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1 Introduction

It is a well-known fact that expectations drive actions and the latter affect the

former. At the macroeconomic level this loop generates a two-way feedback:

agents’ expectations drive the dynamics of a macroeconomic variable and

the latter, in turn, influences the formation of expectations. In canonical

macroeconomic models, agents are rational à la Muth (Muth, 1961). In its

starkest characterization, the rational agent knows the “true model” of the

economy, which, in reduced form can be identified with the Actual Law of

Motion (ALM) of the macroeconomic variable. The ALM is the function that

links the current state of the variable to the aggregate or average expectation

of that variable and to an exogenous dynamic stochastic process: a “shock”

in macroeconomics – e.g., a rule that describes changes in policy makers’

behaviour – or “the fundamental” in finance – e.g., the dynamic process

governing dividend payments.

The key assumption in this setting is that the agent recognizes the stochas-

tic process as the driver of the macroeconomic variable so that, in the agent’s

mind, the variable can take on different values with different probabili-

ties. From this assumption follows that the macroeconomic variable is itself

stochastic since its objective probability distribution is shaped by the exoge-

nous stochastic process. In the end, therefore, as Hansen and Sargent state

at the very beginning of their book, “a model is a stochastic process, that

is, a probability distribution over a sequence of random variables, perhaps

indexed by a vector of parameters.”(Hansen and Sargent, 2014).

Since agents take the probability distribution of the macroeconomic vari-

able into account, rational expectations are model consistent 1 and, therefore,

characterized by unbiasedness : the average expectation2 coincides with the

actual state of the variable. As a consequence agents may make forecasting

mistakes but the average forecasting error – i.e., the mean of a sufficiently

1We have described in words the “guess and verify” procedure which is the cornerstone
of the method of undetermined coefficient to solve a model with rational expectations.

2The average expectation can be interpreted as the mean of forecasts generated (i) by a
population of individuals in a given period or (ii) by an individual in a given time interval.
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large sample of forecasting mistakes – is zero.3

Absent a “surprise” agents are always correct. If a surprise occurs, they

can indeed be wrong but errors are short-lived. Agents will promptly amend

the subjective distribution in the light of the new information coming from

the surprise. Hence the shock has no persistence. This prediction has fre-

quently been disproved in reality. For instance, if we assume that the real

impact of a monetary disturbance is proportional to the price surprise, the

temporary nature of the “rational” error makes also the real effect of a mone-

tary shock short lived. This is not true: it is an established fact that monetary

shocks are highly persistent. It is interesting to note that if agents adopted

adaptive expectations, the sizable and persistent effects of monetary pol-

icy would certainly not be a puzzle: by construction, adaptive expectations

magnify the amplitude and persistence of aggregate shocks.

The rational expectations hypothesis in its purest form has also been of-

ten disproved in the laboratory. Learning-to-forecast experiments have shown

that humans often adopt simple (and generally biased) rules in forming ex-

pectations. Brock and Hommes (1997) provide a rationale for this behavior:

agents form expectations according to a (limited number of) heuristics and

switch from one to the other depending on a measure of “fitness” of the

heuristic itself, namely the forecasting error. In this setting adaptive algo-

rithms stand out as very popular expectation formation mechanisms in the

lab (see Assenza et al. (2014) for an extensive survey of this class of experi-

ments).

In principle therefore, there are enough empirically corroborated reasons

to go back to adaptive expectations as a reliable modelling assumption in

macroeconomics. This has not been the case. A huge and still growing

literature on information acquisition and expectation formation has explored

in detail many different departures from rational expectations – based on

bounded rationality, learning or robust control considerations – but has not

revived adaptive expectations. To make just one example, Woodford (2003)

3Unbiasedness is not sufficient to completely characterize rational expectations. They
require also the minimization of the variance of the distribution of errors since the infor-
mation set the agents use to form expectations incorporates all the relevant information.
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argues that agents should take into account higher order expectations in

expectation formation. In this new and modified rational setting, following

a shock, agents may be reasonably confident about the correctedness of their

own expectation on the state of the macroeconomy but will continue to be

uncertain about whether other agents know that other agents know... This

residual uncertainty and the associated slowness of adjustment of higher order

expectations may be at the root of the persistence of shocks.

To understand why adaptive expectations have fallen out of the radar

screen of the profession, let’s consider the effect of an aggregate shock start-

ing from an initial (pre-shock) situation characterized by stationarity of the

macroeconomic state variable of interest. Being backward looking, the adap-

tive agent will necessarily fail to immediately notice a sudden change in the

state variable, a gap between reality and perception will emerge and – con-

trary to the case of the rational agent – this gap will not disappear or it

will vanish only in the “long run” (if the variable becomes stationary again),

i.e., the agent will make systematic errors. Indeed, adaptive expectations

can be unbiased but this happens only in the steady state, i.e., only when

the dynamics of the macroeconomic variable has come to a halt. Hence, un-

biasedness is an asymptotic property of adaptive expectations if the steady

state of the ALM is globally stable. The rationale for unbiasedness of adap-

tive expectations is that, when the system is in the stationary state it is

“simple to understand” so that expectations on average are correct. If the

state variable is increasing (decreasing) over time – i.e., if there is a positive

(negative) drift – adaptive expectations based on the lagged values of the

state variable systematically underestimate (overestimate) the actual state.

If the steady state is absent or unstable adaptive expectations are always

biased. In our opinion, it is this characterization of the adaptive agent as a

gullible forecaster that has marginalized the idea in the literature.

There is more than systematic errors, however, in the behaviour of the

adaptive agent. To better understand the latter, let’s distinguish between

publicly available information and information the agent actually uses to form

expectations. The ALM and the properties of the stochastic process may be

public information but the adaptive agent does not use it. One obvious reason

4



is that the latter may have limited cognitive capabilities. A different, not

necessarily alternative, reason is that the adaptive agent has limited capacity

to pay attention to all the information she has free access to ((Sims, 1998,

2003)): due to inattention the adaptive agent does not grasp the ultimate

stochastic nature of the variable of interest. It is reasonable to suppose that in

the presence of a high degree of “complexity”, agents rely on simple heuristics

to form expectations because model-consistent expectations are simply too

difficult to implement. For instance, in agent based models the properties of

the “true model” of the economy emerge from the interaction of a myriad of

heterogenenous agents and therefore are unknown to the modeller. It would

be paradoxical to assume that they are known to the agents populating the

model economy.4 Summing up: on one hand the characterization of the agent

as a boundedly rational individual who cannot manage the complexities of

rational forecasting and resort to simple adaptive rules is realistic; on the

other hand, the corollary of this characterization, i.e. the tendency of the

adaptive agent to be systematically wrong, is clearly unrealistic.

In this paper we propose a simple explanation of this apparent paradox,

based on a departure from the standard characterization of the Adaptive

agent. On the basis of preliminary experimental evidence,5 we assume that

agents are indeed inefficient forecasters – being unable to grasp the true

model (if any) of the economy – but they are not backward looking simpletons

who are caught by surprise repeatedly in the same direction. They are aware

that the source of systematic errors is indeed the presence of a “drift” of

the macroeconomic variable6 that makes the macroeconomic scenario more

complicated to understand. Therefore, they augment the simple Friedman-

Nerlove adaptive rule with a belief correction term which is proportional to

4On top of this, (Dosi et al., 2017) show that introducing sophisticated learning schemes
– e.g., recursive least squares expectations – in this class of complex models may produce
less accurate individual forecasts and also considerably worsen macroeconomic perfor-
mance.

5In laboratory experiments, subjects who adopt an adaptive scheme to form expecta-
tions seem to be less prone to systematic errors than the original Friedmanian mechanism
suggests (see (Colasante et al., 2017), section 5).

6Rational agents who know the true model can trace this drift back to the stochastic
dynamic exogenous process. This knowledge is not achievable by the adaptive agent.

5



the average change of the state variable over a given time window.

By employing the belief correction term agents still use only the past

history of the variable to form expectations but they indirectly capture the

underlying exogenous dynamic stochastic process which drives the macroe-

conomic variable. We show in a streamlined agent based model that belief

correction improves the forecasting performance to a large extent so that

adaptive expectations will be not far – under this limited point of view –

from the rational solution. In other words, in our setting adaptive agents are

smarter than the original Friedman-Nerlove type.

Is expectation unbiasedness too good (and too strange) to be true? In

a well-known 1906 experiment Francis Galton pointed out that people as a

collective entity are capable of correctly assessing unknown quantities (Gal-

ton, 1907; Surowiecki, 2005). He noted that in a competition to evaluate the

weight of an ox, while individual opinions differed and frequently missed the

mark, the average (median) guess was extremely close to the actual weight.

The rationale for this phenomenon may be that, when the system is “simple

to understand”, expectations’ unbiasedness is an emerging property: indi-

vidual forecasting errors wash out “in the aggregate” (i.e., when individual

expectations are aggregated and averaged).7 The environment is simple to

understand when it is stationary. This is the reason why standard adaptive

expectations are unbiased in the steady state. When the economy is growing

or declining, on the contrary, the environment is difficult to understand and

standard adaptive expectations are systematically wrong. Belief correction

makes even a dynamic environment understandable to the adaptive agent.

The paper is organized as follows. After a brief review of the literature

(section 2), in section 3 we compare and contrast rational and adaptive expec-

tations in a stylized (reduced form) aggregative macroeconomic framework

consisting of an Actual Law of Motion (ALM) and an Adaptive Expectation

(AE) scheme. In section 4 we present the belief correction term and discuss

the way in which it affects the dynamics of the average forecasting error in

7Galton’s fact is also exploited in the forecasting literature combining different al-
gorithm to produce better forecasting performance (Clements, 2019).The aggregation of
expectations may underweight private information but public information is correctly ac-
counted for (Satopää, 2017; Clements, 2019).
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the stylized ALM-AE model. Section 5 is devoted to an application of these

ideas to an heterogenenous agents model along the lines of Palestrini (2017).

In section 6 we explore the results of a policy shock (the imposition of a

sales tax to finance Government expenditure in fundamental research which

affects TFP growth) with and without belief correction. Section 7 concludes.

2 Related literature

This paper is motivated by two strands of literature. The first one focuses

on learning and forecasting in complex environments so that agents use sim-

ple heuristics to form expectations. Heterogeneous expectations and heuris-

tics switching à la Brock and Hommes are thouroughly surveyed in Hommes

(2013). Heuristic switching has been incorporated in “Behavioural New Key-

nesian” DSGE models (De Grauwe, 2011). This literature is extensively dis-

cussed in Branch and McGough (2018).

Heuristic switching has been put to test in Learning to Forecast Experi-

ments (LtFEs hereafter) (see Assenza et al. (2014) for a survey). Three robust

facts stand out starkly from the experimental evidence: (i) subjects use very

few heuristics to form expectations whatever the economic setting (Assenza

et al., 2019), (ii) the Friedman-Nerlove adaptive rule features prominently

among these heuristics, (iii) learning leads to Rational expectations (after

many iterations) only when the dynamic process tends to a stationary state,

i.e. when a negative feedback is at work.8 With positive feedback, heteroge-

neous expectations do not converge to the rational outcome.

From our point of view, Colasante et al. (2017) provides particularly

interesting insights. The aim of this LtFE, which mimics a financial market

with increasing “fundamental” value, in fact, is to test whether subjects using

an adaptive rule are able to learn the presence of a drift of the fundamental

and to incorporate this acquired knowledge in expectation formation. Section

5 of the above mentioned paper shows that subjects indeed use an adaptive

rule and they grasp the presence of a drift so that they are not systematically

8Incidentally, as we have shown above, in a steady state adaptive expectations are
unbiased.
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wrong. This experimental evidence both motivates and corroborates the idea

of adaptive expectations with belief correction which is the core of the present

paper.

The second strand of literature is agent based macroeconomics. A siz-

able number of agent based macroeconomic frameworks has been developed

over the last two decades (see Dawid and Delli Gatti (2018) for an exten-

sive survey). In these models, as in standard DSGE models, expectations

drive actions and actions affect expectations. Agents, however, hold het-

erogeneous expectations and are not rational à la Muth: they do not form

model-consistent expectations. Since the macrodynamic properties of the

“true (agent based) model” of the economy are unknown ex ante, agents can-

not take them into account in forming expectations. The default modelling

option in agent based macroeconomics therefore is the adaptive expectation

scheme. Variants and alternatives to this option within this literature are

touched upon in the survey mentioned above and discussed extensively in

Salle (2015). For an application of the heuristics switching mechanism to an

agent based macroeconomic framework see Dosi et al. (2017).

3 Expectations and macroeconomic activity

3.1 Rational expectations

Let’s assume that the reduced form of a generic macroeconomic model is

described by an expectation-driven macro-dynamic function xt = f(xet , at)

where xt is a macroeconomic state variable in t, xet is the expectation of the

variable and at is an exogenous variable which is governed by a stochastic

process. If the economy is populated by agents holding heterogeneous ex-

pectations, xet can be interpreted as the aggregate or average expectation,

i.e., an aggregator of individual expectations. For simplicity, in this section

we assume that the model is linear or linearized so that the macro-dynamic

function becomes:

xt = at + αxet (1)

8



with α ∈ R a parameter. The exogenous variable plays the role of the

“fundamental” or the “shock”. Equation (1) is based on the assumption

that agents make decisions in t without knowing the contemporaneous state

variable. For instance, expectations are formed at the beginning of period

t, while the current state of the variable will be revealed at the end of the

period.9 Following (Evans and Honkapohja, 2001), we will label (1) the

Actual Law of motion (ALM) of the economy.

In order to set a benchmark, in this section we study the so called “ra-

tional solution” in the simplest possible setting. Let’s assume that at is a

stochastic shock governed by the following law: at = ā+ ãt where ā is finite

and ãt is white noise. Hence E(at) = ā. The rational solution of (1) – also

known as the Minimum State Variable Solution – can be written as follows:

xt = b0 + b1at (2)

where b0 and b1 are (so far) undetermined coefficients. This is the Perceived

Law of Motion (PLM) of the economy, i.e., the law of motion of the aggre-

gate variable as conceived by the rational agent. The agent knows the “true

model” of the economy, i.e., the ALM. Hence she knows that the state vari-

able is ultimately affected by the “fundamental”. However the agent does

not know the coefficients.10 In appendix A we derive the rational solution

b0 = α
1−α ā, b1 = 1 so that the state variable is indeed a linear function of the

shock:

xt = at +
α

1− α
ā (3)

The forecasting mistake therefore is εt := xt − E(xt) = ãt. Since ãt is white

noise, E(εt) = 0 i.e., rational expectations are unbiased. In this setting the

E-stability Principle is satisfied (i.e., the agent is indeed capable of learning

9In section 5 we will consider a setting in which firms plan production at the beginning
of a given period while the market for goods opens (and the sale price is revealed) at the
end of the period. Hence output should be decided in t on the basis of the expected sale
price in the same period.

10Notice that in principle agents can hold different priors on these parameters but they
use the same procedure and the same data to estimate them and therefore they are bound
to “discover” the same numerical values. In other words, expectations will be homogeneous
across agents, at least at the end of the learning process.

9



the true values of the parameters) only if α < 1.

In forming expectations, the rational agent focuses exclusively on the

exogenous variable in (1), because she knows the structure of the model

and therefore correctly conjectures that the state variable is “caused” by

the exogenous variable. In the real world, however, people are uncertain (at

least) on the structure of the model. As (Hansen and Sargent, 2014) point

out: “model uncertainty includes a suspicion that the model is incorrect.”

Some agents may well have a PLM different from (2). For instance, they

may believe that the past history of the variable of interest is playing a role

alongside the stochastic process. A hybrid PLM which takes this belief into

account is the following:

xt = b0 + b1at + b2xt−1 (4)

Following the same procedure as above, we infer that under E-stability,

these agents will learn that the past history of the variable plays no role

(i.e., b2 = 0) and therefore will discard the hybrid PLM (which is over-

parameterized) and use (2) instead.

An interesting alternative PLM simply abstracts from the shock and fo-

cusses exclusively on the past history of the variable:

xt = β0 + β1xt−1 + x̃ (5)

with x̃ white noise. In this case, the PLM is misspecified. This PLM is at

the root of the literature on misspecification equilibria under learning (see

(Hommes, 2021) for a discussion).11

3.2 Adaptive expectations

In this section, we want to explore a specific type of misspecified PLM, that

of Friedman-Nerlove adaptive expectations. We assume that agents hold

heterogeneous expectations and that the i-th agent forms expectations using

11Among the different types of misspecified expectations, it is particularly interesting
the class of natural expectations proposed by Fuster et al. (2010).

10



the following adaptive algorithm:

xei,t = λixt−1 + (1− λi)xei,t−1 = xei,t−1 + λiεi,t−1 (6)

where 0 < λi ≤ 1 is the updating coefficient and εi,t−1 := xt−1 − xei,t−1 is the

individual forecast error. This expression incorporates the notion that agents

revise their expectation on the basis of the forecast error they made in the

past. Iterating equation (6), it is easy to infer that the expectation of x in

t is an autoregressive process AR(∞) with exponentially declining weights:

xei,t = λi
∑∞

s=1(1 − λi)s−1xt−s. Only past values of the variable play a role

in this expectation formation mechanism. Information which may increase

the accuracy of the forecast (for instance the role of the exogenous variable

at) is ignored by assumption. Since the history of the variable of interest

is known with certainty, adaptive expectations are heterogeneous inasmuch

as the coefficient λi is different from one agent to the other. Subtracting

the LHS of equation (6) from xt, the individual forecasting mistake can be

rewritten as

εi,t = ∆xt + (1− λi) εi,t−1 (7)

where ∆xt = xt − xt−1. In words: the forecasting mistake is increasing with

the first difference of x. The “drift” of the macroeconomic variable drives

the forecast error. This consideration will be crucial in motivating belief

correction, as we will show in section 4. Taking the mean of (6) we get the

average expectation:

xet = λxt−1 + (1− λ)xet−1 (8)

where xet := 1
F

∑F
i=1 x

e
i,t is the mean of the distribution of expectations and

λ = 1
F

∑F
i=1 λi is the mean of the distribution of updating coefficients. Of

course 0 < λ ≤ 1. Equation (8) is the Average Expectations (AE) function.

The macroeconomy is described by the two-dimensional linear map S0 :

(xt−1;x
e
t−1) → (xt;x

e
t ) consisting of the ALM and AE functions (i.e., equa-

11



tions (1) and (8):

S0 :

xt = at + αxet

xet = λxt−1 + (1− λ)xet−1

(9)

From the first equation we get xet−s = xt−s−at−s
α

with s=0,1. Using these

expressions in the AE function and rearranging we get the reduced form:

xt = at − (1− λ)at−1 + [1 + λ(α− 1)]xt−1 (10)

The reduced form of S0 is a simple linear first-order difference equation.

Since the exogenous variable at is generally governed by a dynamic stochastic

process, the difference equation is generally non-autonomous and subject to

a stochastic disturbance.

From (7), we derive the following law of motion of the average forecasting

error

εt = ∆xt + (1− λ) εt−1 (11)

Using (10) we get

∆xt = ∆at + λat−1 + λ(α− 1)xt−1 (12)

where ∆at = at − at−1 is the drift of the exogenous variable. From the last

two equations we conclude that this drift determines the first difference of

the state variable, which in turn magnifies the forecasting mistake.

In the following we will assume at = a ∀t, i.e., we will consider for sim-

plicity the scenario in which the exogenous variable is constant. Moreover,

we will distinguish between the general case λ ∈ (0, 1) and the special case

λ = 1 The special case goes under the name of naive expectation. In symbols:

xet = xt−1. In this case, by construction, the individual and the average up-

dating coefficient coincide: λi = λ = 1. Every agent makes the same forecast

– i.e., expectations are homogeneous – and therefore the same forecasting

mistake. Naive expectation is a special case of (5).

12



The system ALM-AE in the general case is

S1 :

xt = a+ αxet

xet = λxt−1 + (1− λ)xet−1

(13)

so that the resulting first order difference equation is:

xt = aλ+ [1 + λ(α− 1)]xt−1 (14)

The expression in brackets is the slope of the (linear) phase portrait. The

steady state

x∗ =
a

1− α
(15)

is independent of the average updating coefficient. Notice that the steady

state (15) is identical to the rational solution in the absence of shocks (see

(58) in appendix A). The steady state exists if α 6= 1 and is stable if

1− 2

λ
< α < 1 (16)

The law of motion of the average forecasting error is:

εt = λa+ λ(α− 1)xt−1 (17)

Let’s now focus on the special case of naive expectations: λ = 1. The AE

equation simplifies to xet = xt−1. In this case, the ALM-AE system becomes

S ′1 :

xt = a+ αxet

xet = xt−1
(18)

The reduced form of S ′1 is the difference equation

xt = a+ αxt−1 (19)

The steady state is the same as before (see (15)) and is stable if −1 <

α < 1. Convergence is oscillatory if −1 < α < 0. Notice that in this case,

13



the law of motion of the average forecasting error specializes to

εt = ∆xt = a+ (α− 1)xt−1 (20)

In words: in the naive expectations case, the forecasting mistake coincides

with the first difference of the variable of interest. On the basis of the dis-

cussion of systems S1 and S ′1 we can state the following proposition.

Proposition 1 In the steady state expectations are unbiased in Galton’s
sense: individual expectations are wrong but the mean of these biased expec-
tations – i.e., the average expectation – is correct. In fact, setting xt−1 = x∗

in (17) and using (15) we obtain ε∗ = 0. Out of the steady state agents are
(on average) wrong – i.e., the average expectation is biased.

In the general case (system S1), the steady state is stable if (16) is satis-
fied. In particular, if the numerical values of α and λ satisfy 1− 2

λ
< α < 1− 1

λ

transitional dynamics is characterized by dampened oscillations so that the
average forecasting error will alternate in sign period by period but il will de-
crease in absolute value over time. If 1− 1

λ
< α < 1 transitional dynamics will

be characterized by monotonic convergence and the average forecasting error
will have the same sign in each period but decrease over time in magnitude.

In the special case (system S ′1) convergence is oscillatory if −1 < α < 0
and monotonic if 0 < α < 1.

If the steady state exists and is unstable, out of the steady state the average
error will be increasing over time (in absolute value). In the special case
α = 1, the steady state does not exist, the first difference of x is constant and
the average error is also constant.

4 Can individual biased expectations be col-

lectively unbiased?

In section 3.2, we have assumed that agents form adaptive expectations à la
Friedman-Nerlove. Their PLM is “misspecified” because they don’t realize
that the dynamics of the macroeconomic variable is affected by the exogenous
variable (parameter a). In this section we explore a modified adaptive setting
characterized by the following assumption.

Assumption 1 Agents realize that they do not make mistakes (at least on
average) in a stationary state while they are off the mark when the state
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variable grows or declines. Therefore they conjecture that the origin of the
mistakes they make is the change over time (first difference) of the state
variable. The i-th agent follows an error mitigation strategy which consists
in augmenting her expectation by a Belief Correction (BC) term proportional
to the estimated first difference ∆e

t :

BCTi,t = γi∆
e
t (21)

where 0 < γi ≤ 1 is the BC parameter.12

The expectation formation equation (6) becomes: xei,t = λixt−1+(1−λi)xei,t−1+
γi∆

e
t and the average expectation will be:

xet = λxt−1 + (1− λ)xet−1 + γ∆e
t (22)

where γ := 1
F

∑F
i=1 γi is the mean of the individual BC parameters and

BCTt = γ∆e
t is the average BC term. By construction 0 < γ ≤ 1.

We assume that agents estimate the current change in x applying a filter
to observed past differences up to order N: ∆e

t = F (∆xt−1,∆xt−2, ...,∆xt−N).
As a first approximation, suppose ∆e

t = ∆xt−1 := xt−1− xt−2. In this simple
belief correction setting, BCTi,t = γi∆xt−1 and the the average expectations
(AE) equation becomes:

xet = λxt−1 + (1− λ)xet−1 + γ∆xt−1 (23)

In this setting the ALM-AE system consists of equations (1) and (23). Sub-
stituting ALM into AE we get a linear second-order difference equation:

xt = aλ+ [α(λ+ γ) + (1− λ)]xt−1 − αγxt−2 (24)

The dynamic properties of (24) depend on the numerical values of three
parameters: α, λ, γ. To simplify the analysis, let’s consider the special case
of naive expectations λi = 1 ∀i. This allows to reduce the number of key pa-
rameters. In the presence of naive expectations and simple belief correction,
the average expectation (AE) equation becomes:

xet = xt−1 + γ∆xt−1 = (1 + γ)xt−1 − γxt−2 (25)

12At the moment they form expectations for period t (beginning of period t), agents
do not know the actual first difference ∆xt = xt − xt−1 because they do not observe xt.
Therefore they have to estimate the first difference.
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The ALM-AE system therefore is:

S2 :

{
xt = a+ αxet
xet = (1 + γ)xt−1 − γxt−2

(26)

The reduced form of this system is the linear second-order difference equation:

xt = a+ α(1 + γ)xt−1 − αγxt−2 (27)

whose properties depend on the numerical values of α and γ. In the special
case γi = γ = 1 ∀i, (full belief correction) system S2 boils down to

S ′2 :

{
xt = a+ αxet
xet = 2xt−1 − xt−2

(28)

The reduced form of this system is:

xt = a+ 2αxt−1 − αxt−2 (29)

The steady state of S2 and S ′2 is (15), i.e., it coincides with the steady
state of S ′1 and of S1. In appendix B we prove the following proposition.

Proposition 2 We define the parameter space as the region of the (γ, α)
plane such that α ∈ R and γ ∈ [0, 1]. The stability region is the portion of
the parameter space such that the steady state is stable, i.e., the state variable
converges to the steady state and expectations tend to unbiasedness.

In the absence of BC – i.e., with γ = 0 – the dynamic system is S ′1,
the law of motion of x is (19) and the stability region is the interval A =
{α| − 1 < α < 1}. If α falls in the sub-interval B = {α| − 1 < α < 0}, then
convergence is oscillatory and the average forecasting error will alternate in
sign period by period but il will decrease in absolute value over time. If α falls
in the sub-interval A − B = {α|0 < α < 1}, then convergence is monotonic
and the average forecasting error will have the same sign in each period but
decrease over time. If α /∈ A the steady state is unstable and x follows a
diverging path so that expectations do not tend to unbiasedness.

With incomplete BC – i.e., with γ ∈ (0, 1) – the economy is represented by
S2 and the law of motion of x is (27). The stability region is A = {(α, γ)|α1 <
α < 1, 0 < γ < 1} where α1 = − 1

1+2γ
. In particular, if α and γ fall in the

sub-region B = {(α, γ)|α1 < α < α2), 0 < γ < 1} where α2 = 4γ
(1+γ)2

,

then convergence is oscillatory. If α /∈ A the steady state is unstable and
expectations do not tend to unbiasedness.
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Finally, with full BC (γ = 1) the dynamic system is S ′2, the law of motion
of x is (29) and the stability region is the interval A = {α| − 1

3
< α < 1}.

Convergence is always oscillatory in this interval. If α /∈ A the steady state
is unstable and expectations do not tend to unbiasedness.13

In figure 1, we compare the properties of the transitional dynamics in

system S ′1 with that of S2 and S ′2. The stability region of S ′1 (without BC)

is the segment AD (extremes excluded). The stability region of S ′2 (full BC)

is the segment BC.

The curve labelled α2 has equation α = 4γ
(1+γ)2

. The curve labelled α1

has equation α = − 1
1+2γ

. The stability region of S2 is the approximately

trapezoidal area ABCD. If the parameters fall in the area OBCD there is

oscillatory convergence. If the parameters fall in the approximately triangu-

lar area OAB, there is monotonic convergence. All the other points in the

parameter space are associated with divergence.

Figure 1: Parameter space and transitional dynamics
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13Goodwin (1947) explores a similar setting.
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From figure 1 we infer the following proposition.

Proposition 3 Comparing S ′2 with S ′1 we observe that the range of values of
α that implies convergence (and tendency of expectations to unbiasedness) is
smaller with full BC (−1

3
< α < 1) than without BC (−1 < α < 1): a portion

of the parameter space which was characterized by stability in the absence
of belief correction turns to instability with full BC. Moreover, convergence
occurs always by means of dampened oscillations, while it may be monotonic
in the absence of BC. With incomplete BC (system S2) the stability region
becomes a portion of the (α, γ) plane, namely the geometric figure ABCD.
The area of the subregion of oscillatory convergence (OBCD) is bigger than
the area of the subregion of monotonic convergence (OAB). With full BC,
therefore, convergence occurs always with oscillations, while with incomplete
BC convergence occurs predominantly in an oscillatory manner.

Let’s now pause briefly on the Average Forecasting Error (AFE) ε. The

law of motion of the AFE with incomplete BC is

εt = ∆xt − γ∆xt−1 (30)

Therefore, expectations are unbiased when ∆xt = γ∆xt−1. This condition is

satisfied not only in the steady state (where the current and the lagged first

differences are zero) but also, in specific cases, out of the steady state.

To illustrate the effects of belief correction, in figure 2 we plot the AFE

obtained in S ′1 (absence of BC) with α = 0.9 (monotonic convergence) and the

AFE resulting from S2 with α = 0.9 and γ = 0.9 (incomplete but almost full

BC). We assume that a = 0 and the state variable is equal to zero in periods

t0 − 1 and t0 − 2. A permanent shock (with a jumping to a′ = 1) occurs in

period t0 = 1. Expectations being naive, the shock is unexpected. Given this

configuration of parameters, in the absence of BC the error is always positive

(people make systematic mistakes) but decreasing over time and tending

asymptotically to zero. With BC, the AFE converges (asymptotically) to zero

by means of dampening oscillations. The AFE therefore takes on opposite

signs in different intervals: on average people make positive errors in a finite

number of periods in a given time window and negative mistakes in the

subsequent window. BC therefore implies that people do make mistakes

18



Figure 2: Average Forecasting Error without BC (system S ′1;α = 0.9) and
with incomplete BC (system S2; α = γ = 0.9)
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(also on average) but they do not make systematic average mistakes over the

entire time horizon. In each period, given this parameterization, the AFE

with BC is smaller (in absolute value) than the AFE without BC.

In figure 3 we represent the AFE setting α = 0.9 and γ = 0.5. Given this

configuration of parameters, the AFE is always positive both with and with-

out BC: belief correction does not prevent people from making systematic

mistakes. In each period, however, the AFE with BC is smaller (in absolute

value) than the AFE without BC. A low degree of belief correction (γ rel-

atively small), therefore, allows to reduce the magnitude of the forecasting

error but does not prevent people from making systematic mistakes.

Let’s consider now a more sophisticated filter, which we will label the

mean difference BC term:

∆e
t =

1

N

N∑
s=1

∆xt−s (31)

In this case agents estimate the first difference of variable x by computing the

mean of the past (first) differences of the variable over the time window [t-1:t-
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Figure 3: Average Forecasting Error without BC (system S ′1;α = 0.9) and
with incomplete BC (system S2; α = 0.9; γ = 0.5)
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N]. Averaging across agents we get the following aggregate mean difference

BC term:

BCTt = γ
1

N

N∑
s=1

∆xt−s

Suppose agents want to fully correct their belief (γ = 1). In the presence of

naive expectations and full correction, the average expectation (AE) equation

becomes:

xet = xt−1 +
1

N

N∑
s=1

∆xt−s (32)

Using this filter, the ALM-AE system will be

S3 :

xt = a+ αxet

xet = xt−1 + 1
N

∑N
s=1 ∆xt−s

(33)

Substituting ALM in AE we get the reduced form of S3 which is a linear
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difference equation of order N+1:

xt = a+ αxt−1 + α
1

N

N∑
s=1

∆xt−s (34)

The steady state is (15), i.e., it coincides with the steady state of S2 (and

of all the other systems considered so far). The characteristic equation will

be of order N+1. Of course the dynamics generated by (34) depend on the

numerical value of the roots θn;n = 1, 2, ..., N + 1 – i.e., the eigenvalues of

the companion matrix of (34) – which will be functions of α only (thanks to

the assumptions of naive expectations and full correction).
In order to explore the nature of the roots, we will exploit the fact that the

region of stability of the reference system S ′1 is−1 < α < 1, a bounded region.
Hence we can use a grid search to solve numerically for the eigenvalues. The
search step used for the parameter α is δ = 0.01; i.e., α ∈ (−1 + δ, . . . , 1− δ).
We will consider 4 cases: N = 1, 2, 3, 4. The case N = 1 coincides with the
analysis carried out above for S ′2. We summarize the results of this numerical
exploration in the following result.

Result 1 From numerical exploration in the stability region of S ′1(−1 < α <
1) we found that the ALM-AE system with full BC predominantly leads to
oscillatory behaviour. In particular, for N=2 and N=4, convergence occurs
always – i.e., ∀α ∈ (−1, 1) – with oscillations. For N=1, convergence occurs
with oscillations in the interval −1

3
< α < 1. For N=3, convergence occurs

with oscillations in the interval −3
5
< α < 1.

The case N = 4 will be used in the following section. In appendix C we

explore numerically the properties of S3 with N = 4, α ∈ (−1, 1) (except the

trivial case α = 0) and (γ, λ) in the unit square.

5 A streamlined Heterogeneous Agents model

In this section we discuss the effects of belief correction in a streamlined

agent based setting characterized by heterogeneous adaptive expectations.

We consider a closed economy populated by households and firms. House-

holds (not explicitly modelled) supply labour, earn wages (if employed) and
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spend on consumption goods their wages entirely (they are “hand to mouth”

consumers).

There are F firms which produce a homogeneous consumption good. The

production function of the i-th firm (i = 1, 2, ..., F ) is:

Qi,t = AtN
1
δ
i,t (35)

where Qi and Ni are output and employment, δ > 1 and A is Total Factor

Productivity. TFP grows at the exogenous rate gA > 0 with probability

pA, which in turn is increasing with the sales tax rate τ . We assume, in

fact, that sales taxes finance public investment in fundamental research14

and fundamental research, in turn, affects the rate of growth of TFP. For

simplicity, we assume pA = γAτ with γA > 0. When τ = 0, there is no

Government expenditure in research and TFP is stationary. We assume

A = 1 in this case. The stationarity of TFP characterizes the baseline

scenario for simulations, which we will present in section 5.1. We will discuss

the consequences of TFP growth in section 6.

Due to labour market “frictions”, the real wage wt does not adjust to

imbalances between demand and supply of labour but follows an exogenous

AR(1) process with drift:

wt = ρwwt−1 + d+ σεεW (36)

where d > 0, ρw ∈ [0, 1) and εW ∼ N (0, σε) is a wage shock. In the absence

of the wage shock, the real wage tends to w̄ = d
1−ρw . Labour supply (not

modelled) is always abundant: labour shortages are ruled out by assumption.

At the beginning of period t, the firm decides the quantity to be pro-

duced (and the workers to be employed). Production takes time and output

will be available for sale only at the end of the period, when the market for

consumption goods opens (and transactions are carried out). At the begin-

ning of the period, the firm is uncertain on the sale price Ps,t which will be

14We assume that the Government budget is always balanced: τ
∑

iQit = Rt where
R is public expenditure in fundamental research. Hence the latter is endogenous and
proportional to total output.
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revealed only at the end of the period. In order to make production and

employment decisions, therefore, the firm has to form expectations on the

sale price.

We will denote the expectation (formed by agent i at the beginning of

period t) of the sale price with P e
i,t. Under risk neutrality and perfect com-

petition, the firm chooses at the beginning of t the optimal quantity by

maximizing expected profits (net of taxes):

max
Qi,t

Πe
i,t = xei,t(1− τ)Qi,t − wtAt−δQδ

i,t

where

xei,t :=
P e
i,t

Pt
(37)

is the within-period (gross) rate of change of the price (inflation for short)

expected by the i-th firm. Pt is the price at the beginning of period t, which

has been “inherited” from transactions carried out at the end of period t-1.

Optimal output is:

Qi,t = ηζt

(
xei,t

) 1
δ−1

(38)

where

ζt := A
δ
δ−1

t w
− 1
δ−1

t

η :=

(
1− τ
δ

) 1
δ−1

Plugging (38) into (35) and rearranging we get the demand for labour

Ni,t =
1

wt
ηδζt

(
xei,t

) δ
δ−1

(39)

Output and employment are increasing with inflation expectations and are

heterogeneous because of the heterogeneity of the latter.

Since firms produce a homogeneous consumption good, we assume that

at the end of the period a fraction 1/F of the wage bill is spent at each

firm by each household. Aggregate demand in real terms, in fact, is equal to

the total wage bill wtLt where Lt :=
∑F

i=1Ni,t is total employment. When
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the market opens actual sales for the i-th firm (Si,t) may be different from

output planned at the beginning of period t: Si,t = min(Qi,t,
wtLt
F

). Firms

with relatively “high” inflation expectations will produce more than firms

holding “low” inflation expectations and viceversa.
Overall excess demand will be EDt = wtLt − Yt where Yt :=

∑F
i=1Qi,t

is aggregate supply. If excess demand is positive, all the output will be
sold and there may be a fringe of unsatisfied consumers at some firms. In
this case, it is reasonable to assume that the sale price at the end of the
period will be higher than the price at the beginning of the period. If, on the
contrary, excess demand is negative the end-of-period price will be lower than
Pt. However, there is no guarantee of market clearing as we do not assume
the presence of a top-down coordinating mechanism such as the auctioneer
which brings necessarily demand into equality with supply. On the basis of
these consideration we assume the following market protocol.

Assumption 2 Let’s denote with xt := Ps,t
Pt

the ratio of the end of period
(sale) price to the beginning of period price (i.e., the intra-period gross infla-
tion rate). We assume that the market price evolves according to the stochas-
tic adjustment process:

xt = exp
(
γpEDt

)
exp(εP ) (40)

where γp > 0 is the semi-elasticity of (gross) inflation x to aggregate excess
demand

EDt = wt

F∑
i=1

Ni,t −
F∑
i=1

Qi,t (41)

and εP ∼ N (0, σε) is a price shock, E
(
exp(εP )

)
≈ 1. Excess demand is

known in t because all the variables involved (total output and the total wage
bill) are determined in t on the basis of individual inflation expectations.
Hence the uncertainty concerning xt is rooted in the shock to price dynamics
εP . In the absence of the price shock, the price is stationary (xt = 1) when
there is market clearing (EDt = 0), i.e., when total output is paid out as
wages and spent entirely in consumption goods.

Substituting optimal output (38) and employment into excess demand (41)

and the latter into (40) we obtain the ALM of the Heterogeneous Agents

model:
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xt = exp

γpζt
ηδ∑

i

(xei,t)
δ
δ−1 − η

∑
i

(xei,t)
1
δ−1

 exp(εP ) (42)

Actual inflation therefore is a non linear function of individual inflation

expectations for any combination of the real wage and TFP. Non linearity is

due exclusively to decreasing returns, an assumption which allows to obtain

close form solutions for optimal output and employment.

We assume that agents know the beginning of period price Pt and form

expectations on the sale price at the end of the period P e
i,t according to the

following adaptive mechanism:

P e
i,t = λiPt + (1− λi)P e

i,t−1 + 1PBCTt (43)

where λi is drawn from a uniform distribution with support (λ0, 1]; λ0 > 0.

For simplicity, we assume that (i) the corporate sector in its entirety can

either apply or not apply the BC term;15(ii) when applying belief correction,

firms opt for full correction; (iii) the BC term is the same for all firms and

is the mean of the price changes over the four previous periods: BCTt =
1
4

∑4
s=1 ∆Pt−s. 1P is an indicator function equal to 1 when all the agents

apply a BC term, 0 otherwise. Iterating (43) we get:

P e
i,t = P̄i,t + 1PBCT i,t (44)

where P̄i,t := λi
∑∞

s=0(1− λi)sPt−s and BCT i,t :=
∑∞

s=0(1− λi)sBCTt−s are

the weighted averages of past prices and past BC terms with exponentially

declining weights. Heterogeneity is due exclusively to the updating parame-

ter.

Dividing both sides of (44) by Pt we can write the expectation of inflation

held by the i-th agent as follows:

xei,t = x̄i,t + 1P∆P
i,t (45)

15For simplicity we will rule out the scenario in which belief correction is applied only
by a fraction of the population of firms.
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where

x̄i,t :=
P̄i,t
Pt

= λi

∞∑
s=0

(1− λi)s
Pt−s
Pt

(46)

and

∆P
i,t =

BCT i,t
Pt

=
∞∑
s=0

(1− λi)s
BCTt−s
Pt

(47)

Hence the average inflation expectation is

xet =
1

F

 F∑
i=1

x̄i,t + 1P

F∑
i=1

∆P
i,t

 (48)

5.1 The baseline

In this section we simulate the baseline scenario characterized by τ = 0 so

that there is no investment in fundamental research.16 Hence TFP is con-

stant. As we already said above, for simplicity we normalize it to unity:

A = 1. The dynamics of the model in the baseline therefore is driven ex-

clusively by the law of motion of the real wage (36), which plays the role of

the exogenous variable at in section 3. Therefore, in the “long run” the real

wage converges to w̄ = d
1−ρw .

We assume individual expectations are formed adaptively as shown in

(45). Therefore optimal output and employment will be:

Qi,t = ηζt

(
x̄i,t + 1P∆P

i,t

) 1
δ−1

(49)

Ni,t =
1

wt
ηδζt

(
x̄i,t + 1P∆P

i,t

) δ
δ−1

(50)

where ζt simplifies to

ζt = w
− 1
δ−1

t

The parameter values used in simulations are gathered in Table 1. We

have set γP = 0.001 and δ = 3/2. With this calibration ζt = w−2t , η = δ−2 =

4/9 ≈ 0.44 and ηδ = δ−3 = 8/27 ≈ 0.3. Substituting optimal output (49)

16See (Palestrini and Gallegati, 2015) and (Palestrini, 2017).
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Parameter Description Value
F Number of firms 200
δ Reciprocal of Cobb-Douglas exponent 3/2
γp Semi-elasticity of x to excess demand 0.001
γτ Sensitivity of the probability of TFP growth to the tax rate 4
gA Growth rate of TFP with τ > 0 0.02
ρw Auto-regressive parameter (law of motion of the real wage) 0.9
d Drift (law of motion of the real wage) 0.1
σε Standard deviation of the wage shock and of the price shock 0.01
λ0 Minimum updating coefficient 0.4

Table 1: Parameter values

and employment (50) into excess demand (41) and the latter into (40) we

obtain the ALM of the Heterogeneous Agents model:

xt = exp

0.001

w2
t

0.3
∑
i

(
x̄i,t + 1P∆P

i,t

)3
− 0.44

∑
i

(
x̄i,t + 1P∆P

i,t

)2 exp(εP )

(51)

For any value of the real wage and realization of the price shock, actual

inflation is a non linear function of individual inflation expectations, which

in turn are weighted averages of past inflation rates with heterogenenous

exponentially decaying weights.

We run S = 100 Monte Carlo simulations of the Heterogeneous Agents

model (with different random seeds). The duration of each simulation is

T = 40 periods. Hence each individual expectation xei,t,s is characterized by

three indices: i = 1, 2, ...F , t = 1, 2, ...T , s = 1, 2, ...S. For a given real

wage and price shock, simulation s0 generates in period t the distribution

of F = 200 individual inflation expectations xei,t,s0 , i = 1, 2, ...F , which in

turn will generate actual inflation xt,s0 through the ALM (51). Since the

dynamics converge quite rapidly, after a short transient, we can define the

“long run” distribution of inflation expectations as the distribution of the

last period of the simulation window: xei,T,s0 , i = 1, 2, ...F . The associated

average expectation (i.e., inflation expected on average by the population of
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firms in period T) is the mean of the long run distribution

xeT,s0 =

∑F
i=1 x

e
i,T,s0

F
(52)

The actual long run inflation is inflation of the last period xT,s0 . The differ-

ence between actual and expected inflation (both referred to period T) is the

forecast error associated to simulation s0: εT,s0 = xT,s0 − xeT,s0 .
We define “the bias” as the percent forecast error. The last period bias

therefore is: bT,s0 =
εT,s0
xeT,s0
−1. The bias distribution is the distribution of S =

100 relative forecast errors in the last period of the simulation (one for each

simulation) bT,s s = 1, 2, ...S. We evaluate the performance in forecasting

of adaptive agents by means of the first and second moments of the bias

distribution. The average bias is:

b =

∑S
s=1 bT,s
S

(53)

while the degree of heterogeneity of the bias distribution is measured by the

variance:

σ2
b =

∑S
s=1(bT,s − b)2

S
(54)

By construction, when expectations are model consistent the forecasting error

is εt = E(xt)[exp(εP )−1] and the bias is bt = exp(εP )−1 so that the average

error (and the average bias) is zero. In words, model consistent expectations

are unbiased. Moreover, the standard deviation of the bias is close to the

standard deviation of the price shock εP , which, in our calibration, is σε =

0.01.
From simulations we get the following fundamental result:

Result 2 When adaptive agents do not apply BC (i.e., when γi = 0∀i so
that the indicator function 1P takes value 0), the average bias is significantly
different from zero: b = −2.5%, i.e., agents overestimate inflation by a non-
negligible margin. Moreover, the standard deviation of the bias distribution
σb = 0.0012, is sligthly bigger than the standard deviation of the price shock.17

17This result is in line with the previous literature that compares adaptive expectations
to rational expectations. Evans and Honkapohja (2001) make a similar point in the case
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On the contrary, when agents apply full BC (i.e., when γi = 1∀i so that the
indicator function 1P takes value 1) the average bias with adaptive expec-
tations is “close to zero” (i.e., close to unbiasedness) 18 while the standard
deviation of the bias distribution σb does not change and remains slightly
above the standard deviation of the price shock.

Let’s now turn to output and employment. Each simulation generates the

time series of total output Yt,s0 =
∑F

i=1Qi,t,s0 = ηζt
∑F

i=1

(
x̄i,t,s0 + 1P∆P

i,t,s0

) 1
δ−1

and of total employment Lt,s0 =
∑F

i=1Ni,t,s0 = 1
wt
ηδζt

∑F
i=1

(
x̄i,t + 1P∆P

i,t,s0

) δ
δ−1

,

t = 1, 2, ...T . We take the final period (period 40) employment in the Hetero-
geneous Agents model LT,s0 and compute the ratio to total employment when
expectations are unbiased (Unbiased case hereafter) LUT,s0 which is defined in
appendix D. In this way we generate the distribution of the employment ratio
(one for each simulation) ns :=

LT,s
LUT,s

, s=1,2,...100. From simulations we get

the following fundamental result:

Result 3 Absent BC the average employment ratio is n =
∑S

s=1 ns/S = 1.08
i.e., employment in the Heterogeneous Agents model is 8% bigger than in the
Unbiased case. When agents apply full BC, on the contrary, the average
employment ratio is n = 0.997 i.e., the distribution is centered around 1:
employment in the Heterogeneous Agents model with full BC is approximately
the same as employment in the Unbiased case.

The rationale for Result 3 is the following. In our simulations, given the

initial conditions, if firms do not apply BC to expectations formation, on

average inflation expectations converge to a “long run” level xeT that sig-

nificantly overestimates actual inflation in the same period xT (the bias is

negative, as stated in Result 2). Therefore firms optimally employ a larger

number of workers and produce more than in the Unbiased case: employment

is 8% greater than in the Unbiased case. If, on the contrary, they apply BC,

on average adaptive expectations produce the same result as model consis-

tent expectations, hence also GDP and total employment are observationally

equivalent to those of the Unbiased case.

of constant gain expectation scheme.
18Closeness depends on the persistence of inflation, on the type of filter used to evaluate

the drift and generate the BCT and on the correlation of heterogeneous expectations.

29



6 A policy experiment

We are now able to assess the effects of a (permanent) policy shock in the

Heterogeneous Agents model and compare them with the effects of the same

shock in the the Unbiased scenario.

Suppose the Government sets the tax rate at τ0 > 0. The probability

of TFP growth therefore will be pτ = γττ0. The parameter values used in

simulations are those in table 1. We set γτ = 4 and τ0 = 0.05 so that the

probability of TFP growth due to the policy shock is pτ = 20%. We set

TFP growth in case of success of the policy at gA = 0.02. This is the Policy

scenario.

We run 100 Monte Carlo simulations of the model in the policy scenario.

As before, the time span of each simulation is 40 periods. Each simulation

generates a distribution of F=200 inflation rates and average inflation expec-

tations for each period (as shown in detail above). The difference between

actual and average expected inflation (both referred to period 40) is the fore-

cast error. In this way we generate the bias distribution of 100 forecast errors

(one for each simulation). By construction, the mean of the bias distribution

is zero in the Unbiased case. In figure 4 we show the bias distribution gen-

erated by S=100 replications of the Heterogeneous Agents model with and

without BC in the Policy scenario.
We can summarize the results of these simulations as follows:

Result 4 Absent BC, the average bias is b = −4% and the standard devia-
tion of the bias is σb = 0.0224. Firms significantly overestimate inflation in
the Policy scenario, more than in the baseline scenario. With BC, the aver-
age bias goes down approximately to zero (0.5%) and the standard deviation
falls to 0.0127.

We compute the employment ratio ns for each simulation following the pro-

cedure outlined in the baseline scenario. Figure 5 shows the distribution of

the employment ratio in the Policy scenario.

Result 5 Absent BC, the mean employment ratio is significantly greater
than one (n = 1.137). With BC, the distribution is centered around one
(the mean is 0.990). This result is in line with the result obtained above in
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Figure 4: Distribution of the percent forecast error (kernel density estima-
tion).

the baseline scenario. In other words, in the presence of bias employment
is 14% higher than in the absence of bias. Belief correction reduces the bias
almost to zero.

We are now in a position to compare the effects of the policy shock by

computing the change in employment due to investment in fundamental re-

search. We will denote with ∆U =
LUt (τ=0.05)

LUt (τ=0)
the (gross) rate of change in

total employment (in each period) due to the shock in the unbiased case.

Analogously, ∆H
t = Lt(τ=0.05)

Lt(τ=0)
is the change in employment due to the shock

in the Heterogeneous Agents model.

In the unbiased case we expect, ∆U
t = (1− pτ ) + pτ (1 + gA)

δ
δ−1 − 1. Since

31



0.9 1 1.1 1.2 1.3 1.4
0

5

10

15

20

25

30

35

40

45
Model with Pure Research: Gaussian kernel density (bandwith = 0.003)

Ratio

D
e
n

s
it
y

Without BCT

With BCT

Figure 5: Distribution of the employment ratio (kernel density estimation).

we have set pτ = 0.2; gA = 0.02 and δ = 1.5 in the simulation, ∆U = 0.0122.

In other words, the unbiased case implies an increase of employment due to

the shock approximately equal to 1.2% per period.
Figure 6 plots the time series of the change in employment ∆H obtained

from the simulation of the Heterogeneous Agents model. The series shows a
jump process due to the TFP evolution over time. Note that initial values
are below 1 because the introduction of taxation depresses economic activity
but then it grows steadily over time. It goes from 0.8576 in t0 = 1 to 1.608
in period T = 40. This implies an average rate of employment growth equal
to (1.608/0.8676)1/36 = 1.0173. The fact that the differential rate of growth
is close to the unbiased solution is robust across simulations. The Monte
Carlo analysis shows a mean rate of growth equal to 1.2085% with standard
deviation 13.5782%. This leads to the final
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Figure 6: The change in employment ∆H in Heterogeneous Agents model.

Result 6 The long run change in employment due to the policy shock esti-
mated with the Heterogeneous Agents model has the same order of magnitude
of the long run change in employment due to the policy shock in the unbiased
solution.

This is an interesting and a puzzling observation. Why this result? The

intuition goes as follows. Unbiased agents know (in expectation) the profit

function whereas adaptive agents have imperfect information due to uncer-

tainty of the future sales price. This implies that initial levels of economic

variables may be different in the unbiased case and in the Heterogeneous

Agents model. But when TFP growth shifts the profit function, adaptive

agents for which the bias does not change tend to follow the movement of
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the distribution profit more or less in line with rational agents. Put differ-

ently, as to levels of macrovariables the Heterogeneous agents model (without

BC) and the unbiased solution produce different results. But the results of

the policy shocks in terms of change in employment are, given the bias, ob-

servationally equivalent.
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7 Conclusions

Agents adopting a Friedman-Nerlove adaptive algorithm to form expecta-

tions are bound to make systematic errors. This consequence of the canonical

adaptive expectations scheme is patently unrealistic and has doomed the idea

in the macroeconomic literature, paving the way to rational expectations. In

this paper we reconsider the behavior of the Adaptive agent in search of a

more satisfactory characterization. We notice first that agents holding het-

erogeneous Adaptive Expectations can be collectively right if the individual

forecast errors wash out in the aggregate, i.e., if the mean forecast error

across agents is zero. In this case adaptive expectations are unbiased. In the

canonical adaptive expectations scheme unbiasedness occurs only when the

economy is in a stationary state. If the macroeconomic variable of interest

has a drift, adaptive expectations are wildly off the mark. We have shown

that heterogeneous adaptive agents who correct their expectation updating

rule with a Belief Correction term – a proxy of the drift – can substantially

reduce the average forecast error and (under some parameterizations) may

avoid the trap of systematic forecast errors.

We have then used this notion to assess the effects of biasedness on

macroeconomic performance in a streamlined agent based setting character-

ized by heterogeneous expectations. This feature heavily affects the results

of policy experiments. The introduction of a sales tax to finance fundamental

research affects TFP and is a source of drift of GDP. Absent belief correc-

tion, the mean forecast error is negative and significant: purely adaptive

firms significantly overestimate inflation. Since optimal production and em-

ployment are increasing with expected inflation, in this setting production

and employment are significantly bigger than they would be if agents had

model-consistent unbiased expectations. With belief correction, the average

error goes down approximately to zero and the standard deviation shrinks

dramatically: adaptive firms that follow a belief correction strategy are col-

lectively unbiased.

Further experimentation is required to assess the applicability of these

ideas to larger and more complex macroeconomic agent based models. The
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wide range of variables over which agents must form expectations in larger

models adds layers of complexity to the design of the belief correction (and

bias mitigation) mechanism. We are convinced, however, that this terrain is

worth exploring to provide a convincing benchmark for this class of models.

36



A The rational solution under adaptive learn-

ing

On the basis of the PLM – see (2) – the rational expectation of xt is E(xt) =

b0 + b1ā. Setting xet = E(xt) (model-consistent expectations) and plugging

this expression into the ALM – see (1) – we get the implied actual law of

motion:

xt = at + α(b0 + b1ā) (55)

The Rational Expectations (RE) solution is a fixed point of the mapping T

from the PLM (2) to the implied ALM (55) and must satisfy:

T (b0, b1) = (αb0 + αb1ā, 1) (56)

Hence the RE solution is b0 = α
1−α ā, b1 = 1 and the state variable is indeed

a linear function of the shock:

xt = at +
α

1− α
ā (57)

In the absence of the white noise disturbance (ãt = 0 ∀t), at = ā and

x∗ = x̄ :=
ā

1− α
(58)

From (57) follows that the forecasting mistake is εt := xt−E(xt) = ãt. Since

ãt is white noise, E(εt) = 0: rational expectations are unbiased. This means

that, over a given time window, the rational agent may over-forecast the

state variable in some intervals and underforecast it in some other intervals

within the time window.

In an “adaptive learning setting” à la (Evans and Honkapohja, 2001),

the agent learns the parameters b0 and b1 by means of standard econometric

techniques. The adaptive learning process is governed by a system of ordinary
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linear differential equations:

SDE :

db0
dt

= α(b0 + b1ā)− b0
db1
dt

= 1− b1
(59)

The RE solution is the steady state of SDE. A well known result of this lit-

erature is the E-stability Principle: the RE solution is stable under adaptive

learning (i.e., the agent is indeed capable of learning the RE values of the

parameters) if it is also a locally stable steady state of the associated SDE.

In our simple example the E-stability principle is satisfied for α < 1. In other

words, the learning process tends to the RE solution (rational learning) only

if α < 1.

B System S2

Let’s consider system S2 with γ ∈ (0, 1). The system yields the second order

difference equation (27) whose characteristic equation is

θ2 − α(1 + γ)θ + αγ = 0 (60)

The roots of this equation areθ1 = α(1+γ)
2
−
√
α[α(1+γ)2−4γ]

2

θ2 = α(1+γ)
2

+

√
α[α(1+γ)2−4γ]

2

(61)

There are two cases. The first one, in turn, has three sub-cases.

Case 1 The first the case is characterized by α > 0. There are three

sub-cases, depending on the sign of the discriminant of the characteristic

equation.
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Case 1.1 The discriminant is positive if

α > α2 :=
4γ

(1 + γ)2
(62)

where α2 < 1. In this case the characteristic equation has two distinct roots.

Standard algebra shows that (62) is also the condition for 0 < θ1 < 1. As to

θ2 it turns out that 0 < θ2 < 1 if α2 < α < 1

θ2 > 1 if α > 1
(63)

Therefore, if α2 < α < 1 both roots are positive and smaller than one and

the dynamics is monotonically converging to the steady state. If α > 1 one

root is higher than one and the other is lower than one. The steady state

therefore is a saddle point. Out of the steady state the dynamics is diverging.

Case 1.2 The discriminant is zero if α = α2, and the characteristic equation

has repeated (and identical) roots: θ1 = θ2 = α2(1+γ)
2

= 2γ
1+γ

< 1. The steady

state is stable and the dynamics is monotonically converging.

Case 1.3 The discriminant is negative if 0 < α < α2. In this case, the char-

acteristic equation has two complex roots. The dynamic path is oscillatory.

Oscillations are dampening over time because the growth factor r =
√
αγ is

smaller than one. In fact, in this subcase α < 1. The transitional dynamics

is characterized by oscillatory convergence to the steady state.

Case 2 The second case is characterized by α < 0. In this case, the

discriminant is positive. Hence there will be two distinct roots. The smaller

one, θ1, is negative. Simple algebra shows thatθ1 < −1 if α < −α1

−1 < θ1 < 0 if − α1 < α < 0
(64)
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where

α1 :=
1

1 + 2γ
(65)

The higher root, θ2, is positive and it is easy to ascertain that it is smaller

than one: 0 < θ2 < 1. If −α1 < α < 0 the roots have opposite sign and they

are both smaller than one (in absolute value): the dynamics is oscillatory and

converging to the steady state. If α < −α1 one root is higher than one (in

absolute value) and the other is lower than one. The steady state therefore

is unstable. Out of the steady state the dynamics is diverging. To study S ′2

it is sufficient to set γ = 1. In this case the cut off values are α1 = 1/3 and

α2 = 1. We summarize these conclusions in the following table, which proves

Proposition 2.

Table 2: Dynamic properties
System divergence oscillatory conv. monotonic conv. divergence

S2 α < −α1 −α1 < α2 α2 < α < 1 α > 1

S′2 α < −1
3 −1

3 < α < 1 α > 1

C System S3 with incomplete BC

Let’s consider system S3 (see (33)). We rewrite it here for the reader’s con-

venience: xt = at + αxet

xet = λxt−1 + (1− λ)xet−1 + γN−1
∑N

i=1 ∆xt−i

It may be written in matrix form as

[
1 −α
0 1

](
xt

xet

)
=

(
at

0

)
+

[
0 0

λ+ γ
N

1− λ

](
xt−1

xet−1

)
+

[
0 0

− γ
N

0

](
xt−N−1

xet−N−1

)
(66)
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and represented in companion form

Azt = c+Bzt−1

where the augmented vector zt is

zt =



xt

xet

x1t
...

xN,t


where, as usual, the auxiliary variables are equal to lagged values; i.e.,

xit = xt−i. The vector c = (at, 0N+1)
T .

Matrix A is

A =

[
A1

A2

]
(67)

with

A1 =
[
1 −α 0TN

]

A2 =
[
0N+1 IN+1

]
.

Matrix B can be decomposed in 4 blocks

B =


B1

B2

B3

B4

 (68)

where

B1 =
[
0N+2

]

B2 =
[
λ+ γ

N
, 1− λ, 0TN−1,−

γ
N

]
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B3 =
[
1 0TN+1

]

B4 =
[
0(N+2)×2, IN−1, 0N−1.

]
The invertibility of matrix A allows us to write the system in the form

zt = A−1c+ Czt−1

where matrix C is computed by pre-multiplying the inverse of matrix A

to matrix B, C = A−1B. In the case N = 4 the matrix is

C =



(α(γ + 4λ))/4 −α(λ− 1) 0 0 0 −(αγ)/4

γ/4 + λ 1− λ 0 0 0 −γ/4
1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


The grid search solves numerically the problem of the maximum eigen-

values, say θ(α, γ, λ) of the matrix C

max
α,γ,λ
|θ(α, γ, λ)|

The search step used for the 3 parameters is δ = 0.01; i.e., α ∈ (−1+δ, . . . , 1−
δ), λ ∈ (δ, 2δ, . . . , 1),γ ∈ (δ, 2δ, . . . , 1). This two millions iterations produced

mainly complex eigenvalues less then 1 in absolute value with maximum value

of 0.9999.

This numerical result shows that the system remains stable, and the dom-

inant complex eigenvalues imply an oscillatory convergence to the steady-

state.
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D Price adjustment and the unbiased solu-

tion(s)

Consider the representative agent case. The production function of the rep-

resentative firm is

Qt = AtN
1
δ
t (69)

The firm knows (at the beginning of t) the costs she must incur TCt = PtwtNt

but is uncertain on the sale price Ps,t which will be revealed only at the end of

the period. Therefore the firm has to form expectations on the sale price. We

will denote the rational expectation (based on the information set available

at the beginning of t) of the sale price with E(Ps,t). In this setting, the

firm chooses at the beginning of t the optimal quantity by maximizing the

expectation of profits to be realized at the end of the period:

E(Πt) = (1− τ)E(Ps,t)Qt − PtwtAt−δQδ
t

Dividing both sides by Pt we get:

E(Πt)

Pt
= (1− τ)E(xt)Qt − wtAt−δQδ

t

where the state variable xt := Ps,t
Pt

is the ratio of the end of period price to

the beginning of period price (i.e., the intra-period gross inflation rate). The

term E(xt) := E(Ps,t)

Pt
is the expected inflation rate based on the information

set available in t (which does not include xt). From the FOC we determine

optimal output:

Qt = ηζtE(xt)
1
δ−1 (70)

where

ζt := A
δ
δ−1

t w
− 1
δ−1

t

η :=

(
1− τ
δ

) 1
δ−1

While η is a given and constant parameter, the determinants of ζt – i.e., the

wage rate and TFP – are governed by stochastic processes spelled out in
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the text (see section 5). Both ζt and η are elements of the information set

available at the beginning of t.

Therefore optimal employment is

Nt =
1

wt
ηδζtE(xt)

δ
δ−1 (71)

When the market opens, for each firm actual sales (St) may be different

from output planned ad the beginning of period t and brought to the market

at the end of the period (Qt). The demand accruing to the firm, in fact, is

1/F of the aggregate wage bill wtFNt. Hence St = min(Qt, wtNt). Excess

demand will be EDt = F (wtNt − Qt). We assume that the market price

evolves according to the stochastic adjustment process (40) which we rewrite

here for the reader’s convenience:

xt = exp
(
γpEDt

)
exp(εP )

Using the equations for the optimal output and employment just derived,

we can rewrite excess demand as follows:

EDt = F

[
wt

(
Qt

At

)δ
−Qt

]
= ζtF

[
ηδE(xt)

δ
δ−1 − ηE(xt)

1
δ−1

]
(72)

Substituting (72) into (40) we obtain the ALM

xt = exp

{
γpζtF

[
ηδE(xt)

δ
δ−1 − ηE(xt)

1
δ−1

]}
exp(εP ) (73)

According to the deterministic skeleton of the ALM (i.e., the expression

in curly braces), xt is a non linear function of E(xt), for any given combina-

tion of At and wt. As already pointed out in the text, non linearity is due

exclusively to decreasing returns.

It is easy to see that market clearing occurs (and the price is stationary)

when the expression in brackets is zero, i.e., when output is QM
t = ζt (and

employment is NM
t = (ζt/At)

δ. This particular level of output is produced

when expected inflation is E(xt)
M = η1−δ.
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In this context, we can compute model-consistent (rational for short)

expectations. Expectations are model consistent if agents know the “true

model” (i.e., the ALM) of the economy. In order to determine model-

consistent expectations we must take the expected value of (73). We get:

E(xt) = exp

{
γpζtF

[
ηδE(xt)

δ
δ−1 − ηE(xt)

1
δ−1

]}
(74)

The rational expectation E(xt)
U is the solution for E(xt) of (74), i.e., the

fixed point of the map defined by the deterministic skeleton of the ALM.

When expectations are formed rationally, by construction the forecasting

error is εt = E(xt)[exp(εP ) − 1] so that E(εt) = 0. In words, rational ex-

pectations are unbiased, hence the superscript. Given the unbiased solution

E(xt)
U , it is immediate to compute output and employment, using (70) and

(71) respectively. Hence total output and employment in the unbiased solu-

tion are Y U
t = FQt = Fηζt(E(xt)

U)
1
δ−1 and LUt = FNt = F

wt
ηδζtE(xt)

δ
δ−1 .

Since the deterministic skeleton of the ALM is non linear, there could

be multiple fixed points for any combination of parameter values. In the

simulations (see table 1) we set δ = 3/2. To illustrate the determination of

rational solutions, let’s consider the baseline parametrization τ = 0 so that

A = 1. Let’s consider the long run value of the real wage w̄ = 1 so that we

can pin down the numerical value of ζt which turns out to be unity. In this

case η ≈ 0.44 and ηδ ≈ 0.3. Moreover γP = 0.001 and F = 200. Therefore

the ALM specializes to

xt = exp
{

0.2
[
0.3E(xt)

3 − 0.44E(xt)
2
]}

exp(εP ) (75)

Market clearing occurs (and the price is stationary) when QM
t = ζt = 1 (so

that NM
t = 1) and E(xt)

M = δ = 1.5, i.e., when agents expect the sale price

to be 50% greater than the initial price. With these expectations, however,

xt = 1, i.e., the end-of-period price is the same as the initial price.19 In

other words the market clearing solution is not the unbiased solution: if

19To be precise, the expression in brackets is zero also when E(xt) = 0, a root which we
discard for obvious reasons.
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expectations are such that market clearing occurs, then expectations are

incorrect.

In figure 7 we represent the ALM with the baseline parametrization. Point

M = (1.5, 1) is the market clearing solution. All the points of the ALM

between the intercept and M are characterized by E(xt) < 1.5 and excess

supply so that xt < 1. Of course the opposite occurs for points of the ALM

to the right of M. Point M does not lie on the 45 degree line, hence it is

not an unbiased solution. The unbiased solutions are the fixed points, one

of which characterized by excess supply and deflation (see point A) and the

other by excess demand and inflation (B). With the chosen parametrixation

the unbiased solutions are E(xt)
U
1 = 0.972 and E(xt)

U
2 = 3.3. Given the

initial conditions, in our simulation the unbiased solution is the smaller one,

which is less than but very close to 1. Given this unbiased solution, in

the baseline with model consistent expectations output and employment per

firm are QU
1 = 0.54 and NU

1 = 0.40 so that total GDP and employment are

Y U
1 = 108 and NU

1 = 80.
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Figure 7: Model consistent expectations and unbiased solutions
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