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Abstract 
Human antibiotic consumption is considered the main driver of antibiotic resistance. Reducing 
human antibiotic consumption without compromising health care quality poses one of the most 
important global health policy challenges. A crucial condition for designing effective policies is 
to identify who drives antibiotic treatment decisions, physicians or patient demand. We measure 
the causal effect of physician practice style on antibiotic intake and health outcomes exploiting 
variation in patient-physician relations due to physician exits in general practice in Denmark. We 
estimate that physician practice style accounts for 53 to 56 percent of between-clinic differences 
in all antibiotic consumption, and for 74 to 81 percent in the consumption of second-line antibiotic 
drugs. We find little evidence that low prescribing styles adversely affect health outcomes 
measured as preventable hospitalizations due to infections. Our findings suggest that policies to 
curb antibiotic resistance are most effective when aimed at improving physician decision-making, 
in particular when they target high prescribers. High prescribing practice styles are positively 
associated with physician age and negatively with staff size and the availability of diagnostic 
tools, suggesting that improvements in the quality of diagnostic information is an important path 
to improved decisions. 
JEL-Codes: I110, J440, I120. 
Keywords: antibiotic prescribing, practice styles, general practitioners. 
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1 Introduction

The continued rise of bacteria resistant to antibiotic treatment is among the most pressing public

health problems today. When bacteria are resistant against antibiotics, even common infections

become associated with high health risks. The United Nations describe antibiotic resistance as ”[...] a

global crisis that risks reversing a century of progress in health”, causing over 700,000 annual deaths

already (IACG 2019). One of the main drivers of antibiotic resistance is the intake of antibiotic drugs

in health care (e.g. Costelloe et al. 2010). Therefore, international organizations such as the World

Health Organization or the European Commission have repeatedly called for prudent use of antibiotics

in human medicine.1 Many of the implemented policies aim at reducing antibiotic consumption in

the patient population by targeting physicians and other health professionals.2 The effectiveness and

efficiency of such policies depend vitally on the extent to which the individual physician affects her

patients’ antibiotic intake as well as her quality of care in terms of infection-related health outcomes.

We measure the causal impact of physician practice style on antibiotic consumption and associated

health outcomes by exploiting variation in patient-physician assignments due to physician exits from

general practice clinics in Denmark.3 When individual physicians move or retire from their clinic or

when a clinic closes due to their exit, their patients must switch to a new physician and are exposed

to different practice styles. Our main identifying assumption requires that patients would be exposed

to the same practice style throughout all periods were it not for the physician exit. This parallel

trend assumption is backed up by our empirical setting as variation in the timing of physician exits

is plausibly exogenous to antibiotic prescribing practice style and patient assignment to general

practitioners is restrictive in Denmark. Moreover, we show that pre-trends are absent and provide

supporting evidence against selective assignment from patients to physicians after physician exits.

Denmark provides a close to ideal setting for studying the role of practice style variation. First,

Denmark’s universal healthcare system ensures equal access and is based on a gatekeeper system

where citizens access the primary healthcare system via assigned general practitioners. Moreover,

standards in medical education are high and homogeneous.4 Finally, Denmark is at the forefront

of antibiotic stewardship efforts and financial incentives to prescribe antibiotics are largely absent.

Hence, antibiotic prescribing is comparatively low in Denmark. We find that even in such a setting

antibiotic prescribing differs drastically across general practice clinics, with a mean of 0.71 (0.86)

1See European Centre for Disease Prevention and Control (https://ecdc.europa.eu/en/news-events/resistance-
last-line-antibiotics-increasingly-established-europe) and World Health Organization (https://www.who.int/en/news-
room/fact-sheets/detail/antibiotic-resistance) (both accessed on 30 May 2021).

2For example, the World Health Organization offers an online course on antibiotic stewardship for practicing
clinicians (https://openwho.org/courses/AMR-competency) (access: 13 June 2021). A number of randomized control
trials in the medical literature evaluate behavioral interventions to affect physician prescribing decisions. Prominent
examples include a large-scale letter-based peer comparison feedback intervention by Public Health England (Hallsworth
et al. 2016), setting up poster-sized commitment letters in general practice clinics (Meeker et al. 2014), or requiring
physician to enter justifications for their prescribing decisions in electronic records (Meeker et al. 2016).

3We refer to (general practice) clinics and practices interchangeably where unambiguous. We refer to prescribing
practice styles, practice styles, or prescribing styles as all behaviors affecting patients’ antibiotic treatment. These
include preferences and indirect factors, such as diagnostic skill, that affect all patients similarly.

4For example, physicians begin their careers as interns distributed across the country based on a lottery system.
Fadlon et al. (2020) find strong persistence in physician location based on a physician’s initial draw.

1

https://ecdc.europa.eu/en/news-events/resistance-last-line-antibiotics-increasingly-established-europe
https://ecdc.europa.eu/en/news-events/resistance-last-line-antibiotics-increasingly-established-europe
https://www.who.int/en/news-room/fact-sheets/detail/antibiotic-resistance
https://www.who.int/en/news-room/fact-sheets/detail/antibiotic-resistance
https://openwho.org/courses/AMR-competency
https://openwho.org/courses/AMR-competency


prescriptions per patient per year and a standard deviation of 1.44 (1.64) in 2005 (2012).

Based on our identification strategy exploiting patient reassignments due to physician exits, we

estimate the causal effect of practice style on prescribing using large-scale administrative data on

antibiotics dispensed at all Danish pharmacies between 2005 and 2012. We find that physicians’

practice styles determine 53 to 56 percent of the differences between clinics in terms of log antibiotic

prescriptions, implying that harmonization of practice styles would reduce differences in log antibiotic

consumption between general practice clinics in our sample by more than half. However, the effect

varies by antibiotic subcategory and is largest, 74 to 81 percent, when we restrict our analysis to

the second-line antibiotic classes macrolides, lincosamides and streptogramins, cephalosporins, and

quinolones. This result is robust to a number of relaxations of our econometric assumptions. We

also analyze which physician and clinic characteristics correlate with differences in prescribing styles.

We find that higher prescribing style intensities are associated with physicians’ age, staff size, and

diagnostic availability. These correlations are primarily driven by prescribing styles for second-line

antibiotics.

Finally, we study the effects of a change in antibiotic prescribing style on patient health by

investigating hospitalizations due to infection-related ambulatory care sensitive conditions. We find

that high prescribing practice styles do not result in lower hospitalization rates for patients. For

penicillin prescribing, our results even indicate that being exposed to a more intense prescribing

style increases a patient’s rate of avoidable infection-related hospitalizations. This effect is primarily

driven by an increase in hospitalizations for conditions commonly caused by viruses, specifically ear,

nose, and throat infections, and pneumonia.

These results are important for the design of health care policy measures to curb the rise of

antibiotic resistance. While the relationship between antibiotic prescribing and resistance is well

established, documented correlations provide limited policy implications. Specifically, it is difficult to

infer whether physicians prescribing with higher intensity unnecessarily amplify the issue of antibiotic

resistance. Antibiotic treatments have sizable benefits when pathogens causing an infection are

difficult to treat or when patients’ overall preferences and health conditions demand higher antibiotic

intake. In this case, a policy that incentivizes reductions in antibiotic prescribing could end up

harming high-risk patients who require more intensive treatment. To assess the potential efficiency

gains of antibiotic stewardship policies, it is necessary to determine to which degree physicians

contribute to their patients’ antibiotic consumption and their corresponding health outcomes. Our

results suggest that incentivizing physicians to reduce antibiotic prescribing can be effective without

leading to adverse health consequences for the patient population in general practice.

Our study expands on a growing literature attempting to measure the causes of the remarkable

observed variation in health care provision. One strand of this literature, initiated by Finkelstein et al.

(2016), uses moving patients to separate patient-driven from local factors of geographic variation in

health care utilization in the United States. Variation from patient migration has been exploited

to study geographic variation in exposure to prescription drugs in Denmark treating pain, anxiety,

and depression (Laird and Nielsen 2016), prescription opioid abuse in the United States (Finkelstein
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et al. 2018), health care utilization in the Netherlands (Moura et al. 2019), and ambulatory care in

Germany (Salm and Wübker 2020).

However, using variation driven by patient migration as an empirical strategy comes with two

important limitations. First, patient migration does not allow to identify physician effects because

the mover’s residence, hence their social, economic, and health environment, also changes. For

example, antibiotic prescriptions are often linked to community acquired infections, where some

transmittable infections might be more demanding than others. As our goal is to study the extent

of physician prescribing styles, we require a clean separation of physician effects from local factors.

Second, although general practitioners frequently prescribe antibiotics, many patients do not receive

an antibiotic prescription over long periods of time. The lack of observable variation in antibiotic

consumption by moving patients results in a lack of statistical power to study practice style variation.

For the above reasons, we use individual physician migration as our main source of quasi-exogenous

variation. Employing a similar design, Fadlon and Van Parys (2020) leverage exits of primary care

physicians from Medicare in the United States to identify the effect of switching to a physician

with high-utilization practice style on patients’ health care utilization. Using similar variation from

physician migration or exits, Molitor (2018) examines how cardiologists’ practice styles evolve along

the career path in heterogenous work environments in the United States. Simeonova et al. (2020)

study adherence to medical treatments across primary care clinics in Denmark. Kristiansen and

Sheng (2020) examine the health effects of physician-patient matching based on socioeconomic status.

Chan (2021) identifies the causal effect of trainees on physician team decisions using a similar design

based on frequent rotation of trainees across teams and random assignment of patients to physician

teams. We identify agency in antibiotic consumption using the physician migration framework to

provide evidence for the effective design of policies that can curb the growth of antibiotic resistance.

Our focus on physicians’ practice styles in antibiotic prescribing is related to Ribers and Ullrich

(2020), who study heterogeneity in physicians’ preferences and their abilities to correctly diagnose

bacterial infections as separate aspects of practice styles, using information from diagnostic tests for

urinary tract infections. In contrast, we examine physicians’ general antibiotic prescribing practice

in a broad context. Our analysis of physician practice styles contributes to a strand of health

economics literature that studies within and between-region variation in physician treatment styles

(e.g. Chandra and Staiger 2007; Epstein and Nicholson 2009; Currie et al. 2016). Cutler et al.

(2019) measure physician incentives and patient preferences using strategic survey data. Consistent

with our results, they find that patient preferences explain variation in Medicare expenditures to a

much lesser extent than supply-side factors. Finally, our study complements economic research on

antibiotic prescribing, a long-standing literature which has formed an important basis for public

health policy design. Yet, the role of the individual physician is still not well understood. The

problem of antibiotic prescribing under the threat of antibiotic resistance has been studied mostly

theoretically in the economic literature (e.g. Laxminarayan et al. 2001). Empirical economic work

on antibiotic prescribing has mainly focused on effects of the institutional environment or payment

system (Currie et al. 2014; Bennett et al. 2015; Elleg̊ard et al. 2018). Since the bulk of the policy
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interventions to curb the rise of antibiotic resistance targets the individual physician, quantifying

the physician’s role in antibiotic prescribing and mapping this role into health outcomes is crucial.

The remainder of the paper is organized as follows. Section 2 presents a model of prescribing

and practice style to conceptualize the causal mechanism we aim to measure. Section 3 describes

the institutional background and data and Section 4 provides descriptive evidence motivating the

main analysis. Section 5 describes identification and estimation of the causal treatment effect and

Section 6 presents estimation results. Section 7 provides further results on physician prescribing

styles, including correlates with physician characteristics as well as the effects on health outcomes.

Section 8 concludes.

2 Model of prescribing and practice style differences

Our main objective is to measure the importance of physician practice styles in determining antibiotic

prescribing to patients. We model antibiotic prescribing using a framework that includes practice

style as a time-invariant physician-specific component of prescription decisions. In this framework, we

measure physician effects, defined by the difference in physician practice styles, relative to observed

differences in antibiotic prescriptions. Some clinics are run by multiple general practitioners. For

these, we measure effects over sets of general practitioners at a clinic. We refer to such a set of

general practitioners as physicians where unambiguous.

We characterize antibiotic prescribing in a stylized model that follows Finkelstein et al. (2016).

Patients obtain expected utility u(y|αi, hit) = αiy − 1
2(y − hit)

2 from consuming y amounts of

antibiotic drugs, where αi denotes individual time-invariant factors and hit denotes patient health.5

Each patient i in each year t is matched to a set of physicians j. Physicians j make antibiotic

prescribing decisions y∗ijt = argmaxy ũj(y|αi, hit) such that their utility from treating patients is

maximized. Physicians’ utility is given by ũj(y|αi, hit) = u(y|αi, hit) + (δj − cjt)y, where δj denotes

j’s prescribing practice style and cjt denotes time-varying clinic characteristics. Physicians’ utility

thus captures differences between prescribing decisions that arise due to heterogeneity in the time-

invariant prescribing practice styles and time-varying clinic characteristics that affect the cost of

antibiotic prescribing.

Ensuing the maximization of physicians’ utility ũj(y|αi, hit) = αiy − 1
2(y − hit)2 + (δj − cjt)y,

observed antibiotic prescribing by physicians j to their assigned patient i in year t can be written as:

yijt = αi + δj(i,t) + xitβ + εit, (1)

where yijt denotes a measure of antibiotic prescribing, αi denotes all time-invariant individual factors

affecting patient i’s antibiotic prescriptions, δj(i,t) denotes the antibiotic prescribing practice style

of physicians j assigned to patient i in year t, and xit is a vector of time-varying characteristics

with β being the corresponding vector of coefficients, such that xitβ subsumes patient and clinic

5The patient factor αi absorbs patient-level drivers of antibiotic consumption that remain fixed over time including,
for example, preferences and location-specific effects.
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characteristics hit and cjt at the patient-year level. Finally, εit denotes an idiosyncratic error term.

Ignore for now the time-varying characteristics xit. Differences in antibiotic prescribing yijt and

ykj′t to two patients i and k assigned to two different sets of physicians j and j′ can be driven by two

mechanisms. Antibiotic prescribing either differs because of differences in patient factors αi 6= αk or

because patients are exposed to different practice styles δj 6= δj′ . To identify the degree to which

differences in practice styles contribute to observable differences in prescribing, we require exogenous

variation in patient-physician assignments. Our source of quasi-exogenous variation is based on

physician exits from a clinic. After a physician exit, a patient i is either assigned to a different clinic,

or she stays at the clinic but can no longer be treated by the exiting physician. In both cases, a

physician exit changes the set of physicians that can treat patient i from j to j′. The change in

physicians shifts the practice style patient i is exposed to from δj to δj′ .

Hence, patients exposed to a change in their assigned physicians from j to j′ due to physician

exits provide information about the difference in practice styles δj′ − δj . To operationalize a measure,

we define a treatment indicator that is one after a physician exit event has taken place and zero

otherwise, Dit = 1{j(i, s) = j, j(i, t) = j′, for some s < t}, and rewrite Equation (1):

yijt = αi + δj + (δj′ − δj)×Dit + xitβ + εit.

With exogenous treatment Dit, the average treatment effect on the treated corresponding to the

difference in practice styles δj′ − δj is identified. However, such treatment effects would not be

directly comparable across patients because identification is in differences δj′ − δj rather than in

levels δj′ and δj . For example, δj′ − δj could be zero if treated patients are equally likely to switch

to physicians with higher- and lower-prescribing practice styles than their pre-exit physicians.

To obtain a generalizable measure we scale the difference in practice styles between two sets of

physicians assigned to a treated patient by the difference in their mean prescribing over untreated

patients. The scaled difference in practice styles can be interpreted as the share of physician effects,

as opposed to patient factors, in determining differences in mean antibiotic prescribing between

physicians. We denote the scaled difference in practice styles between two sets of physicians j and j′

as
δj′−δj
yj′−yj

where yj = E[yijt|Dit = 0] denotes mean prescribing by physicians j to patients unexposed

to treatment.

For patients exposed to a physician exit, we denote the difference between physicians’ mean

prescribing as ∆i = yj′−yj . The measure ∆i captures all differences in antibiotic prescribing between

physicians j and j′, which may be due to different patient pools, physician effects, or time-varying

control variables. For never-treated patients, ∆i = 0. We can now rewrite Equation (1) such that:

yit = αi + δj0 + θ ×Dit ×∆i + xitβ + εit, (2)

where the coefficient θ measures the importance of physician practice styles. Specifically, this

coefficient captures the share of differences in mean prescribing that can be attributed to differences

in practice styles. The coefficient is zero if variation in antibiotic prescribing is determined exclusively
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by differences in physicians’ patient pools.

To conclude, the measure θ answers the question: By what share would the difference in antibiotic

consumption between patients assigned to treated clinics j and patients assigned to never-treated

destination clinics j′ be reduced if we could harmonize physicians’ prescribing practice styles? Thus,

the measure quantifies the extent of noise in antibiotic prescribing induced by heterogeneity in

physician prescribing styles. After presenting the main results, we will provide further causal evidence

that this noise does not reflect quality differences measured in patients’ health outcomes.

3 Institutional background and data

Denmark offers a close to ideal setting to quantify the role of practice style variation for antibiotic

prescribing, which is often confounded by institutional factors. Given notable homogeneity in

access to Danish health care, medical education, and centrally designed public health efforts, we

would expect few factors driving variation in health care provision. Our analysis is based on linked

population-level administrative data, which registers nation-wide claims filed in primary health

care, individual-level socio-economic information, and all purchases of prescribed antibiotic drugs in

Denmark. Information can be linked through patients’ social security security numbers and their

general practitioners’ clinic license numbers.

3.1 Institutional setting

We study antibiotic prescribing practice styles using administrative data covering the full population

of Denmark. Denmark has a tax-funded public health insurance system that fully covers all visits

and services in general practice. General practitioners act as gatekeepers; visits to most specialists

as well as scheduled hospital procedures require the referral of a general practitioner in order to be

covered by insurance. General practitioners are self-employed and work under nationally regulated

contracts for the public funder. In order to receive reimbursement claims, each clinic has to acquire

a unique license number (ydernummer). During our observation period of 2005-2012, a total of

approximately 3,280 general practice clinics file claims.

Patients are assigned to a fixed general practice clinic by a list system.6 Switching the general

practitioner is only possible if patients pay a small fee of 150 DKK (about 20 USD), and patients

have to choose a general practitioner located within 15 km of their residence. Clinics cannot turn

away patients selectively. However, they may close for the intake of new patients after reaching 1,600

listed patients per physician. Patients rarely switch away from their default general practitioners,

except when moving, also because capacity constrained clinics limit the actual choice set of clinics.7

Patients require a physician prescription before they are dispensed antibiotic drugs. Prescription

drugs are purchased in a pharmacy and typically associated with a small copayment. Importantly,

Danish physicians are not remunerated for prescriptions. The type and number of antibiotic

6This section closely follows the description of regulations in Danish general practice in Simonsen et al. (2019).
7Kristiansen and Sheng (2020) documents that the number of patients per physician in general practice was close

to or larger than the capacity limit of 1,600 patients in the majority of municipalities in 2010.
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prescriptions dispensed is therefore not driven by physicians’ financial incentives. In general,

Denmark is a country with low antibiotic prescribing rates and conservative prescribing practices

(Coenen et al. 2007).

A physician might leave a clinic over time, for example when she retires or relocates. If a physician

leaves a clinic, the clinic may close or it can continue operation if at least one other physician

continues to work at the clinic. When a clinic closes, all of its former patients are either assigned

to new physicians who acquire the patient list (and often the physical practice) or patients are

redistributed randomly to existing clinics nearby. If a clinic continues to exist after a physician leaves,

the remaining physicians can reduce the number of patients assigned to their clinic by first off-listing

all of their patients and, subsequently, requiring patients to re-apply for the clinic. Patients are then

re-assigned to the clinic on a first-come, first-served basis. The local government is responsible to

ensure access to at least two nearby clinics for all patients in a region.

3.2 Sample construction

For our main analysis, we construct a sample of patients matched to clinics for the years 2005 to

2012 in two steps. First, we identify general practice clinics and keep those in which physician exits

occurred. Second, we match patients to their main general practice clinic in order to obtain a yearly

panel of patient-level observations. For all patient-clinic matches, we identify patients exposed to

a physician exit. Finally, we construct our main explanatory variable, the difference in average

antibiotic prescribing induced by a physician exit.

In the first step, we consider all general practitioners in the Danish registry of clinics between

2005 and 2012. This registry links physicians’ social security number to their clinics’ license number

and registers the in- and outflow of physicians to clinics. For reasons of data minimization the

Danish Health Data Protection Authority provided only a non-selective portion of the license number

registry. Out of all 3,280 clinics who file claims, we consider the 1,605 clinics for which registry

records are complete. Next, we supplement information on the outflow of physicians by adding data

from the national death registry, the employment registries, and the health claims registries. We

assume a physician exited a clinic whenever we can link the personal identifier to death or retirement,

or when the physician joins a new clinic after she reported her position at the old clinic. We identify

clinic closures by the last year a clinic files claims. Whenever we find records of multiple exiting

events, such as deaths, retirements, or clinic closures, we only consider the event that occurs first.

We impose two sample restrictions to cleanly measure the econometric treatment. First, we drop

clinics if a physician exit occurs in the first year of our sample period, keeping 1,397 clinics, and

keep only clinics in our sample period, 2005 to 2012, leaving 1,196 clinics. Second, we only consider

long-term changes in composition or clinic closures, dropping clinics with multiple physician exits if

these changes occur in different years as well as clinics with physician entries if they do not coincide

with an exit. The resulting sample contains 980 clinics. We thus simplify the analysis because clinics

with multiple changes in composition do not have clearly defined pre- and post-change periods. We

refer to clinics exposed to physician exits in exactly one year as treated clinic and the physician exit
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as treatment. We refer to clinics never exposed to treatment as never-treated clinics. We refer to

never-treated clinics with patient intakes from treated clinics as destination clinics.

Next, we match patients to their general practice clinic. We use weekly claims data and find the

modal clinic for each patient in every year.8 We consider all patient-year observations assigned to

any of the 980 general practice clinics we keep for the analysis out of all 3,280 clinics, which amounts

to 25.33% of all patient-year observations. We include patients only when they switch their modal

clinic at most once, dropping 15.68% of patient-years, and obtain a panel of patients assigned to a

unique general practitioner in every year.

For patients who switch exactly once, we ensure that patients are exposed to at most two practice

styles, defined by the pre- and the post-exit period, as follows. We exclude all patients assigned to

more than one treated clinic, dropping 0.31% of observations. For patients who switch their general

practitioner without being exposed to treatment, we keep observations from their modal clinic. We

exclude patients for whom the mode cannot be recovered, dropping 1.64%. For patients exposed to

treatment and switching from a treated clinic, we keep all observations if the switch coincides with

treatment; otherwise, we keep only observations associated with the treated clinic, dropping 0.05%.

For patients exposed to treatment and switching to a treated clinic, we keep only observations at

the treated clinic, dropping 0.05%. We exclude a patient’s first observed year at a treated clinic if

that year is the treatment year, dropping 0.15%.

We refer to patients who are at any point in time exposed to a physician exit as treated patients

and the complementary set of patients as never-treated patients.9

Table 1: Numbers of observations

Clinics Patients assigned to clinicsa Observations

Never-treated 556 1,100,593 6,260,514
Treated 242 330,926 1,536,253
Clinic closure 211 222,517 892,677
No clinic closure 31 108,409 643,576

Total 798 1,373,109 7,796,767
a

Because patients exposed to physician exit can be observed at two clinics, the total number of
patients does not equal the sum of patients assigned to never-treated and treated clinics.

Our final sample excludes clinics with insufficient prescribing to patients unexposed to treatment

(fewer than 100 patient-year observations), dropping 17 clinics, and singleton observations, dropping

0.26% of the remaining patient-year observations. The final sample, described in Table 1, contains

7,796,767 patient-year observations matching 1,373,109 patients to 798 general practice clinics. Of

8We consider unique claim weeks by aggregating all claims filed during the same week by the same clinic. Among
patients with multiple modes, we assign a patient to the modal clinic that files the most antibiotic prescriptions or, in
case of a tie, the earliest claim in a given year for this patient. Some patients switch back and forth in their modal
clinic over the years. In these cases, we impute their matched clinic to be the same as the one they switched back and
forth (affects 1.25% of all patient-years).

9Never-treated patients can be assigned to a treated clinic, for example if they are assigned to that clinic strictly
after the physician exit has already occurred.
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these, 1,536,253 patient-year observations matched to 242 practices are exposed to physician exits.

The majority of these exits occur due to clinic closures. For a smaller number of clinics, a physician

exiting a clinic is replaced by a new physician.

3.3 Variable definitions

Outcomes. Our main outcome variable is the number of antibiotic prescriptions in general practice

dispensed to each patient per year at Danish pharmacies. We define an antibiotic prescription as

all packages dispensed on the same day to a given patient for drugs belonging to the same level

3 Anatomic Therapeutic Chemical (ATC) class in the therapeutic subgroup of antibacterials for

systemic use J01. As an alternative measure, we define the total Daily Defined Dose (DDD) over

antibiotic prescriptions from general practitioners for a patient within a year. A DDD expresses the

average dose per day for a drug used in adults under the drug’s main indication as defined by the

WHO (Coenen et al. 2007).10

We carry out our analyses for the sum over all systemic antibiotic prescriptions (ATC J01) and

separately for subcategories at the ATC level 3. These subcategories are penicillin prescriptions,

second-line antibiotic prescriptions, and prescriptions from other classes. Penicillins (J01 C) are the

most commonly prescribed class. We consider all macrolides, lincosamides, and streptogramins (J01

F), cephalosporins (J01 D), and quinolones (J01 M) as second-line antibiotic classes. Consumption

of these antibiotic classes is used as quality indicator by the European Surveillance of Antimicrobial

Consumption (ESAC) as their prescribing can suggest ‘poor practice’ when combined with other

evidence Coenen et al. (2007)11. We aggregate the remaining classes into one subcategory.

Table 2 shows descriptive statistics by antibiotic class defined by ATC level 3. Penicillins (J01

C) make up the largest share of prescribed antibiotic drugs, followed by macrolides, lincosamides

and streptogramins (J01 F), and sulfonamides and trimethoprim (J01 E). The average DDD per

prescription varies strongly between antibiotic classes. For some antibiotic classes, the share of total

DDD differs markedly from the share of total prescriptions. The small shares of non-zero observations

indicate that the distribution of antibiotic consumption is skewed. Because both measures are

non-negative and bunched at zero, we make a transformation by taking the natural logarithm of one

plus the relevant outcome.

Physician exits. We define a physician’s exit from a clinic as the treatment and the period

following the exiting event as post-treatment period. An exit may or may not lead to the clinic’s

closure. In any case, a physician’s exit affects the patient-physician relationship by changing the set

10Our main results are based on the number of prescriptions. We show results for DDD in the Appendix.
11The distinction between first- and second-line antibiotic treatments depends on the disease indication. We refer

to macrolides, lincosamides, streptogramins (J01 F), cephalosporins (J01 D), and quinolones (J01 M) collectively as
second-line drugs as they are labeled as such in the ESAC framework (Coenen et al. 2007). Macrolides, cephalosporins,
and quinolones are also often characterized as broad-spectrum antibiotic drugs, with the exception of erythromycin
(J01 FA01) (Shapiro et al. 2014; ECDC, EFSA Panel on Biological Hazards (BIOHAZ) and EMA Committee for
Medicinal Products for Veterinary Use (CVMP) 2017). Broad-spectrum antibiotic drugs are active against a broad
range of bacterial groups and, hence, more likely to cause multi-drug resistances. Physicians are in general advised to
avoid broad-spectrum antibiotics.
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Table 2: Descriptive statistics for prescriptions and Daily Defined Dose (DDD)

A: Prescription level counts by antibiotic class

Share of Share of Average Share of
total total DDD per non-zero

ATC 3 Pharmacological subgroup prescriptions DDD prescription observations

J01 C Beta-lactam antibacterials, penicillins 60.09% 56.06% 9.01 19.21%
J01 F Macrolides, lincosamides, streptogramins 18.27% 15.67% 8.28 6.53%
J01 E Sulfonamides and trimethoprim 9.97% 8.08% 7.83 2.92%
J01 A Tetracyclines 4.34% 7.48% 21.23 1.03%
J01 M Quinolone antibacterials 3.87% 2.90% 7.22 1.41%
J01 X Other antibacterials 3.40% 9.72% 21.66 0.87%
J01 D Other beta-lactam antibacterials 0.07% 0.09% 12.77 0.02%
All J01 Antibacterials for systemic use 100% 100% 9.66 26.52%

B: Patient-year level counts by outcome

Log prescriptions Log DDD

Mean St. dev. Mean St. dev.

J01 All All antibiotic prescriptions 0.29 (0.484) 0.77 (1.234)
J01 C Penicillins 0.20 (0.393) 0.57 (1.075)
J01 F, D, M Second-line 0.07 (0.24) 0.20 (0.659)
J01 Others Other antibiotics 0.05 (0.222) 0.12 (0.565)

Notes: Prescriptions of J01 G (Aminoglycoside antibacterials) are too few and omitted to ensure anonymity.

of physicians that can treat a patient. For clinics that do not close after an exit, we regard the pre-

and the post-treatment clinic as two separate sets of physicians.

Measuring differences in mean prescribing. To construct the measure of differences in

mean prescribing ∆i defined in equation (2), we estimate mean prescribing by the average amount

of antibiotic drugs that a given set of physicians prescribes to patients not or not yet exposed

to treatment. We only include patients who are never or not yet exposed to treatment for these

computations in order to keep the patient pools between pre- and post-treatment sets of physicians

separate.12 The difference in mean prescribing is nonzero for all patients who either switch to a

different clinic after a physician exits the original clinic, or who continue to be assigned to a clinic in

which the set of physicians changes.

This definition differs from Fadlon and Van Parys (2020) who use the difference in unconditional

mean prescribing as scaling factor. However, scaling by the difference in unconditional mean

prescribing implies that physician effects between physicians j′ and j depend on the share of treated

patients relative to the share of untreated patients. A larger share of treated patients relative to

untreated patients then results in a larger scale factor.13 The advantage of scaling in the differences

12For example, if a clinic is exposed to physician exit, we compute an estimate of its pre-exit mean prescribing using
all observations until the exiting event, and we compute an estimate of its post-exit mean prescribing based only on
observations from never-treated patients who join the clinic after the exit has occurred. To reduce noise in the average
prescribing estimates, we drop physicians with fewer than 100 observations from never- or not yet treated patients
as well as physicians with zero average prescribing. In the main analysis, we account for estimation error in average
prescribing by a parametric bootstrap procedure.

13To see this in a simplified setting, let all treated patients change from physicians j to j′. Denote average patient
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in mean prescribing conditional on no exposure to treatment is that scaling is not affected by overlaps

in patient pools assigned to physicians j and j′. As a result, θ does not depend on the proportions

of patients exposed to treatment.

4 Descriptive evidence

We first present descriptive evidence on the considerable variation in antibiotic prescribing across

general practice clinics in Denmark. To support that our sample is not systematically selected in

terms of treatment, we show there are no observable differences in the summary statistics between

patients assigned to general practice clinics with a physician exit and patients not assigned to such

clinics. We document and discuss some observable differences between treated and never-treated

clinics. Descriptive evidence shows that patient-physician reassignments due to physician exits cause

a visible shift in treated patients’ antibiotic prescriptions, motivating the ensuing causal analysis.

4.1 Variation in antibiotic prescribing

Figure 1 shows the distribution of clinic-level average number of antibiotic prescriptions per patient

and year in 2005 and 2012, documenting persistent variation in antibiotic prescribing across general

practice clinics in Denmark. The means of these two distributions are 0.71 and 0.86 with standard

deviations of 1.44 and 1.64, reflecting considerable variation even for a low-prescribing country such

as Denmark (Coenen et al. 2007).14

4.2 Sample summary statistics

Table 3 shows descriptive statistics for treated and never-treated patients. Panel A shows averages

for the main outcome variable, antibiotic prescribing. Panel B shows averages in basic demographics

and health characteristics, and Panel C shows averages in family and education characteristics. Panel

D shows average rates of hospitalizations for infection-related ambulatory-care sensitive conditions.

Treated patients are on average older than patients never exposed to physician exit. They are also

effects in the patient pool assigned to physician j prior to treatment exposure by αj = E[αi|j(i) = j,Dit = 0]. For
simplicity, ignore time-varying patient characteristics xit such that E[yijt] = αj + δj . Assume that the patient pools

treated by j and j′ prior to the physician exit differ arbitrarily, αj 6= αj′ . Unconditional mean prescribing can be written
as a weighted sum of mean prescribing to patients unexposed to physician exit (Dit = 0) and mean prescribing to
patients already exposed to physician exit (Dit = 1). By construction, patients assigned to j have not yet been exposed
to treatment. The difference in unconditional mean prescribing is ∆̃i = wDE[yij′t|Dit = 1] + (1− wD)(E[yij′t|Dit =
0]− E[yijt|Dit = 0]), where wD ∈ [0, 1] denotes the proportion of patients of j′ who changed from j to j′.

Because patient effects are fixed over time, only physician fixed effects change once patients are exposed to physician
exit. Mean prescribing to the pool of treated patients is E[yijt|Dit = 0] = αj + δj prior to the exiting event, and it
is E[yij′t|Dit = 1] = αj + δj′ after the exiting event has taken place. Mean prescribing to the never-treated patient
pool is E[yij′t|Dit = 0] = αj + δj′ . The difference in unconditional mean prescribing can now be written as follows:

∆̃i = (δj′ − δj) + (1−wD)(αj′ −αj). Scaling physician effects δj′ − δj by ∆̃i implies that physician effects are weighted

more the larger the proportion of treated patients wD for a given difference in patient pools αj′ − αj .
14Figure 7(a) in Appendix A.1 shows the distribution of antibiotic prescribing over clinics for all years in the sample.

Figure 7(b) in Appendix A.1 shows the same patterns when prescribing is measured in DDD.
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Figure 1: Distribution of the average level number of antibiotic prescriptions (ATC J01) per patient
over general practice clinics
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Mean: 0.71, Std. dev.: 1.44 (2005)
Mean: 0.86, Std. dev.: 1.64 (2012)

Notes: Average antibiotic prescribing per patient and year at the clinic-level. Bunched in groups of five clinics to
ensure the required data anonymization. The upper five percentiles are omitted.

less likely to contact an emergency department or doctor. Other characteristics are largely similar

between both groups.

Table 4 shows descriptive statistics for clinics with and without physician exits. Panel A shows

averages in antibiotic prescribing per patient. Panel B shows averages in observable physician

characteristics, and Panel C shows averages for clinic-level characteristics. Treated clinics are older

on average, have a smaller share of female physicians, and a smaller average household size than

never-treated clinics.15 They are also smaller in terms of the number of interns and the number of

patients per physicians. Notably, differences in antibiotic prescribing between treated and untreated

clinics and patients are small.16

15One concern could be that we simply observe patient reassignments from old to young physicians. Although Figure
8 in Appendix A.2 shows the mean age difference between pre- and post-exit physicians is slightly below zero, we
observe much variation around this mean. We do not assert that antibiotic prescribing practice styles are independent
of physician age or, possibly, other physician characteristics. Instead, we view practice styles as subsuming age effects
and inspect the role of physician age among other physician characteristics in our analysis of practice style correlates.

16Table 7 in Appendix A.3 shows summary statistics at the patient-year level for the sample matched to clinics
excluded from our analysis. Antibiotic prescribing does not differ substantially between out-of-sample and in-sample
clinics. Table 8 in Appendix A.3 shows average characteristics for out-of-sample clinics. Given that we exclude clinics
with multiple long-term staff changes, out-of-sample clinics have more physicians and interns than in-sample clinics.
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Table 3: Averages for treatment and comparison group patients

Never-exposed to Exposed to
physician exit physician exit

A: Antibiotic prescribinga

Total J01 (all antibiotics) 0.29 0.28
J01 C (penicillins) 0.20 0.20
J01 F, D or M (second-line) 0.07 0.07
Other J01 (other antibiotics) 0.05 0.05
B: Basic demographics and health

Age 42.89 44.45
Female 0.54 0.55
Pregnant 0.02 0.02
Household size 2.61 2.58
Any visit to an emergency department 0.15 0.15
Any call to an emergency doctor 0.19 0.17
C: Family background and education

Married couple 0.56 0.56
Cohabiting couple with children 0.07 0.06
Cohabiting couple without children 0.07 0.06
Single 0.32 0.31
First generation migrant (nordic) 0.01 0.01
First generation migrant (other country) 0.07 0.07
Second generation migrant 0.03 0.03
Missing education 0.21 0.18
School grade 7 to 10 0.26 0.28
High school or vocational training 0.32 0.33
Short higher education 0.03 0.03
Medium higher education 0.12 0.12
Long higher education 0.05 0.05
Phd education 0.003 0.003
No education 0.001 0.001
D: Any hospitalizationb

All infection-related conditions 0.006 0.005
Cellulitis 0.001 0.001
Ear, nose and throat infections 0.001 0.001
Perforated or bleeding ulcer 0.001 0.001
Urinary tract infection 0.002 0.001
Pneumonia 0.001 0.001

Total observations (patient-years) 6,225,636 1,572,131

a Measured by log(1 + number of antibiotic prescriptions).
b Hospitalizations for acute ambulatory care-sensitive conditions (ACSC) commonly caused by bacterial

and non-bacterial infections (see Appendix D for a complete list of ICD-10 codes). Referrals from
general practitioners and delayed internal hospital referrals are excluded.
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Table 4: Averages for treatment and comparison group clinics

Without With
physician exit physician exit

A: Average antibiotic prescribing per patienta

Total J01 (all antibiotics) 0.29 0.28
J01 C (penicillins) 0.20 0.19
J01 F, D or M (second-line) 0.07 0.07
Other J01 (other antibiotics) 0.05 0.05
B: Average physician characteristics

Age 55.41 59.28
Household size 2.63 2.21
Female 0.35 0.28
Single 0.17 0.17
First generation migrant (nordic) 0.00 0.01
First generation migrant (other country) 0.03 0.03
Second generation migrant 0.01 0.01
Phd education 0.01 0.01
C: Size and equipment

Number of physicians 1.42 1.49
Number of interns 0.23 0.15
Number of patients per physician 1987.81 1748.62
Diagnostic culture available 1.00 0.99
Diagnostic microscopy available 0.76 0.74

Total observations (clinic-years) 4,023 1,254

a Measured by log(1 + number of antibiotic prescriptions).

4.3 Shifts in prescribing

Figure 2 depicts average per-patient antibiotic prescribing to treated patients over years relative

to treatment, the physician exit. Figure 2a shows how antibiotic prescribing evolves for treated

patients who were assigned, pre-treatment, to clinics with average prescribing in the lower quartile.

Patients who were assigned, pre-treatment, to relatively low prescribing clinics tend to consume

more antibiotics post-treatment. Conversely, Figure 2b shows that antibiotic prescribing to treated

patients assigned, pre-treatment, to high prescribing clinics, with average prescribing in the upper

quartile, tend to consume fewer antibiotics post-treatment. In our identification strategy, changes in

average prescribing at treatment onset will be attributed to changes in practice styles. The figures

show a reversal to the mean in almost all prescribing outcomes. This is a first indication that

antibiotic prescribing to individual patients is, to a certain degree, driven by practice styles.
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Figure 2: Average antibiotic prescribing per patient assigned to treated clinic

(a) Clinics in the lower quartile of pre-exit antibiotic prescribing
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(b) Clinics in the upper quartile of pre-exit antibiotic prescribing
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Notes: These figures show average antibiotic prescribing by years relative to the physician exit. Relative year -1 is the
last pre-exit period, relative year 0 is a transitional period, and relative year 1 is the first post-exit period. Antibiotic
prescribing is measured by log(1 + number of prescriptions).
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5 Empirical Strategy

To measure the causal treatment effect defined in the model introduced in Section 2, we first lay

out the assumptions required for identification. We then show how we estimate the parameters of

interest.

5.1 Identification

We discuss the identification of physician effects in our model of prescribing in a potential outcomes

framework. Let yit(1) denote potential antibiotic prescribing to patient i in year t when an exiting

event has occurred. Let yit(0) denote potential prescribing when an exiting event has not occurred.

Potential outcomes are determined in our model of prescribing as follows:

yit(1) = αi + δj′ + xitβ + εit

yit(0) = αi + δj + xitβ + εit.

Observed prescribing can be written in terms of potential outcomes:

yit = yit(0) + [yit(1)− yit(0)]×Dit,

where Dit is an indicator that is one if patient i in year t has been exposed to physician exit.

The difference in potential outcomes, yit(1)− yit(0), equals the difference in physician practice

styles δj′ − δj . We scale δj′ − δj using the difference in physicians’ mean prescribing ∆i = yj′ − yj in

order to obtain θ, the standardized measure of physician effects. Hence, θ defines an average scaled

treatment effect on the treated:

θ = E
[
yit(1)− yit(0)

∆i
| Dit = 1

]
(3)

Identification of θ is based on a staggered difference-in-differences design, where treatment onset

- the year of a physician exit - can vary between treated patients. We discuss identification in such a

design as laid out in Sun and Abraham (2020). We refer to all patients with treatment onset in

the same calendar year as a cohort, and denote by variable Ei the cohort that patient i is part of,

with realizations e ∈ {2006, ..., 2012,∞}. The never-treated group of patients forms its own cohort

characterized by e =∞. To give θ a causal interpretation based on our design, the following set of

assumptions is required.

Assumption 1: The potential outcome of no exposure to exit follows parallel trends for all cohorts

and time periods, E[yit′(0) − yit(0) | Ei = e] = E[yit′(0) − yit(0)] ∀ t, t′. This assumption requires

that, were it not for the physician exit, antibiotic prescribing to treated patients would have followed

the same trend as prescribing to untreated patients. The parallel trends assumption implies that any

change in prescribing to a treated patient i after treatment onset can be attributed to the physician
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exit, rather than to underlying differences in trends between cohorts, including the never-treated

group. As the timing of physician exits is arguably exogenous to underlying patient trends, we believe

this assumption to be plausible. In a sensitivity analysis, we relax the parallel trends assumption to

hold conditional on time-varying patient characteristics.

Assumption 2: No cohort engages in anticipatory behavior prior to the exiting event, E[yit(1)−
yit(0) | Ei = e] = 0 ∀ t < e. This assumption requires that treated patients do not adjust their

antibiotic consumption prior to being exposed to the physician exit. If this assumption holds for

all pre-treatment periods, treated patients do not exhibit pre-trends in antibiotic consumption. In

an event study specification, we allow for pre-trends that differ between treated and never-treated

patients. Differential pre-trends can indicate a violation of the no anticipatory behavior assumption.

Assumption 3: The average treatment effect on the treated over cohorts is homogenous for all

time periods and cohorts, E
[
yit(1)−yit(0)

∆i
| Ei = e,∆i

]
= E

[
yit(1)−yit(0)

∆i
| Dit = 1,∆i

]
= θ ∀ t, e. In

an event study specification, we allow treatment effects to differ by time relative to the physician

exit. However, even in the event study specification, we require that treatment effects do not differ

by cohort. The homogeneity assumption is violated if treatment effects differ between early-treated

patients and later-treated patients. To allow for cohort heterogeneity in treatment effects, we

estimate cohort-specific treatment effects. In order to obtain the average treatment effects, we

aggregate the cohort-specific treatment effects with weights depending on cohort size as proposed by

Sun and Abraham (2020).

Assumption 4: Attrition of patients from our panel of patient-calendar year observations is

independent of potential outcomes. Our panel is unbalanced as some patients are unobserved in

the beginning or the end of the sample period, their assigned general practice clinic is not matched

to our sample of clinics, or they change their clinic without being exposed to physician exit. The

absence of selective attrition implies that treatment effects for patients who left the panel are not

systematically different from treatment effects for patients who stay in the panel.17

Assumption 5: Patients do not sort selectively to physicians based on their potential outcomes in

antibiotic prescribing, E
[
yit(1)−yit(0)

∆i
| Dit = 1,∆i

]
= E

[
yit(1)−yit(0)

∆i
| Dit = 1

]
= θ. If for example

patients with relatively high antibiotic consumption at low-prescribing pre-exit physicians systemati-

cally sort into high-prescribing post-exit physicians, we would underestimate the share of physician

effects θ. We formally test for selective sorting based on observable predictors of patients’ antibiotic

consumption using an approach proposed by Fadlon and Van Parys (2020). This assumption is

required because we scale physician effects by ∆i in Equation (3) to measure the share of prescribing

differences determined by differences in physician practice styles.

17In Table 9 of Appendix A.4 we show that there are no substantial differences in average antibiotic prescribing
between our main sample and excluded observations from a subset of patients with incomplete spells. We show average
descriptive statistics for excluded observations of patients for whom a clinic change does not correspond to a physician
exit or the assignment pre- or post-treatment is to an out-of-sample clinic.
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5.2 Estimation

Based on our identification strategy, we estimate the causal treatment effect using two-way patient

and year fixed effects in a static and in an event study setup. We estimate the following static

specification:

yit = α̃i + θ ×Dit × ∆̂i + xitβ + εit, (4)

where we measure antibiotic prescribing yit in logs and assume log prescribing to be linear and

additively separable in patient and physician effects, such that patient and physician effects affect

level prescriptions multiplicatively.18 α̃i = αi + δj corresponds to patient fixed effects subsuming

the initial physicians’ fixed effect. We cannot identify patient fixed effects αi separately from

the initial physicians’ fixed effect δj as our empirical strategy only identifies the difference in

physician fixed effects δj′ − δj . ∆̂i is the empirical estimate of the difference in mean prescribing

between j and j′ conditional on no treatment exposure. In our baseline specification xit includes

calendar-time fixed effects xt, the indicator Dit for the post-exit period, and an indicator for the

transitional year of the exit. In sensitivity analysis, we include time-varying patient and clinic

characteristics in xit. Our main coefficient of interest is θ, which captures the share of physician

effects in determining antibiotic prescribing differences. We can interpret estimates of θ as causal

effects unless the identifying assumptions stated above are violated. The identifying assumptions

imply that exogeneity E[εit|α̃i, Dit × ∆̂i, xit] = 0 holds.

Our second specification is a two-way fixed effects event study specification:

yit = α̃i +
r=5∑
r=−5,
r 6=−1

θr × Ir × ∆̂i + xitβ + εit, (5)

where r(i, t) defines the year relative to the exiting event, and Ir = 1{r(i, t) = r} is an indicator

that is one during relative year r. The omitted category is r = −1, the year before the exiting

event.In our baseline specification xit includes as control variables calendar year fixed effects xt, the

indicator Dit for the post-exit period, and relative year interactions outside of our effect window

Ir × ∆̂i with r < −5, r > 5. Under the identifying assumptions, the event study specification allows

to test whether there are differential trends between the pre-exit antibiotic consumption of treated

patients and the antibiotic consumption of never-treated patients, and it allows to detect dynamic

treatment effects.

For inference, we use a parametric bootstrap procedure following Finkelstein et al. (2016). In

a first step, we estimate for each set of physicians j average prescribing ŷj and its standard error

se(ŷj). We construct the asymptotic distribution of mean prescribing yj as a normal distribution

with mean ŷj and standard deviation se(ŷj). In the second step, we bootstrap Equation (4) with 50

18The log specification implies that a change in physician practice style leads to larger changes in prescribing levels
for patients with higher antibiotic consumption than for patients with lower antibiotic consumption (Finkelstein et al.
2016).
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repetitions drawn at the patient level. Within each bootstrap repetition, we draw a realization of

mean prescribing yj for each set of physician j from its asymptotic distribution and construct the

corresponding difference in mean prescribing for patients exposed to treatment, ∆i, accordingly. The

bootstrapped standard errors account for estimation error in mean prescribing yj and therefore ∆i.

6 Results

6.1 Physician effects in antibiotic prescribing

We estimate physician effects in antibiotic prescribing measured by the natural logarithm of 1 plus

the number of antibiotic prescriptions purchased by a patient in a given year.

Panel A in Table 5 shows estimation results for Equation (4) using the log number of all antibiotic

prescriptions and separated by subcategories. Our main parameter of interest is θ, the share of

physician effects in determining differences in antibiotic prescribing, associated with ∆̂i × Dit.
19

The estimation results indicate that physician effects make up an important share of the observed

differences in antibiotic prescribing between clinics.20 The point estimates indicate that physician

effects determine about 53.8 percent of the differences in the log number of antibiotic prescriptions

between clinics in our baseline specification. Physician shares in antibiotic prescribing differences

are smaller, with about 46.8 percent, when only penicillins (J01 C) are considered. They are largest,

with about 79.9 percent, in the case of second-line antibiotic prescriptions (J01 F, D, M).21

19Figure 9 in Appendix B.1 shows the distribution of estimated mean differences in antibiotic prescribing ∆̂i.
20Results are similar when measuring antibiotic prescribing by the natural logarithm of 1 plus Daily Defined Dose

prescribed and are shown in Appendix B.2.
21In Appendix B.3, we estimate physician shares separately for macrolides, lincosamides, and streptogramins (J01

F), cephalosporins (J01 D), and quinolones (J01 M) and find that they are largest for macrolides, lincosamides, and
streptogramins, and quinolones. We also estimate physician shares for the group of second-line prescriptions once
erythromycin (J01 FA01) is excluded and find similar effect sizes as in the main analysis.
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Table 5: Estimation results for the share of physician effects in antibiotic prescribing

Panel A Number of prescriptions
Two-way fixed effects estimationa

J01 J01 C J01 F, D, M Other J01

∆̂i ×Dit 0.538∗∗∗ 0.468∗∗∗ 0.799∗∗∗ 0.521∗∗∗

(0.027) (0.03) (0.031) (0.055)
Event dummiesc yes yes yes yes
Time-varying controlsd no no no no

Observations 7,796,767 7,796,767 7,796,767 7,796,767
Groups (patients) 1,373,109 1,373,109 1,373,109 1,373,109

Panel B Number of prescriptions
Two-way fixed effects estimationa

J01 J01 C J01 F, D, M Other J01

∆̂i ×Dit 0.564∗∗∗ 0.48∗∗∗ 0.809∗∗∗ 0.548∗∗∗

(0.028) (0.03) (0.031) (0.062)
Event dummiesc yes yes yes yes
Time-varying controlsd yes yes yes yes

Observations 7,653,853 7,653,853 7,653,853 7,653,853
Groups (patients) 1,346,414 1,346,414 1,346,414 1,346,414

Panel C Number of prescriptions
Sun-Abraham interaction-weighted estimationb

J01 J01 C J01 F, D, M Other J01

∆̂i ×Dit 0.526∗∗∗ 0.544∗∗∗ 0.741∗∗∗ 0.19∗∗∗

(0.035) (0.041) (0.039) (0.039)
Event dummiesc yes yes yes yes
Time-varying controlsd no no no no

Observations 7,796,767 7,796,767 7,796,767 7,796,767
Groups (patients) 1,373,109 1,373,109 1,373,109 1,373,109

Notes: This table reports the average share of between-clinics difference in antibiotic prescribing attributable
to physician effects, the coefficient of ∆i×Dit. ∆i denotes the difference in mean prescribing between patient
i’s assigned sets of physicians and is estimated by ∆̂i, the average prescribing to untreated patients. Dit

denotes a post-treatment indicator. Antibiotic prescribing is measured by log(1 + number of prescriptions).
Standard errors are calculated using a parametric bootstrap to draw clinic-level mean prescribing, with 50
repetitions at the patient level. ∗∗∗ p < 0.01.

a Two-way fixed effects estimation with calendar year fixed effects and patient fixed effects.
b Interaction-weighted two-way fixed effects estimation includes calendar year and patient fixed effects, and

interactions between relative year and cohort indicators. Averages of the relative-year specific treatment
effects are formed to obtain the aggregate treatment effect (Sun and Abraham 2020).

c Event dummies include an indicator for treatment onset (relative year r = 0) and post-treatment.
d Control variables include Number of interns at the clinic, Age squared, Household size, Pregnant, Any visit

to emergency department, and Any call to an emergency doctor.
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Next, we estimate treatment effects separately for each year prior or after the physician exit

using the event study specification of Equation (5). This allows treatment effects to flexibly vary

across time relative to treatment. Results are depicted in Figure 3. In general, we observe an

absence of systematic pre-trends, estimated with narrow confidence intervals. Where pre-trends

differ statistically significantly from zero, they are economically negligible. The absence of pre-trends

supports our identifying assumption that there is no anticipatory behavior prior to treatment onset.

The event study figures also indicate that the causal effects we find from changes in a clinic’s

physician composition are persistent in the years following the changes.

Figure 3: Event study estimates of the share of physician effects
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Notes: The figures display event study estimates for the share of differences in antibiotic consumption that is driven
by differences in physician fixed effects. Estimations include patient fixed effects, calendar year fixed effects, and
indicators for treatment onset and post-exit. Relative year -1 is the last pre-exit period, relative year 0 is a transitional
period, and relative year 1 is the first post-exit period. Antibiotic prescribing is measured by log(1 + number of
prescriptions).

The size of physician effects varies by subcategory of antibiotic drugs. We find the largest

effects for prescriptions of second-line antibiotic drugs, whereas physicians may have less leverage

in prescribing penicillins. This indicates that physician practice styles matter in particular for the

composition of antibiotics prescribed. This result has important implications because the effects of

antibiotic intake on antibiotic resistance also differ across classes of antibiotics, among which the

largest effects are caused by broad-spectrum antibiotics.

21



6.2 Sensitivity analyses

To investigate the robustness of our main results, we estimate a number of alternative specifications.

First, to relax the parallel trends assumption to hold conditional on patient observable character-

istics, we re-estimate Equations (4) and (5) to include time-varying observable patient characteristics.

Specifically, we include control variables to account for changes in a patient’s underlying health

conditions that might induce changes in the amount of antibiotic consumption this patient needs.

We do not include time-varying patient characteristics which are likely affected by the physician exit

treatment and practice styles. For example, a patient’s diagnosed medical conditions may affect their

antibiotic consumption but also depend directly on the physician’s practice style. Such mediator

variables would jeopardize identification of the treatment effect. As controls for health, we include a

quadratic function of age, pregnancy status, and emergency service utilization measured by any visit

to the emergency department of a hospital and any claim at an on-call doctor.22 Furthermore, we

include the number of interns available for less than a year at a clinic as control variable in order

to account for short-term differences in the perceived cost of antibiotic prescribing that are not

reflected in general prescribing practice styles. The results remain similar and are shown in Panel B

of Table 5 for the static specification and in Figure 4 for the event study specification.

Second, we allow for treatment heterogeneity by year of physician exit. The specifications in

Equations 4 and 5 yield unbiased estimates of θ under the assumption that the average share of

physician effects θ is homogeneous over cohorts defined by the year of treatment onset. If treatment

homogeneity does not hold, the two-way fixed effects estimator for θ is a weighted average of

relative time specific physician effects, where weights might be negative (Goodman-Bacon 2021). We

relax the treatment homogeneity assumption by estimating a cohort-saturated two-way fixed effects

specification that allows for cohort-relative time specific treatment effects. To obtain estimates for the

average treatment effect on the treated, we aggregate cohort-relative time specific treatment effects as

proposed by Sun and Abraham (2020).23 The results from the interaction-weighted treatment effects

estimation in Panel C of Table 5 and Figure 4 are similar to our main results. The only exception

is antibiotic prescribing not including macrolides, lincosamides, streptogramins, cephalosporins, or

quinolones (Other J01), for which the estimated share of physician effects is lower when allowing for

cohort heterogeneity.

22We code pregnancy status as a dummy variable using information from physician visit claim codes. In general,
four exams with unique claim codes are performed during a pregnancy. We assume a patient is pregnant during a
given year if she had at least one pregnancy exam performed during that year or if the second pregnancy exam was
performed 17 weeks or less prior to the beginning of the year. The second pregnancy exam is mandatory but can be
performed at any point between weeks 25 and 42.

23In particular, we estimate the following specification:

yit = α̃i + xt +
∑
e

∑
r

θe,r × Ie × Ir × ∆̂i + εit,

where xt denote the time fixed effects, cohort e ∈ {2006, ..., 2012,∞} defines the year in which a patient is exposed to
physician exit, and the remainder follows previous notation. e =∞ characterizes the never-treated group, which is
the omitted category. θe,r denotes cohort e-relative time r specific treatment effects. We obtain relative time specific
treatment effects θ̂r by aggregating cohort-relative time specific treatment effect estimates weighting them by relative
cohort size. We compute the static treatment effect estimate θ̂ by the average over post-treatment effects (θ̂r for r < 0).
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Figure 4: Event study estimates of the share of physician effects, alternative specifications

(a) Time-varying controls
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(b) Sun-Abraham interaction-weighted estimation
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Notes: Lines represent the 95% confidence intervals. Standard errors are calculated using a parametric bootstrap to
draw clinic-level mean prescribing, with 50 repetitions at the patient level. Antibiotic prescribing is measured by log(1
+ number of prescriptions). Figure 4a displays event study estimates from estimations that include patient fixed
effects, calendar year fixed effects, and indicators for treatment onset, post-exit, pregnancy, any visit to an emergency
department, any call to an emergency department, any call to an emergency doctor, and as continuous variables age
squared and household size. Figure 4b displays Sun-Abraham style interaction weighted estimates from fully saturated
fixed effects specifications that include patient and calendar year fixed effects as well as interactions between relative
period indicators and cohort indicators, where cohorts are defined by the calendar year of treatment onset. In a first
step, cohort-relative year specific treatment effects are estimated. In the second step, relative year specific treatment
effects are calculated as relative cohort size weighted averages by relative year.
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6.3 Selective sorting in patient-physician reassignments

Selective sorting in reassignments of treated patients to physicians after physician exits can threaten

our identification strategy. We investigate the presence of such sorting based on observable charac-

teristics using a two-step procedure following the strategy in Fadlon and Van Parys (2020).

In the first step, we estimate a prediction function of the log number of antibiotic prescriptions

using basic demographics and health variables (Panel B of Table 3, supplemented by squared age),

as well as family background and education (Panel C of Table 3). We use all observations from

never-treated patients as well as treated patients prior to when they are exposed to physician

exit. In the second step, we predict post-treatment log prescriptions to treated patients after they

are exposed to treatment. We regress predicted log prescriptions on the difference in average log

prescriptions between post- and pre-exit physicians that treated patients are assigned to. These

second step regressions include fixed effects for the pre-exit set of physicians of treated patients,

as well as calendar years. We use the same parametric bootstrap procedure as above to compute

standard errors. If patients sort to post-exit physicians based on their observable characteristics, and

this sorting is systematic with regards to antibiotic prescribing, we expect that prescribing predicted

from observable characteristics is correlated with differences in average prescribing between those

physicians treated patients are assigned to.

Table 6 shows that the estimated relationship between predicted prescribing and the difference

in average prescribing is small in magnitude or not statistically significant. For example, among

patients with the same pre-exit physicians, if the post-exit log number of antibiotic prescriptions is

predicted higher by one unit based on observable patient characteristics, this is associated with the

post-exit physicians’ average log prescriptions systematically higher by 0.001 units. While we cannot

exclude selective sorting on unobservable characteristics such as preferences, we believe that it is

unlikely for patients to choose their general practitioners primarily based on antibiotic prescribing

behavior. This presumption is supported by the Danish institutional setting, where patients’ choice

of general practitioner is limited and, for example, ‘shopping’ for high prescribers of antibiotics is

difficult.
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Table 6: Patient-physicians selection on observable characteristics

Difference in average prescribing (∆̂i)
a

All J01 J01 C J01 F, D, M Other J01
(1) (2) (3) (4)

Predicted prescribingb 0.0010∗∗ 0.0016∗∗∗ -0.0002 -0.0005∗

(0.0005) (0.0004) (0.0009) (0.0003)

Observations 431,989 431,989 431,989 431,989

Notes: This table reports the estimated relationship between antibiotic prescribing predicted based on
patient observable characteristics and the difference in mean antibiotic prescribing between post- and pre-exit
physicians for treated patients. Antibiotic prescribing is measured by log(1 + number of prescriptions).
Two-way fixed effects estimation (calendar year and pre-exit physicians fixed effects) with observations
on the patient-year level. Standard errors are calculated using a parametric bootstrap to draw clinic-level
mean prescribing, with 50 repetitions at the patient level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

a ∆i denotes the difference in mean prescribing between patient i’s assigned sets of physicians and is estimated
by ∆̂i, the average prescribing to untreated patients.

b To assess selective re-assignment between physicians and patients based on observable characteristics, we
use a two-step procedure (see Fadlon and Van Parys 2020). We first predict post-treatment antibiotic
prescribing to treated patients after they are exposed to treatment. To do so, we form linear predictions
based on basic demographics, health, family background, and education (as in Table 3) with coefficients
estimated on prescribing to treated patients prior to treatment and never-treated patients. In the second
step, we regress prescribing as predicted from observable patient characteristics on the difference in average
prescribing between post- and pre-exit physicians that treated patients are assigned to. The second step
regressions include fixed effects for the pre-treatment set of physicians, as well as calendar years.

7 Characterizing physician effects

7.1 Correlates of practice styles

Heterogeneity in practice styles can be determined by many mechanisms. To shed light on such

potential mechanisms, we characterize the correlations between practice styles and observable physi-

cian as well as clinic characteristics. Physician characteristics include information on age, household

size, Ph.D. education, gender, and migration background averaged over general practitioners in a

clinic. Clinic characteristics include diagnostic availability and practice size.24

We proceed in two steps. First, we estimate the difference in prescribing practice styles between

physicians to which treated patients are assigned separately for each pair of physicians. We therefore

estimate physician effects separately for each pair of origin-destination physicians instead of scaling

and aggregating treatment effects. Second, we regress our estimated time-invariant differences in

prescribing styles on differences in standardized observable characteristics between physician pairs.

Our estimation procedure is described in more detail in Appendix C.

We explore the relationships between prescribing practice styles and physician observables

using two estimation approaches: either by bivariate ordinary least squares (OLS) regressions of

prescribing style differences on physician observables or by a multivariate regression approach.25

24The variables included correspond to Panels B and C of Table 4. Appendix C describes the variables in detail.
25Additionally, we estimate the relationships between prescribing styles and physician observables in a fixed effects

regression approach in Appendix C. The results are similar to our main results.
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For multivariate regressions we employ a data-driven post-LASSO OLS estimation approach that

accounts for correlation between different physician characteristics (Belloni et al. 2013). A standard

OLS model including all covariates might suffer from lack of precision in the estimates. The

post-LASSO OLS approach first selects variables using a LASSO regression which penalizes model

complexity. It then performs OLS on the reduced model including only the selected variables from

the first step.

Figure 5 shows correlates of prescribing practice style differences. Each row represents the

association between prescribing style differences and the difference in a physician observable estimated

by OLS. The left panel shows each coefficient associated with a bivariate regression of prescribing style

differences on a different variable. The right panel shows coefficients associated with a multivariate

regression of prescribing style differences on variables selected by first-stage LASSO. We standardize

all covariates prior to taking differences. Hence, the coefficients report the association between a one

standard deviation increase in the observable characteristic and the change in the prescribing style.

Figure 5: Correlates of antibiotic prescribing practice style differences
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Notes: The figure displays bivariate OLS (left panels) and post-LASSO (right panels) regression results of the
estimated difference in prescribing practice style, measured by log(1 + number of antibiotic prescriptions), on
differences in physician characteristics between sets of pre- and post-exit physicians that treated patients are assigned
to. To obtain post-LASSO estimates, we run a LASSO regression on the full set of physician characteristics, with the
penalty level chosen by 10-fold cross validation to minimize mean squared error. We subsequently run an OLS
regression with the estimated differences in practice styles regressed on the set of physician characteristics selected by
the LASSO regression. Missing coefficients indicate that a variable has not been selected in the LASSO regression.
Standard errors are calculated using a parametric boostrap to draw differences in practices styles with 50 repetitions.
Physician characteristics are standardized to have mean 0 and standard deviation 1 prior to differencing.
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Figure 5 indicates that antibiotic prescribing practice style differences are associated with certain

physician and clinic characteristics. Correlations with overall prescribing are driven by prescribing

differences in terms of second-line antibiotic drugs. In particular, a higher average age of general

practitioners is associated with a higher second-line antibiotic prescribing style. The availability of

diagnostic microscopy as well as a larger clinic size in terms of the number of physicians, interns,

and patients per physician are associated with a lower prescribing style. However not all effects are

significantly different from zero in the post-LASSO specifications.

One interpretation of the observed correlations are changes in medical education over time that

might affect younger physicians more strongly and could explain a lower second-line prescribing style

in younger practices. A negative correlation in prescribing style and clinic size could be explained

by differences between clinics in the weights placed on the private benefit compared to the social

cost of antibiotic prescribing. While an antibiotic prescription has the private benefit of increasing

chances of recovery for a patient, it comes with the externality of increasing antibiotic resistance

in the community. For larger clinics, less personal patient-physician relations may lead to a lower

weight placed on the private benefit of an antibiotic prescription compared to smaller clinics. Finally,

clinics with a larger set of diagnostic tools might be able to target antibiotic prescriptions better.

7.2 Health effects

So far, we have focused on identifying heterogeneity in prescribing practice styles. Such heterogeneity

may not be undesirable if it generates the best overall health outcomes, even if at the cost of potential

increases in antibiotic resistance. However, if the effect of practice style variation is unrelated to

health outcomes or if prescribing intensity adversely affects patient health, efficiency losses of such

variation are difficult to reject. To inspect this further, we relate our results on antibiotic prescribing

practice styles to patients’ health outcomes. Using our estimates of physician effects, we investigate

whether differences in prescribing styles correspond to differences in patient outcomes. We ask

the following question: When patients are exogenously reassigned to physicians with more intense

antibiotic prescribing styles, does this affect their rate of hospitalization?

We focus on hospitalizations for a subset of ambulatory care sensitive conditions (ACSC) typically

related to infections, which are potentially preventable under sufficient primary care. Indications for

ACSC are commonly used to measure ambulatory care quality.26 We consider acute ACSC that are

frequently caused by bacterial infections and commonly treated in general practice: Skin and soft

tissue infections, ear, nose and throat infections, perforated or bleeding ulcer, urinary tract infections,

and pneumonia. A complete list of ICD-10 codes is included in Appendix D. We construct an

indicator variable that is one if a patient has been hospitalized for any of the infection-related ACSC

we consider in a given year. We also construct indicator variables for each of the ACSC separately

that indicate whether a patient has been hospitalized for a given condition as the primary diagnosis

in a given year. We exclude referrals from general practitioners as well as internal hospital referrals

26For example, the World Health Organization defines ACSC as ”Conditions for which hospitalizations can be
avoided by timely and effective care in ambulatory settings” (World Health Organization Regional Office for Europe
2016).
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unless the diagnosis was made at the first day of a patient’s hospitalization spell. In Appendix

D, we show basic summary statistics and results for specifications in which we use the count of

hospitalizations due to ACSC as outcome variable.

We estimate a difference-in-differences specification where the treatment is based on the estimated

differences in prescribing practice styles between physicians which patients exposed to physician

exit are assigned to. Our treatment variable is the interaction between an indicator for having

been exposed to physician exit and the estimated difference in physicians’ prescribing styles. The

treatment effect corresponds to the effect of an exogenous change in the antibiotic prescribing style

a patient is exposed to onto hospitalization rates due to ACSC. We estimate the following baseline

specification:

hit = α̃i + η ×Dit × ̂(δj′ − δj) + xitβ + ωit, (6)

where hit is an indicator variable for patient i being hospitalized for an infection-related ACSC in

year t, αi denotes patient-fixed effects, xit includes calendar-year fixed effects, the post-exit indicator

Dit, and an indicator for the year of the exit, and ωit is an error term. Our coefficient of interest is

η associated with the interaction between the post-exit indicator Dit and the estimated difference

in prescribing styles ̂(δj′ − δj). We can interpret estimates of η as causal effects if the exogeneity

assumption E[ωit|α̃i, Dit × ̂(δj′ − δj), xit] = 0 holds.

Our baseline results are shown in Figure 6.27 For easier interpretation, we report scaled

coefficients.28 The scaled coefficients capture the effect of an increase in prescribing style by one

standard deviation of overall prescribing on the probability of any hospitalization due to infection-

related ACSC.

The results show that a more intense prescribing style points toward a higher rate of infection-

related hospitalization, although this effect is not statistically significant. However, inspecting the

antibiotic subcategories reveals that the aggregate effect is driven by the effect of a more intense

penicillin prescribing style. An increase in the penicillin prescribing style by one standard deviation

increases the probability of hospitalization due to infection-related ACSC significantly at the 5

percent level. This effect is driven primarily by hospitalizations for ear, nose and throat infections,

pneumonia, and to a smaller degree by hospitalizations for cellulitis. The point estimates indicate that

an increase in a physician’s penicillin prescribing style by one standard deviation of log prescribing

increases the probability of hospitalizations for an infection-related ACSC by 0.38 percentage points.

A one standard deviation increase of penicillin prescribing style has economically relevant effects

as the average rate of hospitalization due to infection-related ACSC is 0.59 percent. Some of our

27In Appendix D we show estimation results for a number of alternative specifications: We define the outcome as
the number of hospitalizations due to ACSC, allow for an extended set of control variables, define treatment in a
binary fashion as being exposed to an increase (decrease) in prescribing style, and estimate the treatment effect η as
an aggregate of cohort-specific treatment effects in a Sun-Abraham-style framework.

28In particular we report coefficients η̃ = η ∗ σ(yit), where σ(yit) is the standard deviation in log antibiotic
prescriptions. η is the original coefficient of interest estimated from Equation (6). The confidence intervals have been
scaled correspondingly using rescaled standard errors se(η̃) = se(η) ∗ σ(yit), where se(η) are the original standard
errors. We estimate the original standard errors se(η) using a bootstrap with 50 repetitions on the patient level.
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Figure 6: Effect of an increase in prescribing style by one standard deviation of log prescriptions on
hospitalizations for ambulatory care sensitive conditions
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Notes: The figure displays estimation results for the effect of antibiotic prescribing practice style differences on
hospitalizations for infection-related ambulatory care sensitive conditions. We obtain the effect of practice style
differences as the coefficient associated with the interaction between the estimated difference in prescribing practice
styles measured by log(1 + number of antibiotic prescriptions), and a post-exit indicator. Estimations include patient
fixed effects, calendar year fixed effects, and indicators for treatment onset and post-exit. Lines represent the 95%
confidence intervals. Standard errors are calculated using a parametric bootstrap to draw practice style differences,
with 50 repetitions at the patient level.

sensitivity checks indicate a smaller or statistically insignificant effect of an increase in penicillin

prescribing style, even if the direction of the coefficients remains unchanged.

Some of our sensitivity specifications indicate that a higher antibiotic prescribing style decreases

the rate of hospitalization for urinary tract infections. While not statistically significant, the

coefficient estimates in our main specification point toward the same direction for hospitalizations

for urinary tract infections.

One possible explanation for the positive effect of penicillin prescribing on patient hospitalization

rates might be that a large share of respiratory tract infections are caused by viruses rather than

bacteria (Fleming-Dutra et al. 2016). While penicillins constitute the largest share of antibiotic

prescriptions, antibiotic treatments are ineffective against viral infections. When treated insufficiently,

upper respiratory infections in ear, nose or throat can cause more severe pneumonia. Patients assigned

to physicians with more intense penicillin prescribing styles might be more likely to be hospitalized

for respiratory viral infections if for example their physicians’ antibiotic prescribing crowds out
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treatments for alternative diagnoses. A related possible explanation is that antibiotic resistance

renders standard antibiotic treatments such as penicillins ineffective. Appropriate treatment in both

cases requires diagnostic information on the organism causing the infection.

8 Conclusion

For policies aimed at increasing efficiency in antibiotic prescribing, it is crucial to identify who drives

prescription decisions. We assess the extent to which physicians determine differences in antibiotic

prescribing between general practice clinics. To identify physician effects on prescribing separately

from patient effects, we leverage quasi-experimental reassignments between patients and physicians

from physician exits from clinics.

Our results indicate that physician effects determine antibiotic prescribing to a substantial

degree. Our results for total antibiotic prescribing imply that harmonization of practice styles would

reduce differences in log antibiotic consumption at general practice clinics in our sample by more

than half. Physicians’ practice styles determine 53% to 56% of the differences between clinics in

terms of total antibiotic prescriptions, and the effect is much larger, 74% to 81%, when we restrict

our analysis to the antibiotic classes macrolides, lincosamides and streptogramins, cephalosporins,

and quinolones. These classes are considered second-line treatments as they have higher costs

than alternative antibiotic drugs compared to limited evidence of clinical benefits, and are more

likely to cause antibiotic resistance. Reducing prescriptions of second-line treatments from general

practitioners by targeting the individual physicians could substantially curb antibiotic consumption

and the rise of antibiotic resistance.

Additionally, we investigate the differences in antibiotic prescribing styles by studying their

correlations with physician and clinic characteristics. We find a positive relation between prescribing

intensity and the physicians’ age, as well as a negative relation between prescribing intensity and

the availability of diagnostic microscopy and clinic size. These correlations could for example be

driven by changes in medical education and awareness over time, better use of diagnostic tools, or

more flexible patient-physician treatment assignments.

Lastly, we tackle the question whether the observed differences in antibiotic prescribing practice

styles affect patient health. We analyze avoidable ambulatory care sensitive conditions that can be

caused by bacterial infections. For the majority of conditions, we find that a reduction in antibiotic

prescribing style has no effect on a patient’s hospitalization rate or even reduces it.

Our study indicates that a reduction in overall and, in particular, second-line antibiotic con-

sumption can be achieved by targeting the individual physician. In general, decreasing antibiotic

prescribing intensity in physicians’ practice styles does not affect patient health. Instead, our

results indicate that some conditions are treated better by physicians with less intense antibiotic

prescribing style. Our results also indicate that better diagnostic accuracy might assist or improve

upon outcomes achievable through across the board reductions in antibiotic prescribing.
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Appendix

A Further descriptives

A.1 Distribution of antibiotic prescribing over clinics

Figure 7 shows the distribution of average antibiotic prescribing per patient over general practice

clinics in Denmark for each year of our sample period from 2005 to 2012. While average prescribing

in Denmark is low, there is substantial and persistent heterogeneity between clinics.

A.2 Physician age

Figure 8 shows that, while the majority of reassignments for treated patients is from older to younger

physicians, we also observe reassignments from younger to older physicians. Moreover, on average

the age difference between physicians is not substantial.
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Figure 7: Distribution of average antibiotic prescribing (ATC J01) per patient over general practice
clinics
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0

150

300

450

600

Fr
eq

ue
nc

y

0 10 20 30 40

2005

0

150

300

450

600

Fr
eq

ue
nc

y

0 10 20 30 40

2006

0

150

300

450

600

Fr
eq

ue
nc

y

0 10 20 30 40

2007

0

150

300

450

600

Fr
eq

ue
nc

y

0 10 20 30 40

2008

0

150

300

450

600

Fr
eq

ue
nc

y

0 10 20 30 40

2009

0

150

300

450

600

Fr
eq

ue
nc

y

0 10 20 30 40

2010

0

150

300

450

600

Fr
eq

ue
nc

y

0 10 20 30 40

2011

0

150

300

450

600

Fr
eq

ue
nc

y

0 10 20 30 40

2012

Notes: Average antibiotic prescriptions dispensed per patient and year at the clinic-level. Bunched in groups of five
clinics to ensure the required data anonymization. The upper five percentiles are omitted.
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Figure 8: Difference in average age between post- and pre-exit physicians

(a) Distribution over pairs of pre- and post-exit physicians
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anonymization. In Figure 8b, values are bunched for groups of five patient-year observations.
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A.3 Descriptive statistics for out-of-sample clinics and patients

We can compute average characteristics for out-of-sample clinics which are listed in the Danish

registry of clinics but which we have excluded from our analyses, as well as for patients assigned to

those clinics. In particular, these are general practice clinics that underwent physician entries or

multiple long-term staff changes over our period of observation from 2005 to 2012.

Table 7 shows averages for patient-year observations and Table 8 shows average clinic-level

characteristics. Most noticeably, staff sizes for out-of-sample clinics are larger than for in-sample

clinics. This is not surprising, as larger clinics may have more fluctuation in staff. Moreover, patients

assigned to out-of-sample clinics tend to be younger. However, antibiotic prescribing does not differ

substantially from our main sample.

Table 7: Averages for out-of-sample observations

Out of sample

A: Antibiotic prescribinga

Total J01 (all antibiotics) 0.28
J01 C (penicillins) 0.20
J01 F, D or M (second-line) 0.07
Other J01 (other antibiotics) 0.04
B: Basic demographics and health

Age 41.21
Female 0.54
Pregnant 0.02
Household size 2.61
Any visit to an emergency department 0.15
Any call to an emergency doctor 0.18
C: Family background and education

Married couple 0.54
Cohabiting couple with children 0.07
Cohabiting couple without children 0.07
Single 0.32
First generation migrant (nordic) 0.01
First generation migrant (other country) 0.06
Second generation migrant 0.03
Missing education 0.21
School grade 7 to 10 0.27
High school or vocational training 0.32
Short higher education 0.03
Medium higher education 0.12
Long higher education 0.05
Phd education 0.003
No education 0.001
D: Any hospitalizationb

All infection-related conditions 0.005
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Cellulitis 0.001
Ear, nose and throat infections 0.001
Perforated or bleeding ulcer 0.001
Urinary tract infection 0.001
Pneumonia 0.001

Total observations (patient-years) 15,461,226

a Measured by log(1 + number of antibiotic prescriptions).
b Hospitalizations for acute ambulatory care-sensitive conditions (ACSC) commonly caused by bacterial and

non-bacterial infections considered (see Appendix D for a complete list of ICD-10 codes). Referrals from
general practitioners and delayed internal hospital referrals are excluded.

Table 8: Averages for out-of-sample clinics

Out of sample

A: Average antibiotic prescribing per patienta

Total J01 (all antibiotics) 0.28
J01 C (penicillins) 0.19
J01 F, D or M (second-line) 0.07
Other J01 (other antibiotics) 0.05
B: Average physician characteristics

Age 55.64
Household size 2.62
Female 0.36
Single 0.16
First generation migrant (nordic) 0.01
First generation migrant (other country) 0.03
Second generation migrant 0.01
Phd education 0.01
C: Size and equipment

Number of physicians 1.89
Number of interns 0.25
Number of patients per physician 1878.28
Diagnostic culture available 1.00
Diagnostic microscopy available 0.80

Total observations (clinic-years) 6,861

a Measured by log(1 + number of antibiotic prescriptions)
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A.4 Descriptive statistics for excluded patient-year observations

We can compute average characteristics for observations which are associated with patients in our

sample but which we have excluded from the final panel of patient-years. We exclude patient-year

observations in order to ensure that any switch in a patient’s general practice clinic is associated

with the treatment, a physician exit, and we exclude observations when treated patients are assigned

to out-of-sample clinics. For a subset of never-treated and treated patients in our sample, we thus

drop observations and end up with an unbalanced panel.

Table 9 shows averages in observations which we drop for in-sample patients. In the case of

never-treated patients, most noticeably the average age is lower than in our main sample. We might

observe a lower average age because these observations are dropped when never-treated patients

switch clinics for reasons unrelated to a physician exit as we then only keep observations at the

modal clinic. Presumably, switching clinics is more common among younger patients, who could for

example be more likely to move geographically or be more selective about choosing their physicians.

In the case of treated patients, average characteristics are similar to the main sample. In both

cases, antibiotic prescribing in the excluded observations does not differ substantially from our main

sample, alleviating concerns about selective attrition based on antibiotic prescribing.

Table 9: Averages for excluded observations of in-sample patients

Never-exposed to Exposed to
physician exit physician exit

A: Antibiotic prescribinga

Total J01 (all antibiotics) 0.28 0.27
J01 C (penicillins) 0.19 0.19
J01 F, D or M (broad-spectrum) 0.06 0.06
Other J01 (other antibiotics) 0.05 0.05
B: Basic demographics and health

Age 36.42 43.61
Female 0.57 0.57
Pregnant 0.04 0.03
Household size 2.56 2.56
Any visit to an emergency department 0.17 0.15
Any call to an emergency doctor 0.22 0.22
C: Family background and education

Married couple 0.45 0.53
Cohabiting couple with children 0.08 0.06
Cohabiting couple without children 0.11 0.08
Single 0.36 0.34
First generation migrant (nordic) 0.01 0.01
First generation migrant (other country) 0.07 0.07
Second generation migrant 0.03 0.03
Missing education 0.20 0.17
School grade 7 to 10 0.25 0.26
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High school or vocational training 0.33 0.34
Short higher education 0.03 0.03
Medium higher education 0.13 0.13
Long higher education 0.06 0.06
Phd education 0.003 0.003
No education 0.001 0.001
D: Any hospitalizationb

All infection-related conditions 0.005 0.006
Cellulitis 0.001 0.001
Ear, nose and throat infections 0.001 0.001
Perforated or bleeding ulcer 0.000 0.000
Urinary tract infection 0.001 0.002
Pneumonia 0.001 0.001

Total observations (patient-years) 246,417 72,828

a Measured by log(1 + number of antibiotic prescriptions).
b Hospitalizations for acute ambulatory care-sensitive conditions (ACSC) commonly caused by bacterial

and non-bacterial infections (see Appendix D for a complete list of ICD-10 codes). Referrals from
general practitioners and delayed internal hospital referrals are excluded.
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B Further Results

B.1 Differences in mean prescriptions

Figure 9 shows a histogram of the difference in average log prescribing between treated clinics

and never-treated destination clinics assigned to patients exposed to a physician exit (∆̂i). Our

identification strategy uses these differences to obtain a standardized measure of the treatment effect.

Figure 9: Distribution over the difference in average log prescribing between treated patients’ pre-
and post-exit physicians (∆̂i)
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B.2 Analysis based on Daily Defined Dose

Table 10, Figure 10, and Figure 11 show our main analyses when we measure antibiotic prescribing

by log(1 + Daily Defined Dose). The results are similar to our main results.
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Table 10: Estimation results for the share of physician effects in antibiotic prescribing

Panel A Daily Defined Dose
Two-way fixed effects estimationa

J01 J01 C J01 F, D, M Other J01

∆̂i ×Dit 0.546∗∗∗ 0.521∗∗∗ 0.783∗∗∗ 0.466∗∗∗

(0.026) (0.032) (0.031) (0.049)
Event dummiesc yes yes yes yes
Time-varying controlsd no no no no

Observations 7,796,767 7,796,767 7,796,767 7,796,767
Groups (patients) 1,373,109 1,373,109 1,373,109 1,373,109

Panel B Daily Defined Dose
Two-way fixed effects estimationa

J01 J01 C J01 F, D, M Other J01

∆̂i ×Dit 0.567∗∗∗ 0.533∗∗∗ 0.791∗∗∗ 0.494∗∗∗

(0.027) (0.031) (0.03) (0.053)
Event dummiesc yes yes yes yes
Time-varying controlsd yes yes yes yes

Observations 7,653,853 7,653,853 7,653,853 7,653,853
Groups (patients) 1,346,414 1,346,414 1,346,414 1,346,414

Panel C Daily Defined Dose
Sun-Abraham interaction-weighted estimationb

J01 J01 C J01 F, D, M Other J01

∆̂i ×Dit 0.454∗∗∗ 0.496∗∗∗ 0.728∗∗∗ 0.181∗∗∗

(0.031) (0.042) (0.036) (0.038)
Event dummiesc yes yes yes yes
Time-varying controlsd no no no no

Observations 7,796,767 7,796,767 7,796,767 7,796,767
Groups (patients) 1,373,109 1,373,109 1,373,109 1,373,109

Notes: This table reports the average share of between-clinics difference in antibiotic prescribing attributable
to physician effects, the coefficient of ∆i × Dit. ∆i denotes the difference in mean prescribing between
patient i’s assigned sets of physicians and is estimated by ∆̂i, the average prescribing to untreated patients.
Dit denotes a post-treatment indicator. Antibiotic prescribing is measured by log(1 + Daily Defined Dose).
Standard errors are calculated using a parametric bootstrap to draw clinic-level mean prescribing, with 50
repetitions at the patient level. ∗∗∗ p < 0.01.

a Two-way fixed effects estimation with calendar year fixed effects and patient fixed effects.
b Interaction-weighted two-way fixed effects estimation includes calendar year and patient fixed effects, and

interactions between relative year and cohort indicators. Averages of the relative-year specific treatment
effects are formed to obtain the aggregate treatment effect (Sun and Abraham 2020).

c Event dummies include an indicator for treatment onset (relative year r = 0) and post-treatment.
d Control variables include Number of interns at the clinic, Age squared, Household size, Pregnant, Any visit

to emergency department, and Any call to an emergency doctor.
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Figure 10: Event study estimates of the share of physician effects (DDD)
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Notes: The figures display event study estimates for the share of differences in antibiotic consumption that is driven
by differences in physician fixed effects. Estimations include patient fixed effects, calendar year fixed effects, and as
time-varying characteristics indicators for the year of treatment onset and the post-exit period. Relative year -1 is the
last pre-exit period, relative year 0 is a transitional period, and relative year 1 is the first post-exit period. Antibiotic
prescribing is measured by log(1 + Daily Defined Dose).
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Figure 11: Event study estimates of the share of physician effects (DDD), alternative specifications

(a) Time-varying controls
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(b) Sun-Abraham interaction-weighted estimation
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Notes: Lines represent the 95% confidence intervals. Standard errors are calculated using a parametric bootstrap to
draw clinic-level mean prescribing, with 50 repetitions at the patient level. Antibiotic prescribing is measured by log(1
+ Daily Defined Dose). Figure 11a displays event study estimates from estimations that include patient fixed effects,
calendar year fixed effects, and indicators for treatment onset, post-exit, pregnancy, any visit to an emergency
department, any call to an emergency department, any call to an emergency doctor, and as continuous variables age
squared and household size. Figure 11b displays Sun-Abraham style interaction weighted estimates from fully
saturated fixed effects specifications that include patient and calendar year fixed effects as well as interactions between
relative period indicators and cohort indicators, where cohorts are defined by the calendar year of treatment onset. In
a first step, cohort-relative year specific treatment effects are estimated. In the second step, relative year specific
treatment effects are calculated as relative cohort size weighted averages by relative year.
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B.3 Analyses for second-line antibiotic drugs

Table 11 shows estimation results for the share of physician effects in second-line antibiotic drugs

separately for each ATC level 3 drug class: macrolides, lincosamides, and streptogramins (J01 F),

cephalosporins (J01 D), and quinolones (J01 M). Columns (1) to (3) of Table 11 show baseline

estimation results using as outcomes the log number of antibiotic prescriptions, Columns (4) to (6)

show estimation results when we allow for time-varying control variables, and Column (7) to (9)

show estimation results when we measure prescribing by Daily Defined Dose. The results indicate

that the substantial share of physician effects from analyzing these classes collectively are driven by

the group of macrolides, lincosamides, and streptogramins (J01 F), and the group of quinolones (J01

M). In contrast, physician effects are much smaller in the group of cephalosporins (J01 D).

Table 12 shows estimation results for the share of physician effects in broad-spectrum antibiotic

drugs. Specifically, this analysis includes all macrolides, lincosamides, and streptogramins (J01

F), cephalosporins (J01 D), and quinolones (J01 M), but excludes erythromycin. Broad-spectrum

antibiotic drugs are active against a large range of bacterial groups. However, their excessive

consumption can disrupt the native bacterial flora and enable multidrug resistances. Physicians are

therefore in general advised to avoid prescribing broad-spectrum antibiotics .29 The results show

that the share of physician effects remain large in broad-spectrum antibiotic prescriptions. The

categorization into broad- and narrow-spectrum classes is not fixed.30 For example, in the ESAC

framework macrolides, lincosamides, and streptogramins, excluding erythromycin (J01 F, D, M,

excluding J01 FA01), are considered broad-spectrum antibiotics,31 whereas macrolides, lincosamides,

streptogramins (J01 F) are not considered broad-spectrum antibiotics by the Danish Health Data

Authority (https://medstat.dk/en).

29See Levy, Stuart B. 1998. ”The Challenge of Antibiotic Resistance.” Scientific American, 278(3): 46–53.
30See Acar, Jacques. 1997. ”Broad- and Narrow-Spectrum Antibiotics: An Unhelpful Categorization.” Clinical

Microbiology and Infection, 3(4): 395–396.
31See ECDC (European Centre for Disease Prevention and Control), EFSA BIOHAZ Panel (European Food Safety

Authority Panel on Biological Hazards) and CVMP (EMA Committee for Medicinal Products for Veterinary Use),
2017. ”ECDC, EFSA and EMA Joint Scientific Opinion on a List of Outcome Indicators as Regards Surveillance of
Antimicrobial Resistance and Antimicrobial Consumption in Humans and Food-Producing Animals.” EFSA Journal
2017, 15(10):5017, 70 pp.
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Table 11: Estimation results for the share of physician effects in antibiotic prescribing

Panel A Number of prescriptions
Two-way fixed effects estimationa

J01 F J01 D J01 M

∆̂i ×Dit 0.834∗∗∗ 0.275∗∗∗ 0.630∗∗∗

(0.03) (0.089) (0.057)
Event dummiesb yes yes yes
Time-varying controlsc no no no

Observations 7,796,767 7,796,767 7,796,767
Groups (patients) 1,373,109 1,373,109 1,373,109

Panel B Number of prescriptionsd

Two-way fixed effects estimationa

J01 F J01 D J01 M

∆̂i ×Dit 0.837∗∗∗ 0.288∗∗∗ 0.662∗∗∗

(0.03) (0.091) (0.059)
Event dummiesb yes yes yes
Time-varying controlsc yes yes yes

Observations 7,653,853 7,653,853 7,653,853
Groups (patients) 1,346,414 1,346,414 1,346,414

Panel C Daily Defined Dose
Two-way fixed effects estimationa

J01 F J01 D J01 M

∆̂i ×Dit 0.812∗∗∗ 0.244∗∗∗ 0.668∗∗∗

(0.03) (0.104) (0.056)
Event dummiesb yes yes yes
Time-varying controlsc no no no

Observations 7,796,767 7,796,767 7,796,767
Groups (patients) 1,373,109 1,373,109 1,373,109

Notes: This table reports the average share of between-clinics difference in antibiotic prescribing
attributable to physician effects, the coefficient of ∆i×Dit. ∆i denotes the difference in mean prescribing
between patient i’s assigned sets of physicians and is estimated by ∆̂i, the average prescribing to
untreated patients. Dit denotes a post-treatment indicator. Antibiotic prescribing is measured by log(1
+ number of antibiotic prescriptions) (Number of prescriptions) or log(1 + Daily Defined Dose) (Daily
Defined Dose). Standard errors are calculated using a parametric bootstrap to draw clinic-level mean
prescribing, with 50 repetitions at the patient level. ∗∗∗ p < 0.01.

a Two-way fixed effects estimation with calendar year fixed effects and patient fixed effects.
b Event dummies include an indicator for treatment onset (relative year r = 0) and post-treatment.
c Control variables include Number of interns at the clinic, Age squared, Household size, Pregnant, Any

visit to emergency department, and Any call to an emergency doctor.
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Table 12: Estimation results for the share of physician effects in antibiotic prescribing

Panel A Number of prescriptions
Two-way fixed effects estimationa

J01 F, D, M, excl. J01 FA01
(1) (2)

∆̂i ×Dit 0.813∗∗∗ 0.827∗∗∗

(0.03) (0.032)
Event dummiesb yes yes
Time-varying controlsc no yes

Observations 7,796,767 7,653,853
Groups (patients) 1,373,109 1,346,414

Panel B Daily Defined Dose
Two-way fixed effects estimationc

J01 F, D, M, excl. J01 FA01
(1) (2)

∆̂i ×Dit 0.793∗∗∗ 0.806∗∗∗

(0.029) (0.032)
Event dummiesa yes yes
Time-varying controlsb no yes

Observations 7,796,767 7,653,853
Groups (patients) 1,373,109 1,346,414

Notes: This table reports the average share of between-clinics difference in antibiotic
prescribing attributable to physician effects, the coefficient of ∆i × Dit. ∆i denotes
the difference in mean prescribing between patient i’s assigned sets of physicians and
is estimated by ∆̂i, the average prescribing to untreated patients. Dit denotes a post-
treatment indicator. Antibiotic prescribing is measured by log(1 + number of antibiotic
prescriptions) (Number of prescriptions) or log(1 + Daily Defined Dose) (Daily Defined
Dose). Standard errors are calculated using a parametric bootstrap to draw clinic-level
mean prescribing, with 50 repetitions at the patient level. ∗∗∗ p < 0.01.

a Two-way fixed effects estimation with calendar year fixed effects and patient fixed effects.
b Event dummies include an indicator for treatment onset (relative year r = 0) and post-

treatment.
c Control variables include Number of interns at the clinic, Age squared, Household size,

Pregnant, Any visit to emergency department, and Any call to an emergency doctor.
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C Estimation of practice style correlates

C.1 Estimation details

We estimate the association between prescribing practice styles and observable physician charac-

teristics in two steps. In the first step, we obtain the pair-specific differences in practice styles by

estimating the following equation:

yit = α̃i + (δj′ − δj)×Dit × Ij(i,t<r0(i))=j,j(i,t>r0(i))=j′ + xitβ + νit, (7)

where α̃i, β are parameters and Dit, xit are variables as defined above. νit is the error term. r0(i)

denotes the calendar year in which patient i is exposed to a physician exit. Ij(i,t<r0(i))=j,j(i,t>r0(i))=j′

is an indicator which is one if a treated patient i is assigned to the set of physicians j before the

physician exit occurs in t = r0(i) and to a different set of physicians j′ after the physician exit

has occurred. δj′ − δj denote the difference in prescribing practice styles between the two sets of

physicians j′ and j. Estimating Equation (7) fully specified in all possible pairs of sets of physicians

{j, j′} yields estimates for the pair-specific differences in practice styles. Figure 12 shows histograms

of all estimated pair-specific differences in practice styles.

Note that our empirical strategy only allows identification of practice style differences. We

therefore also construct pair-wise differences in physician observables when estimating the correlates

of practice style differences. For each unique set of physicians, we construct the average over years

for each observable characteristic. We then standardize each variable to have mean 0 and standard

deviation 1. To obtain the covariates for our second-step regressions, we take the pair-wise difference

in the standardized and average observable characteristics for each pair of sets of physicians.

In the second step, we perform either bivariate OLS regressions or multivariate post-LASSO

OLS regressions. For the bivariate specifications, we regress the difference in practice styles on the

differences in standardized physician characteristics. For the post-LASSO specifications, we regress

the difference in practice styles on the differences in all standardized physician characteristics that

have been selected by a first-step LASSO regression. The unit of observation is a pair of sets of

physicians to which at least one treated patient is assigned.

To obtain standard errors we perform a parametric bootstrap with 50 repetitions. In each

repetition, we draw the difference in practice styles for each pair of sets of physicians {j, j′} from a

normal distribution with mean ̂δj′ − δj and standard deviation se( ̂δj′ − δj) estimated from our first-

step estimation of practice style differences, where se denotes the standard error. The bootstrapped

standard errors account for estimation error from our first step estimation.
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Figure 12: Histograms of differences in antibiotic prescribing practice styles between pairs of sets of
physicians
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Notes: The figures show pairwise differences in practice styles between pre- and post-exit physicians. Pairwise
differences in practice styles correspond to treatment effects from our main analysis, estimated separately for all pairs
of pre- and post-physicians treated patients are assigned to. Antibiotic prescribing is measured by log(1 + number of
prescriptions). Values are bunched for groups of five patients with similar estimated mean difference in average
prescribing due to data anonymization.
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C.2 Physician characteristics

Below we describe how the variables in our practices style correlates analysis are defined.

Physician personal characteristics. We construct physician individual-level characteristics

and aggregate them over all physicians in a given set of physicians. We have to aggregate the

individual-level characteristics as we can only observe the identity of the clinic in a given year for

each prescription, but not the identity of the prescribing physician.

As physician personal characteristics we consider for all given sets of physicians the average

age, the average household size, the share of general practitioners living in single households, the

share of general practitioners with a PhD degree, the share of female general practitioners, and

the share of general practitioners with migration backgrounds. We separate migration backgrounds

by Nordic origin country (Finland, Iceland, Norway and Sweden), non-Nordic origin country, and

second generation migration background.

Clinic-level characteristics. We further include a set of variables to describe diagnostic

availability and personnel size at a general practice clinic. From claims data, we construct dummy

variables that indicate whether microscopy and cultivation where available. We assume that either

diagnostic method was available in a given year if any of the corresponding claim code were used at

least once in a given year.32 We also impute diagnostic methods as available if both in the previous

and the following year any of the corresponding claim codes have been used. To describe personnel

size, we include the maximum number of general practitioners, the number of unique patients per

general practitioner, and the maximum number of short-term medical staff working at the same time

in a clinic in a year. We construct the number of unique patients at a clinic as the total number of

unique social security numbers in a clinic’s claims records. The number of short-term medical staff

covers all recorded stays of up to a year. We refer to those short-term medical staff as interns.

C.3 Correlates with antibiotic prescribing practice style differences measured

by Daily Defined Dose

Figure 13 repeats the same regressions as in the main analyses with differences in antibiotic prescribing

practice styles measured by log(1 + Daily Defined Dose) instead of log(1 + number of antibiotic

prescriptions). The results remain similar to our main results.

C.4 Correlates with practice style differences estimated by fixed effects

Figure 14 shows coefficients estimates from bivariate fixed effects regressions, with fixed effects for

the initial pre-exit set of physicians that treated patients are assigned to. The fixed effects regressions

rely on variation in the difference in physician characteristics that result from patients being assigned

to different destination set of physicians after being exposed to an exit at the same initial set of

physicians. The results are similar to our main results.

32For microscopy availability, we consider the codes 802113, 807102, 807103, 807104, 807122, 807123, 807124, 807169,
808156, 808157, 808158, 808165, 808166, and 808167. For culture availability, we consider the codes 802133, 807105,
807106, 807107, 807179, and 808152.
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Figure 13: Correlates of practice style differences (DDD)
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Notes: The figure displays bivariate OLS (left panels) and post-LASSO (right panels) regression results of the
estimated difference in prescribing practice style, measured by log(1 + number of antibiotic prescriptions), on
differences in physician characteristics between sets of pre- and post-exit physicians that treated patients are assigned
to. To obtain post-LASSO estimates, we run a LASSO regression on the full set of physician characteristics, with the
penalty level chosen by 10-fold cross validation to minimize mean squared error. We subsequently run an OLS
regression with the estimated differences in practice styles regressed on the set of physician characteristics selected by
the LASSO regression. Missing coefficients indicate that a variable has not been selected in the LASSO regression.
Standard errors are calculated using a parametric boostrap to draw differences in practices styles with 50 repetitions.
All physician characteristics have been standardized to have mean 0 and standard deviation 1 prior to differencing.
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Figure 14: Correlates of practice style differences

(a) Bivariate fixed effects estimation (Log prescriptions)
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(b) Bivariate fixed effects estimation (Log DDD)
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Notes: The figure displays bivariate fixed effects regression results of the estimated difference in prescribing practice
style, measured by log(1 + number of antibiotic prescriptions), on differences in physician characteristics between sets
of pre- and post-exit physicians that treated patients are assigned to and fixed effects for the pre-exit physicians.
Standard errors are calculated using a parametric boostrap to draw differences in practices styles with 50 repetitions.
All physician characteristics are standardized to have mean 0 and standard deviation 1 prior to differencing.
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D Effects of practice style differences on patient health

D.1 Ambulatory care sensitive conditions

We identify ambulatory care sensitive conditions by the definitions provided in.33 We restrict the

analysis to conditions that are both frequently caused by infectious agents including bacteria, and

commonly encountered in general practice: cellulitis, ear, nose and throat infections, perforated

or bleeding ulcer, urinary tract infection, and pneumonia. Table 13 shows means and standard

deviations for hospitalizations due to infection-related ambulatory care sensitive conditions. Table

14 lists the conditions including sub-categories and their corresponding ICD-10 codes.

Table 13: Descriptive statistics of hospitalizations due to ambulatory care sensitive conditions,
patient-year level observations

Any Number of
hospitalization hospitalizations

Mean St. dev. Mean St. dev.

All infection-related condition 0.0051 (0.072) 0.0061 (0.091)
Cellulitis 0.0014 (0.037) 0.0017 (0.049)
Ear, nose, and throat infections 0.0011 (0.033) 0.0013 (0.040)
Perforated or bleeding ulcer 0.0005 (0.022) 0.0006 (0.029)
Urinary tract infection or pyelonephritis 0.0013 (0.036) 0.0015 (0.046)
Pneumonia 0.0009 (0.031) 0.0010 (0.035)

Observations (patient-years) 7,796,767 7,796,767

33See Bardsley, Martin, Ian Blunt, Sian Davies, and Jennifer Dixon. 2013. ”Is Secondary Preventive Care Improving?
Observational Study of 10-Year Trends in Emergency Admissions for Conditions Amenable to Ambulatory Care.”
BMJ Open, 3(1).
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Table 14: List of ICD-10 codes for infection-related ambulatory care sensitive conditions

ICD-10 code Category

Cellulitis
L03 Cellulitis
L04 Acute lymphadenitis
L08 Other local infections of skin and subcutaneous tissue
L88 Pyoderma grangrenosum
L980 Pyogenic granuloma
L983 Eosinophilic cellulitis

Ear, nose and throat infections
H66 Otitis media, unspecified
H67 Otitis media in diseases classified elsewhere
J02 Acute pharyngitis
J03 Acute tonsillitis
J06 Acute upper respiratory infections of multiple and unspecified sites
J312 Chronic pharyngitis

Perforated/bleeding ulcer
K250-K252 Gastric ulcer
K254-K256
K260-K262 Duodenal ulcer
K264-K266
K270-K272 Peptic ulcer, site unspecified
K274-K276
K280-K282 Gastrojejunal ulcer
K284-K286

Urinary tract infection/Pyelonephritis
N10 Acute tubulo-interstitial nephritis
N11 Chronic tubulo-interstitial nephritis
N12 Tubulo-interstitial nephritis, not specified as acute or chronic
N136 Pyonephrosis
N390 Urinary tract infection, site not specified

Pneumonia
J13 Pneumonia due to Streptococcus pneumoniae
J14 Pneumonia due to Haemophilus influenzae
J153 Pneumonia due to streptococcus, group B
J154 Pneumonia due to other streptococci
J157 Pneumonia due to Mycoplasma pneumoniae
J159 Bacterial pneumonia, unspecified
J168 Pneumonia due to other specified infectious organisms
J181 Lobar pneumonia, unspecified
J188 Other pneumonia, organism unspecified
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D.2 Alternative specifications

We estimate a number of alternative specifications to analyze the health effects of changes in

antibiotic prescribing practice style.

Figure 15 shows results when we define the outcome variable as the count number of hospitaliza-

tions due to ACSC. The number of hospitalizations excludes referrals from general practitioners

as well as internal referrals with the same diagnostic code. The results are similar in direction and

magnitude as our main results.

Figure 16 shows results for specifications in which we allows for an extended set of control

variables. Results are similar as in our main specification.

Figure 17 shows results for dynamic specifications that include cohort-specific effects. We

estimate the average treatment effect as a weighted aggregate of the cohort-specific effects in a

Sun-Abraham-style framework. Again, for most conditions, a one-standard deviation change in

prescribing style does not systematically affect the rate of hospitalization. However, in the case

of hospitalizations for urinary tract infections or pyelonephritis, all point estimates are negative,

indicating that an increase in prescribing practice style might lower the rate of hospitalization

due to this condition. Moreover, a more intense second-line prescribing style increases the rate of

hospitalization due to this condition significantly.

Figure 18 shows results for specifications in which we define treatment in a binary fashion. The

left panels show the estimated effects of being exposed to a lower prescribing intensity. We constrain

the treatment group as patients who are exposed to the lowest 25 percentile of an estimated decrease

in prescribing intensity. We exclude from the sample all patients who are exposed to smaller changes

or increases in prescribing intensity, such that the control group is comprised of patients unexposed

to physician exit. The right panels show the estimated effects of being exposed to the upper 25

percentile of an estimated increase in prescribing intensity and we define the sample accordingly.

The estimates from these specifications cannot be interpreted in the same way as in the previous

specifications as treatment is defined differently. The direction of the estimates do not generally

contradict results from our prior specifications. Notably, a change in antibiotic prescribing style

systematically affects hospitalizations for urinary tract infections: a decrease in prescribing style

lowers the rate of hospitalization for this condition, while it increases with a higher prescribing style.

Additionally, the results corroborate our main results of a positive relationship between antibiotic

prescribing and hospitalizations for pneumonia, and penicillin prescribing and hospitalizations for

ear, nose, and throat infections.
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Figure 15: Effect of an increase in prescribing style by one standard deviation of log prescriptions on
the number of hospitalizations for ambulatory care sensitive conditions
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Notes: The figure displays estimation results for the effect of antibiotic prescribing practice style differences on
hospitalizations for infection-related ambulatory care sensitive conditions. We obtain the effect of practice style
differences as the coefficient associated with the interaction between the estimated difference in prescribing practice
styles measured by log(1 + number of antibiotic prescriptions), and a post-exit indicator. Estimations include patient
fixed effects, calendar year fixed effects, and indicators for treatment onset and post-exit. Lines represent the 95%
confidence intervals. Standard errors are calculated using a parametric bootstrap to draw practice style differences,
with 50 repetitions at the patient level.
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Figure 16: Effect of an increase in prescribing style by one standard deviation of log prescriptions on
hospitalizations for ambulatory care sensitive conditions, allowing for time-varying control variables
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Notes: The figure displays estimation results for the effect of antibiotic prescribing practice style differences on
hospitalizations for infection-related ambulatory care sensitive conditions. We obtain the effect of practice style
differences as the coefficient associated with the interaction between the estimated difference in prescribing practice
styles measured by log(1 + number of antibiotic prescriptions), and a post-exit indicator. Estimations include patient
fixed effects, calendar year fixed effects, and indicators for treatment onset, post-exit, pregnancy, and as continuous
variables age squared and household size. Lines represent the 95% confidence intervals. Standard errors are calculated
using a parametric bootstrap to draw practice style differences, with 50 repetitions at the patient level.
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Figure 17: Cohort size and relative time weighted average effect of an increase in prescribing style
by one standard deviation of log prescriptions on hospitalizations for ambulatory care sensitive

conditions
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Notes: The figure displays estimation results for the effect of antibiotic prescribing practice style differences on
hospitalizations for infection-related ambulatory care sensitive conditions. We obtain the effect of practice style
differences as the coefficient associated with the interaction between the estimated difference in prescribing practice
styles measured by log(1 + number of antibiotic prescriptions), and a post-exit indicator. Estimations include patient
fixed effects, calendar year fixed effects, and indicators for treatment onset and post-exit. To aggregate treatment
effects, we take averages of the relative-year specific treatment effects weighted by cohort-relative year size, as
proposed by Sun and Abraham (2020). Lines represent the 95% confidence intervals. Standard errors are calculated
using a parametric bootstrap to draw practice style differences, with 50 repetitions at the patient level.
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Figure 18: Effect of an overall decrease or increase in prescribing practice style on the number of
hospitalizations due to ambulatory care sensitive conditions
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Notes: The figure displays estimation results for the effect of antibiotic prescribing practice style differences on
hospitalizations for infection-related ambulatory care sensitive conditions. We obtain the effect of a decrease in
prescribing style as the coefficient associated with the interaction between an indicator for being exposed to the lowest
quartile of an estimated decrease in prescribing practice styles measured by log(1 + number of antibiotic
prescriptions), and a post-exit indicator. we exclude treated patients exposed to increases in estimated prescribing
styles in each specification. We proceed conversely in order to obtain the effect of an increase in prescribing style.
Estimations include patient fixed effects, calendar year fixed effects, and indicators for treatment onset and post-exit.
Lines represent the 95% confidence intervals. Standard errors are calculated using a parametric bootstrap to draw
practice style differences, with 50 repetitions at the patient level.
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