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Abstract

In a recent paper Juodis and Reese (2021) (JR) show that the application of the CD test proposed
by Pesaran (2004) to residuals from panels with latent factors results in over-rejection and propose
a randomized test statistic to correct for over-rejection, and add a screening component to achieve
power. This paper considers the same problem but from a different perspective and shows that the
standard CD test remains valid if the latent factors are weak, and proposes a simple bias-corrected
CD test, labelled CD*, which is shown to be asymptotically normal, irrespective of whether the
latent factors are weak or strong. This result is shown to hold for pure latent factor models as well
as for panel regressions with latent factors. Small sample properties of the CD* test are
investigated by Monte Carlo experiments and are shown to have the correct size and satisfactory
power for both Gaussian and non-Gaussian errors. In contrast, it is found that JR's test tends to
over-reject in the case of panels with non-Gaussian errors, and have low power against spatial
network alternatives. The use of the CD* test is illustrated with two empirical applications from
the literature.
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1 Introduction

It is now quite standard to use latent multi-factor models to characterize and explain cross-
sectional dependence in panels when the cross section dimension (n) and the time series dimen-
sion (7") are both large. However, due to uncertainty regarding the nature of error cross-sectional
dependence, it is arguable whether the cross-sectional dependence is fully accounted for by la-
tent factors. Some of the factors could be semi-strong, and the errors might have spatial or
network features that are not necessarily captured by common factors alone.! It is, therefore,
desirable to test for error cross-sectional dependence once the common factor effects are filtered
out.

In a recent paper Juodis and Reese (2021) (JR) show that the application of the CD test
proposed by Pesaran (2004, 2015a)? to residuals from panels with latent factors is invalid and
can result in over-rejection of the null of error cross-sectional independence. They propose a
randomized C'D test statistic as a solution. Their proposed test is constructed in two steps.
First, they multiply the residuals from panel regressions with independent randomized weights
to obtain their C'Dy, statistic, which will have a zero mean by construction. In this way they
avoid the over-rejection problem of the C'D test, but by the very nature of the randomization
process they recognize that the C'Dy, test will lack power. To overcome the problem of lack
of power, JR modify the C' Dy, test statistic by adding to it a screening component proposed
by Fan et al. (2015) which is expected to tend to zero with probability approaching one under
the null hypothesis, but to diverge at a reasonably fast rate under the alternative. This further
modification of C'Dyy test is denoted by C'Dy.. Accordingly, it is presumed that the C' Dy, test
can overcome both over-rejection and the low power problems. However, JR do not provide
a formal proof establishing conditions under which the screening component tends to zero
under the null and diverges sufficiently fast under alternatives, including spatial or network
dependence type alternatives. Using theoretical results established by Bailey et al. (2019) for
correlation coefficients we show that the screening component in JR need not converge to zero.
Also, our Monte Carlo simulations show that the C' Dy, test tends to over-reject when the
errors are non-Gaussain and n >> T,® and seems to lack power under spatial alternatives,
which is likely to be particularly important in empirical applications.

In this paper we consider the same problem and show that the standard C'D test is in fact
valid for testing error cross-sectional dependence in panel data models with weak latent factors.

However, when the latent factors are semi-strong or strong the use of C'D test will result in

1See, for example, Chudik et al. (2011) where the different sources of cross-sectional dependence are discussed.
It is shown that for a factor model to capture spatial dependence one needs a weak factor model where the
number of weak factors tends to infinity with the cross section dimension, n.

2For a published version of Pesaran (2004) see Pesaran (2021).

3The experiments under non-Gaussian errors continue to satisfy JR’s moment condition (specified in their
Assumption 1) since the errors are generated as chi-squared variates.



over-rejection and will no longer be valid, extending JR’s results to panels with semi-strong
latent factors.* In short, whilst the C'Dyy . is a useful and welcome addition to testing for error
cross-sectional dependence, it would be interesting to develop a modified version of the test
that simultaneously deals with the over-rejection problem and does not compromise power for
a general class of alternatives. To that end, firstly we study testing for error cross-sectional
dependence in a pure latent factor model, and derive an explicit expression for the bias of the
CD test statistic in terms of factor loadings and error variances. We then propose a bias-
corrected version of the C'D test statistic, denoted by C'D*, which is shown to have N(0, 1)
asymptotic distribution under the null hypothesis irrespective of whether the latent factors are
weak or strong. When the latent factors are weak the correction tends to zero, C'D and C'D*
will be asymptotically equivalent. However, C'D —C D* diverges if at least one of the underlying
latent factors is strong. We show that C'D* converges to a standard normal distribution when
n and T tend to infinity so long as n/T — kK, where 0 < k < 00, and a test based on C'D*
will have the correct size asymptotically. We then consider the application of the C'D* to test
error cross-sectional dependence in the case of panel regressions with latent factors, discussed
in Pesaran (2006). It is shown that the asymptotic properties of C'D* in the case of pure latent
factor models also carry over to panel data models with latent factors.

The finite sample performance of the C'D* test is investigated by Monte Carlo simulations.
It is found that C'D* test avoids the over-rejection problem under the null and diverges fast
under spatial alternatives, and has desirable small sample properties regardless of whether the
errors are Gaussian or not, under different combinations of n and 7. Although computation of
C D~ requires estimation of factors and their loadings, the simulation results suggest that prior
information of the number of latent factors is unnecessary so long as the number of estimated
(selected) factors is no less than the true number. It is also shown that as compared to JR’s
C Dyy+ test, the proposed bias-corrected CD test is better in controlling the size of the test and
has much better power properties against spatial (or network) alternatives.

The use of C'D* is illustrated by two empirical applications studied in literature. In the first
application, we examine modeling real house price changes in the U.S. Because it is evident
that real house price changes are driven by macroeconomic trends which can be modeled by
latent factors, it is necessary to filter out these factors before testing for spillover effect. By
applying C'D* to real house price changes in the U.S. we are able to show significant existence
of weak cross-sectional dependence in addition to latent factors. In the second application,
we consider modeling R&D investment in industries. Because there is knowledge spillover
between industries as well as other cross-sectional dependencies, modeling R&D investment
needs to include latent factors and researchers usually apply the CCE approaches proposed by

Pesaran (2006) to estimate coefficients. With C'D*, we find that the evidence of cross-sectional

4The concepts of weak, semi-strong and strong factors are formalized and discussed by Chudik et al. (2011).



dependence in the CCE residuals of modeling R&D investment is weak when the number of
selected principal components (PCs) is sufficiently large.

The paper is set out as follows: Section 2 considers a pure latent factor model, establishes
the limiting properties of the C'D test in the presence of latent factors, derives the bias-corrected
test statistic, C'D*, and establishes its asymptotic distribution. Extension to panel data models
with latent factors are discussed in Section 3. Section 4 sets up the Monte Carlo experiments
and reports the small sample properties of C'D, C'D* and, C' Dy, tests. Section 5 provides the
empirical illustrations. Technical discussions, formal proofs and additional empirical findings
are relegated to the Appendix and online supplement.

Notations: For the n x n matrix A = (a;;), we denote its smallest and largest eigenvalues
by Amin (A) and Aye. (A), respectively, its trace by tr (A) = > | a;, its spectral radius by
p(A) = |Amax (A)], its Frobenius norm by || A||, its spectral norm by || A = Al (A'A) <
| Al p, its maximum absolute column sum norm by ||All; = maxj<j<, (D, |a;;]), and its

maximum absolute row sum norm by [|A| = maxi<;<, <Z?:1 |aij|>. We write A > 0 when

A is positive definite. We denote the £,-norm of the random variable z by |z, = F (]x|p)1/p

for p > 1, assuming that E (|z|’) < K. —, denotes convergence in probability, 3 almost sure
convergence, —,4 convergence in distribution, and ~ asymptotic equivalence in distribution.
O, () and o, (-) denote the stochastic order relations. In particular, o,(1) indicates terms that
tend to zero in probability as (n,T) — oo, such that n/T — k, where 0 < k < co. K and ¢ will
be used to denote finite large and non-zero small positive numbers, respectively, that do not
depend on n and T'. They can take different values at different instances. If {f,,}, - is any real
sequence and {g,}.-, is a sequence of positive real numbers, then f, = O(g,), if there exists
K such that |f,] /g, < K for all n. f,, = o(gn) if f/gn — 0asn — oco. If {f,,}~, and {g,}
are both positive sequences of real numbers, then f,, = © (g,) if there exists ng > 1 and positive
finite constants Ko and K1, such that inf,,>p, (fn/gn) > Ko, and sup,,>,,, (fn/9n) < K1

2 Tests of error cross-sectional dependence for a pure

latent factor model

2.1 Pure latent factor model

Initially, we consider the following pure multi-factor model,
vit = Yif + war, (1)

for i = 1,2,..,n; and t = 1,2,....T, where f, = (fi, for, ..., fmot) i an mg x 1 vector of

unobserved factors and v, = (Vi1, Vi2, ---, %mo)/ is the associated vector of unknown coefficients.



Initially we also assume that mg, the true number of factors, is known, and make the following

assumptions:

Assumption 1 (a) f; is a covariance-stationary stochastic process with zero means and covari-
ance matriz, E (££)) = 3;; > 0, where F = (f,f5, ... f7). (b)) T} ZtT:l IE:]]7 — E (J|£]]7)] —=,0,
for 3 = 3,4, as T — oo. (c) There exists Ty such that for all T > Ty, T™* Zle f.f, =
T'F'F =37 >0, and X755 —, Xy > 0.

Assumption 2 The mgy X 1 vector of factor loadings v, is bounded such that sup, ||v,| < K,
Y Y =20, = 2., > 0.

Assumption 3 u; ~ ITID(0,02), supic? < K, infio? > ¢, and E (juy|**) < K. (a) uy is
symmetrically distributed around its mean E(uy) = 0, and there exists a finite integer Ty such
that for all T > Ty, wiT =T 'u/Mgu; > c >0,

/M ) —4—c¢
E (—“2 TF“’) < K, 2)

for alli, where w; = (us, U, ..., wir) and Mp = IT—F(F'F)_IF’. (b) iy and ujy are distributed
independently for alli # j andt # t', such that Mpee (V1) = Oy(1), where Vp = T7! Zthl wu;,
and Wy = (U, Uty s Unt). () for all i and t, uy is distributed independently of £y and v;, for

all i,7,t and t. (d) for a sequence of bounded constants, by, such that n=*> " b2 = O(1),

=1 "in
1 n T
— binfiruiyii = O,(1), for 7 =1,2,...,mg. 3
\/ﬁ;; th tVij p() f J 0 ()
Remark 1 Under the above assumptions, the self-normalized error, (i, defined by

Uy

Gitr = = e/ (T 'eMge;)'/?,

i, T

where e = uy/o;, and €; = (€1, €2, ..., &) exists, and is also symmetrically distributed with
E(ir) =0.

Remark 2 The fact that there exists a finite Ty such that (2) holds can be established readily if
it is further assumed that €; ~ IIDN(0,Ir). In this case €;Myge; is distributed as X2T7m0 and

4
E (E,_l\,}FEi) < K so long as T > my + 8. Under non-Gaussian errors a larger value of T will
be needed for the moment condition (2) to hold.

Remark 3 The sequence of bounded constants, by,, is introduced in (3) for convenience and can
be readily absorbed as scalars of fj; and v;;, since factors and their loadings are only identified

up to rotations.



To allow one or more of the latent factors to be weak, following Bailey et al. (2021) we
denote the strength of factor j by «; as defined by the rate at which the sum of absolute values

of factor loadings rises with n, namely
Z\%ﬂ:@(noﬁ), for j=1,2,...,mg. (4)
i=1

The case of strong factors assumed in the principal component analysis (PCA) literature cor-
responds to a; = 1, for j = 1,2,...,mp. Under the weak factor case discussed below, a; < 1/2
for all j. We also denote the maximum value of a; by a = maz;(a;).

Most of the above assumptions relate closely to those made in the literature on CD tests and
large dimensional factor models. See, for example, the assumptions in Pesaran (2004, 2015a),
and assumptions L and LFE in Bai and Ng (2008). The zero means in Assumption 1 are not
restrictive and will be relaxed when we consider panel data models with observed regressors.
Under Assumption 2 all factors are required to be strong. Since 7y, and f; are identified only up
to an mg X mg non-singular rotation matrix, we set ¥, = I,,,,, where I, is an identity matrix
of order mgy. However, later we show that our main Theorem 1 continues to hold so long as the
maximum factor strength o = maz;(o;) = 1, namely there is at least one strong factor. It is
not required that all mq latent factors should be strong, as required when Assumption 2 holds.
Assumption 3 is a technical assumption, also made for the proof of the asymptotic normality
of the standard CD test.

Under the above assumptions the asymptotic results of Bai (2003) apply, and the latent
factors and their loadings can be estimated using PCs, given as the solution to the following
optimization problem

n T )
min it — ;f > ,
nir ; ; (yt if;
where F = (f,f5, ... ,fT)/and I'=(v4,79)--- ,7n)/, with the estimates ' and I satisfying the

normalization restrictions:

Al A PNPIPN
rr

— =1,,,, and —— is a diagonal matrix.
n T

Then estimators of factors and their loadings are given by

N “ ~ 1 o
I'=vnQ, and F = —=YQ, 5)
Vi@ Y0 )
where we define y; = (vi1, iz, - - - ,yiT)/ for i = 1,2,...,n so that Y = (y,,y2,...,yn) is the
T x n matrix of observations on y; and Q is n x mg matrix of the associated orthonormal

eigenvectors of Y'Y. Then the residuals to be used in the construction of the CD test statistics



are given by
Cit = Yit — ’A)’;ft (6)
2.2 The CD test and its JR modification

The CD test statistic based on the residuals, (6), is given by

. =T ~ =~ - .
where pijr =T 1Y, €iuréjir, €r is the scaled residual defined by,

€;
eth - ! ’ (8)

UZT

and 62, = T3] €2 > ¢ > 0.5 JR consider a panel regression model with latent factors,
assuming that all the factors are strong and show that in that case CD = O, (\/T ), and its
use will lead to gross over-rejection of the null of error cross-sectional independence. To deal
with the over-rejection problem they propose the following randomized CD test based on the

random weights, w;, drawn independently of the residuals, ej;, namely®

T n -1
CDy = Totn 1) tzl 2 ; (wieir) (wjejt) 9)

where w;, for i = 1,2, ...,n are independently drawn from a Rademacher distribution of which

the probability mass function is

Because of the random properties of the weights, JR show that C' Dy, converges to a standard
normal distribution regardless of the values of €;, 7, and as a result the over-rejection problem
of standard C'D test is avoided if C' Dy, statistic is used instead, but as recognized by JR, this
is achieved at the expense of power. To overcome this limitation, JR construct another power

enhanced test statistic by following Fan et al. (2015), and add the screening component, A, r,

°This condition ensures that 1/67 < K < oo, which is assumed throughout.

6The C'Dy, statistic can also be computed using the scaled residuals, €;t,7- The test outcomes do not seem
to be much affected by whether scaled or unscaled residuals are used. Here we follow JR and define C Dy in
terms of unscaled residuals.



to C' Dy, to obtain C'Dyy defined by

where .
Bur =33 Il 1 (Igirl > 2¢/mn)/T) . (11)
=2 j=1

For the CDy . test to have the correct size under Hy : p;; = 0, for all i # j, the screening
component A,r must converge to zero as n and T — oo, jointly. To our knowledge, the
conditions under which this holds are not investigated by JR. Whilst it is beyond the scope of
the present paper to investigate the limiting properties of A, 7 in the case of a general factor
model, using results presented in Bailey et al. (2019) (BPS), we will provide sufficient conditions
for A, —, 0 in the case of the simple model y;; = p1;+0;€;;. By the Cauchy-Schwarz inequality
we first note that for all i # 7,

. . In (n
\pijr| 1 <|Pz’j,T\ > 2 ; )> |pij = 0]

) . 1
< [E (Pl lpi = O)}WP (|sz,T| >2 #’Pm‘ = 0) ;

E

where p;; = E (e4€j1). Then

F (AnT|p”LJ = 0, for all ¢ 7é j)

n? . . In (n
< 7SUPE [1pijr|” iz = 0] x sup P | |psjr| > 2 #V)zj = 0] : (12)
] i#]
Now using results (9) and (10) of BPS, we have
L2 1
E|pijrl"lp = 0] = O = (13)

and using result (A.4) in the online supplement of BPS, we also have

. C, (n,d) _ 159 (=1
sup P Ipz--,T|>p—|p¢-=0} zO(e 2 wmax)+0(T 2 )
it ! vT Y

where C, (n,8) = @1 (1—35), 0 < p < 1, ®7' () is the inverse of the cumulative distri-

bution of a standard normal variable, 0 > 0, puax = sup;; F (efteft), and s is such that

sup; .; & leq|** < K, for some integer s > 3 (see Assumption 2 of BPS). Also using results in



Lemma 2 of the online supplement of BPS, we have

C?(n,d ~1c2(n)
lim —2 (n,9) =2, and e emax = QO (n_‘s/“""‘a") .
n—oo In ( )

Therefore, % and 2 ln(" have the same limiting properties if we set § = 2. Overall, it

then follows that

ampo%ﬂ>2
i#£]

m%zﬁzo@%g+o(“f) (14

Using (13) and (14) in (12), we now have

__ 2
¥$max

E(Anﬂpij =0, foralli#j)=0 (nT

) +0 (n*T~°/?) (15)
Therefore, A,z —, 0, if n?T~%/2 — 0 and T—1/2 20 m) S0, It is easily seen that both of
these conditions will be met as n and T" — oo if £;; is Gaussian, since under Gaussian errors,
Ymax = 1 and s can be taken to be sufficiently large. But, in general the expansion rate of T’
relative to n required to ensure A,r —, Owill also depend on the degree to which E (5%&%)
exceed unity. For example, if £;; has a multivariate-t distribution with v > 4 degrees of freedom,

letting 7' = n¢, d > 0, and using results in Lemma 5 of BPS’s online supplement, we have

v — 2
v—4"

Pmax = SipE ( ltgjt‘plj - O) =

Hence, E (A,r|pij =0, for all i # j) defined by (15) tends to 0 if n2(1=i=2) 42 0, or if

8+€

d > %. Assumption 1 of JR requires E |g;|" " < K, for some small positive €, and for this to

be satisfied in the case of t-distributed errors we need v > 9, which yields d > 1 when v = 10,
requiring 7 to rise faster than n.”

Finally, for the C'Dy+ test to have power it is also necessary to show that A, diverges
in n and T sufficiently fast under alternative hypotheses of interest, namely spatial or network
dependence. Later in the paper, we provide some Monte Carlo evidence on this issue, which
indicates A, r need not diverge sufficiently fast and can cause the C' Dy + test to suffer from low
power against spatial or network alternatives. Our Monte Carlo experiments also show that
the issue of over-rejection of C'Dyy+ when n >> T prevails when the errors are chi-squared

distributed and the moment condition in Assumption 1 of JR is met.

"We are grateful to JR who draw our attention to the moment requirement of their Assumption 1.



2.3 The bias-corrected CD test

As shown by JR, the main reason for the failure of the standard CD test in the case of the
latent factor models lies in the fact that both the factors and their loadings are unobserved and
need to be estimated, for example by PCA as in (5). Essentially the differences between 'Sf;ft
and ~;f, do not tend to zero at a sufficiently fast rate for the CD test to be valid, unless the
latent factors are weak, namely unless & = max;(a;) < 1/2. Since the errors from estimation of
'y;ft are included in the residuals e;;, the resultant CD statistic tends to over-state the degree of
underlying error cross-sectional dependence. This problem also arises when the latent factors
are proxied by cross section averages, as is the case when panel data models are estimated
using correlated common effect (CCE) estimators proposed by Pesaran (2006), which we shall
address below in Section 3.

We propose a bias-corrected CD test statistic, which we denote by C'D*, that directly corrects
the asymptotic bias of the C'D test using the estimates of the factor loadings and error variances.
To obtain the expression for the bias we first write the C'D statistic, defined by (7), equivalently

as (established in Lemma S.8 of the online supplement)

We also introduce the following analogue of C'D

where w?; = T~'u;Mpu,, with the following key results (established in Lemmas S.2 and S.9

1 1
oir =wir+0, <ﬁ) + O, <f> ,

CD —CD = o,(1). (18)

in the online supplement):

and

By scaling the residuals by w; r instead of &;r we are able to establish a faster rate of conver-
gence which in turn allows us to derive an expression for the asymptotic bias of C'D statistic,
considering that CD and CD are asymptotically equivalent.

Now to analyze the asymptotic properties of C/'\ﬁ, let ;7 = =,;/wir and 5” = 4,/wir, and



note that

1 - €it
= Z = ¢t,nT — St,nT (19>
=

Wi, T
where
t,n \/ﬁi_l w,nT'Sit, Ty WinT " I'SPnT lis
_1n LA , §:m— 0. ‘7 r(A. — !
St,nT—%Z Cor (i — ¥i) wie + (0ir — bir ) £r +opr (5 —vi) Vife| (21)
i=1

with ¢, =n~'>" | 8;7. Using the above results, the CD statistic defined in (17) can then

be decomposed as

~N n 1 d (¢t,nT - St,nT)2 -1
D= (i) 77 2
B ( [ n > 1 i (2 ur + 57z — 2rmrsinr) — 1
N n—1) VT t=1 V2
_ ( n ) Li(ibin"r—l) +i T_1/2i$2 _\/§ T—l/2iw s
Vn—1) |/T V2 V2 s t,nT 2 tnTStnT | | -

t=1
Under Assumptions 1-3 the last two terms of CD are shown in Lemma S.4 of the online

supplement to be asymptotically negligible, in the sense that they tend to zero in probability

as (n,T) — oo, so long as n/T — k, and 0 < k < co. Hence, CD = z,r + 0p(1), where
2 _

Zop = T7V2S0T (wt’% 1). Also, using (18) we have CD = z,7 + 0,(1). Furthermore, as

established in proof of Theorem 1, we have

T

ar= o= (S2=1) va )

=1
where
1 n
§tn = % Z WinEit, Gin =1— 0:0L7;, (22)
i—1

P, = %Zyzl d;, and 8; = v, /0;. Since a;, are given constants, then E (&) = 0,

n

1 n
Wi==>al,=n"Y (1-apy), (23)
=1

B(g,) =ui=r
=1

10



and
1 <<,
var () 2} z) (). )

where ko = F (g},) — 3. Clearly, when the errors are Gaussian then E (¢},) = 3, the second term
of Var ({fn) defined by (24) is exactly zero. But even for non-Gaussain errors the second term

of Var (é'fn) is negligible when n is sufficiently large. To see this note that

% ; a?,n - Z O-ZSOTL’)Iz S %7

where K is a positive constant irrespective of whether the underlying factor(s) are strong or

weak. Then we can also compute the mean and the variance of z,r as

i(“ e )

1

T 2
Var (z,r) = Z (gtn) = —Var (gtn)

2
=1

The above expressions for F (z,r) give the source of the asymptotic bias of C'D as E (z,r) rises
with v/7T, unless

n

iMoo’ = limy,oon ™! Z (1- Uz“P;f)’i)Q =1
i=1

A bias-corrected version of C'D can be defined by

CD + /%6,
CD*,) = —— = (25)
where
1 n
O, =1—— 2 26
- ; W (26)

with a;,, defined by (22). The above results are summarized in the following theorem.

Theorem 1 Consider the model in (1) and assume the factor number my is known. Also
suppose Assumptions 1-3 hold. (a) Under the null hypothesis of cross-sectional independence
as (n,T) — oo, such that n/T — K, and 0 < kK < oo, CD*(0,,) defined by (25) has the limiting
N(0,1) distribution. (b) 6, =& (n*1), where 6, is defined by (26), and & = maz ;12 my(;),
with o representing the strength of the latent factor, fj, defined by (4).

Remark 4 Part (b) of the above theorem establishes that the relationship between C'D and

CD* (0,,) is essentially controlled by the maximum factor strength .. Also the main difference
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between C'D and CD*(0,,) relates to the correction in the numerator of (25), the order of which

15 given by

VT0, =0 (TV*n*7").

Suppose now T = & (n) for some d > 0, then VT0, = & (n¥*n*~1) = & (T°+4*71) | and the
bias correction becomes negligible if « < 1 —d/2. Under the required relative expansion rates of
n and T entertained in this paper, we need to set d = 1, and for this choice the bias correction
term, /T8, becomes negligible if o < 1/2, namely if all latent factors are weak. This result
also establishes that the standard CD test is still valid if all the latent factors are weak, namely
a < 1/2, which confirms an earlier finding of Pesaran (2015a) regarding the implicit null of the
standard CD test when d = 1.

The bias-corrected test statistic, C'D*(6,), depends on the unknown parameter, 6,,, which

can be estimated by

. 1 <
Oy =1—— a2 27
T n Zz:; az,nT ( )
where
. VA . 1 <~ ¢
Gipr =1 = 637 (@pr¥i), Por = - Z OinT, (28)
i=1

and Si,nT = 4,/6; . The following corollary establishes the probability order of the difference

between énT and 6,

Corollary 1 Consider the bias correction term 0, in the C'D* statistic given by (26) and its
estimator 7 given by (27). Suppose Assumptions 1-3 hold. Then for (n,T) — oo, such that

n/T — Kk, where 0 < k < 00, we have
VT (énT - en) = 0,(1). (29)

It then readily follows that C'D* (énT) = CD*(0,) + 0,(1), where

CD* (énT) — OD* = CD;_—\H/%TH"T (30)

~

We refer to C'D* <0nT), or C'D* for short, as the bias-corrected CD statistic, and the test based
on it as the C'D* test. The main result of the paper for pure latent factor models is summarized

in the following theorem.

Theorem 2 Under Assumptions 1-3, CD* defined by (30) has the limiting N (0, 1) distribution.
as (n,T) — oo, such that n/T — Kk, and 0 < Kk < 0.

12



Remark 5 Estimation ofénT requires the investigator to decide on the number of latent factors,
say m, when computing the CD* statistic. Suppose that mg denotes the number of strong
factors. Then if m > myg, the additional assumed number of factors, m — mgy, must be weak
by construction and the CD* —4 N(0,1) under the null hypothesis. Therefore, to control the
size of the CD* test the number of factors assumed when estimating O,7 should be set to ensure
that m > mqg. There is no need to have a precise estimate of mg which is often unattainable
especially when some of the latent factors are semi-strong. In practice the assumed number of

factors can be increased to ensure that C'D* test does not result in spurious rejection.

Remark 6 Despite the robustness of C'D* test to the choice of m, so long as m > myg, it
cannot be used to test if the number of latent factor selected is correct. This is because it
cannot distinguish whether the cross-sectional dependence is caused by the missing latent factors
or other forms of cross-sectional dependence such as spatial error correlations. QOur analysis
does not contribute to the problem of estimating mq addressed in the literature either based on
information criterion of Bai and Ng (2002) or eigenvalue ratio test of Ahn and Horenstein

(2013).

3 Tests of error cross-sectional dependence for a panel

data model with latent factors

Consider now the following general panel regression model that explains the scalar variables

Yir, for i =1,2,...,n;and t = 1,2, ..., T, in terms of observed and latent covariates:
Yir = ody + BiXi + Vi, v = Vify + uy, (31)

where d; is a k4 x 1 vector of observed common factors which can be either constant or covariance
stationary, x; is a k, x 1 vector of unit-specific regressors, and f; = (fi, for, ..., fmot) is an
mo x 1 vector of unobserved factors. o; = (a1, g, ...,cur,), B; = (Bi, Bizs -, Bir,)| and
¥ = (i1, Vi - %’mo)/ are the associated vector of unknown coefficients. u;; is the idiosyncratic
error for unit ¢ at time ¢, and its cross-sectional dependence property is the primary object of
interest.

To test the cross-sectional independence of error term in a mixed factor model as (31), we
need to estimate coefficients (e, 3;). When the regressor x;; is independent from both factor
structure and error term, a simple least squares regression of y;; on (1,x;) for each ¢ would be
sufficient. However, in a more general scenario, x;; can be correlated with factor structure. To

study this scenario, we adopt the large heterogeneous panel data models discussed in Pesaran

13



(2006), so that the time varying regressor x;; is assumed to be generated as
xit = Aidy + Tif, + €4

where A; and T'; are kg X k, and mgy X k, factor loading matrices and e,;; are the specific
components of x;;, distributed independently of the common effects and across i, but assumed
to follow general covariance stationary process. Then in addition to Assumptions 1-3, we make

the following assumptions:

Assumption 4 (a) The kg x 1 wvector d; is a covariance stationary process, with absolute
summable autocovariance and d; is distributed independently of £, for all t and t', such that
T-'D'F = O, (T~'?), where D =(dy,d, ... ,dT)/ and F = (f1,f, ... ,fT)/ are matrices of
observations on dy and £;. (b) (dy, ;) is distributed independently of w;s and €5 for all i,t, s.

Assumption 5 The unobserved factor loadings T'; are bounded, i.e. |I'; ||, < K for alli.

Assumption 6 The individual-specific errors uy and €,55 are distributed independently for all
1,7,t and s, and for each i, €55 follows a linear stationary process with absolute summable

autocovariances given by
e.9]
Exit = g Sinit—1
1=0

where for each v, Ny 18 a ky X 1 vector of serially uncorrelated random variables with mean zero,
the variance matrixz Iy, and finite fourth-order cumulants. For each i, the coefficient matrices

S satisfy the condition
Var (g.) = »_ SuSy = Za;
1=0

where X; s a positive definite matriz, such that sup; ||Xz], < K.
Assumption 7 Let T' = E (v,;,T;). We assume that Rank (f‘) = my.

Assumption 8 Consider the cross section averages of the individual-specific variables, z; =
(yit,x;t)l defined by z, = n~* Z?:l ziy, and let M = I — H (I:I'I:I)_lﬁl, and My = Iy —
G (G'G) G, where H=(D,Z), G = (D,F), and Z = (21,7, ..,7r) is the T x (k, + 1)
matriz of observations on the cross-sectional averages. Let X; = (X, X2, ..., X;7)’, then the
k x k matrices W, p = T7'X,MX; and ¥,;, = T-'X;M,X; are non-singular, and \ilz_% and

\Iliz]l have finite second-order moments for all 7.

Remark 7 The above assumptions are standard in the panel data models with multi-factor
error structure. See, for example, Pesaran (20006). But in our setup under Assumption 1 we

require the error term, u;, to be serially uncorrelated, since our focus is on testing u; for
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cross-sectional dependence, and this assumption is needed for asymptotic normality of the bias-
corrected CD test. Nevertheless, we allow €., the errors in the X; equations to be serially
correlated. Assumption 4 separates the observed and the latent factors, as in Assumption 11
of Pesaran and Tosetti (2011). This assumption is required to obtain the probability order of

estimated residuals needed for computation of C'D* statistic.

To estimate v;; we first filter out the effects of observed covariates using the CCE estimators

proposed Pesaran (2006), namely for each i we estimate f3; by
. L -1, ,_
BCCE,i = (XzMXZ) (XiMyi) )
and following Pesaran and Tosetti (2011), estimate a; by
“ 1 -1 / ~
QACCE; = <D D) D (yi - XzﬁCCE,z‘) :
Then we have the following estimator of v
Bt = Yit — Goopdi — BoopXit-

Using results in Pesaran and Tosetti (2011) (p. 189) it follows that under Assumptions 1-8

b = vy + O, (%) +0, (%) +0, (%) |
Note when a; = 0 and B, = 0, (31) reduces the the pure latent factor model, (1), where
PCA can be applied to vy directly. In the case of panel regressions 0; can be used instead of
v;r to compute the bias-corrected CD statistic given by (30). The errors involved will become
asymptotically negligible in view of the fast rate of convergence of 0;; to v;;, uniformly for each
1 and t. Specifically, as in the case of the pure latent factor model, we first compute mg PCs

of {Oy; i=1,...,n; and t =1,...,T} and the associated factor loadings, (¥;, f't), subject to

the normalization n=! Z?Zl ‘yﬁl = L,,,- The residuals e;; = 0;; — ’y;ft, for: = 1,...,n and
t=1,...,T are then used to compute the standard CD statistic, which is then bias-corrected

as before using (30).

Theorem 3 Consider the panel data model (31) and suppose the true factor number my is
known. Also suppose Assumptions 1-8 hold. Then as (n,T) — oo, such that n/T — k, where
0 < k < oo, CD* has the limiting N(0,1) distribution.

Remark 8 As in the case of the pure latent factor model the C'D* test will be valid so long as

the number of estimated factors is at least as large of my.

15



4 Small sample properties of CD* and C Dy + tests

4.1 Data generating process

We consider the following data generating process
Yir = 4 + g; <6i1dt + ﬁiQxit + m61/2’72ft + 5it> , 7 = 1, 2, ceny n;t = 1, 2, cens T, (32)

where a; is a unit-specific effect, d; is the observed common factor, z;; is the observed regressor
that varies across ¢ and ¢, f; is the my x 1 vector of unobserved factors, =, is the vector of
associated factor loadings, and ¢;; are the idiosyncratic errors. The scalar constants, o; > 0,

are generated as o7 = 0.5 + 357, with s7 ~ ITDx?(2), which ensures that E(c7) = 1.

4.1.1 DGP under the null hypothesis

Under the null hypothesis the errors €;; are generated as I1D(0,1), we consider both Gaussian

and non-Gaussian distributions for e;:

e Gaussian errors: g;; ~ IIDN(0,1),

e Chi-squared distributed errors: €;; ~ I D (%)

The focus of the experiments is on testing the null hypothesis that ¢; are 11D, whilst
allowing for the presence of mg unobserved factors, f; = (fi1, fot, .-, fimot)’- We consider mg = 1

and mg = 2, and generate the factor loadings ~; = (71, Vi2) as:

vi1 ~ IIDN (0.5,0.5) for i =1,2,...,[n%],
Yio ~ IIDN (1,1) fori=1,2,...,[n%],
vij =0 for i =[n%]4+1,[n%]+2,...,n, and j = 1,2.

In the one-factor case (mo = 1), we only include fi; as the latent factor and denote its factor
strength by a. Three values of « are considered, namely o = 1,2/3,1/2, respectively repre-
senting strong, semi-strong and weak factor. Similarly, in the two-factor case (mg = 2), we
include both f;; and fy; as the latent factors and consider the following combinations of factor

strengths.
(Oéla 042) - [(17 1)7 (17 2/3)7 (2/37 1/2)] .

The intercepts a; are generated as ITDN(1,2) and fixed thereafter. The observed common

factor is generated as an AR(1) process:

dy = pad;—1 + V31— pzvdta
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with pg = 0.8, and vy ~ I[IDN(0,1), thus ensuring that E(d;) = 0 and Var(d;) = 1. The
observed unit-specific regressors, x;;, for i = 1,2, .., n are generated to have non-zero correlations

with the unobserved factors:
Tit = Yeirf1e + Yaizfor + €ait, (33)

fit =1L+ /1 =175,

r; = 0.9 and vj; ~ I1D <%>, for j = 1,2. The factor loadings in (33) are generated as
Yeir ~ I1DU (0.25,0.75) and vz2 ~ [IDU (0.1,0.5). The error term of (33) is generated as a

stationary process:
_ / 2 :
Exit *piexi,tfl‘i’ 1—pivm-t, 1= 1,2...,7},,

where p; ~ 11DU(0,0.95) and v, ~ IIDN(0,1).

We will examine the small sample properties of the CD and the bias-corrected CD tests

where

for both the pure latent factor model and for the panel regression model which also includes

observed covariates.

e In the case of the pure latent factor model we set 8;1 = B2 =0

e In the case of panel regression model with latent factors, we allow for heterogeneous slopes
and generate the slopes of observed covariates, d, and x;;, as B;1 ~ IIDN (up, 0[231), and

Bia ~ IIDN (g2, 03,) where gy = pge = 0.5 and 03, = 03, = 0.25, respectively.

As our theoretical results show the null distribution of the CD and bias-corrected CD tests
do not depend on a;, B;; and (o, it is therefore innocuous what values are chosen for these
parameters. Moreover, the average fit of the panel is controlled in terms of the limiting value
of the pooled R-squared defined by

(nT)~! Z?:l ?:1 JfE (Qgt) ‘
(nT)=1 >0, 23:1 Var (i)

Since the underlying processes, (32) and (33), are stationary and F (%) = 1, we have

PR, =1— (34)

n1 Yoy o? [ 2+ BEVar (zy) + malﬁyhi 4+ 2Cov (xit, 'y;ft)]

limr_eo PR, = PR = -
- g n=ty i Var (yu)

where ~,; = (%‘17%‘2)/, Var (zy) = ’Y;ﬁm’ +1, Cov (%t,’)’;ft) = 7;1'77;7 Yzi = (’7$i17’7zi2)/, and
Var (yy) = o} [ 2+ BaVar (zy) +mg 'y, + 2m61/2Cov (xit,'y;ft> + 1] .
Also since o7 and f3;; are independently distributed and E(o?) = 1, it then readily follows that
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limp 0o PR = 1? /(1 + 1?), where

2up B (7;i7i) + b (’Y;’Yz')
aun mo ’

By controlling the value of 1? across the experiments we ensure that the pooled R? in large

772 = /~021 + 021 + (N%z + 01232) [1 +FE (')’;m')’a:zﬂ +

samples will be fixed, regardless of value of ;. In particular, in the case of the pure latent

model, we have n? = my'E (v;y;) = O (n®~!) where a = maz(a;, o).

4.1.2 DGP under the alternative hypothesis

We consider a spatial alternative representation for errors, and generate €,; = (€14, €2, -+, Ent)’

according to the following first order spatial autoregressive process:
Eot =C (In - pW)il Cota

where W = (w;;), and {y = (Cit, Cot, - - -, Gue)'- Similarly to the DGP under the null hypothesis,
for the errors, (;;, we consider both Gaussian and non-Gaussian distributions, namely (; ~

IIDN (0,1) and (; ~ IID[%]. For the spatial weights w;;, we first set w); = 1 if j =

i —2,i— 1,1+ 1,7 + 2, and zero otherwise. We then row normalize the weights such that
1
wij = (Z;;l w%) wy;. We also set

n
(32: s

tr [(L, — pW) ' (I, — pW)"]

which ensures that n=* "  Var(e;) = 1, irrespective of the choice of p.

4.2 CD, CD* and CDy-+ tests

All experiments are carried out for n = 100,200, 500,1000 and 7" = 100,200,500 and the
number of replications is set to 2,000. For the pure latent factor models, we compute the
filtered residuals as ;; = y; — 4;, where a; = T~! Zthl y;. For the panel regressions with latent

factors, the filtered residuals are computed as
Uit = Yie — AcoBi — BCCE,ildt - 500E,i2517it, (35)

where (éCCE,Z-, BCCE,Z-I, BC(;Eﬂ) is the CCE estimator of a;, ;7 and [;2, as set out in Pesaran
(2006). The CCE estimators are consistent so long as the relevant rank condition is met, which
requires that mg < 14k = 2, which is satisfied in the case of our Monte Carlo experiments. Then
we will compute the first m PCs {0y; i = 1,2,...,n; and ¢t = 1,2,...,T} and the associated

factor loadings, namely (¥,,f,), subject to the normalization, n ! S A~ = L. Finally the
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residuals, to be used in the computation of C'D test statistics, are computed as e;; = 0;; — ’yift,
fort=1,2,...,nandt=1,2,...,T.

In practice, the true number of factors myg is not known and in carrying the various CD
tests we need to set m such that m > mgy. To that end, in addition to reporting the results
with m = mg, we also consider m = 2 for one-factor specification and m = 4 for the two-factor
specification. JR apply a similar procedure to obtain 0, as shown in (35), but they differ from

us in computing the residual e;; as the latent factors are estimated by cross-sectional averages.

4.3 Simulation results
4.3.1 Gaussian errors

We first report the simulation results for the DGPs with normally distributed errors, under
which the correction term of JR test, namely A,7 in (10), tends to zero sufficiently fast and
our Assumption 3 is met. Next, we report simulation results for the DGPs with chi-squared
distributed errors, where the errors do not satisfy the symmetry requirement of Assumption 3,
and also allows us to investigate the robustness of the JR test and our proposed bias-corrected
CD test to departures from Gaussianity. We consider spatial alternatives such that the size
is examined by setting the spatial coefficient p = 0, and report power for p = 0.25. As to be
expected power rises with p and additional simulation results for values of p > 0.25 do not seem
to add much to our investigation.

The simulation results for the DGPs with the errors following standard normal distribution
are shown in Table 1-4. Table 1 reports the test results for the pure single factor models.
The top panel gives the results for the case where the number of selected PCs, denoted by
m, is the same as the true number of factors, mg, while the bottom panel reports the results
when m = 2. As to be expected the standard C'D test over-rejects when the factor is strong,
namely when a = 1. By comparison, the rejection frequencies of both C'D* and C' Dy, tests
under null (p = 0) are generally around the nominal size of 5 per cent. Under the alternative
(when p = 0.25), the C'D* has satisfactory power properties with significantly high rejection
frequencies even when the sample size is small. But C'Dy, test performs quite poorly under
spatial alternatives, especially when 7' is small.

Table 2 summarizes the size and power results for the pure factor model with mg = 2, and
reports the results when m (the selected number PCs) is set to 2 (the top panel) and 4 (the
bottom panel). The results are qualitatively similar to the ones reported for the single factor
model. The C'D test over-rejects if at least one of the factors is strong, and the empirical sizes
of CD* and C' Dy, tests are close to their nominal value of 5 per cent, although we now observe
some mild over-rejection when n = 100 and the selected number of PCs is 4. In terms of power,

the C'D* performs well, although there is some loss of efficiency as the number of factors and
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selected PCs rise. Similarly, the power of the C'Dy,+ test is now even lower and quite close to
5 per cent when 7' < 500 even if the number of PCs is set to mg = 2.

Turning to panel regressions with latent factors estimated by CCE, the associated simulation
results are summarized in Tables 3 and 4, As can be seen, the results are very close to the ones

reported in Tables 1 and 2 for the pure factor model, and are in line with our asymptotic results.

4.3.2 Chi-squared distributed errors

The simulation results for the DGPs with chi-squared errors are provided in Tables 5 to 8. For
standard C'D test and its biased-corrected version, C'D*, the results are very similar to the
ones with Gaussian errors, suggesting that C'D* test is robust to the symmetry assumption
that underlie our theoretical derivations. As with the experiments with Gaussian errors, the
standard C'D test continues to over-reject unless o < 2/3, and C'D* has the correct size for all
n and T combinations, except when the number of selected PCs is large relative to mg, and
T = 100. The main difference between the results with and without Gaussian errors is the
tendency for the C'Dy/+ test to over-reject when n > T', which seems to be a universal feature
of this test and holds for all choices of my and the number of selected PCs; and irrespective of
whether the factors are strong or weak. As we discussed in Section 2.2, this could be due to the
screening component of C'Dy, ;. not tending to zero sufficiently fast with n and 7. Furthermore,
the C'D* test continues to have satisfactory power, but C'Dy+ clearly lacks power against
spatial or network alternatives that are of primarily interest.

Similar results are obtained for panel regressions with latent factors, summarized in Tables

7 and 8.

5 Empirical illustrations

5.1 Are there spill-over effects in house price changes?

In our first illustration of the use of CD tests we consider the problem of spillover effects in
regional house price changes. It is well known that house price changes are spatially correlated,
but it is unclear if such correlations are mainly due to common factors (national or regional)
or arise from spatial spillover effects not related to the common factors, a phenomenon also
referred to as the ripple effect. See, for example, Tsai (2015), Chiang and Tsai (2016), Holly
et al. (2011), and Bailey et al. (2016). To test for the presence of ripple effects the influence
of common factors must first be filtered out and this is often a challenging exercise due to the
latent nature of regional and national factors. Therefore, to find if there exist local spillover
effects, one needs to test for significant residual cross-sectional dependence once the effects of

common factors are filtered out.
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We consider quarterly data on real house prices in the U.S. at the metropolitan statistical
areas (MSAs). There are 381 MSAs, under the February 2013 definition provided by the U.S.
Office of Management and Budget (OMB). We use quarterly data on real house price changes
compiled by Yang (2021) which covers n = 377 MSAs from the contiguous United States over the
period 1975Q2-2014Q4 (T = 160 quarters). To allow for possible regional factors, we also follow
Bailey et al. (2016) and start with the Bureau of Economic Analysis eight regional classification,
namely New England, Mideast, Great Lakes, Plains, Southeast, Southwest, Rocky Mountain
and Far West. But due to the low number of MSAs in New England and Rocky Mountain
regions, we combine New England and Mideast, and Southwest and Rocky Mountain as two
regions. We end up with a six region classification (R = 6), each covering a reasonable number
of MSAs.

Initially, we model house price changes without regional groupings and consider the pure
latent factor model with deterministic seasonal dummies to allow for seasonal movements in

house prices. Specifically, we suppose

3
Tt = @i + Zﬁijl{% = j} +vifi + wir,
j=1
where 7;; is real house price in MSA i at time ¢, and 1{q; = j} is the index for quarter j, and f;
is the m x 1 vector of latent factors. To filter out the seasonal effects we first estimate a; and
Bi; by running OLS regression of m; on an intercept and the three seasonal dummies. This is
justified since seasonal dummies are independently distributed of the latent factors. We then
apply the PCA to {0y : 1 =1,2,...,n,t =1,2,...,T}, where 0 = m; —a; —ijl Bijl{Qt =j},
to obtain the estimates 4, and f, for different choices of m (selected number of PCs).® Then the
standard C'D, its bias-corrected version, C'D*, and the C'Dy , test of JR are computed using

the de-seasonalized and de-factored series given by
3 A
it = Tit — A; — Z Bijl {a =7} — Ak (36)
j=1

The CD statistics are reported in the panel (a) of Table 9 for values of m = 1,2, ..., 6. Generally
all three CD tests reject the null hypothesis of cross-sectional independence irrespective of m,
with exception of the standard C'D test when m = 5. It can also be observed that C'D is always
less than C'D*, indicating C'D is negatively biased.

Bailey et al. (2016) also find evidence of regional factors in U.S. house price changes which

might not be picked up when using PCA. As a robustness check, we also consider an extended

86,; and Bij are estimated by OLS regression of 7;; on the intercept and seasonal dummies, that are indepen-

dent of the latent factors.
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factor model containing observed regional and national factors, as well as latent factors:

3
Mirt = Qi + Z Bir il {qe = g} + dir1Trt + Oip oy + ’Y;rft + Uirt,
j=1
where ;. is the real house price changes in MSA i located in region r = 1,2,...,6. 7,y =
n S e and T = ot Zle > i, mie are proxies for the regional and national factors.
To filter out the effects of seasonal dummies as well as observed factors, we first run the least
squares regression of 7, on an intercept and (1{q; = j}, 7, ;) for each i to generate the
residuals
3
Vipt = Tipt — Qip — Z Birl{a = 7} — dir1Tre — Gip 2Ty, (37)
j=1

and then apply PCA to {0y :1=1,...,n,r=1,... R, t=1,...,T} to obtain %,, and f,, for

different choice of m, and the residuals

3

Cirt = Tirt — iy — Z Bir,jl {a: =7} — Sir,lﬁrt — &‘r,zﬁt — ’S’;rft- (38)

j=1

The CD, CD* and C' Dy, test statistics based on these residuals are reported in the panel (b) of
Table 9, again for m = 1,2, ...,6. All three CD tests reject the null hypothesis of cross-sectional
independence for all choices of m. CD is still less than C'D* for each m, but compared to the
model without regional and national effects, now the difference between C'D and C'D* is much
smaller. Intuitively regional and national effects account for some of the latent factors such
that after filtering these effects the cross-sectional dependence in v;,; of (37) becomes weaker.
Since the bias in C' D decreases with the strengths of latent factors that are included in v;,, the
standard CD test and the bias-corrected CD test become closer. Overall, the above test results
provide strong evidence that in addition to latent factors, spatial modeling of the type carried
out in Bailey et al. (2016) is likely to be necessary to account for the remaining cross-sectional

dependence.

5.2 Testing error cross-sectional dependence in CCE model of R&D
investment

A number of recent empirical studies of R&D investment using panel data have resorted to

latent factors to take account of knowledge spillover as well as dependencies across industries,

and have applied the CCE approach of Pesaran (2006) to filter out these effects. For instance,

Eberhardt et al. (2013) estimate panel data regressions of 12 manufacturing industries across
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Table 9: Tests of error cross-sectional dependence for real house price changes

Panel (a): Without regional and national factors

Test\m 1 2 3 4 5 6
CD 8.9 15.5 4.7 1.3 0.1 -3.9
CD* 108.8  150.9 99.4 93.2 87.1 50.8
CD,+ 2659.2 2456.8 1765.3 1677.5 15474 1348.1

Panel (b): With regional and national factors

Test\m 1 2 3 4 5 6
CD 107.9 106.8 1124 125.0  46.0 42.4
CD* 1179  119.5 1224  137.0 70.0 67.0
CD,+ 1593.3 1546.8 1441.5 1321.9 1211.2 1150.9

Note: In the first panel the tests are applied to residuals in equation (36) where we de-seasonalize and
de-factor real house price change. In the second panel the tests are applied to residuals in equation (38)
where we not only de-seasonalize and de-factor real house price change but also filter out the regional
and the national effects. C'D denotes the standard CD test statistic, C'D* denotes the bias-corrected
CD test statistic, and C'Dy 4 denotes JR’s power-enhanced randomized CD statistic. The number of
selected PCs is denoted by m.

10 countries? over the period 1981- 2005, and apply the standard C'D test to the residuals
of their regressions to check if the CCE approach has been effective in fully capturing the
error cross-sectional dependence. They find that the C'D test rejects the null hypothesis of
error cross-sectional independence. JR revisit Eberhardt et al. (2013) test results using their
randomized CD test C'Dy,., but again reject the null of error cross-sectional independence.

Here we focus on one of the panel regressions considered by Eberhardt et al. (2013) namely
(see their Table 5)

In(Yit) = Bo + filn(Lyy) + Boln(Ky) + Bsln(Ri) + vifs + wi (39)

where Y;;, Ly, and K;; denote production, labor and physical capital inputs, respectively, and
R;; is R&D capital. We estimate the panel regression over a balanced panel and compute the

residuals after the CCE estimation:
i = In(yy) — Becro — Boopan(Liy) — Bocpan(Ky) — Bocesin(Ry). (40)

In both Eberhardt et al. (2013) and JR the residuals in (40) are furthermore filtered out by cross-

sectional average of (In(yi), In(Ls), In(K;), In(R;)), and then the tests of error cross-sectional

9The countries include Denmark, Finland, Germany, Italy, Japan, Netherlands, Portugal, Sweden, United
Kingdom, and United States.
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dependence are applied. Here, we apply PCA to residuals {0y :=i=1,....,n,t =1,...,T}
to get estimates 4, and f,, because PCA is not only required for construction of C'D* but also
can present the change of cross-sectional dependence associated with the number of selected
PCs to estimate factors, which is denoted as m. Also, because rank condition is required for
the consistency of CCE estimators, it is implicitly assumed that the number of latent factors in
(39) is not larger than the number of time varying regressors (in the present application 3) plus
one.!? Accordingly, we apply PCA to 9;, with the number of selected PCs set to m = 1,2, 3,
and 4. The results are summarized in Table 10. As can be seen, the test outcomes are quite
sensitive to the number of PCs selected. The C'D and C'D* tests reject the null of cross-sectional
independence when m = 3, but not if m = 4. In comparison, the C' Dy + test rejects the null

for all values of m.

Table 10: Tests of error cross-sectional dependence for panel regressions of R&D investment

1 2 3 4
CD 05 21 41 -08
CD* 21 33 63 1.7
CDw, 384 39 3.7 86

Note: The tests are applied to residuals in equation (40) where we model R&D investment. See also
the notes to Table 9.

6 Concluding remarks

In this paper we have revisited the problem of testing error cross-sectional dependence in panel
data models with latent factors. Starting with a pure multi-factor model we show that the
standard CD test proposed by Pesaran (2004) remains valid if the latent factors are weak,
but over-reject when one or more of the latent factors are strong. The over-rejection of CD
test in the case of strong factors is also established by Juodis and Reese (2021), who propose
a randomized test statistic to correct for over-rejection and add a screening component to
achieve power. However, as we show, JR’s C'Dy + test is not guaranteed to have the correct
size and need not be powerful against spatial or network alternatives. Such alternatives are
of particular interest in the analyses of ripple effects in housing markets, and clustering of
firms within industries in capital or arbitrage asset pricing models. In fact, using Monte Carlo

experiments we show that under non-Gaussian errors the JR test continues to over-reject when

107t is worth noting that the CCE estimator continues to be consistent even with failure of rank condition, but
requires additional assumptions such that factor loadings v, in (39) are independently and identically distributed
across i, see Pesaran (2006) and Pesaran (2015b).
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the cross section dimension (n) is larger than the time dimension (7), and often has power
close to size against spatial alternatives. To overcome some of these shortcomings, we propose
a simple bias-corrected CD test, labelled C'D*, which is shown to be asymptotically N (0, 1)
when n and T tend to infinity such that n/T — k, for a fixed constant . This result holds for
pure latent factor models as well as for panel regressions with latent factors. Our analysis is
confined to static panels and further research is required before the CD* can be considered for

dynamic panels with latent factors.
Appendix

This appendix provides the proofs of Theorems 1 to 3, and Corollary 1. The auxiliary

lemmas used in these proofs are stated and established in Section S1 of the online supplement.

Proof of Theorem 1. We first note that the residuals of the factor model (1) estimated using
PCs, given by (5), can be written as:

e ==, (= £) = (G =)t~ =) (- 8). (A1)

_ _ S _ A 2 _ -1,
Let Gir = ui/wir, dir = ¥;/wir, and 8; 7 = 4, /wir, where wip = T~ u;Mpu;, then

o ” / R AR
eit/wi,T = Git;r — 5;3 (ft - ft) - (6i,T - 6i,T> f, — <5¢,T - 6i,T> (ft - ft) . (A.2)
As shown in Lemma S.1 of the online supplement, and recalling that y;; = v}f; = u;;, we have

n

ft —fi=n" Z (:YJ o 7]') Yt + n”! Z7jujt

j=1 j=1

= [nlz(ﬁj_'yj fi+n" Z ’y] Ujp +n Z’)’]Uﬁ

j=1 j=1

Using this result in (A.2) we obtain

n n n
eit/wir = Citr — 5;,T <n1 Z’Yﬂh‘t) - 5;T [nl (’3’] - ’Yj) ’Y;] f, — 5;,T [nl Z (’3’] - 'Yj) th]
J=1 J

1

~ (8- 51-,T)' f,— (8 - 5,,T)' (f-£). (A.3)
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and summing over ¢ we have

n

no /2 Z eit/wi,T = n /2 Z Git,r — Pt (n_1/2 Z 'Yi%‘t) — P
i=1 i=1

=1

n

=1

n/? Z — % uzt] - [n_1/2 Zn: (&T - 5i,T>/] f,
i=1
n_1/2 zn: (81'7T — 6i,T>] <ft — ft> .

- LpnT

=1

where
n
—1
Cur=n"Y bir.
i=1

Written more compactly

n

-1/2
ht,nT =n"Y E €it/wi,T = ¢t,nT — St,nT,

=1

where

3

wt nT —

/
@ 1 Cit T i = 1 — Wi 7@
1

)

StnT =

<-4~
NE

|:‘PnT (7 7z) Uit + <5i7T - 5 ) ft + (pnT (7 71) 7zft

=1

Further, let

1 n
gt,n - \/ﬁ E - az,ngzh az,n - 1 O-Zgon’)/i'
1=

where ¢, =n"'>"" | §;, and §; = ~,/0;. Then 1,7, given by (A.6), can be written as

IR I
Vet = &t + 7n > (1= wirlr ) Girr — 7 > (1 =0l e
i=1 =1

n

1 & ) R ) 1
=&n — ﬁ Zz:; Wi TP YiGit,r + % Zz:; oy Yi€it + % Z (Citr — €it)

i=1
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and since w; rGer = wir = 0464, (recall that Ger = €1/ (€;Mp€i/T)l/2) then

1 © B
wt,nT = ft,n + — (Cz‘t,T - €it) - (Son - ‘Pn> = YiOi€it-

1 " 1 / 1 -
=&+ — —1)ew—(r—¥,) | — v,0:€i | -
"V Z (e/Mpe,/T) e\ Z t

So Y ,r can also be written equivalently as

wt,nT = gt,n + UtnT — (‘PnT - Qon), Rt n, (A9>
where
1 n
gt,n = = Z Qi nEit, Qjn = 1 — O-Z'QO;z’Yia (AlO)
\/ﬁ =1

1 n
Rtn = ﬁ ; Y;i0iEit, (A-H)

1 — 1
Vg = —= —1 ey A.12
t,nT \/ﬁ ZZI ((E;MFEl/T)l/Q ) t ( )

Now recall from (17) that

2
T Ly en) 1
D — n ) 1 > (x/ﬁ i=1 Gy r
Y ( VT = V2

0= (\[25) =3 (B0) + (2 for =,

where
T
pur = T3 20, (A.13)
t=1
T
gnT = T_1/2 Z wt,nTSt,nTa (A14)
t=1

35



and by Lemma S.4 of the online supplement p,r = 0,(1), and g, = 0,(1). Hence

A 1 « Uiy — 1
CD:\/T;( 7 )+op<1). (A.15)

Now consider T-1/2 31 Y7, and using (A.9) note that

T T
1 1 2 Z = ft nUtnT 1 2
¢2n — é-Qn 1 + t=1 5%, ) + vl
T Z t,nT T Z t, Z?:l ftz,n /T Z t,nT

t=1

T T
+VT (P — S"n), (M) (Prr — Pn) — 2VT (nr — ‘Pn)/ (% Z KtnVtnT
1 « -
— VT (@rr — ®n) (T ; th,nft,n>
= GinT + 92017 + G307 — 20407 — 20507 (A.16)

Starting with the second term, g, ,r, note that

E (gor) = E (gonrl) = —= 3 E (v2,1). (A17)

where vt 7 is defined by (A.12), and we have

2
1 1
Blh) =5 28 <<e<MFsi/T>1/2 ) 1) gl

E(a) =23 {E< : ) 1} e “i |
v == Nr - ) T T e B
tnT n ‘= e;Mrpe; /T n = (EQMFEi/T)l/Q i

2
E -1 -1
(eiMpei/T)

Meanwhile using (S.48) and (S.52) in Lemma S.7 of the online supplement, we also have
Bl 1) —o(Ll) aae —o(=
e'Mrpe;/T - \T)’ - A\T)’

and therefore
E(vi,r)=0(T"). (A.18)

2
Eit

(eMre,/T)"
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Using this result in (A.17) we obtain F (|g2.r|) = O(T~'/?), which by Markov inequality
establishes that ¢go,r = 0,(1). Consider the three remaining terms, gs,r, ganr and gs,r of
(A.16), starting with

1
g3nT = ﬁ

I

T

VT (¢ur — ¢0)' (—ZH Rtﬁt’") VT ($ur — ¢0)

and note that by Lemma S.5 we have

ﬁ(gon - ‘pnT> - Op (n_1/2) + Op (T_1/2) . (A19)
Furthermore
T 1 T . -
_lgﬂt,nﬁg,n S T;E Hmt’nﬁé,nH = T;E ||I€t,n||2

T

1
=7 Z E (ﬁ;m/ﬁtm) :
=1

Then using (A.11)

n n

1
E /{tn/{tn :TL 27 730-20-] 5zt<€yt = Zg 771 7 (AQO)

i=1 j=1

it then follows that

T n
_ 1
! Z Ktnkin| < o Z ot (vivi) < K,
t=1 =1

and 77! Zle Ktnhi, = Op(1). Using this result together with (A.19) we then have

93.nT = 0p(1). <A21)

Similarly, by Cauchy-Schwarz inequality and using (A.18) and (A.20) we have

T

s—ZEuwnmusfz (W) [E (0Fr)] "

1/2 :T
%ZU? (72%)] < Z )] 2)

—0(17).

T
: Z
T Rt nUnTt
T
t=1

<
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Then using the above results it also follows that

T
1
9anT = ﬁ (QonT - Qon), (? Z Ht,nvt,nT> = Op(l)' <A22>
t=1

Similarly,
T

< 7 0 [B ()] [E (€],

t=1

1 T
T Z Hntgt,n
T t=1

where using (A.8) E (&7,) = +>°7 1 aZ, = 25" (1— o)’
K, and again using (A.19) it follows that

T

T
95nT = \/T ((PnT - Son)/ (% Z K't,ngt,n) = Op(l)' <A23)
t=1

Using results (A.17) to (A.23) in (A.16) now yields

Lin — (L ié-Q > (1_'_ 22?:1£t,nvt,nT> +o (1) (A 24)
\/T p t,nT \/T t,n ZtT:1 ft%n D

as desired. Consider now the (population) bias-corrected version of CD defined by

. CD+ /%,
CD :—\E (A.25)

where 0, =1— 13" a? . and a;,, = 1 — 0,0,y Then using (A.15) in (A.25), we have

. EXL [He] e

CD = - +0, (1
wtn
\/LTZZ;I’TQT_ 7 (1—0,)
= 1_9 +0p(1)

Now using (A.24) in the above and after some re-arrangement of the terms we obtain

£l n—(1-0n)
CD = 2 <T9ﬂ G ) +V2uw,r + 0, (1), (A.26)

where
T_l 23:1 ét,n <\/Tvt,nT>
wnT = 1 T 5 . <A27>
T Zt:l é.t,n
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It is clear that the denominator of w,r is O,(1), and using (A.8) and (A.12) we have
& :Lia‘ git —va N(0,w?)
CoVvnm ‘

where wg = limy_,o0 (£ Y7, a7,) < K. Consider now the numerator of (A.27), and note that

there exists Tj such that for all T" > Ty, &, <\/T Ut,nT> are serially independent with zero means

and finite variances. Also using (A.12I note that

1 < 1
ﬁv nT — — — \/T — 1 Eity
SV Z (€/Mye;/T)"* t

where it is easily seen that

E (\/TUMT) =0, and Var (\/TvtynT> ! i E T (( ! 172 - 1) 25%

n E;MFEZ/T

i=1

Also using (S.54) and (S.55) in Lemma S.7 of the online supplement, we have

1 i 2 € £
E|T 1) & =T|E(——t ) +1-2E i
(e;Mpe;/T)"? t <(52MF51/T)) (e/Mpe;/T)"?

=TN+0(T)+1-2[1+0(T")]] =0(1).

Hence, for all T > Ty by application of standard central limit theorem to /T Ut We have
VTV nr =g N(0,w?), as n — 0o, where

2
1 1
2 _ . 1 _ 2
W, = lzmn_mn ;1 E\T ((sg pei/T)1/2 1) e | < K.

Then it readily follows that

T
=T E(&,Tv}0) =0T,

t=1

Var

T i ft,n (ﬁvt,nT>
t=1

and hence TS0 &, (ﬁvtmgp> = 0,(1). Using this result in (A.27) and noting that its

numerator is bounded then it follows that w,; = 0,(1), and as a result (using (A.26)) we finally

T 62,,”7(17971)
55 _ N D (tT>
B 1—4,

have

+ 0, (1),
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WlthE(ftn) =1-0,= IZZ 1 ZHZ%Z?Zl(l_Ui(p;L7i)2>O7 and

VCL’I" gtn _2< Zazn) — ka2 (%zn:ain)’
=1

where ky = E (e)) — 3. But since 537 al, = O(n™'), then Var (&,) =2(1 — 6,)° + o(1),

and

Recalling that ffn for t =1,2,...,T are distributed independently over ¢, then

N (M2 (0, 1),
vT tz:: Var (ffn)

Also by Lemma S.9 in the online supplement, C'D = CD + 0p(1).Then it follows that
CD + \f 0. CD+ +\f 0,
CcD*(0,) = = + 0,(1

a Stn_E(gtn)
0| +0,(1) =, N(0,1),
\/_Z Var (ftn)

which establishes part (a) of Theorem 1. To prove part (b) of the theorem we first note that

n n

1 1 )
bo=1--3 a2, =1- =5 (10,
n — az,n n — ( g n77,)

1 « 1 «
= 2¢), (5 Zm%) — ), (; ZU?%-%) Po (A.28)
=1 =1

where ¢, =n"' > ~,;/0;. Then

0] < supi(o?) e} ( Z ||%||1) + 2supi(i) [l ( Z II%II1) :
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lv:ll, = Z;ﬁ:% i3], and

lnlly < infi(o:) ( Z ||’YZ||1> infi(oi) [Z ( Z il )] : (A.29)

Since by assumption inf;(o;) > ¢ > 0, and sup;(0?) < K < oo, then the order of |6,] is
determined by Y77 (£ Y77, [7i;]), where my is a fixed integer. Hence, [0,| = ©(n®"") as
required, where a = maz;(c;), and «; is defined by Y " | || = & (n%). See (4). m

Proof of Corollary 1. Note that 6,, define by (26) can be written as

Hn = 2gn - QOIanQOn’

where

=1 =1
Z d;, and 9; = ’.

Similarly using (27) we have

Our = 2007 — PorHor @ r,

where
n
. 1 Al A
gnT = n E 0, 7Pn1Yis nT = E UzT
i=1
Z Yi
‘pnT - 61 T and 51 nT —
UzT
Then

VT (bur = 00) = 2VT (o — 90) = VT (@ Blar@rr — @i o, ). (A30)

Counsider the first term of the above

Qﬁ (gnT - gn) - 2\/_ (QonT ( Z Uz7z>

Por (; ;&i,T’% . ;%%)] ; (A.31)

and since o; and ~; are bounded then n=' >™" oy, = O,(1). Also by (S.43) of Lemma S.5 we
have VT (@, — ¢,,) = 0,(1), and hence the first term of the above is 0,(1). To establish the

+2VT
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probability order of the second term of (A.31), we first note that
n 1 n ) X 1 n

Pt ( Z% Y — Z Uz‘"/i)] =2VT ©n (ﬁ ZUi,T’Yi T Z%%‘)
i=1 i=1 i=1

X ) 1 n A X 1 n
g by r s vl
=1 i=1
(A.32)

But by (A.29) ¢,, = O,(1), and by (S.68) in Lemma S.10 of the online supplement (recall that
Sy = min(y/n, VT)).

— Z GirY; = 07i) = Op (0,7)
which also establishes that the second term of (A.32) is 0,(1).Therefore overall we have
VT (gur = gn) = 0,(1). (A.33)
Consider now the second term of (A.30) and note that

VT (Frtlurbur = i) = VT (@01 = ) Far (G = 20

where HnT =1 ZZ 1 zT ('YZ’YZ), and

The first two terms of (A.34) are o,(1), since ||, || < K, and VT (@, — @,,) = 0,(1), and
nt Y 67 (AA;) = Op(1). To establish the probability order of the third term of (A.34),
since ||, || < K it is sufficient to consider the four terms of v/T' (ﬂnT - Hn> It is clear that
Dy, r is dominated by Dy, and by (S.69) of Lemma S.10,

VT & . VT
Dy,,r = o Uz'2 (’Yﬂ;’ - ’Yﬂ’;) =0, | 5 | = Op(l)-
i=1

2
(SnT
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Using (S.11) of Lemma S.2 in the online supplement and replacing b,; with v, for j,j" =
1,2,...,mg, it then follows that

VT
Dy, = — Z 7)Y, = O, (57 0,(1).
i=1 nT

Finally, denote the (j,j') element of Dy ,,7 by dy,r(j, ") and note that

o 1 < e;Mpe; .
d4,nT(j)],) :Ezzl(o-g’%j,%j’)ﬁ( T _1) ) fOI' ]7.]/:1727"'7m0'
But under Assumptions 2 and 3, |02v;;7:;| < K, and VT (T~'e;Mpe; — 1), for i = 1,2,....n
are identically and independently distributed across i, with mean mg/ VT and a finite vari-
ance.!’ Then by standard law of large numbers, for each (7,5"), dynr(j,j') —p 0, as n and
T — oo, and hence we also have Dy, = 0,(1). Overall, H,, - H, = 0p(1), and we have
VT <g5'nTI:InTg5nT - go’angon> = 0,(1). Using this result and (A.33) in (A.30) now yields
VT <énT — 9n> = 0,(1), as required. m

Proof of Theorem 2. Recall from (30) that CD* (énT> is given by

where 0,7 = 1 — LN a2, G = 1 — 0ir (L), and @0 = nt Y00 A, /6ir, subject
to the normalization n™' " | 4 fy; = 1,,. By Lemma S.9 of the online supplement we have
CD=CD+ 0p(1). Then CD*(6,7) can be written as (noting that 1 — 6, = L DI > 0)

A CD+ /20 CD+ +/Lhur
CD*(QnT [ = [ + Op

zlzn

By result (29) of Corollary 1, v/T (énT — 9n> = 0,(1), and hence
i TP T 0)
1= 0 (Our — 02

C’D+\/>9
-1 ¢ +0,(1) =CD*(6,)+ 0, (1)

+ 0y(1)

"The mean and variance of v/T (T’le;Mpei - 1) can be obtained using (S.47) and (S.48) in Lemma S.7 of
the online supplement.
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A

However, by Theorem 1, CD*(6,) —, N(0,1), which in turn establishes that CD*(6,,7) —,
N(0,1), considering that CD*(0,7) — CD*(6,) = 0,(1). =
Proof of Theorem 3 . Let vy = vy — B;Xit, and u; = vy — ,B;Xit — ’Y;ft = vy — 'y;ft, and

consider the following two optimization problems

n T
o1 1\ 2
n T
1 . 1o\ 2
T1£1,11£1 nT < Z <Uz‘t - 7ift) ) (A.37)

where
7 ! !

O = Yir — BoowXi = Yir — BiXit — (Bcom - 51) Xit = Vit — (Bcom - 51') Xit.  (A.38)

We need to show that solving problem (A.37) is asymptotically equivalent to solving problem
(A.36). First, using (A.38) the criterion for (A.37) can be written as

1 — T 2
7> (=it
i=1 t=1
1 n T , 9
T — tzl (U“ =it = (ﬁCCE,i - ﬁ@> th)
1 n T ) 9 1 T n . , / R
= ﬁ 2 ; (Uit - 7zft) + ﬁ ; ; (IBCCE,i — /61) Xit Xt (IBCCE,i — IBZ)
R ,
B zﬁ ; — <U“ - 7ift) (ﬁCCEﬂ‘ - ﬁz) Xit
= Anr + Bur — 2C,r. (A.39)

Note now that

Y

Becr: — B

T
1 /
|BTLT’ = BTLT S )\max (T E XitXit) X sup;
t=1

where under Assumptions 1-8, we have sup; Apax <% Zthl Xitx;t) < K, and!?

Bocpi —B; = O, (%) L0, (%) 10, (ﬁ) | (A.40)

12Gee equation (45) in Pesaran (2006).
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Therefore, we also have B,r = O, (%) +0, (%) +0, (%) 13 Consider now the final term
of (A.39) and note that

n f n

T T
1 1 - "1 .
Cor = T g ; Uit </BCCE1 51') Xit = " ; (IBCCE,i - /3¢> T ;Uitxita
where u;; = vy — 'y;ft = Yy — ,B;Xit — "y;ft. Since in both optimization problems ~, and f; are
only identified up to mgy X mg rotation matrices, u; and u; have similar properties and we also
71 Zthl UuXit|| = O, (T_l/ ?) , with Cpr dominated by By,y. Overall we have

have ‘

wﬁzz(vm ) = mip - LSS (10—t 50, ()40 (3)+0 ()

=1 t=1 i=1 t=1

Hence, PCs based on ©;; are asymptotically equivalent to those based on v;. The remaining

proof of Theorem 3 can follow from the proof of Theorem 2. =
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Online Supplement to
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This online supplement provides proofs of the lemmas used in the main paper, and states

and establishes a number of auxiliary lemmas used for these proofs.

S1 Proof of Lemmas

This section provides auxiliary lemmas and the associated proofs, which are required to establish
the main results of the paper. Throughout 6, = min(y/n, vVT).

Lemma S.1 Suppose that Assumptions 1-3 hold, and the latent factors, f;, and their loadings,
~;, in model (1) are estimated by principle components, £, and 4,, given by (5). Then

Por| - (?) (1)
f—rF—Op(%D, (5:2)
HU’(F—F) =0, (g) (S.3)
[re-nf-o,(~). (S4

S1



where w; = (W1, Winy -y W), Wy = (Ugg, Uy, ooy Upg)', and U = (ug, ug, ..., uy,).

Proof. Since Assumptions 1-3 are a sub-set of assumptions made by Bai (2003), results (S.1)
to (S.4), (S.6) and (S.8) follow directly from Lemmas B1, B2 and B3, and Theorem 2 of Bai
(2003). The remaining two results, (S.5) and (S.9), can be established analogously. =

Lemma S.2 Consider 62-27T = T 'eje;, the estimator of the o?, the error variance of the it
unit of the latent factor model, (1), where e; = (eq,€ia,...,e;r) is the principle component
aA Al —]1a

estimator of w; = (w1, Usa, ..., wir)', namely e; = Mpy;, where My =Ir —F(FF) F,y, =
(Yi1, Yioy - Yir ), and F is given by (5). Suppose that Assumptions 1-8 hold. Then

N 1
Gy — wip =0, (_52 ) : (S.10)
nT
1 En bin (627 — wip) = O 1 (S.11)
n — @, T 2,1 p 6721T )

: (S.12)

, (S.14)

: (S.15)

)
)
) (.13
)
)

where w?y = T-'u;Mpw;, Mp = Iy —F(F'F)"'F', 62, = min(n,T), and {by}}_, is a sequence

of fized bounded constants such that n=' " b2 = O(1).

S2



Proof. We first note that

e; = Mgy; = Mg (Fvy, + w)
= MFui —+ (Mf? — MF) u; + MFF’Y“

which yields the following error variance decomposition

o _ wMpu Y FMgFy, (Mg — My) (Mg — M) u,

U’Z,T - T T
2u;Mp (Mgp — Mp)w;  2u,MpMgFvy, 2u; (Mg — Mg) MiFy,
+ +
T T T
6
— Z Bjr. (S.16)
j=1

Starting with the second term, we note that

F-F
T

72<F—F) MF(F_F>%
T

[ Mg

[ Bair|| = < [lill®

Y

where ||7,|| is bounded by Assumption 2 and |[Mjg| = 1. Then using (S.1) it follows that
| Ba,ir|| = O, (6,7). Before establishing the probability order of the remaining terms Bs ;7 we
first observe that

(
~(F-F) (FF) " (F-F) + [P (5'F) 'F - (r'F) F]
vE(EF) (F-F) + (F-F) (FF) 'R,
and , ,
7¢ rr (F-F) (F-F) (F-F)F F(F-F)
T T T * T i T
Then using results (S.1) and (S.5) it follows that
? = F/TF + O, (&%T) , and (?) = (FITF)_I O, <$> , (S.17)

S3



and in consequence (given that by assumption 7~ 'F'F is a positive definite matrix)

o) oo 1
FF FF
— = Op(1), and (T) = Op(1). (S.18)

Consider now Bs;r, and note that

Bng—T 11 (M* —MF) (Mf‘_MF)uz

e () E () 520

and

which allows us to write Bs;r as Bz = Z§:1 Cs.ir, with the first term satisfying
1 AP RN '
ICrll = Hfu (F F) (F F) (F - F) u

2
Ao\ —1 i
il || (ER #-¥]
- T T T

The first two terms are bounded in probability, since T |w > = T3 u? = o? +
O, (T~'/?), and given the results in (S.18). Using (S.1) it now follows that ||Cyr|| = O, (6,7).
To establish the order of Cy;r, we note that

A7 A -1 ’ ’ -1 ’

71_1 PN A7 A -1 ’

(
~F (FF)1 FF— (F - F+F)l (F- F+F)] (FF)1 F
(FF) |- (FF) (F-F) - (F-F) ¥ (F-F)| (FF) ¥
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then we have

Coir =

1\1/; <¥) [ (#F)(EF)  (F-F)F (F’F>_1 Fu,

and by taking spectral norms

(7).

Under Assumption 3, T-Y/?u;F = O, (1), and using results (S.1) and (S.5) it follows that

1Coirll = O, (52#) Finally, by result (S.8) (F‘ff) w
nT

and overall we Bs ;7 = O, (%) Consider now the fourth term of (S.16),

nT

’ 2
u,F

VT

[Coir|] <

()’ erf 2(E-E)E]]

T T - T

=0 @ , and it follows that
p (SnT

1
|Csi7 || = |Cair| < T

u, (I, — Pp) (Pr —Pp)u; u, (Pp— Py + PePp)w
B4,iT = T = T
u, (Pr —Py)u; u,Pru;  u,PpPpu

= - T (S.20)

where Pp = F (F'F)"'F/, and Py = F (f"f‘) F’. The order of the first term of (S.20) is the
same as that of (S.19), namely O, (0,7). Since F is distributed independently of u;, using
(S.18), then it readily follows that the second term is O, (T'). The third term of (S.20) can
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be written as

/
u, F

T

(7)) ()

/ / — / ! n A A -1 i n
1 W\ (FE\ T [FF F(F—F) 1282 Fm+(F_F>W
JT\vT) T T T T T T
/ / — / ! " A A -1 ’
1 ||[uF|| | /FF\" FF_%F(F_F> 'E Fu |
VT ||VT T T T T T
1 1
——0,(1)x 0, [ —
7000 (77)
1
~-0,(=).
(7)
Consider now Bs ;7 and note that
'Y;F/MﬁMFuz B _’yz (F — F) MFuz B 7;FIM1%F (F/F)—l F/ui
T N T T
Y (F-F)w A (F-F)F 55\ fu,
T T + T T T
. ¥ Mg F*@ FF\ ' Fu
i T T T

But, using results in Lemma S.1, we have

/

< [l

< |1l

ot

S6

~0
|5
(F-F) 2| |l /#
T T
1 )
2NT )

(S.21)



and

N 2

F'Mg (F - F) FF\  Fu F-F PR ||| F
» < Ivill
AT T T

T
1

—0,[——].

p(éiTﬁ>

»F/MFMFui =0, (5;7%). Similarly Bg,r = O, (5;7%). The above results

7

Thus, Bsr = T v
now establish (S.10). Result (S.11) can be obtained similarly, either by directly considering
the weighted average of (S.10) with weights b;,, or by noting that 6iT and sz are both
integrable processes and the probability order of the average will be the same as the probability
order of the underlying units. Results (S.12) and (S.14) follow from (S.10), noting that under
Assumption 3 there exists Ty such that for all T > T, &zT >c¢ > 0and Wy > ¢ > 0.
Furthermore, 6,7 + w;r = Opy(1) and w; 76; 7 = O,(1). More specifically, to establish (S.12)
note that |6, 7 — w;r| < |&§T — sz‘ [ (Gir+wir) <ct ‘&ZT - WiQ,T|’ and hence by (S.10) we
have |6;7 — wir| = O, (6,7). Similarly, result (S.14) is established noting that

1 1

o;T Wi T

|GiT — wir] 11~ 1
< — — < r—wir| =0, = ). S.22
>~ (.4.)7;7T(3'i’T ~C yo—z,T wz,T‘ P 6721T ( )

Finally, results (S.13) and (S.15) can be obtained, respectively, in a similar way to the proof of

(S.11), since under Assumption 3, &; 7, w; T, ;. + and w; + are also integrable processes. m

Lemma S.3 Suppose that the latent factors, f;, and their loadings, v,, in model (1) are esti-
mated by principle components, F and 4., given by (5). Then under Assumptions 1-3 with n

S7



and T'— oo, such that n/T — Kk, for 0 < k < co, we have

1
d N bzn Z - O ~ )
1nT — \/— Z (5nT)
. 1
donr = % Z (wir —0i) (§i = 7)) = Op (5_> )

nT

1 . B 1
ds 1 = \/_2<sz Ui)(%_%)—op (%T)’
1 — . . 1
dypr = — Z (Gir —wir) (¥ —7i) = Op 52 )
n nT

=1

1 « 1 1 1
ds,.r=— — — Yi =) =0p | 5
T Py (Ui,T WiT) & =) g (5721T>

1
d7 nT — szn 71 71 - Op <5T> )
nT

where {bin}i_, is a sequence of fized values bounded in n, such that n='> " b2,

0i 7 = Yi/wWirs 5i,T = 7;/wir, and wip =T~ uiMFui'

Proof. Note that in general

and we have

di,r = n~1/? Z bin (: —s)

i=1

(S.23)

(S.24)

(S.25)

(S.26)

(S.27)

(S.28)

(S.29)

o),

(S.30)

aA AN —1 n 2o\ 1 n
(7)) el (ixen) (7)o (oesne).
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R f‘) = 0,(1), and by result (S.5) we have

) (-
fren o) o) ok) o

Also since by assumption ||v,|| < K, and
<= b2 - ~
< (n 2_; n> - ;'mz

- 1/2 - 1/2
< (526;) (52|m||2) <K.
i=1 i=1

o -l
Hence, the first term of (S.31) is O, (6,7). For the second term of (S.31), since <T‘1F’F> =
O,(1), we note that

n n -~ / n
1§ ! 71/22 _ 71/22 F-F 1 Z '
T (F —F + F) n - bmui =N - bin T u; + T—\/ﬁ - ban u;.

It is clear that the first term is dominated by the second term, and under Assumptions 3, we

1 < , 1
NG ;an u, = ( Mo Z meftult> — =0, (ﬁ) . (S.33)

i=1 t=1

By result (S.18)

1/2

1 n
i 22_1: biy;

have

Result (S.23) now follows using (S.32) and (S.33) in (S.31), and noting that by assumption n

and T are of the same order. To prove (S.24) we first write it as
= (1f7) 3 Lo
2nT — T/ n s qiT \7Y;

Gir = VT (wir — 0;) = oVT

where

and ¢;r are independently distributed across i. Using results in Lemma S.7 it is easily seen
that E (qir) = O,(T~Y?) and Var (¢r) = O(1), and hence n™1Y " ¢% = O,(1). Also by

Cauchy-Schwarz inequality we have

o= (f7) ()

where T7'n = ©(1), and by (S.2) n~1/2

o).

I— I‘H = 0,(d,7), and (S.24) is established. Re-

S9



~1/2
sult (S.25) follows similarly, with g defined as qp = o, 'VT [(6 iMr EZ) — 1} Note

that sup;(1/0?) < K, and using results in Lemma S.7 it is again easily established that
E(¢,y) = O(T7?), and Var (¢iy) = O,(1). Result (S.26) is also obtained using Cauchy-

Schwarz inequality, namely>!

n 1/2
|dynr| < [n_l Z (Gir — wi T)2] (n_1/2 Hf‘ — FH> ,
i—1

where by (8.2) 0™V [P =T = 0, (6,4), and by (812) n S0, (i — wir)® = O,(6,2).
Similarly by (S.2) and (S.14) we have

1 —1/2
] e I )}
-0 1 O, =0,
I 5 572@ ’
Consider now (S.28), and note that it can be written as
\/—Z ZT ’LT \/—Z (WZT wZT>
Yi— i wir — Ti
= — _ - 1 G
e Iy
L~ (A= Y= T
- - 1— .
R0 55 () (- )

The first term of the above has the same form as (S.23), and becomes identical to it if we replace

a; in (S.23) with 1/0y, since by assumption inf;(0;) > c¢. Hence, the order of the first term

is 0,(01). Also the second term is dominated by the first term, since 1 — (T~ e/Mpe;) " =

O,(T~/?). Therefore (S.28) is established as required. Finally, consider result (S.29) and note

S1The proofs of (S.24) and (S.25) are different from that of (S.26) and (S.27) due to the fact that w2, — o2 =
Oy (T71/7), but 67p —wip = Oy (n71) + O, (T71).

S10



that

N —

. 1
Recall that (T‘lF’F> = 0,(1), and n7' 3" | v,v: = Op(1). Also note that b, is bounded
in n. Then using (S.7) it follows that (n and 7" being of the same order)

v (F}F) o (FT_ F) <n—1 gbmnyﬁg) =0, (%) = 0y(07 ).

Similarly, using (S.8)
Vn ( T ) (n—l ZT—l (F — F) bmui'y;> =0, ((Vﬂ> = 0,07 ).
i=1 nT

-1
Finally, the last term of ( S.34) can be written as 7~1/2 (TﬁlF’F> (n=V2T=12 50 b Fluy)) |
where by assumption the mg x mg matrix, n=/27=12 3" b, Frugy, = (02717230 ST
binfjttiryiy)) = Op(1), and hence this last term is also O,(6,7 ). Thus result (S.29) is estab-

lished, as required. m

Lemma S.4 Suppose that Assumptions 1 to 3 hold, and as (n,T) — oo, n/T — kK, with

0 < kK < oo. Then we have
1 ,
Pt =T ; Four = op(1) (S-35)
1 T
GnT = JT ;%,nTSmT = 0p(1), (S.36)

where Yy, and s 7 are defined by (A.6) and (A.7), respectively.
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Proof. Using (A.7), recall that

n

St = Pyt nt? Z (i = i) it | +@nr 2 Z (3 =) vi| e + '/ Z (SZT B 5i’T>
i=1 i=1 i=1
(S.37)
+ [n7/? Z (&T - 51;,T) ] <ft - ft> :
i=1
We also note that using (A.9), ¢;,7 can be written as
7bt,nT = ft,n - (‘PnT - ‘Pn)/ /ﬁ:t,n + Ut,nT (838)
where
t,n \/ﬁ . 1,m<ty 7,1 1 I .
i=1

1 n
Kt = % ;'ﬂaz‘gita (S.40)

1 — 1
Vg = —= — 1) 4. S.41
t,nT \/ﬁ ZZ:; <(E{LMF€Z/T)1/2 ) t ( )

After squaring s;,r, we end up with p,r = z]ﬁl A, o7, composed of four squared terms and

six cross product terms. For the first square term we have
1 T
AlaNT = ﬁcp;zT (? tz; btﬂlbt,n) Pnrs

where by, = n~ V23" (5, — ;) wi = n~Y? (f‘ - I‘) u;. Then

VT I
Al < = el | (£ T)|| IVl

where Vp = T1 Zthl w,u;. But by Assumption 3,||Vr|| = Anae (V) = O,(1), and using (S.2)
H(f‘—l")” =0, (%) Note that H(f‘—l")‘ < H(f—I‘) . Also [|¢,r]l = Op(1). Then
n F

|Ayr| = \/TTOP (%) = \/%Op <$) =0, <L>, since n and T are of the same order. For

anT

the second squared term we have

Agpr = VT |02 i (&,T - di,T>, (T-'F'F)
=1

1Y ()|
1=1

S12



By assumption 7 'F'F = O,(1), and using (S.28) n= /23" | <51T — éi,T> =0, (0,7). Hence,
Aspr = O, (ﬁé;%) = 0,(1). Similarly,

n

T n
Az = VTl 072> (3, =), (Tl > ftft/) [n1/2 > v -
I i=1 | :
n~t/? Z% 5 =)
where ||,z is bounded, and by (S.29) n=2 %" (3, — ;) ¥i = O, (6,). Hence
s e = VT30 (;) (T'F'F) 0 (é) "
" "\ min(y/n, VT) "\ min(y/n, VT) T

(T
=0 (min(n,T)) = o (L)

Pnr

n

= ﬁSO;‘LT n~t? Z (% — ) i (T 'F’ F

=1

Pnrs

Next

A4,nT = ﬁ e

ST [fz(”“— )]

where by (S.1) T~!

= 0, (0,7 ), and by (S.28) n=1/23°" | (&T - 51-7T) = 0,(1).
Hence, Ay = VT O, (5;% ) = 0,(1). Consider now the cross product terms of p,r, starting
with

n

n—1/2 Z (3 — ;) uit] f; [% Zil <(§z’,T - 5z’,T>]

i=1
TA 1 n R
:2;1 (F—F)/ f,> [_ 5i, _61', ]’
oo (st - rion) G5 o0

where ¢, and n=1/23" (&LT 6i7T> are bounded in probability and by (S.9) n~/2(I* —

1 T
Asr = 20— = Z

t=1

’ﬂ

3 —
’ﬂ

I'u =0, (%) = 0,(1), and we have As,r = 0,(1), as well (since u; and f; are distributed

independently). Similarly we have

S13



and
A = %i%ﬁ n_l/2é<7 . )ut] (f-1) [inz: (6:—¢ )]
=l n1/2i(%_7)(%iut<ft—ft>/>] [%i((i—&)]
1 1
o ()
Also
Agnr = 2VT [0~V i (& - 51'), (T_l iftft{> [n 12 i’)’ (¥ =)' | Pnr
1 F'F - 1 -
= 2VT0, (min(\/ﬁ, \/T)) ( T ) Or (min(\/ﬁ, \/T)>
VT
T <min(n,T)> = op(1)
Agpr = VT |n1/? zn: (8- 51.)'_ (T—l ift (- ft)/) [n_1/2 zn: (6: - 51’)]

:2ﬁ0p<mmwlﬁ’ ﬁ>> - <FT_ F)> Op(min(\/lﬁ, ﬁ))

(Y
=0 (min(n2,T2)> = (1),

S14



and

n

n 2N (3= ) s

i=1

(T N\
=0 (min(nz,T2)> = op(1);

Overall, we have p,r = 0,(1), as required. Consider now g,r and note that it can be written
as (using (S.38) in (S.36))

Aot = Qﬁﬂogﬁ’

(gt ) e

i=1

T T T
1 o1 1
qnT = —F= E StnT6tn — (Por — Pn) —= E :St,nT’it, +—0= E :St,nTUta T
! VT t=1 ! Yol At ! VT t=1 !

where & ,,, Ve and ke, are given by (S.39), (S.40) and (S.41), respectively. Consider the first

term of the above and using (S.39) write it as

% ; (: — 1) % Z ft,nuit]

n

T
1
ﬁ E Stnr8tm = <P;1T
t=1

+ @nr

=1

S (o) (

=1

{023 (Br - 8

i=1

4
= E Bj,nT'
Jj=1

Using (S.39), By,r can be written as

VT & 1< 1 <
— / 2
Bipwr = @pr % ; (¥ — 1) % ; Ajm T ; O;€5tE4t

where a;,, = 1 — 0,4, 7,. Since ¢;; are independently distributed over ¢ and ¢; and n and T are

S15



of the same order, and ¢, = O,(1), then

1 & .
Binr = Op (% Zai,naz‘ (')’i - 'Yz)) .
i=1

Further, letting b;, = a;,0; and noting that n=' > 072 (1 — oiplv,)? < K, it follows from
(S.23) that n=Y2 3" | a; ,0: (§; — i) = Op(6,1), which in turn establishes that By ,r = 0,(1).

Similarly, using (S.39), B2 ,r can be written as
T

L&
(\/ﬁ Z Z aj,nftejt) .

7j=1 t=1

n

n~/? Z (% =) i

=1

/

Recall that ¢, = O,(1), and by (S.29) n= 23" (4, — ;) v, = O,(6,7). Also, under As-
sumption 3 \/%—T > ST ajnfiey = O,(1). Then it follows that By,p = 0,(1). Similarly,
it is established that Bj,r = 0,(1), noting that by (S.28) we have n~=1/2y"" | (51T — 51’,T) =
O,(8.7). The fourth term, By, 7, is dominated by the third term and is also 0,(1). Thus overall,
T-1/2 Zthl Stnrétn = 0p(1). Using the same line of reasoning, it is also readily established that
T-1/2 ZtT:1 Stnrktn = 0p(1), considering that, k¢, = n=1/2 Z?Zl v,0:€i+ has the same format as
&, and in addition by (S.42) ¢, — @, = O,(n"Y2T=1/2) + O,(T~'). Finally, the last term of

GnT 1S given by

TSI ]

i=1

1 — 1 —
= Z StnTUtnT = —F= Z Ut,nTSO;ZT
VT = VT =

f;

n 2y (R — ) s
=1

T
1
+ E Ut,nTSOZ—L
VT = ’

n

T
1 R /
+ — Z Ut T n~1/? Z (5i,T — 5i,T> f;
VT =1 | i=1

+ % tZil:’Ut,nT n~1/? Z (82T - 6@',T> (ft - ft)
S
j=1
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Using (S.41) we have

- 1 1
Pt ‘ 2> (A =) T > o < - 1) 5z‘t5jt] :

(E;MFEJ'/T) 12

Again, since ¢ is distributed independently over ¢ and ¢, then

1< 1
sz ( — 1) ity —p 0, if i # 7,

(E'S»MFEJ'/T) 1/2

and

1 XT: < 1 1)
T Oi 72 Eit€jt
= \(eMrey /1)
T —1/2
1 'Mre;
t=1

nr N\ —1/2
Also by (S.55), F [eft <EMTF€> } =1+ 0 (%), n and T being of the same order, and by
(S.23) n V23" (5 — i) = Ou(8,5). Tt then follows that Cy . = 0,(1). Similarly to By,

we have

/

n~/? Z (¥ —3) ’72]

i=1

n T
1 1
Z < , /2 1) Eﬁft]
nT j=1 t=1 (€-Mp€j/T)
= Op(‘sgil“)op(l) = 0p(1).
The same line of reasoning as used for Bj,r and By, can be used to establish C;, 7 = 0,(1)

for j = 3 and 4. Hence, T~1/2 ZtT:l StnrUiar = 0p(1), and overall we have g,r = 0,(1), as

required. m

Lemma S.5 Under Assumptions 1-3, and as (n,T) — oo, such that n/T — k, with 0 < k <

oo, we have

VT (¢, — @ur) = 0, (n7?) + 0, (T712) = 0,(1), (S.42)
VT (@or — ) = 0p(1) (5.43)
where @, =n" 30 Y /00, pr =0 Y Y Wi, Par =0 Y0 /i, wir = T uMpuy,

o2 =T 'Y'Mpy,, and 4, and F are the principal component estimators of ~; and F.
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Proof. First note that

o nTE(-20) e () T2l ()

=dy 7 +daur.

where

e tE [ s(2)]

e T o)

Since 0;/w;r = (T‘lngFsi)_l/Q, |7l < K, then using result (S.50) in Lemma S.7 we have
E (UJ"—T> =1+0(T™"), and dy,,r = O (T‘l/Q). The first term can be written as dy,r =

n 'Y yiXir, where xir = —V/T [0;/wir — E (0:/wir)]. Tt is clear that y;r are distributed
s2

independently over ¢ with mean zero and bounded variances:

e(qri) - (£ ()] | -7 [0 (7) - [rro (7)) ] o0

Hence, dy ;v = O, (n™"/?), and the desired result (S.42) follows. Consider now (S.43) and note

that it can be decomposed as

Var (Xi,T) =T

VT (@ — 0) = VT (nr — @,) + VT (Prr — Prr) » (S.44)

where it is already established that the first term is 0,(1). Consider now the probability order

of the second term and note that it can be written as

ﬁ<¢nT—¢nT>:@§;(l_ iy

n o Wi

e

Wi, T

Now using (S.15) of Lemma S.2 we have

—Z (m w) —y <g) — o,(1).

S2When e;; are normally distributed we have the exact result E (E,MLFQ) =T/(T—m—2).
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Also by Cauchy—Schwarz inequality using (S.2) and (S.12) we have

Y (5= o) e %imw'mw]m [%(1 - 1)2]1/2,

— o;T Wi T — o;T Wi T
1= =1

=VTO, ((S%T) x 0, (52%) = op(1).

Using the above results, we have VT (@, — @,7) = 0,(1), which in turn establishes (S.43), as

<VT

required. m

Lemma S.6 Suppose that € ~ IID(0,Ir), where € = (e1,&9,...,e7), k1 = FE(&}), ko =
E(e}) — 3, and A = (a;;) and B = (b;;) are T x T real symmetric matrices and 77 is a T x 1

vector of ones. Then

E(e'Ae) =tr(A) (S.45)
E|[(e'Ae) (€'Ae)] = kaTr (A ®B)|+Tr(A)Tr (B) +27r (AB) (S.46)

where A © B =B © A denotes Hadamard product with elements a;;b;;.
Proof. See Appendix A.5 of Ullah (2004). m

Lemma S.7 Suppose that € |F ~ IID(0,1r), € = (e1,e9,....e7)", sup,E (|€t]4+€), for some
small € > 0 and let Mp = Ip — F(F'F)"'F', where F is T x m matriz such that F'F is non-
singular. Also let zp = (T‘le/MF€)1/2 — 1. Then there exists Ty such that for all T > Ty we
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have

E (€/¥F€> —1- % ~140 (%) (S.47)

E (5/1\;'5‘5)2 — 140 (%) (S.48)

| (Mre - —1+0( (S.49)
S

E ( = > :HO(T) (S.50)

Var (Ell\;”) 1/2_ - (%) (S.51)

E [ef (€/¥F€>: ~140 (%) (.52)

E|e (Elngyﬂ ~140 <%> (.53)

E|e (5/%”:)1 ~140 (%) (S.54)

E|e (sq\;Fe) > ~140 (%) (S.55)

E(ZT_) =0 (%) , and E(z%) =0 (%) (S.56)

zp = O, (T7?) (S.57)

Proof. Result (S.47) follows immediately from (S.45) in Lemma S.6, noting that tr(Mpg) =
T — m. Result (S.48) follows using (S.46) in Lemma S.6, by setting A = B = Mp, and noting
that tr [(MpOMp)] = S, m?> = O(T), tr (M%) = tr (My) = T —m. To establish (S.49) note

that since \/z is a concave function of z, then by Jensen inequality we have

o(575) < [ ()] [ ()] e 5):

Similarly, by Jensen inequality
T 1/2 T 1/2
< |FE : S.58
(E’MFEI) ] - { <6'MF€)1 ( )

But using a result due to Lieberman (1994) (see Lemmas 5 and 21 of Pesaran and Yamagata
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(2017)) we have

T 1
E =1+0|=].
(entre) =1 +0(s)
Result (S.50) now follows using the above in (S.58). As for Result (S.51), it follows using (S.47)
and (S.49),
/ / 1/2772
B e'Mpge B e'Mpge
B T T
1 1\1?
—1 “ - h -
wo(z)-[olz)
1
-o(s)

Result (S.52) follows by writing 2 = €’ Ae where A has only one non-zero element on its diag-

E

onal, and then using result (S.46). Results (S.53) follows since by Cauchy—Schwarz inequality

(s’l\/[ps)l/2]
EtEt T
/ 1/2 ’ 1/2
<[ ()] =)
and using (S.52) it follows that
/ 1/2 1/2
5 [ €'Mgpe 1 1
< |1 - —1 ~.
#(57) < fro(@)] " -reold)

The last equality follows by using Maclaurian’s expansion of v/1 + x, where x is small. To
establish (S.54) we note that (using results in Lieberman (1994))

-1
5 (€' Mpye B g'Ae _ E(Ag) 1\ T 1\ 1
=t ( T ) ] = (T—ls/MFe) =BT eMpe) O\T) ST O\T) =07 )

Similarly, result (S.55) follows noting that

e'Mpge —1/2
€
tEt T

we have

"™ 1/2
FE E? (5 TFE) =F

E

E

E

<@ |2 () }m e
Y R

521




To establish (S.56), using (S.49) we first note that

E(z2)=FE (5/¥F€)1/2 ~1=0 (%) . (S.59)

Similarly,

E(27)=E (6/1\;”) +1-2 (dﬁﬁ)m
EEERCoR
_ {E (d?FE) - 1} — 2B (27).

The desired results now follows using (S.47) and (S.59). Finally, to establish (S.57), we first note

that since My is an idempotent matrix with rank 7" — m, and F is distributed independently

T 1/2
ZT:( t=1 (773_1)+T_m) 1,

of g, then

T T

where 7; ~ I1D(0,1). Tt also follows that (note that n? — 1 is independent over ¢ and has
a zero mean and a finite variance (since by assumption e; has fourth order moments) then
T3 (7 — 1) = O,(T~V/?).Hence, zr = [1 + O,(T~/?)] R O, (T~*/?) ,as required.
n

Lemma S.8 The CD statistic defined by (7) can be written equivalently as,

CD:(\/:> 2Tt2: ( i;;)Q—l . (S.60)

. A T ~ ~ .
Proof. Using p;;r = (% Yot eitejt> /i 10 in (7) we have:

D — ZZ th 1€zt€]t: 2T ii nzli <€1t)( )
'Llj i1 0i 05T Vn(n—l)thl =1 joipa \OiT T '

Further, we note that
2 2
_ZZ(ezt)(eﬁ)_l Ln €it _ln(eit)
i=1 j=i+1 o4,T 051 2 n = 6i,T n- = a'i,T
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Then using this result in (S.61), and after some algebra, we have

wﬁﬁ@;(fix) ()

as required. m

Lemma S.9 Consider the CD and CD statistics defined by (16) and (17), respective and
suppose that Assumptions 1-3 hold. Then, as (n,T) — oo, such that n/T — K, where 0 < k <

oo, we have
CD=CD+o,(1). (S.62)

Proof. Using (16) and (17) we first note that

(2(nn—1)> (CD—E*T))Z%Z <Ln e;) _<% e;) . (S.63)

t=1 =1

Also note that

n

1 e;
\/ﬁ Z & ; - ht,nT + gtnT (SG4>

where (see also (A.5))

n

1 €t et 1 d,re;
hipr = —= E “n d ginr = E |l — — = =
Lt Vn ‘ Vvn’ A Gront = \/_ ‘it ( Wi,T> Vn

- wz,T 05T
=1

! -1 -1 -1y / -1
e; = (€1t;€at, s €nt)’, Cor = (Wl,T y Wo s ~--awn,T) , dor = (dir, dor, -, dyr)', and dir = UZT

w; 7. Then squaring both sides of (S.64) and using the result in (S.63) we have

T
Z nT + —= Z ht nT gt nT
t=1

Y
\/— nT

N
3
¥
N
/N
Q
o

|

Q
S
I

3 %‘H

VernT + — \/— nTVernT> (865)

VR
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where Vg = T71 Zthl e.e),. Now using (A.1), the error vector e; can be written as

o= w1 (6 8)  (F-r)6 - (F-T) (i 1)
Using this expression we now have

Ty (f; . ft) (ft . ft)/

P ) (o) (1) -

=1

T
Vo =T7"1 Z wu, + T

t=1

+<f—1“>

I’ +

/N

I 1“) <T1 3 ftft’> (f . 1“)’

~

+T

t=1
1 (f - r)

or in matrix forms

Ver = V4T {T‘l (¥ - F>/ (- F)} ' (P =T) Sy (P - r)’

~ ~ / ~ ~ / .
n (1‘—1“) {T‘l (F —F) (F —Fﬂ <F —r) 7y (F —F) r
A / ~ ~ !/ ~ ~ /
_ T WUF (F _ r) 7y (F _ F) (1“ - r) 4T [T—lF’ (F _ F)] (r _ 1“)
~ VAN ~ ! ~ N /
| (f ) ()| (For) + [roE (- F)] (P T)
where Vp = T—1 Zthl u,u; and by Assumption 3 || V|| = O,(1). Also by results in Lemma S.1

all other terms of the above are either O,(1) or of lower order, and we also have || V.r|| = O,(1).

Consider now the terms in (S.65) and note that

— 1 1
oD - EB| < & IVarll | (= ll?) + (= el el
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But

1 n 1/2
L ol = (z) |
v po
n 1/2
_ ~_ _1\ 2
[durll = v <” ' Z (Ui,Yl“ _Wi,T1> ) :

i=1

By assumption wir > ¢ > 0, and w7 < ¢! < o0, and hence n=Y2||c,r|| = O,(1). Also,
using (S.22) we have (677 — sz) =0, ( ), and it follows that ||d,r| = O, (52ﬁ> = 0,(1),
’ nT

recalling that n and T are of the same order. Hence, = 0,(1), as required. m

Lemma S.10 Consider the latent factor loadings, =y;, in model (1) and their estimates %, given
by (5). Then under Assumptions 1-3 with n and T — oo, such that n/T — Kk, for 0 < k < 0,

we have

1

62

-0 (5;)

%i (3, —~.) o5 = O, (%) , (S.67)
o (57)
(&

(S.66)

ﬂ

*ﬂ

‘ -

(3.68)

% Z &i,T’?i Z gi%; =

—Za YA — 7)) = Op

=
S

! ) | (S.69)

Proof. Results (S.66) and (S.67) follow directly from (S.23) by setting b;, = o; * and b, = o5,
respectively. To prove (S.68) note that

% Z @',T’AYZ' - % Z 0;7;

:—Z —wir) +wir) [ — 7i+7i]_%zai7i

'ﬂ

n

:EZ’YZ-(Q}Z"T—UZ‘)"’%Zﬁyi(a—i,T_sz ZJZ Vi z
i i=1

1 . .
+ = Z Wi, — — i)+ = - Z (Gir — wir) (% — i)

=1
=Ar+Asr +Asr + Ayr + Asr. (5.70)

Recall also that under Assumptions 2 and 3 o; and =y, are bounded and w; r = T‘ls;MFsi, for
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t=1,2,...,n are distributed independently across ¢, and from o; and ~,. Starting with A4,

a;MFei 1/ )
T

Since n and 7" are assumed to be of the same order then £ (\/ nTALnT) = O (1). Also, using

(S.51)
E;MF€Z' 12
T

Therefore, vVnT Ay ,r = Op(1) and it follows that A, ,,7 = O, [(nT)fl/z} . Further, using (S.13)
setting b, = 7,j, for j = 1,2, ..., mo, then it follows that

and using (S.49) we have

E (\/n_TAl,nT> = @ y (vi0i) E

n X
=1

T

o)

—0().

2
i=1

Var <\/n_TA1,nT> = Z—T i (0 '71'72) Var

1 — 1
Ao = =3 7, i —wir) = Oy (——— ) .
21T ni:1’71(0,T wiT) p(\/ﬁ&m)

Since Aj,r is the same as the result in (S.67), which is already established, then Agj,r =
O, (0;7). Using result (S.24) it follows that

1 & . 1
Agpnr = — Z (wir —0i) (% — 7)) = Op (57) :
n =1 nT

Using result (S.26) we have

1<~ . 1
Aspr = — Z (Gir —wir) (¥ — i) = Op <5T> :
n nT

i=1

Result (S.68) now follows since A, = O,(0,7), for j = 1,2, ..., 5. Finally, consider (S.69) and
note that

—Za YA =) = ZU —7)

t Z‘T — Y)Yt = ZU ¥ B =) (S.71)

=1
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Since o2 is bounded, then

1 ¢ . .
n Zgiz % =) B =)
i=1

and using (S.2) it follows that

1 - 2 /A ~ /_ 1
Ez’zlo-i (')’i _’Yi) ('Yz‘ —v) = O, (5721—T> .

Now using (S.29), setting b;, = 0;, we have

% PR AR ALY
=1

and (S.69) follows. m

fo vi (3 =)
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