undetected infected can

still spread the disease. People who develop serious symptoms are detected with certainty.

Dτ , the cumulative number of detected infections, hence includes all infections leading

to serious symptoms as well as all infections detected through tests on non-symptomatic

agents. The probability for an agent to develop serious symptoms is increasing with

age.35 All agents developing serious symptoms require healthcare and hence become part

of Hτ . Their individual demand for healthcare is given by equation (27). All agents who

are currently infected and detected, Dc,τ will be inactive (and receive sick pay if they

are not retired) and will not have contacts with other agents for the entire duration of

the disease. For simplicity, we assume that the infected remain contagious for the entire

duration of the illness. The undetected infected therefore can spread the disease for the

entire duration of their illness.

Non-symptomatic agents recover with certainty after a certain number of periods of being

ill.36 Agents developing serious symptoms, on the other hand, may die with some prob-

ability during each period of the illness before recovering. In period τ , the h-th infected

agent with serious symptoms will face a probability of death which is increasing with age

and with excess demand for health care:

πmh,τ = π̂mτ age
3
h + h3,τ (H

d
h,τ −Hs

hτ ) (28)

where π̂mτ > 0 and h3,τ > 0, Hd
h,τ is the agent’s demand for health care and Hs

h,τ is the

amount of healthcare they actually receive, which depends on the free capacity of the

healthcare system. We assume that both π̂mτ and h3,τ decrease over time even in the

absence of a vaccine until they reach a lower bound. A rationale for this assumption is

that even without a vaccine, healthcare systems may over time become better at treating

is 5/30000 = 1/6000. Since Lombardy has a population of approximately 10 million, this means that
the set of the initial infected (which, it should be noted, are all initially undetected) in the model is

equivalent to 107

6000 = 1666 people in Lombardy.
35In the simulations we assume that this probability is πhy = 0.01 for the young, πhm = 0.02 for the

middle aged and πho = 0.525 for the old.
36In the present calibration, the duration of the infectious disease – denoted with di – is drawn from

a uniform distribution over the interval 3 ≤ di ≤ 5 for any infected individual.
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a novel disease (in the case of Covid-19 this may involve the use of existing medicines,

increasing experience as to when patients should be intubated, etc.). The laws of motion

are:

π̂mτ = max(πm, π̂mτ−1(1− z))

h3,τ = max(h3, h3,τ−1(1− z))
(29)

Instead of postulating the law of motion of the number of infected people as in SIR

models, we adopt a granular approach to contagion focusing on networks in order to

depict the transmission of the epidemic among agents.

Contagion spreads in three networks: the workplace (employment network), the market-

place (shopping network) and social relations (social network). Employed workers are

nodes in the employment network. Each employed worker is linked to all co-workers in

the firm they work for meaning that they encounter them every week. If a firm goes into

smart working, only a share of possible workplace encounters take place. If a firm is shut

down by a lockdown, no workplace encounters occur at that firm.

In addition, all worker households are nodes in the shopping network. A certain number

of households shop at a given C-firm. If one of these buyers is infective, they can spread

the disease to other households shopping at the same firm. We list all possible connec-

tions between the customers of a given firm and assume that a fixed share (1
3
) of those

encounters actually take place (reflecting the assumption that not all customers visit the

firm at the same time). This share is reduced if there is a lockdown in place or people

engage in social distancing.

Finally, we build a social network to depict encounters during leisure time. Each worker

household has a set of social connections consisting of family and friends. The total

number of social connections is a (very small) fraction of the maximum number of possible

undirected connections between worker households, NW (NW−1)
2

.37

While both the employment and shopping networks change over time as households

change employment and the firms at which they shop, the social network is static.

We assume that each infected and undetected agent meets all the agents they are con-

nected to (at work, while shopping and during leisure time) in every week. Let NCτ denote

the number of connections in week τ which involve exactly one undetected infected and

one susceptible agent. We assume that only a fraction (the transmission rate) of these

connections may lead to a new infection. In other words, there is a maximum number of

potential new infections in week τ given by

İmaxτ = ρc,τN
C
τ (30)

37In the present calibration, the total number of connections in the social network is 1
15000 of all

possible connections.
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where ρc,τ ∈ (0, 1) is the transmission rate which incorporates a seasonal effect, being

lower from May to September and higher from October to April. We then take a sample

of size İmaxτ from the set of connections involving exactly one undetected infected and

one susceptible agent. The sample is weighted such that the likelihood of being drawn is

highest for social connections, second-highest for employment connections and lowest for

shopping connections. In the absence of social distancing, each of these connections leads

to an infection with certainty. Under social distancing, a connection leads to an infection

with probability 1 − β if one agent involved in the connection is socially distancing and

with probability 1− 2β if both agents are socially distancing.

As indicated above, the infection with the epidemic disease ends either with recovery or

death. If an infected agent recovers, the stock of currently recovered agents, Rc,τ increases

by one. If the agent was previously economically active and became inactive due to their

infection being detected, they will re-enter the labour force as an unemployed agent and

begin to look for a job. If an infected agent dies, the stock of current dead,Mc,τ increases

by one. We assume that there are no bequests, such that the assets of dead agents are

simply written off. We assume that recovered agents may become susceptible to the

disease again and that dead agents can be replaced by newly born ones. At the end of

every week τ , each agent in the stock of currently recovered may become susceptible to

the epidemic disease again with a low probability πse. An agent may hence be infected

with the epidemic disease more than once over the course of a simulation run. This

factor makes it more likely for the disease to become endemic. At the beginning of every

month t, every dead agent may be replaced with a new agent of age 1 (i.e. a young

agent) with a low probability πn (= 0.0125 in the simulations shown here). If the dead

agent is replaced, the stock of currently dead agents decreases by one. This replacement

mechanism ensures that when the disease becomes endemic, it does not cause the entire

population to eventually die out. Since the probability of death never goes to zero, the

absence of a replacement mechanism for dead agents would mean that unless the disease

dies out first, the model population would go to zero in the very long run (i.e. beyond

the time horizons simulated in this paper).

Appendix C Parameter values

Tables 5 and 6 below provide the lists of model parameters pertaining to the macroeco-

nomic sub-model and the epidemiological sub-model respectively.
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Table 5: Macroeconomic sub-model parameters

Symbol Description Value

NW Number of workers 30000
N b
F Number of B-firms 360

N l
F Number of L-firms 240

Nk
F Number of K-firms 200

ze Number of Firms visited by unemployed 5
ξY Memory parameter for human wealth 0.55
cW Propensity to consume out of financial wealth 0.00835
ρq Quantity adjustment parameter 0.2
ρp Price adjustment upper bound 0.08
µ Bank’s gross mark-up 1.007
δ Capital depreciation rate 0.01
πk Probability to invest 0.4
φb Bank’s leverage parameter 0.0025
ζ Debt repayment rate 0.05
ξK Memory parameter for capacity utilisation 0.2
αN Labour productivity 2/3
αK Capital productivity 1/6
ω Dividend payout ratio 0.25
x Target capacity utilisation 0.85
δk Inventory depreciation 0.08
b0c Bank’s risk evaluation parameter (C-firms) -10
b1c Bank’s risk evaluation parameter (C-firms) 10
b0k Bank’s risk evaluation parameter (K-firms) -15
b1k Bank’s risk evaluation parameter (K-firms) 15
r Risk-free interest rate 0.01

3
rd Interest rate on deposits r

2
su Replacement rate (unemployment subsidy) 0.75
sp Replacement rate (pension) 0.9
ss Replacement rate (sick-pay) 0.75
tw Tax rate on wage income 0.275
tΠ Tax rate on profits 0.3
uup Upward wage adjustment parameter 0.1

3
udown Downward wage adjustment parameter 0.01

3
uT Unemployment threshold 0.1
g Ratio of government healthcare expenditure to full

employment GDP
0.04

γp Probability of switching parameter 40
γe Probability of entry parameter -40
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Table 6: Epidemiological model parameters

Symbol Description Value

φy Share of young agents in the population 0.15
φm Share of middle-aged agents 0.65
φo Share of old agents 0.2
πi Probability of catching the normal disease 0.0012
Dn
d Duration normal disease 4

Susceptibility probability normal disease 0.1
σL Consumption shock to L-goods parameter (baseline

and lower bound)
[1.65e-3,1.65e-4]

σB Consumption shock to B-goods parameter (baseline
and lower bound)

[5.5e-4,5.5e-5]

πhy Share of young agents with serious symptoms 0.01

πhm Share of middle aged agents with serious symptoms 0.02
πho Share of old agents with serious symptoms 0.525

Total number of possible connections 449985000
Number of permanent connections 29999
Share of deactivated L-firms in lockdown 1/3

dloclmax Lockdown maximum duration (weeks) 12

Ḋlock Lockdown activation threshold (new detected) 30

Ḋend Lockdown lifting threshold 12.5
di Duration of epidemic disease (weeks) ‖U(3, 5)‖
z Post-lockdown adjustment parameter 0.0775

Share of connections under lockdown 0.25
Share of work connections under lockdown 0.375
Share of shop connections (out of weekly visitors) 1/3
Share of shop connections under lockdown (1/3)·0.25

cSD Cost of distancing (in lockdown) 6 (-6)
ι Persistence of distancing index 0.725
β Distancing effect on infection probability 1/3
ρc,τ Transmission rate (October to April) 0.07
ρc,τ Transmission rate (May to September) 0.04

Dc,SD Social distancing threshold 5
N Intensity of choice for social distancing [0.05, 0.5, 1]
h1 Health demand parameter 2
h2 Health demand parameter 0.1
h3 Death probability parameter (baseline and lower

bound)
[0.0375,0.0125]

πm Death probability (baseline and lower bound) [0.0075,0.0025]
πr Detection probability (baseline and upper bound) [0.02,0.125]
γd Adjustment of detection probability 0.0005
πse Susceptibility probability epidemic disease 0.0025
I0 Number of initially infected 5
πn Replacement probability of dead agents 0.0125
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Table 7: Vaccine parameter

Description Value

Coverage rate (initial value) 0.01
Weekly increments and upper bound of coverage rate [0.001,0.05]
Vaccine efficacy w.r.t. contagion 0.70
Vaccine efficacy w.r.t. serious disease 0.90
Vaccine-induced immunity duration (weeks) N (52, 2)

Table 8: Variants parameter

Description Value

Number of initially infected with variant 5
Increase factor transmission rate 1.5
Reduction factor distancing effect 0.25
Variant 1,2: reduction factor vaccine efficacy w.r.t
contagion

[0.80,0.80]

Variant 1,2: reduction factor vaccine efficacy w.r.t.
serious disease

[1,0.80]
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