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Abstract 

Anthropogenic greenhouse gas emissions are changing the energy balance of our planet. Various 
climatic feedbacks make the resulting warming over the next decades and centuries highly 
uncertain. We quantify how this uncertainty changes the optimal carbon tax in a stochastic 
dynamic programming implementation of an integrated assessment model of climate change. We 
derive a general analytic formula for the “risk premium” governing the resulting climate policy. 
The formula generalizes simple precautionary savings analysis to more complex economic 
interactions and it builds the economic intuition for policy making under uncertainty. It clarifies 
the distinct roles of risk aversion, prudence, characteristics of the damage formulation, and future 
policy response. We show that an optimal response to uncertainty substantially reduces the risk 
premium. 
JEL-Codes: Q540, Q000, D900, C630. 
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1 Introduction

Economic activity relies heavily on fossil fuel use. The resulting emissions alter our

planet’s energy balance and impact future climate, economic activity, and human well-

being. A variety of feedback processes make the temperature response to greenhouse

gases highly uncertain. The World Economic Forum (2021) identifies the resulting

increase in extreme weather events, a failure of climate action, and environmental

damages as the top three global risks by likelihood. The present paper explains and

quantifies the optimal policy response to structural climate change uncertainty and

temperature stochasticity. We provide a general analytic formula for the climate risk

premium and demonstrate its accuracy using a stochastic dynamic programming im-

plementation of the DICE model (Nordhaus & Sztorc 2013). We identify the different

risk premium channels and the structural importance of various model assumptions.

In particular, we show that structural uncertainty about the climate’s sensitivity has

different policy implications from temperature stochasticity, which is often used as a

proxy.

The Intergovernmental Panel on Climate Change (IPCC) no longer agrees on a

point estimate for the warming resulting from a doubling of carbon dioxide (CO2)

concentrations. The deterministic DICE model suggests slightly more than such a

doubling along the optimal path. The temperature response to a doubling of atmo-

spheric CO2 is called the climate sensitivity.1 The IPCC states that it is likely in

the range of 1.5◦C to 4.5◦C, and some probabilistic estimates still place substantial

mass on values several degrees higher (Stocker et al. 2013). How should we tax (or

cap) greenhouse gases today acknowledging this climatic uncertainty? What mecha-

nisms are driving a potential risk premium? How do the different channels compare

quantitatively? These are crucial questions we answer in this paper. To identify the

different channels, we develop a new method for simulating the optimal uncertainty

response using a deterministic model and we extend common precautionary savings

reasoning to a world where uncertainty propagates through economic production.

Reducing greenhouse gases is an investment into future capital. The capital is a

1The relation between the CO2 concentration and global warming is logarithmic and climate
sensitivity characterizes the absolute temperature increase resulting from a doubling of the CO2

concentrations. We are currently some 70% toward a doubling w.r.t. pre-industrial concentrations,
evaluating the different anthropogenic greenhouse gases by their 100 year global warming potential
CO2 equivalents.
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climate favorable for economic activity and human welfare. Leland (1968) and Kim-

ball (1990) teach us that a precautionary savings response to an uncertain capital

evolution is not driven by risk aversion but by prudence, the third moment of our

utility function; we can mitigate risk’s harm by saving if our risk aversion decreases

in wealth. In the typical precautionary savings setting, risk’s harm directly links to

the shock’s utility cost. The present setting is more complex. Uncertainty propagates

through the climate and the economy before translating into a utility impact. We

introduce a convexity and a change-of-convexity measure for economic production,

resembling Arrow-Pratt risk aversion and Kimball’s (1990) prudence. The precaution-

ary savings for climate depend on the interaction of these welfare and productivity

measures.

We distinguish between the structural uncertainty about the climate’s sensitivity

to CO2 and a merely stochastic evolution of global temperatures. Under uncer-

tainty about the climate’s sensitivity, risk aversion and damage convexity contribute

directly. In contrast, prudence delivers a negligible contribution to precautionary cli-

mate savings. This difference to the usual precautionary savings model is driven by

the fact that we have structural uncertainty about the way that each unit of CO2 in

the atmosphere translates into future warming. The biggest player for the climate

risk premium is the convexity of production in temperatures. This contribution is

absent in the response to a merely stochastic climate, which lacks the structural com-

ponent. This finding is important because models and empirical papers frequently

use stochastic temperature evolution as a proxy for structural uncertainty or even for

deterministic long-run temperature change. Yet, the economic response to each of

these scenarios differs substantially.

It is not possible to derive the risk premium’s exact formula for a generic dynamic

integrated assessment model of climate change incorporating optimal policy response.

A crucial contribution of our paper is the following insight; (i) a simplifying assump-

tion permits an analytic derivation of the risk premium and (ii) the quantitative

implications of the assumption are easily fixed ex-post. After the fix, our analytic

formula matches the numeric risk premium up to an error of just a few percent for

most scenarios and allows us to identify, distinguish, and quantify the different risk

channels, which is not possible in a purely numeric approach. The fix relies on deriving

a crucial response elasticity from the deterministic base model. To test our results,

we rely on a stochastic dynamic programming implementation of DICE, which re-
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lates closely to Kelly & Kolstad’s (1999) seminal contribution introducing stochastic

dynamic programming to the integrated assessment of climate change. Their paper

focuses on the time to learn the climate’s sensitivity, a reasoning further extended

by Leach (2007). Our analysis focuses on today’s optimal policy and distinguishes

the policy contributions from temperature stochasticity and structural uncertainty

governing climate policy.

Literature. Uncertainty assessments of climate change and their policy impli-

cations form a quickly growing body of literature. What sets our paper apart is (i)

a general analytic explanation of the policy impact of climate uncertainty, (ii) an

elaborate quantification of the policy response to uncertain climate sensitivity for a

variety of scenarios, and (iii) the connection of analytic insight and state of the art

quantification. In the closest contribution, Kelly & Tan (2015) investigate uncertainty

about climatic feedbacks in a numeric integrated assessment model with catastrophic

damages resulting from a fat-tailed probability distribution. Their results suggest

that the uncertainty effect derived from the fat tail is considerable in the first decade

but wears off quickly as learning shrinks the tail. Millner et al. (2013) evaluate welfare

loss under ambiguity about the climate sensitivity but do not analyze the impact on

climate policy. Daniel et al. (2019) find in a highly stylized implementation of DICE

with uncertainty over climate sensitivity that Epstein-Zin preferences can lead to a

decreasing rather than increasing tax trajectory, a finding we cannot confirm in our

annual time step and infinite horizon implementation.

Keller et al. (2004) and Lemoine & Traeger (2014, 2016a, 2016b) model abrupt

and irreversible changes in the climate’s sensitivity resulting from crossing an un-

known temperature threshold, using models with a single tipping point, permitting

for a domino-style tipping interaction, and looking at the implications of ambiguity

aversion. Rudik & Lemoine (2017) provide an excellent survey over the literature

of numeric stochastic integrated assessment modeling. The paper also implements

climate sensitivity uncertainty using a Smolyak grid approximation, finding a sur-

prisingly low risk premium. Ongoing work by Rudik et al. (2020) refines the learning

model of the earlier literature using a more sophisticated representation of climate

sensitivity and learning, once more using a Smolyak grid to curtail the numeric “curse”

of dimensionality.

A related strand of the literature analyzes the consequences of damage uncertainty

(Crost & Traeger 2014, Lontzek et al. 2015, Cai et al. 2015, 2016, Van der Ploeg &
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de Zeeuw 2018, Bretschger & Vinogradova 2018, Cai & Lontzek 2019, Rudik 2020) in

smooth and tipping scenarios. Another strand of literature compares the effectiveness

of different climate policy instruments under various uncertainties (Hoel & Karp 2001,

Newell & Pizer 2003, Kelly 2005, Karp & Zhang 2006, Fischer & Springborn 2011,

Karp & Traeger 2018, Pizer & Prest 2019). In particular, Karp & Zhang (2006) com-

pare taxes and quotas under learning about the relation between greenhouse gas con-

centrations and economic damages using a linear quadratic model. Valentini & Vitale

(2019) re-examine the shape of the “mitigation ramp” under risk sensitive preferences

using a linear-quadratic Gaussian control model. Karydas & Xepapadeas (2019) con-

nect the framework to asset markets and show that climate change should reduce the

holding of carbon intensive portfolios. Being great tools for various insights, these

linear quadratic approaches have a highly stylized representation of the economy and

the climate system and they are somewhat limited in their ability to model risk atti-

tude and non-linearities in the interaction between climate and economic production.

Golub et al. (2014), Heal & Millner (2014), Brock & Hansen (2018), and Berger &

Marinacci (2020) survey climate uncertainties and possible decision criteria. Kotlikoff

et al. (2021) analyze intergenerational financing constraints of optimal climate policy

in a stochastic overlapping generations integrated assessment model.

Pizer (1999) log-linearizes the DICE model in a semi-analytic approach evaluat-

ing the impact of (“one-shot”) uncertainty. Golosov et al. (2014) pave the way for

more complex closed-form integrated assessment models (IAMs) using an effectively

log-linear structure. Whereas their underlying assumptions eliminate non-trivial un-

certainty effects, the paper inspired a line of analytic and semi-analytic research of

uncertainty in IAMs. Traeger’s (2018) analytic integrated assessment model ACE

introduces the nonlinear temperature response to emissions and a general degree of

risk aversion, Hambel et al. (2021) develop a closely related model with a stylized

economy-CO2 response, and Van den Bremer & Van der Ploeg (2018) solve a related

model using perturbation theory. These three papers use a stochastic setting with

particular functional forms. Our paper will help to better understand and relate

different premia deriving from stochastic temperature change and structural uncer-

tainty about climate sensitivity. Li et al. (2016), Anderson et al. (2014), and von zur

Muehlen (2018) relax the von Neumann & Morgenstern’s (1944) axioms and intro-

duce a preference for robustness to escape the strong certainty equivalence of Golosov

4
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et al.’s (2014) framework and address model uncertainty and ambiguity.2

Several papers analyze the relation between growth uncertainty and optimal cli-

mate policy. Traeger (2014b) analyzes the role of (a potentially ambiguous) correlation

between uncertain growth and mitigation or adaptation projects in a stylized two pe-

riod framework from a discounting perspective. Jensen & Traeger (2014) study the

SCC under growth uncertainty in a simple stochastic integrated assessment model,

discussing the precautionary savings effect and the role of the damage function. Ex-

tending the analysis to Epstein-Zin preferences, they explain why growth uncertainty’s

impact on the SCC turns negative for elasticities of intertemporal substitution exceed-

ing unity, which are common in the long-run risk literature. In contrast, the present

paper shows that climate uncertainty’s risk premium remains positive also under these

preference specifications. Cai & Lontzek (2019) confirm Jensen & Traeger’s (2014)

numeric results in a full-complexity DICE implementation and combine them with

possible regime shifts in the damage function. Lemoine (2021) analyzes the role of

growth uncertainty emphasizing the roles of precautionary savings and an insurance

motive. Like Dietz et al. (2018) and Van den Bremer & Van der Ploeg (2018), the

author relates his finding to a capital-asset-pricing-type reasoning, emphasizing dif-

ferent correlations. Dietz et al. (2018) study the “climate beta” analytically in a

simple two-period model and then Monte-Carlo-simulate a variety of uncertainties

in DICE finding a positive “climate beta” that reduces the risk premium (though

not necessarily the SCC). Van den Bremer & Van der Ploeg (2018) introduce a va-

riety of “climate betas” corresponding to different, partly exogenous, risk channels.

Bansal et al. (2019) enrich the consumption-based long-run-risk asset pricing model

by temperature-triggered catastrophes, estimating the SCC from the capital market’s

response to temperature fluctuations.

2 A Generic Integrated Assessment Model

This section introduces a simple and yet general integrated assessment model of

climate change. It couples a growing world economy to a climate model through

greenhouse gas emissions and economic impacts of climate change (see Figure 1).

2Anderson et al. (2014) explore a linear relation between the economic growth rate, temperature
increase, and cumulative historic emissions. Both Li et al. (2016) and Anderson et al. (2014) combine
a (simpler) analytic model with a more complex numeric IAM for quantitative simulation.
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Section 2.1 introduces the formal representation and Section 2.2 gives a heuristic

derivation of the formula governing the optimal carbon tax, which we derive formally

in Appendix A.

2.1 Analytic Model Structure

Figure 1 presents a schematic of our model. The right side characterizes a standard

Ramsey growth model. World output is a function F (Kt, Tt, Et, t) of endogenous

capital Kt, atmospheric temperature Tt, carbon dioxide emissions Et, and a set of ex-

ogenous processes including labor and technology levels that depend on time t. The

temperature increase Tt in degree Celsius above 1900 levels reduces the economy’s

productivity. Output is spent either on consumption Ct or on capital investment. We

treat the economy’s carbon dioxide emissions as an input into the production process;

it is a reduced representation of an energy production sector whose carbon dioxide

emissions trade off with capital and labor. We show the equivalence to the abate-

ment setup employed in some integrated assessment model’s like DICE in Appendix

D.1. Emissions build up the stock of atmospheric carbon Mt. Atmospheric carbon

together with other (exogenous) greenhouse gases trap our planet’s outgoing infrared

radiation. The resulting shift in the planet’s energy balance causes an initial warming

and induces further feedback processes.

The climate sensitivity s measures the medium to long-run temperature increase

resulting from a doubling of pre-industrial atmospheric carbon dioxide concentrations.

Its best guess lies currently around 3 degree Celsius. The approximate “climate

change law” specifies that every further doubling (or fractions thereof) implies another

3 degree Celsius temperature increase (or fraction thereof).3 It takes decades to

centuries to reach a new equilibrium temperature.4 The change in temperature feeds

3Precisely, radiative forcing is logarithmic in the atmospheric CO2 concentration, and warming
is approximately proportional to radiative forcing. Climate sensitivity characterizes this proportion-
ality constant. Recent model comparison studies of scientific climate change models suggest that
the climate sensitivity is slightly lower for high than for low temperatures. A further assumption
of the model is that also the short term temperature increase is proportional to climate sensitivity
(though much smaller in magnitude). This assumption is a good approximation to models such as
DICE and Magicc (Traeger 2014a).

4The increasingly popular TCRE model (Dietz & Venmans 2019) uses an approximate canceling
of effects that stem from carbon removal in the atmosphere and warming delay to establish that
temperature responds quickly to cumulative emissions (along some emission paths). Here, we point
out that temperature adjustment to atmospheric concentrations takes time, which causes the major
uncertainty governing climate sensitivity. If the TCRE model was literally true rather than an

6
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back into economic production causing damages. Social welfare is the sum of per

period utility ut(Ct), which is discounted at the pure time preference factor β.

In summary, the social planner solves the Bellman equation

V (Kt,Mt, Tt, t) = max
Ct,Et

ut(Ct) + β Et V (Kt+1,Mt+1, Tt+1, t+ 1) (1)

subject to the equations of motion

Kt+1 = (1− δ)Kt + F (Kt, Tt, Et, t)− Ct

Mt+1 = Mt+1(Mt, Et) ≡ M(Mt, Et, t)

Tt+1 = Tt+1(Tt,Mt+1) ≡ T (Tt,Mt+1, s). (2)

At the present level of generality, each equation of motion can be subjected to stochas-

tic shocks. We are interested in uncertainty generated by equation (2), as a result

of climate sensitivity s being uncertain as well as stochastic temperature shocks. We

spell out two alternative characterizations of this uncertainty in Assumptions 1 and

1’.

We assume that today’s emissions add directly to the next period’s carbon stock:
∂M1

∂E0
= 1. Without this assumption, the SCC gains the additional factor ∂M1

∂E0
. We

slightly violate notation in using Mt for the stock of carbon in the atmosphere and

for the function M(·, t) describing its evolution over time. This notation enables us

to abbreviate more intuitively the change of the carbon stock in period t as a result

of a change of the carbon stock in period τ < t as

∂Mt

∂Mτ
=
∏t

i=τ+1
∂Mi

∂Mi−1
≡
∏t

i=τ+1
∂M(Mi−1,Ei−1,i−1)

∂Mi−1
.

We proceed analogously with temperature, abbreviating the change of the warming

level in period t as a result of a change of the warming level in period τ < t as

∂Tt

∂Tτ
=
∏t

i=τ+1
∂Ti

∂Ti−1
≡
∏t

i=τ+1
∂T (Ti−1,Mi,i−1)

∂Ti−1
.

Finally, we assume that the optimization problem has a well-defined solution and that

the discounted marginal value at period τ of a change in atmospheric carbon or tem-

perature at time t < τ approaches zero as τ approaches infinity: limτ→∞ βτ−t
Et

∂V
∂Mτ

∂Mτ

∂Mt

approximation, there would be no uncertainty about the climate sensitivity (it could be learned in
the blink of an eye). Unfortunately, there is huge prevailing uncertainty governing climate sensitivity.
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CO2 Capital Temperature 

Consumption Emissions 

Production 

Investment 

CS 

Social Welfare 

Figure 1: The main relations in the climate-economy model. Dashed rectangles
represent control variables. Solid rectangles depict the main state variables of the
system. Climate sensitivity (‘CS’) is uncertain. The model with learning represents
climate sensitivity by a Bayesian prior (2 state variables). Temperature is stochastic.

and limτ→∞ βτ−t
Et

∂V
∂Tτ

∂Tτ

∂Tt
. Our analytic results rely only on this generic model struc-

ture, where Assumptions 1 and 1’ in Section 3 restate the temperature’s equation of

motion (2) used for the derivation of the risk premium. Appendix D.1 summarizes the

details of our numeric DICE implementation as a special case of this general model

structure.

2.2 The Social Cost of Carbon

An optimal mitigation policy equates the current benefits from releasing a ton of CO2

with the present value of the future social damages from emitting a ton of CO2. These

damages are know as the social cost of carbon (SCC). We denote by ∂Mτ

∂E0
the change of

the carbon stock in period τ as a result of an additional ton of carbon emitted today.

The carbon stock change in period τ causes a greenhouse effect (direct radiative

forcing and feedbacks) increasing the temperature in subsequent periods t > τ by
∂Tt

∂Mτ
. The resulting change in future atmospheric temperature impacts the output

Yt = Ft(Kt, Tt, Et, t), causing a marginal damage of −∂Ft

∂Tt
. The output loss reduces

period t welfare proportional to u′
t(ct). Summing the discounted welfare loss over an

8
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infinite time horizon and translating it into present day consumption units results in

an analytic expression for the SCC.

Proposition 1. The social cost of carbon (SCC) of the generic integrated assessment

model is

SCC0 = −E0

∞∑

t=1

t∑

τ=1

βt u
′
t(ct)

u′
0(c0)

︸ ︷︷ ︸

consumption
discount
factor

∂Ft

∂Tt

∂Tt

∂Mτ

∂Mτ

∂E0
︸ ︷︷ ︸

marginal
emission
damage

. (3)

Under certainty, the optimal carbon tax is the SCC evaluated along the optimal tra-

jectory. In the stochastic setting, the optimal carbon tax evaluates equation (3) on a

decision tree where every period’s policy on every branch is optimized conditional on

past realizations.

We obtain a double sum because we take into account the quantitatively relevant

delay between initial radiative forcing and ultimate temperature response.5 Numeric

integrated assessment models usually calculate the SCC without relying on analytic

expressions, either by perturbing emissions (e.g. FUND) or relying on the software’s

ability to compute shadow values (e.g. DICE). Appendix A derives equation (3) from

the underlying Bellman equation. Our intuitive derivation kept policies constant.

The derivation based on the Bellman equation takes into account the optimal future

responses. The two results coincide (along the optimal trajectory) because of the

envelope theorem; along the optimal path the decision maker’s future response to

the marginal ton of emissions does not change the program’s value in first order and,

thus, the marginal value of an emission unit remains the same.

3 The Price of Uncertainty

This section presents an analytic formula for and interpretation of the SCC’s response

to uncertainty governing the climate’s sensitivity to greenhouse gas emissions. This

uncertainty results from a variety of feedback processes: more heat implies more

water vapor, which is itself an important greenhouse gas; higher temperatures melt

glaciers and ice caps reducing the reflectivity of our planet’s surface, further increasing

5Gerlagh & Liski (2018) and Traeger (2018) illustrate particular examples of such a double sum
and show that in special cases it can be represented in closed form inverting the transition matrices.

9



Pricing Climate Risk Jensen & Traeger

its uptake of solar radiation; soils currently subject to permafrost will release large

amounts of methane, a powerful greenhouse gas; other feedbacks change the vertical

temperature profile in the atmosphere and cloud formation again feeding back onto

our surface temperature. As a consequence of these feedbacks, the actual warming

resulting from a given greenhouse gas concentration is highly uncertain.

As a result of this uncertainty, a deterministic SCC formula by itself is of lim-

ited practical use. The Interagency Working Group on the Social Cost of Carbon

(2013) responded by simulating the underlying deterministic integrated assessment

models for a wide range of climatic responses, reporting both the average and the 95th

percentile of the resulting SCC. Yet, the optimal response has to be a single value

that anticipates the stochastic evolution of the future, and it generally differs from

the average optimal response across different deterministic worlds. We now derive a

formula that quantifies and interprets the SCC’s response to uncertainty. Section 3.1

reviews the precautionary savings concept of prudence and extends it to models with

economic production. Section 3.2 states the formula and discusses the different chan-

nels that increase (or decrease) the optimal carbon tax under uncertainty about the

climate’s sensitivity to greenhouse gas emissions. Section 3.3 shows the related but

distinct impact of atmospheric temperature fluctuations on the SCC.

3.1 Precautionary Motives and the Climate-Economy Inter-

action: Background

Climate sensitivity affects the climate (temperature response), which affects produc-

tion (economic response), which affects human well-being (welfare response). Based

on equation (3), a given year’s contribution to the current SCC is

u′
t

(
Ct(Tt s))

) [

−∂Ft

∂Tt
(Tt(s))

] [
∑t

τ=1
∂Tt

∂Mτ
(s)∂Mτ

∂E0

]

, where we explicitly marked the de-

pendencies on the climate sensitivity s. Starting from the back, a higher climate

sensitivity s maps an additional unit of emissions into a larger marginal temperature

increase ∂Tt

∂Mτ
(s). This effect tends to be linear in climate sensitivity (more below).

Second, a higher climate sensitivity raises the temperature level resulting from the

prevailing concentration of atmospheric greenhouse gases, i.e., Tt(s) increases. This

higher temperature level increases the marginal production damage resulting from an

additional unit of temperature increase ∂Ft

∂Tt
(Tt(s)). Third, higher temperature and

higher damages also imply a lower consumption level. A lower consumption level

10
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implies a higher welfare loss from a given marginal consumption reduction u′
t(ct(s)).

By Jensen’s inequality, uncertainty increases the SCC and the optimal carbon

tax if the right side of equation (3) is convex in the uncertain climate sensitivity.

Intuitively, such a convexity means that a high realization of the climate sensitivity

increases the social cost of a marginal emission unit more than a low realization

reduces this cost. Such reasoning is familiar from the precautionary savings literature.

In difference to a simple precautionary savings model, climate sensitivity affects the

right side of equation (3) through a variety of different channels. We now introduce

the terminology to discuss these uncertainty contributions.

Welfare response. We briefly review the intuition of the precautionary savings

model of Leland (1968) as spelled out by Kimball (1990). Assume we introduce

stochastic shocks to an agent’s return to savings. The risk averse agent dislikes these

shocks. But disliking shocks is not enough to change the behavior. The empirical

literature finds that (absolute) risk aversion decreases in wealth. Thus, the agent

can reduce the (utility-) harm resulting from the stochastic shocks by increasing her

savings and reaching a higher wealth level where she is less bothered by risk. Kimball

(1990) characterizes the agent’s decrease in risk aversion analogously to how Arrow

(1965) and Pratt (1964) characterize risk aversion; we abbreviate their definitions as

RRA = −
u′′(ct)

u′(ct)
ct and Prud = −

u′′′(ct)

u′′(ct)
ct.

Relative risk aversion (RRA) captures the curvature of the utility function, and (rel-

ative) prudence captures how risk aversion changes in the consumption level. Our

notation suppresses that RRA and Prud can vary with changes in consumption levels;

our quantitative application uses a constant relative risk aversion formulation, which

renders these preference measures independent of time-changing consumption levels.

Economic response. In the precautionary savings example, uncertainty only

affects the marginal utility of consumption (a direct well-being impact). To charac-

terize the impact on economic productivity, we define the second and third moment

of the production function in temperature analogously to Arrow-Pratt’s risk aversion

and Kimball’s prudence measures

Dam2 =
−∂2Ft

∂T 2
t

− ∂F
∂Tt

Tt and Dam3 =
−∂3Ft

∂T 3
t

−∂2F
∂T 2

t

Tt.

Dam2 measures the relative change of marginal damages−∂F
∂T

in temperature (damage

11
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convexity) and Dam3 measures the increase of such convexity with higher tempera-

tures. Again, our notation suppresses the various dependencies such as the prevailing

production and temperature levels.

Temperature response. To ease exposition, we take an assumption that follows

almost by definition of climate sensitivity and is satisfied in our DICE-based numeric

integrated assessment model (see equation 26 in Appendix D.2).

Assumption 1. The temperature evolution is linear in climate sensitivity s:

Tt+1 = γTt + sΓ1(Mt+1) + Γ2(t) + ǫt, (4)

where γ ∈ (0, 1), s is uncertain, Γ1 and Γ2 are real functions, and (ǫt)t∈IN is an iid

process of mean zero temperature shocks.

Climate sensitivity is the proportionality constant between temperature and the direct

greenhouse effect (radiative forcing): the radiative forcing characterizes the additional

net heat influx as a result of the greenhouse gases that slowly heat our planet.6

The AR(1) process in equation (4) captures that heating takes time and that the

temperature evolution is stochastic. Corollary 1 in Appendix B states the slightly

more general case arising in the absence of Assumption 1. As a result of the linearity

of the temperature evolution in climate sensitivity we do not have to define convexity

and prudence-type curvature measures for this direct temperature impact channel.

Investment and emission response. In deriving equation (3), the envelope

theorem ensured that a marginal shift between consumption, investment, and abate-

ment will not affect the welfare. Unfortunately, the impact of risk is non-marginal

and there is no convenient analogue to the envelope theorem when employing Jensen’s

inequality to the dynamic equations. We make the following assumption enabling us

to derive an analytic formula for the uncertainty’s impact on the optimal carbon tax.

Assumption 2. The decision-maker sets investment and emissions to the determin-

istically optimal levels.

The assumption limits the decision maker’s optimal response to uncertainty. Without

further adjustments, our formula in the next section would calculate the SCC’s risk

6More precisely, it characterizes the change in net heat influx if everything was kept at preindus-
trial levels. In response to the change in heat flows, a new equilibrium will eventually prevail where
temperatures are higher and in- and outflowing energy are once again in equilibrium.
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premium when the decision maker does not respond to uncertainty. Such a premium

is interesting in itself. It calculates the part of the social cost of carbon that a policy

maker misses if she relies on a deterministic model and sets policies accordingly. Once

the policy maker incorporates the optimal response to uncertainty, the risk premium

tends to be lower.7 Section 4 shows how to “fix” the quantitative implications of

Assumption 2 in order to derive the optimal carbon tax for a policy maker that

does respond to uncertainty. This quantitative adjustment has little impact on the

theoretical insights we are about to present.

Uncertainty conversion factors. We still have to translate the magnitude of

climate uncertainty into the resulting magnitude of the uncertainty striking the econ-

omy and individual consumption. We characterize the sensitivity of the consumption

level to a change in climate sensitivity using the elasticity

ǫc,s = −
dc

ds

s

c
> 0

and characterize the sensitivity of global average surface temperature to climate sen-

sitivity using the elasticity

ǫT,s =
dT

ds

s

T
> 0.

Our notation suppresses the dependencies (including time) of these elasticities. Ap-

pendix B (page 48) states closed-form expressions for these elasticities under As-

sumption 2 (and a generalization). Deriving these elasticities instead numerically

from the deterministic model will allow us to address the short-comings resulting

from Assumption 2.

3.2 Uncertain Climate Sensitivity

We now present our formula for the climate sensitivity risk premium. To focus on

the structural uncertainty, we assume that the temperature stochasticity shocks ǫt in

equation (4) are zero. The subsequent section derives the temperature stochasticity

premium. We set expected climate sensitivity to its best guess and introduce a

7It is intuitive that the optimal response lowers the risk premium, which is indeed what we find.
For the purpose of understanding uncertainty implications we insert the following warning. It is
intuitive that an approach based on Assumption 2 overestimates the cost of uncertainty. Yet, we are
not after the cost of climate uncertainty but after its policy impact, which depends on the asymmetry
of the marginal cost impact. More on it in Section 3.2.
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probability distribution over its true value. The precise best guess is irrelevant for

the general result discussed below. The uncertainty represents the subjective prior

over a true underlying climate sensitivity (epistemological uncertainty).

Proposition 2. Under Assumptions 1 and 2, uncertainty over climate sensitivity

increases the social cost of carbon contribution from a given period t if and only if

Xt(·) ≡ RRA ǫc,s
[
2

︸ ︷︷ ︸

direct
risk

aversion

+Prud ǫc,s
︸ ︷︷ ︸

welfare
prudence

+3Dam2 ǫT,s
]

︸ ︷︷ ︸

welfare
economy

interaction

+Dam2 ǫT,s
[
2

︸ ︷︷ ︸

direct
damage
convexity

+Dam3 ǫT,s
]

︸ ︷︷ ︸

economy
prudence

(5)

is greater than zero. Arguments and their period-dependence are suppressed.

Moreover, under a small risk approximation, the climate uncertainty premium is

∆SCC0 ≈
∞∑

t=1

t∑

τ=1

βt u
′
t(ct)

u′
0(c0)

︸ ︷︷ ︸

consumption
discount
factor

∂Ft

∂Tt

∂Tt

∂Mτ

∂Mτ

∂E0
︸ ︷︷ ︸

marginal
emission
damage

Var(s)

2(E s)2
︸ ︷︷ ︸

level of
uncertainty
(normalized)

Xt(·) . (6)

The proof in Appendix B derives the result from the underlying Bellman equation

and states as Corollary 1 the more general case when Assumption 2 is not met. The

total SCC today (t = 0) is the sum of the uncertainty premium ∆SCC0 and the

deterministic contribution (equation 3 evaluated at the expected climate sensitivity).

Equation (6) shows that the formula for the climate uncertainty premium ∆SCC0

contains the same summation over future impacts as the deterministic SCC. Once

again, we translate the future impacts into present day consumption equivalents,

evaluating the marginal impact of a ton of CO2 released today onto the future carbon

stocks, temperatures, production levels and marginal utility. The final two terms in

equation (6) specify the uncertainty impact. First, the cost of uncertainty grows in

the (expectation-normalized)8 variance of the climate sensitivity s. Holding expected

sensitivity fix, the contribution increases proportionally to the variance of our uncer-

tainty about climate sensitivity, a result of our small risk approximation that neglects

higher order terms. Second, the term abbreviated Xt(·) characterizes the core uncer-

tainty contribution to climate policy per unit of the normalized uncertainty. We now

explain these contributions spelled out in equation (5).

8The normalization by expected climate sensitivity is a result of expressing the core formula Xt(·)
in terms of relative risk aversion, prudence, and damage measures as well as elasticities.
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Risk aversion. The first message of equation (5) is that risk aversion matters

directly (2RRA). This finding is an exception rather than the rule in precautionary

savings. The contribution reflects not only decreasing marginal utility (RRA), but

also of the structural uncertainty governing climate sensitivity. It results from the

interaction of two simultaneous and mutually aggravating impacts of climate sensitiv-

ity, which governs both the level of warming resulting from the prevailing atmospheric

CO2 concentration and the marginal warming contributed by emitting an additional

ton of carbon.

In detail, a high realization of climate sensitivity jointly increases the marginal

warming and lowers the consumption level by increasing the base level of warming.

As a result, the higher marginal warming strikes at a lower consumption level and,

thereby, at increased marginal costs. For a low realization of climate sensitivity, the

marginal warming reduction will be enjoyed at a higher consumption level, resulting

in a lower marginal benefit. Such a lower marginal benefit from a low realization of

climate sensitivity does not compensate for the costs of a high realization, creating

a climate policy risk premium. The elasticity ǫc,s translates the high or low climate

sensitivity realization into the corresponding consumption impact. The relative risk

aversion measure RRA characterizes the difference in marginal consumption value be-

tween the good state (high consumption) and the bad state (low consumption). Our

reasoning above employs Assumption 1, i.e., that climate sensitivity directly charac-

terizes the warming factor in degree Celsius. A non-linear relation between climate

sensitivity and warming slightly alters the reasoning (see Corollary 1 in Appendix B).

(Welfare-) Prudence. The second contribution in equation (5) is the common

precautionary savings term, applied to an investment into a better climate. It oper-

ates directly through the climate sensitivity’s uncertain impact on the base warming.

The elasticity ǫc,s translates the uncertain warming into the corresponding consump-

tion variation. By abating more CO2, a prudent decision maker can increase future

expected consumption and, thereby, reduce risk aversion and the welfare impact of

uncertainty over the future climate.

Damage convexity. Risk aversion and prudence explain how the welfare function

makes a policy maker precautionary. The moments Dam2 and Dam3 characterize how

considering economic production impacts turns optimal policy precautionary. The

term 2Dam2 in equation (5) captures a direct impact of the damage convexity and

its intuition resembles that of the direct risk aversion contribution. In particular,
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it is not merely the convexity of damages giving rise to this contribution, but its

interaction with the structural nature of the uncertainty.

Damage convexity captures that the first degree of warming is less damaging

(sometimes even considered beneficial) than the second degree; additional degrees of

warming are widely believed to become far more damaging. A high realization of

climate sensitivity increases both the temperature level resulting from the prevail-

ing atmospheric CO2 and the marginal temperature increase from an additional ton

released today. The larger marginal warming strikes production at a higher tempera-

ture level and, thus, causes a greater loss (convexity of damages). The low realization

reduces the marginal warming but cannot compensate for the damages of a high real-

ization because it relieves the economy at a low temperature level where the marginal

warming is less harmful.

Economy-prudence. The “economy-prudence” term proportional to Dam3 trig-

gers a precautionary policy if the damage convexity increases in temperature. It is

the real-economy analogue to the standard precautionary savings argument. The

convexity of economic production in temperature implies an expected production loss

under uncertainty. If this convexity increases in temperature, then a policy maker has

an additional incentive to keep temperatures down. We note that damages are a bad

and therefore an increasing convexity in damages plays the same role as a decreasing

convexity of welfare.

It is a priori unclear whether the damage convexity increases in the temperature

level. Physical damages are limited by total production or at least by the capital stock.

Therefore, we expect the damage convexity to eventually fall and even turn concave.

Even in the case of optimal climate policy, and correspondingly low temperature

levels, we will find that the sign of Dam3 changes between different versions of the

DICE model.

Welfare-economy-interaction. Finally, the interaction of risk aversion with

the damage convexity (3 RRADam2) results in a precautionary motive. As a result

of convex damages, the policy maker faces an expected loss from uncertainty. The

risk averse decision maker values this loss more severely at a lower consumption

(high temperature) level than at a higher consumption (low temperature) level, which

creates an additional incentive to reduce future temperatures.

In the case of risk neutrality, the risk premium contributions are limited to the

last two terms in equation (5), i.e., those proportional to the damage convexity and
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its change in the temperature level.

3.3 Temperature Stochasticity

Temperatures fluctuate naturally from year to year and on larger time scales. The

empirical literature employs such fluctuations as an approximation to climatic change

to estimate economic damages. Propositions 1 and 2 establish how the fundamental

drivers of the response to climate change differ between deterministic climate change

and climate change uncertainty.9 The present section explains how and why also the

economic response to stochastic temperature fluctuations differs fundamentally from

both of the earlier responses.10

Temperature stochasticity affects the level of warming in future periods but not

the marginal warming resulting from the additional ton of carbon we release today.

As a consequence, the followig proposition is closer to the usual case of precautionary

savings. Here, the elasticity ǫc,T translates temperature change into its consumption

impact. The subsequent proposition focuses on the additional contribution to the

SCC from the stochastic evolution of global temperatures, keeping climate sensitivity

fixed.

Proposition 3. Under Assumptions 1 and 2, temperature stochasticity increases the

social cost of carbon contribution from a given period if and only if

Zt(·) ≡ RRA ǫc,T
[
Prud ǫc,T
︸ ︷︷ ︸

welfare
prudence

+ 3Dam2
︸ ︷︷ ︸

welfare
economy

interaction

]
+Dam2 Dam3
︸ ︷︷ ︸

economy
prudence

(7)

is greater than zero. Arguments and their period-dependence are suppressed.

Moreover, under a small risk approximation, the temperature stochasticity contribu-

9Lemoine (2020) emphasizes this distinction and develops a structurally inspired estimate of
damages under a stochastic temperature evolution.

10Climate change mitigation is an action that should be coordinated globally. Yet, also at the
local level, farmers, businesses, and regional powers take precautionary actions in the face of known
changes, an uncertain future, or stochastic temperature fluctuations. Instead of (or in addition to)
investing into the global capital “low CO2”, they invest into sea walls, infrastructure, irrigation, crop
refinement, air conditioning, relocation, and more. In addition, they respond to uncertain policy. A
similar message to the one we derive here for the global mitigation response also holds at the local
level; actors respond differently to deterministic and uncertain change, and they respond differently
to stochastic fluctuations.
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tion is

∆̂SCC0 ≈
∞∑

t=1

t∑

τ=1

βt u
′
t(ct)

u′
0(c0)

︸ ︷︷ ︸

consumption
discount
factor

∂Ft

∂Tt

∂Tt

∂Mτ

∂Mτ

∂E0
︸ ︷︷ ︸

marginal
emission
damage

1− γ2t

1− γ2

︸ ︷︷ ︸

intertemporal
temperature
correlation

Var(ǫ)

2(ETt)2
︸ ︷︷ ︸

level of
uncertainty
(normalized)

Zt(·). (8)

Equation (7) shows that the (welfare-) prudence channel continues to contribute to a

precautionary climate policy. Similarly, the economy-prudence channel contributes.

Finally, the interaction of risk aversion and damage convexity continues to contribute.

Equation (7) also shows that the direct role of risk aversion and the damage convexity

drop out for the temperature stochasticity based risk premium. Section 4 will show

that this crucial difference to equation (5) eliminates the strongest contributor to the

premium observed in the case of an uncertain climate sensitivity.

The temperature shocks follow an iid process. While the shocks are independent,

the temperature realizations in different periods are correlated because of tempera-

ture’s autoregressive nature. As a result, the stochasticity premium picks up the new

factor 1−γ2t

1−γ2 in equation (8). It relates the variance of the shock-realization to the

mean temperature realization in a given period. We note that, despite this appar-

ent multiplier, the variance of temperature stochasticity and its contributions to the

overall risk premium are small when compared to the variance and contributions of

the uncertainty premium.

Proposition 3 offers interesting insights for reviewing some of the literature. The

first generation of analytic integrated assessment models uses the risk-neutral linear-

quadratic model building on Weitzman’s (1974) prices versus quantities to evaluate

policy instruments for stock pollutants Hoel & Karp (2002), Karp & Zhang (2006),

Newell & Pizer (2008), Zhang (2012), Weitzman (2018), Karp & Traeger (2018), Pizer

& Prest (2019), Heijmans & Gerlagh (2019). Propositions 2 and 3 emphasizes that

their policy recommendations rely on a knife-edge role of uncertainty. These models

compare the welfare across different policy regimes relying on the principle of certainty

equivalence; unlike welfare, the optimal policy level does not respond to uncertainty.

First, these models assume risk neutrality eliminating the risk aversion and prudence

contributions to the risk premium. Second, these models assume quadratic damages

eliminating the “economy-prudence” effect that depends on the change of the damage

convexity. Finally, they assume a stochastic evolution of future climate instead of

structural uncertainty eliminating the direct contribution of the damage convexity
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(Proposition 3 instead of 2). As a result, uncertainty does not change the optimal

climate policy levels. These models compare the welfare loss under uncertainty across

policy instruments; this welfare loss still depends on the damage convexity.

More recently, the second generation of analytic integrated assessment models

builds on Golosov et al.’s (2014) breakthrough in modeling more complex economy-

climate interactions. Golosov et al. (2014) introduce uncertainty, but their model is

linear in all the relevant states so that uncertainty has no impact, neither on welfare

nor on policy. Most of the literature following Golosov et al. (2014) do not include

temperature. Traeger (2018) and Van den Bremer & Van der Ploeg (2018) gener-

alize their model including an explicit temperature model and a general degree of

risk aversion. These models embed a form of structural uncertainty into a stochastic

framework. We refer to Traeger (2018) for a discussion of translating a Bayesian

learning model (epistemological uncertainty) into a simplified stochastic setting. The

models show hybrid contributions between our equations (3) and (7). E.g., Van den

Bremer & Van der Ploeg (2018) solve their model for the leading order impact using

perturbation theory, capturing a stochastic version of our damage convexity contri-

bution.

Both of these papers also introduce a skewness of the temperature shocks that

mimics the right skew of climate sensitivity. As a result, they obtain an additional

“skew-amplification” of the risk premium. Corollary 2 at the end of Appendix C

generalizes Proposition 8 to a modified temperature evolution of the form

Assumption 1’. The temperature evolution is:

Tt+1 = γ Tt + sΓ1(Mt+1) + Γ2(t) + Γ3(ǫt) (9)

where γ ∈ (0, 1), s is potentially uncertain, Γ1, Γ2, and Γ2 are real functions, and

(ǫt)t∈IN is an iid process of mean zero temperature shocks.

Equation (9) introduces the transformation Γ3(·) of the shock ǫt. As we show in

Corollary 2, under such a skewed shock distribution, the stochasticity premium in

equation (8) picks up a normalized measure of the convexity of Γ3 that resembles

the Arrow-Pratt risk aversion and the damage convexity measures. This measure

for skewness
Γ′′

3
(0)

Γ′

3
(0)

Tt contributes an additional term to the stochastic risk premium in

equation (7) that interacts with risk aversion and damage convexity:

TtΓ
′′
3(0)

Γ′
3(0)

[RRA ǫc,T +Dam2] .
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Corollary 1 at the end of Appendix B states a corresponding result if temperature

dynamics are non-linear in climate sensitivity.11

4 Quantification

The present section quantifies the climate risk premium in a DICE-based recursive

stochastic dynamic programming IAM and compares the results to an evaluation

of our formulas. Appendix D presents the details of our numeric implementation,

which solves the stochastic infinite horizon fixed-point problem using a Chebychev

approximation of the value function. Production, growth, benefits of emissions, and

climate damages are all based on Nordhaus & Sztorc’s (2013) DICE 2013 model.12

DICE uses a quadratic damage function D(T ) = aT 2 specifying the percentage loss of

(potential) world output as a result of a temperature increase T above preindustrial

levels. Temperature follows equation (4) with Bayesian updating, and the CO2 dy-

namics are slightly simplified w.r.t. DICE, also reducing the exaggerated sluggishness

of DICE’s carbon cycle (Traeger 2014a, Van der Ploeg et al. 2020). Given our focus

on uncertainty, our baseline scenario uses constant relative risk aversion of RRA = 2

instead of Nordhaus’ pick of RRA = 1.45 for a deterministic world. We estimate

temperature stochasticity from GISTEMP (2018), and use a variance of 3 for our

climate sensitivity prior, which is the rounded proxy to the variance of a large set of

climate sensitivity estimates summarized by the Intergovernmental Panel on Climate

Change (Stocker et al. 2013).

Our robustness scenarios vary time preference, risk aversion, and damage spec-

ifications in various ways. In addition, we include a scenario that adjusts DICE’s

economic parameters to match the 2019 Penn World Tables (Feenstra et al. 2015),

updating global purchasing power parity output, capital-output ratio, rate of return,

11Whereas it is easy to introduce skewness to the stochastic process, it is much harder to introduce
skewness to the structural uncertainty about climate sensitivity and maintain a consistent Bayesian
learning model. Kelly & Tan (2015) have done so in a fat-tail setting with conjugate priors and
approximate Bayesian updating, and ongoing work by Rudik et al. (2020) forgoes the conjugate
prior setting by approximating a wider class of probability distributions and using a Smolyak-grid
to handle the additional state variables.

12We prefer the 2013 vintage of DICE over the 2016 version because (i) Van der Ploeg et al. (2020)
show that its carbon cycle performs substantially better than the 2016 version when compared to
scientific models used by the Stocker et al. (2013) and (ii) we consider the other major update of
DICE 2016, a sharp initial decline in the rate of technological progress descriptively unconvincing.
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and investment rate.13 Section 4.1 presents a preliminary evaluation of our analytic

formula, motivating a simple adjustment of the temperature elasticity to climate sen-

sitivity ǫT,s. This adjustment reintroduces the decision maker’s optimal response to

uncertainty, which we neglected by Assumption 2. Section 4.2 discusses the total risk

premium for different scenarios, and compares the stochastic programming results

to those of our formula. Section 4.3 analyzes the different risk channels for selected

scenarios.

4.1 Raw Formula Result and Policy Response Adjustment

Formula, Unadjusted Result. Our unadjusted – or “raw” – formula-based risk

premium evaluates the sum of equations (6) and (8). For this purpose we evaluate the

formulas along the path where climate sensitivity and temperature stochasticity take

their expected values of 3◦C and 0◦C, respectively. We find an overall formula-based

risk premium of 19.0 USD/tC, of which temperature stochasticity makes up a mere

25 cents. We depict the composition of the contributions from climate sensitivity

uncertainty (equation 5) in Figure 2. The left graph presents the contributions to

the 2020 SCC from a given future period. The maximal contribution to the risk

premium derives from the second half of the present century. The contributions

increase because uncertainty unfolds over time, but they eventually decrease again

because of discounting. The right graph depicts the cumulative contribution over

the decision maker’s time horizon. With our baseline discounting, the policy maker

will not worry about the risk imposed onto a future that is more than a couple of

centuries away. We note that discounting is not merely a consequence of the annual

rate of pure time preference of 1.5%, but also of growth-based discounting because

future generations will be richer. We will discuss and vary these assumptions in the

Section 4.2.

Dominant Channel. The striking insight from Figure 2 is that the contribution

directly proportional to the convexity of damages contributes by far the most to the

13The Penn World Tables yield an aggregate 2019 world output of approximately 125 trillion USD
(purchasing power parity), which is substantially higher than any DICE vintage. We adjust the
capital share from DICE’s 30% to 43% in order to replicate the PWT’s substantially higher capital
output ratio of 4.35. We also reduce the rate of decline in exogenous technological progress and
adjust the initial growth rate to better match PWT’s 10 year trend. Given these changes, our choice
of RRA=3 (keeping ρ = 1.5%) approximately matches the PWT’s much higher rate of return of
over 10% as well as the investment rate of 27.5%.
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Figure 2: Contributions of climate sensitivity uncertainty to the SCC based on Proposition 2
for our baseline calibration of DICE 2013. The left panel shows the contributions to the
SCC in 2020 from a given year in the future, whereas the right panel shows the cumulative
contributions corresponding to the depicted time horizon.

SCC’s risk premium and a precautionary emission reduction. That term results from

the structural nature of the uncertainty and is absent in the usual precautionary

savings argument. This dominant contribution is also absent in models that merely

represent uncertainty about future temperatures by a stochastic shock process. It

arises only if we take into account that uncertainty about climate sensitivity governs

both the base warming resulting from the prevailing atmospheric CO2 as well as the

marginal warming from a ton of carbon released today. The next biggest contributors

are the direct risk aversion effect and the interaction of risk aversion and damage

convexity. Both, the (welfare) prudence and the economy-prudence effect contribute

essentially zero to the uncertainty premium.

Numeric Dynamic Programming Result. Comparing our risk premium to

that of the recursive stochastic DICE implementation we find that we overestimate the

premium. In contrast to the formula’s 19 USD/tC, the stochastic numeric model finds

a total premium of only 15.8 USD/tC (and 24 cents for only temperature stochas-

ticity). Given our Assumption 2, this result might not be surprising. Our formula

assumes that present and future policy makers do not adapt their optimal consump-

tion and mitigation decisions to the presence of uncertainty. It therefore calculates

the SCC if policy responds to the expected change but not to uncertainty and actual

future realizations. By adapting decisions to the presence of uncertainty, society can
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lower the welfare costs of uncertainty. Optimal policy depends on the uncertainty’s

impact on marginal rather than absolute welfare. It is therefore only intuitive but

not obvious that this reasoning carries over to the risk premium on climate policy.

We will now try to get a handle on the policy maker’s uncertainty response.

Formula adjustment to incorporate policy response. Figure 2 shows that

the contribution from risk aversion and prudence is small. Thus, the wedge between

the numeric results and the formula is most likely driven by a limited policy response

in connection to the damage function related contributions. These terms rely on the

elasticity ǫT,s =
dT
ds

s
T
, which captures the temperature response to a change in climate

sensitivity, so far assuming that policy is irresponsive. Yet, if climate sensitivity turns

out high, optimal policy will strengthen and partially offset the warming from an

increased climate sensitivity.14

Figure 3 quantifies this reasoning. The solid black line depicts the elasticity as-

suming away a policy response (Assumption 2). The dashed blue line incorporates

the policy response using the deterministic model; it calculates the actual model

elasticity based on a small variation of climate sensitivity (a tenth of a degree) al-

lowing the policy maker to respond optimally. The red dash-dotted line repeats this

experiment in the stochastic model.15 We find that, indeed, Assumption 2 overes-

timates the elasticity for the second half of the century and beyond, including the

periods that are contributing most strongly to the risk premium. Conveniently for

the practitioner, the actual elasticities hardly differ between the deterministic and

the stochastic model. Thus, we can easily improve our formula by using the elasticity

derived from a numeric simulation of the deterministic model without the need for the

far more expensive stochastic model. We will present results for the original (“raw”)

formula, neglecting the policy response, and for the adjusted formula:

14Whereas the elasticity directly captures the effect of the policy response, the terms Dam2 and
Dam3 merely evaluate the moments of the damage functions. If these moments change substantially
between the deterministically optimal path and the uncertain path, then these terms can cause an
error as well. Figure 3 and the subsequent paragraph demonstrate that merely fixing the direct policy
response term, the elasticity, already adjusts the formula’s results to mostly match the stochastic
dynamic programming results.

15Here, we calculate ǫT,s = dT
ds

s
T

by changing both expected and true climate sensitivity by a
tenth of a degree and assuming that realized temperature shocks are zero. True climate sensitivity
and actual shocks are unkown to the decision maker, see Appendix E.2 for details. In the case of
uncertainty, we evaluate the elasticity along the path of expected realizations.
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Figure 3: Elasticity of the temper-
ature response to changes in climate
sensitivity.
(i) solid line: without optimal policy
response (Assumption 2);
(ii) blue-dashed line: including opti-
mal policy response in the determin-
istic model;
(iii) red-dash-dotted line: including
optimal response in the stochastic
model.

The adjusted formula uses the result in Proposition 2, but evaluates the

temperature elasticity to changes in climate sensitivity ǫT,s =
dT
ds

s
T
numer-

ically, incorporating the policy maker’s optimal response under certainty.

Using this simple adjustment, our analytic formula results in a total risk premium of

15.6 USD/tC, a mere 1.7% error with respect to the risk premium of the stochastic

dynamic programming model (and of 0.3% with respect to the overall SCC). For our

baseline run, evaluating the elasticity merely along the expected path works well.

For other scenarios, in particular those changing the damage function, we use the

average response across two different (deterministic) scenarios to calculate ǫT,s, one

with a high and one with a low realization of climate sensitivity. Results increasing

accuracy by averaging two response paths are marked by an asterix in Table 1.16 We

emphasize that we merely relax Assumption 2 in one place where it is (i) easy to do

and (ii) quantitatively most relevant. Relaxing the assumption in the full dynamic

derivation would make the formula intractable and not particularly insightful.17

16We use the two Gaussian quadrature nodes and weights of the climate sensitivity distribution.
Gaussian quadrature picks discrete nodes and weights to approximate the moments of a continuous
distribution. The expectations calculated from two Gaussian nodes already match the first 4 mo-
ments of a distribution exactly. We only use them to calculate the elasticity ǫT,s from two different
realizations of climate sensitivity in a deterministic model.

17Our simple elasticity adjustment together with Proposition 2’s formula does a perfectly adequate
job in approximating the risk premium and our emphasis is on insight and simplicity, given risk effects
are already a bit more intricate to interpret. We note that it is straight forward to calculate the
consumption elasticity to climate sensitivity from the deterministic model in a similar way, but we
neglect it given the small magnitude of the risk and prudence contributions. The proof of Proposition
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4.2 Quantifying the Risk Premium

Baseline. Table 1 presents the overall climate risk premium for our baseline calibra-

tion and for variations of the key parameters and functional forms. We find that our

adjusted formula performs well for most scenarios. The climate risk premium of our

baseline scenario is 16 USD/tC, which is about one quarter of its deterministic value.

The low observed risk-free interest rates suggest that an annual rate of pure time

preference of ρ = 1.5% might be a somewhat high pick. Reducing it to the median

estimate of the recent expert survey by Drupp et al. (2018), ρ = 0.5%, increases the

risk premium to 22 USD/tC, but slightly decreases the risk premium as a fraction of

the deterministic SCC. Our major update of DICE to match the 2019 Penn World

Table reduces the absolute risk premium and SCC as a result of matching a higher

rate of return, implying higher discounting. In relative terms, the risk premium in-

creases, which might not be surprising as we increase risk aversion to RRA = 3 to

match returns. Without touching the damage convexity or the fundamental prefer-

ence structure, we find a risk premium of 21-28% or approximately one quarter of the

deterministic SCC.

Damage Specification. The most substantial changes of the (relative) risk

premium derive from changes in the damage function, which is in line with our initial

quantification of the different risk channels in Section 4.1. DICE 2013’s damage

specification D(T ) = aT 2 assumes that the world loses a = 0.266% of potential

output at a 1◦C warming (today) and nine times as much at a 3◦ warming (quadratic

damages). Howard & Sterner’s (2017)’s meta analysis of damage estimates suggests

five times those damages, somewhat in agreement with a recent survey among climate

scientists and economists by Pindyck (2020). Howard & Sterner’s (2017)’s preferred

estimate is a loss of a = 1.15% of potential output at a 1◦C warming increasing

quadratically in temperature just as in the DICE model. Under such an increase of

the damage magnitude, the risk premium increases to approximately one third of the

deterministic SCC.

Several authors have suggested that damages might be much more convex than

assumed in these quadratic specifications (e.g. Weitzman 2012, Millner 2013). Chang-

ing damages to a cubic formulation, Dcub(T ) = acubT 3, we adjust the linear coeffi-

cient acub such that both functions imply the same damages at a 2.5◦C warming, the

2 also discusses a simple analytic adjustment of the consumption elasticity to climate sensitivity, see
the discussion of the additional parameter χ in ǫc,s = χ dc

ds
s
c
in Appendix B.
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Scenario
Risk Premium (USD/tC) Analytic Formula Full Stochastic Fraction

Raw Adjusted Error Model Fraction of Cert

RRA=2, ρ = 1.5, DICE13 19.1 15.6 1.7% 15.8 1.6% 26%
RRA = 1.45 29.8 21.3 0.7% 21.4 1.4% 21%
PRTP ρ = 0.5 34.3 22.6 2.1% 23.0 2.1% 21%
Update PWT 2019 (RRA=3) 13.7 12.7 5.2% 13.4 2.2% 28%

DICE 2007 Damages 16.0 13.4∗ 2.8% 13.0 0.4% 21%
Howard & Sterner Damages 100 74.4∗ 8.1% 80.9 6.7% 35%
Cubic Damages 70.8 46.8∗ 3.8% 48.6 8.7% 76%
Cubic Damages, ρ = 0.5 122 71.2∗ 1.5% 70.1 10.6% 63%

Epstein-Zin: η = 2, RRA = 6 26.4 21.8∗ 10.1% 19.8 3.7% 32%
Epstein-Zin: η = 2

3
, RRA = 6 87.7 57.5∗ 12.1% 51.3 5.7% 20%

Table 1: Total risk premium for formula without policy response, with policy response
adjustment, and from the recursive dynamic programming model. The error column spec-
ifies the deviation of the adjusted formula from the numeric solution. The column on the
right presents the relative risk premium, i.e., the risk premium relative to the deterministic
SCC based on the full stochastic model. The asterix ∗ denotes results using two Gaussian-
quadrature nodes to calculate the temperature elasticity ǫT,s instead of merely using the
expected climate sensitivity.

main calibration point of Nordhaus’ DICE model. Damages are initially smaller, but

eventually larger, at least with some probability, compared to the baseline. In this

scenario, the risk premium increases to 76% for our base specification and to 63% in

the case of the reduced time preference. Here, our simple formula adjustment would

imply a an error of over 20%, substantially underestimating the risk premium. Eval-

uating the elasticity ǫT,s for a high and a low realization of the climate sensitivity

substantially improves the formula’s accuracy.

Risk Preferences. Finally, the table varies the decision maker’s risk aversion.

Merely reducing RRA = 2 back to DICE’s original value of 1.45 reduces the relative

premium to about 20%, but increases the absolute risk premium. In the standard

economic model, the risk aversion RRA serves two purposes. First, it characterizes

the decision maker’s risk aversion. Second, it characterizes the decision maker’s desire

to smooth consumption over time. Because the world economy is growing over time,

this second effect of RRA translates into growth discounting; the weight on the future

increases when we lower the desire to redistribute from the rich future to the poor

present. As a result, the concern for climate change and the risk premium increases

despite the reduction in risk aversion. We observe the same finding, but in the
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opposite direction, in the scenario matching Penn World Table data, where the risk

aversion increases; the relative premium increases but the absolute premium and SCC

fall.

Epstein & Zin (1989) preferences disentangle the concerns for consumption smooth-

ing and for risk aversion. A large branch of the asset pricing literature shows that such

preferences also substantially improve the explanation of observed discount rates and

risk premia in asset markets (Vissing-Jørgensen & Attanasio 2003, Bansal & Yaron

2004, Bansal et al. 2010, Chen et al. 2013, Bansal et al. 2012, 2014, Collin-Dufresne

et al. 2016, Nakamura et al. 2017).Table 1’s Epstein-Zin specifications increase risk

aversion without simultaneously reducing the desire to smooth consumption over

time. Based on the literature cited above, we increase risk aversion to RRA = 6.

In this specification, the increase in risk aversion also increases the relative risk pre-

mium, which is now over 30%. However, the cited literature on long-run risk also

suggests that Epstein-Zin preferences should use a higher elasticity of intertempo-

ral substitution (lower aversion, η = 2
3
), which reduces the risk premium back to

20%. The premium is large in absolute terms, but the higher intertemporal elasticity

reduces the growth-based discounting and substantially increases the deterministic

SCC. The large positive risk premium contrasts sharply with the impact of growth

uncertainty on optimal climate policy studied in Jensen & Traeger (2014) and Cai

& Lontzek (2019), who find a negative risk premium under the same increase in the

elasticity of intertemporal substitution under Epstein-Zin preferences. The difference

arises because of the “dual impact” of the structural climate sensitivity parameter.

Our analytic formula performs worse for Epstein-Zin preferences because it does not

account for the recursive evaluation structure of such preferences.18

Policy Response. The table confirms that omitting the policy response results

in a higher risk premium for all scenarios. The difference between Table 1’s “Raw”

and “Full Model” columns characterize the cost reductions achieved by responding

optimally to climate uncertainty. Per ton of carbon emitted, the savings are by far

the largest in the case of cubic damages under a low rate of pure time preference (50

18Our formula can disentangle risk aversion entering the risk premia Xt(·) in equation (5) and
Zt(·) in equation (7) from consumption smoothing, which enters the other terms of equations (6)
and (8). We obtain the analytic formula only by omitting the recursive structure of Epstein-Zin
preferences. A recursive evaluation tends to imply substantial premia for an early resolution of
uncertainty. Epstein et al. (2014) show that these might be unreasonably high. A nice feature of
the formula is that it does not involve such premia.
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USD). In the baseline, the difference is merely a few dollars, and in the case of our

Penn World Table match the difference is negligible. Also in relative terms the impact

of an optimal policy response varies widely. The impact is highest for low discounting

and high or more convex damages, both of which trigger more responsiveness to

changes in long-run warming (climate sensitivity).

Expected Climate Sensitivity and Variance of the Prior. Figure 4 shows

how the baseline’s risk premium varies in response to the expected climate sensitivity

and the Bayesian prior’s variance (black lines). It also graphs these dependencies for

the scenario with cubic damages (red lines). Our formula’s risk premium increases

linearly in the variance as a result of the small risk approximation. Figure 4, on the

left, shows that the SCC’s risk premium increases linearly also in the Bayesian prior’s

variance of the numeric model. It is comforting to see that this linearity still holds

for large risk, despite the model’s non-linearities. Our normal distribution favors this

result, but it enables us to implement a consistent Bayesian learning model as part

of our stochastic dynamic programming implementation. Under DICE’s quadratic

damages, the risk premium increases approximately 5 USD/tC per unit variance.

Under cubic damages, it increases three times as steeply.

The right graph of Figure 4 shows that a higher expected climate sensitivity does

not necessarily increase the SCC’s risk premium. For quadratic damages, the pre-

mium stays mostly constant, decreasing slightly as the expected climate sensitivity

increases. This result might seem surprising, at least preceding the discussion in Sec-

tion 3.2. Section 4.1 already derived that the dominant contribution in the baseline

is proportional to damage convexity. In a quadratic model, the relative convexity

measure Dam2 is independent of the warming level.19 Under a cubic damage spec-

ification, the convexity increases in the expected warming level. The next section

discusses the different risk channels for selected scenarios in more detail.

Related Quantifications. Kelly & Tan (2015) find a risk premium of 24% using

RRA = 1.5 and a much higher rate of pure time preference of 5% in combination

with fat tails. Rudik & Lemoine (2017) find a risk premium of 1% using a time

19That the line is almost exactly constant also relies on the normalization factors and the response
elasticities. They vary, but in ways that mostly offset each other. We note that the absolute level of

abatement expenditure as a result of uncertainty increases with a higher expected climate sensitivity.
The deterministic SCC is already higher under a higher expected climate sensitivity, and adding
(less) additional units of abatement at the higher abatement cost comes at a higher additional
expenditure.
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preference of 1.5% (and of 10% in the absence of learning). Both papers rely on DICE-

based recursive stochastic dynamic programming models.20 Keller et al. (2004) and

Lemoine & Traeger (2014, 2016) analyze the consequences of an unknown threshold at

which a discrete regime shift increases climate sensitivity (tipping point). Lemoine &

Traeger (2014) show that such tipping risk increases the SCC by approximately 20%.

This effect, however, combines risk with a higher expected climate sensitivity and

such “tipping premia” operate mostly through the increase of the expected climate

sensitivity rather than through the uncertainty modeled here (Lemoine & Traeger

2016b, Taconet et al. 2021). Like the present paper, the preceding studies focus

on epistemological uncertainty governing the climate’s sensitivity to greenhouse gas

emissions.

Hambel et al.’s (2021) continuous time AK model identifies a risk premium of 4%

under DICE damages that increases to 12% under a damage function with higher and

more increasing convexity, using Epstein-Zin preferences and a pure time preference

of 1.5%. Van den Bremer & Van der Ploeg (2018) find an approximate risk premium

of 22% in their base case, which is based on damage convexity and right skew, and

Traeger (2018) finds a risk premium of 35% in the base case, falling to 20% for

a reduction in risk aversion making the result more comparable to our base case.

These settings rely on a stochastic climate rather than epistemological uncertainty

and skewness of the distributions plays a more crucial role (see Section 3.3).

4.3 Quantifying the Risk Channels

Figure 5 quantifies the different uncertainty channels using the adjusted formula for

selected scenarios. The top left panel depicts the contributions for the baseline cali-

bration, which looks similar to the original (unadjusted) plot in Figure 2. The only

notable difference is that the (somewhat minor) direct risk aversion contribution and

welfare-economy-interaction contribution are now truly indistinguishable in their con-

tributions to the risk premium.

Time Preference. The bottom left panel of Figure 5 identifies the contributing

channels under the reduction of the annual rate of pure time preference from ρ = 1.5%

to ρ = 0.5%. We find that this reduction of the discount rate hardly changes the

20Whereas Kelly & Tan (2015), like us, use a state-reduced version of DICE that some of DICE’s
exagaggerated sluggishness in the climate dynamics, Rudik & Lemoine (2017) use the full DICE
model and a Smolyak grid approximation to deal with state space complexity.
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Figure 4: Dependence of the SCC’s risk premium in 2020 on the prior’s variance (left) and
the expected climate sensitivity (right).

composition of the contributing factors. The only difference is a tiny increase of the

direct risk aversion contribution relative to the interaction term. The cumulative

contribution flattens out a little slower than in the baseline, but what happens after

the year 2200 still hardly matters for the (SCC and its) risk premium.

Damage normalization. The right panels of Figure 5 change the shape of the

damage function and alter the contributing channels most notably. Nordhaus (2008)

normalizes quadratic damages as D(T ) = aT 2

1+aT 2 , which avoids that damages can ex-

ceed total production. Nordhaus & Sztorc (2013) and Nordhaus (2017) still use this

formulation in the model description, but the actual implementations of DICE 2013

and DICE 2016 now use the simpler formulation D(T ) = aT 2, which has the advan-

tage that a directly characterizes the fraction of world GDP lost at a 1◦C warming.

The top right panel changes the damage function “back” to its normalized version.

This minor change under certainty implies a notable distinction for the risk premium.

The formulation bounding the potential loss implies a falling damage convexity. As

a result, the economy-prudence term contributes negatively; uncertainty’s produc-

tion loss caused by the damage convexity falls in temperature. The welfare prudence

contribution is zero and the welfare-economy interaction contributes positively with a

similar magnitude as the economy-prudence effect. As a result, we only find a positive

risk premium because of the structural uncertainty.

Cubic damages. The lower right panel of Figure 5 analyzes the channels for our

cubic damage specification (Dcub(T ) = acubT 3). We note that the scale of this lower
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Figure 5: Uncertainty about climate sensitivity. Cumulative contribution to the SCC’s risk
premium in 2020 by channel for different scenarios.

right panel is substantially higher. All non-zero contributions increase. In absolute

terms, the damage convexity contribution increases the most. In relative terms, the

economy-prudence channel catches up the most; it is zero or even negative in the other

specifications and now contributes a substantial part of the risk premium. Also the

welfare-economy interaction contribution grows together with the damage convexity.

Stochasticity premium. Figure 6 presents the corresponding graphs for the

stochasticity premium. The two left panels represent the base scenario and the sce-

nario with a reduced time preference. In both scenarios the welfare-economy inter-

action is the close-to-sole driver of the stochasticity premium. By Proposition 3,

the channel contributing most under climate sensitivity uncertainty, the damage con-
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Figure 6: Stochastic temperature evolution. Cumulative contribution to the SCC’s risk
premium in 2020 by channel for different scenarios.

vexity channel, drops out for temperature stochasticity, and so does the direct risk

aversion channel. The reduction in time preference pushes the time horizon of rel-

evant contributions out further in the case of temperature stochasticity than in the

case of climate sensitivity uncertainty; the curve is steeper and the relative contribu-

tions are more relevant around 2200. The top right panel normalizes damages to their

DICE2007 from. As a result, the damage convexity falls in temperature and the now

negative economy-prudence term almost cancels the positive contribution, leaving a

negligible total stochasticity premium. It is interesting that a minor normalization

under certainty, also performed in some later DICE-code-vintages without mention-

ing, can mostly eliminate the stochasticity premium. In contrast, the cubic damage
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specification results in a positive economy-prudence contribution that dominates the

stochasticity premium, which now delivers a more notable contribution to the overall

risk premium. These results illustrate that models merely relying on a stochastic

temperature evolution, without modeling structural uncertainty, obtain notable risk

premia only as a result of more convex damages or, similarly, skewed temperature

distributions (see discussion of equation 9).

5 Conclusions

We analyze the climate policy risk premium in response to climate uncertainty. We fo-

cus on the epistemoligical uncertainty governing the temperature’s response to green-

house gas emissions (climate sensitivity). Using a simple but general integrated as-

sessment model of climate change, we present an analytic formula approximating the

risk premium. This formula enables both an understanding and a quantification of

the different risk channels that drive the policy risk premium. At the same time,

we calculate the exact risk premium in a DICE-based numeric stochastic dynamic

programming implementation and compare results.

We suggest two different formula evaluations. The exact derivation assumes that

the decision maker does not respond to uncertainty and its resolution. The resulting

risk premium for the SCC measures the cost, per ton of carbon emitted, of using a

deterministic rather than a stochastic model to control the climate. We show that

a policy that responds optimally to climate uncertainty substantially reduces the

SCC’s risk premium. Here, an exact formula is not available. However, we show that

a simple adjustment of the original formula yields very good results. The adjustment

calculates the approximate temperature response elasticity to climate sensitivity using

the deterministic model. Once we swap this numeric policy response measure into

the formula, the adjusted formula matches the risk premium of the corresponding

stochastic dynamic programming model closely.

The familiar precautionary savings motive is driven by prudence. Prudence char-

acterizes how risk aversion responds to the consumption level; as we become richer,

(absolute) risk aversion falls and we have an additional incentive to save under risk.

Integrated assessment of climate change augments this reasoning in two fundamental

ways, giving rise to two additional sets of risk channels. First, future temperatures

have a non-linear impact on the economy that interacts with the marginal apprecia-

33



Pricing Climate Risk Jensen & Traeger

tion for consumption. As a result, we identify the additional economy-prudence and

welfare-economy-interaction channels. First, climate damages are convex and this

convexity makes uncertainty costly. If this costly convexity increases in temperature,

then policy has an additional incentive to keep temperatures down under uncertainty,

establishing the economy-prudence effect. We show that the economy-prudence ef-

fect is either negative or zero in DICE, depending on the model version. It delivers a

positive premium if damages are more convex (cubic rather than quadratic), in which

case is grows substantially larger than the welfare prudence effect (“standard precau-

tionary savings motive”). Second, the welfare-economy-interaction channel is always

positive for a risk averse decision maker and convex climate damages. This interaction

channel dominates the risk premium for a merely stochastic evolution of temperature

(no epistemological uncertainty). It is small compared to the risk premium resulting

from climate sensitivity uncertainty.

The second set of novel channels arises from the fact that climate sensitivity

is a structural parameter that governs both the marginal impact of CO2 released

today and the long-run temperature level. We show that, (only!) as a result of the

structural parameter’s “dual impact”, risk aversion and damage convexity have a

direct impact on the risk premium. Quantitatively, the damage convexity channel

dominates in all of our scenarios. In contrast to common belief, the welfare based

prudence and risk aversion effects contribute only a small fraction to the climate

policy’s risk premium. The empirical literature and some of the modeling literature

uses stochastic temperature evolution as a proxy for uncertain future climate change.

Our results raise awareness that the optimal response to an uncertain climate differs

fundamentally from the response to a merely stochastic evolution of the climate.

While our paper quantifies the impact for a global “mitigation investment”, the basic

insight carries over to adaptation investments.

We find risk premia around 25% for our base calibration and when varying time

preference, risk aversion, and updating DICE to more current economic data. Chang-

ing DICE’s quadratic damage function to a cubic form substantially increases the risk

premium to around 65-75% of its deterministic value (depending on time preference).

Epstein-Zin preferences disentangle risk aversion from the intertemporal elasticity

of substitution. They allow us to increase risk aversion more drastically (RRA=6)

without excessively discounting the future. This increase in risk aversion raises the

baseline premium to over 30%. However, the long-run risk literature also suggests
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that Epstein-Zin preferences should use a higher elasticity of intertemporal substitu-

tion, which reduces the risk premium back to 20%. The premium is large in absolute

terms, but the higher intertemporal elasticity reduces the growth-based discounting

and increases the deterministic SCC even more substantially than the risk premium.

This large positive premium contrasts sharply with the impact of growth uncertainty

on optimal climate policy studied in Jensen & Traeger (2014) and Cai & Lontzek

(2019), who find a negative risk premium for the same increase in the elasticity of

intertemporal substitution. The difference arises yet again because climate sensitivity

is a structural parameter with “dual impact”.

Our study emphasizes the analytic drivers of the risk premium and quantifies the

premium for a variety of scenarios. We use a simple climate change model with rea-

sonable performance. We leave more detailed climate change models that accurately

generate higher order moments of the climate sensitivity distribution to future and

paralleling research. We focus on climate sensitivity uncertainty. Several exciting

papers are quantifying the climate policy impact of multiple interacting uncertainties

and we hope that the concepts developed here will also help to better understand the

interactions.
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Appendix

A Proof of Proposition 1

The social planner solves the Bellman equation (1)

V (Kt,Mt, Tt, t) = max
Ct,Et

ut(Ct) + β Et V (Kt+1,Mt+1, Tt+1, t+ 1)

subject to the equations of motion

Kt+1 = (1− δ)Kt + F (Kt, Tt, Et, t)− Ct

Mt+1 = Mt+1(Mt, Et) ≡ M(Mt, Et, t)

Tt+1 = Tt+1(Tt,Mt+1) ≡ T (Tt,Mt+1, t).

As stated in the text, we assume that today’s emissions add directly to the next

period’s carbon stock: ∂M1

∂E0
= 1. Without this assumption, the derived formula for

the social cost of carbon has to be multiplied by the factor ∂M1

∂E0
. We slightly violate

notation in using Mt for the stock of carbon in the atmosphere and for the function

M(·, t) describing its evolution over time. This notation enables us to abbreviate

more intuitively the change of the carbon stock in period t as a result of a change of

the carbon stock in period τ < t as ∂Mt

∂Mτ
=
∏t

i=τ+1
∂Mi

∂Mi−1
≡
∏t

i=τ+1
∂M(Mi−1,Ei−1,i−1)

∂Mi−1
.

We proceed analogously with temperature, abbreviating the change of the warming

level in period t as a result of a change of the warming level in period τ < t as
∂Tt

∂Tτ
=
∏t

i=τ+1
∂Ti

∂Ti−1
.

The first order conditions for consumption and emissions imply

u′
t(Ct) = β Et

∂V (Kt+1,Mt+1, Tt+1, t+ 1)

∂Kt+1

(10)

and

β Et
∂V (Kt+1,Mt+1,Tt+1,t+1)

∂Kt+1

(

−∂F (Kt,Tt,Et,t)
∂Et

)

(11)

= β Et

(
∂V (Kt+1,Mt+1,Tt+1,t+1)

∂Mt+1
+ ∂V (Kt+1,Mt+1,Tt+1,t+1)

∂Tt+1

∂Tt+1

∂Mt+1

)
∂M(Mt,Et,t)

∂Et
.

The term −∂F (Kt,Tt,Et,t)
∂Et

denotes the benefits from another emission unit. In period t,

this emission benefit is deterministic, and the remaining stochastic term on the left,
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β ∂V (Kt+1,Mt+1,Tt+1,t+1)
∂Kt+1

, equals by equation (10) the marginal utility in period t. Thus,

making use of equation (10) when solving equation (11) for the optimality condition

of the marginal benefit from another emission unit in the present (t = 0) delivers the

expression

−
∂F

∂E0

=
1

u′
0(C0)

β E0

(
∂V

∂M1

+
∂V

∂T1

∂T1

∂M1

)
∂M(M0, E0, 0)

∂E0
︸ ︷︷ ︸

≡SCC0

. (12)

In this social optimum, the marginal benefit from emitting another ton of carbon

−F (Kt,Tt,Et,t)
∂Et

has to equal the social cost of carbon given by the expression on the

right hand side of equaton (12).

By the envelope theorem, the Bellman equation (1) delivers

∂V

∂Tt

= β Et

(
∂V

∂Kt+1

∂F

∂Tt

+
∂V

∂Tt+1

∂T (Tt,Mt+1, t)

∂Tt

)

(13)

= u′
t(Ct)

∂F

∂Tt

+ β Et

∂V

∂Tt+1

∂T (Tt,Mt+1, t)

∂Tt

where we obtain the second equality using that ∂F
∂Tt

is known in period t so that we

can employ equation (10).21 Advancing equation (13) by one period and reinserting

it into equation (13) delivers

∂V

∂Tt

= u′
t(Ct)

∂F

∂Tt

+ β Et u
′
t+1(Ct+1)

∂F

∂Tt+1

∂T (Tt,Mt+1, t)

∂Tt

(14)

+β Et β Et+1
∂V

∂Tt+2

∂T (Tt+1,Mt+2, t+ 1)

∂Tt+1

∂T (Tt,Mt+1, t)

∂Tt

= u′
t(Ct)

∂F

∂Tt

+ β Et u
′
t+1(Ct+1)

∂F

∂Tt+1

∂Tt+1

∂Tt

+ β2
Et

∂V

∂Tt+2

∂Tt+2

∂Tt

,

where we made use of the law of iterated expectations (tower rule) and the notation
∂Tt

∂Tτ
≡
∏t

i=τ+1
∂Ti

∂Ti−1
for τ < t. For simplicity in subsequent notation we “define” ∂Tt

∂Tt
=

1. Repeating the step of advancing equation (13) and reinserting it into equation (14)

eventually delivers

∂V

∂Tt

= Et

∞∑

τ=t

u′
τ (Cτ )

∂F

∂Tτ

βτ−t∂Tτ

∂Tt

+ lim
τ→∞

βτ−t
Et

∂V

∂Tτ

∂Tτ

∂Tt

.

21Let (Ω,F ,P) denote the underlying probability space. The equations of motions are conditional
on the events ω ∈ Ω. Let {F t}t≥0 denote the filtration generated by the underlying stochastic
processes. Then, ∂F

∂Tt

is measurable with respect to the sigma algebra F t.
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We assume (see main text) that the dynamic system is well-defined so that the shadow

value of the temperature increase ∂V
∂Tτ

grows sufficiently slow along the optimal path

to make the limit approach zero (which should hold along any reasonable policy

scenario).

By the envelope theorem, the Bellman equation (1) also delivers

∂V

∂Mt

= β Et

(
∂V

∂Mt+1

+
∂V

∂Tt+1

∂T (Tt,Mt+1, t)

∂Mt+1

)
∂M(Mt, Et, t)

∂Mt

(15)

= Et

(

β
∂V

∂Mt+1

+ β
∞∑

τ=t+1

u′
τ (Cτ )

∂F

∂Tτ

βτ−(t+1) ∂Tτ

∂Tt+1

∂Tt+1

∂Mt+1

)

∂Mt+1

∂Mt

making use of equation (14). Using the definitions ∂Mt

∂Mτ
≡
∏t

i=τ+1
∂Mi

∂Mi−1
and ∂Mt

∂Mt
= 1

and repeatedly advancing equation (15) and reinserting it into itself yields

∂V

∂Mt

= Et

∞∑

j=t+1

βj−t

∞∑

τ=j

u′
τ (Cτ )

∂F

∂Tτ

βτ−j ∂Tτ

∂Tj

∂Tj

∂Mj

∂Mj

∂Mt

+ lim
τ→∞

βτ−t
Et

∂V

∂Mτ

∂Mτ

∂Mt

.

In the text, we assumed that also the shadow value of carbon (weighted with its

persistence) does not outgrow the exponential damping of the discount factor and

that the limit approaches zero.

Reinserting our findings into equation (12) implies

−
∂F

∂E0

= SCC0 =
1

u′
0(C0)

E0

∞∑

j=1

∞∑

τ=j

βτu′
τ (Cτ )

∂F

∂Tτ

∂Tτ

∂Tj

∂Tj

∂Mj

∂Mj

∂M1

∂M1

∂E0

. (16)

We assumed that ∂M1

∂E0
= 1. The indices τ of the second sum are always larger than

the j-index of the first sum. For every τ the double-sum runs through the j indices

lower or equal to τ , capturing the marginal emission unit’s impact on warming in all

previous periods. Thus, we can reorder the sum to the form

−
∂F

∂E0

= SCC0 =
1

u′
0(C0)

E0

∞∑

t=1

t∑

τ=1

βtu′
t(Cτ )

∂F

∂Tt

∂Tt

∂Tτ

∂Tτ

∂Mτ

∂Mτ

∂M1

(17)

where we relabled τ → t and j → τ with respect to equation (16). In the main text,

we abbreviated ∂Tτ

∂Mj
≡ ∂Tτ

∂Tj

∂Tj

∂Mj
.
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B Proof of Proposition 2

Under Assumption A2, the emission and investment levels do not respond to the

realizations of climate sensitivity. As a consequence, future capital levels remain

independent of the climate sensitivity realizations, and all damage to production

translates straight into consumption and welfare. By the envelope theorem we know

that this assumption does not affect the first order calculations and the derivation of

the social cost of carbon in section A. However, the assumption will matter further

below when we take higher order derivatives of the social cost of carbon. As a result

of the assumption, the impact of climate sensitivity on the social cost of carbon is

entirely transmitted through temperature, production increase, and consumption loss.

Marking these, and only these dependencies restates equation (17) as

SCC0 =
1

u′
0(C0)

E

[
∞∑

t=1

βt u′
t

(
Ct(Tt(s))

) [

−∂Ft

∂Tt
(Tt(s))

] [ t∑

τ=1

∂Tt

∂Mτ
(s)∂Mτ

∂E0

]

︸ ︷︷ ︸

≡zt(s)

]

.

For now, we analyze the period t contribution individually. By Jensen’s inequality,

the uncertainty over climate sensitivity will increase the SCC’s period t contribution

if and only if the term zt(s) is convex. Moreover, the variance-based small-risk ap-

proximation adds a contribution to the deterministic zt(E s) that is proportional to

the climate sensitivity’s variance and to z′′t (s):

E zt(s) ≈ zt(E s) + E z′t([E s])(s− E s) +
1

2
E z′′t ([E s])(s− E s)2

= zt(E s) +
1

2
z′′t ([E s])Var(s).

Because s is a common uncertain parameter for all periods, the climate sensitivity’s

variance simultaneously multiplies the sum over per period contributions:

Var(s)
∞∑

t=1

βtz′′t ([E s]). Thus, for small risks, the present SCC’s risk premium per

unit of variance is

∆SCC0

Var(s)
=

1

u′
0(C0)

∞∑

t=1

βtE zt(s)− zt(E s)

Var(s)
≈

1

2u′
0(C0)

∞∑

t=1

βtz′′t ([E s]). (18)

In the following we calculate the second order derivative of the term zt(s), abbreviatig

under slight violation of notation E s by s. Our assumption that investment remains

constant while consumption absorbs the climate sensitivity uncertainty translates into
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Ct(Tt(s)) = F (Tt(s))−It, where investment It = Kt+1−(1−δ)Kt does not respond to

climate sensitivity. As a consequence we have ∂Ct(Tt(s))
∂s

= ∂F (Tt(s))
∂s

and consumption

absorbs all the uncertainty.

Without Assumption A2, the optimal policy would spread the uncertainty between

consumption and investment, slightly reducing the cost of uncertainty. In contrast,

Assumption A2 slightly exaggerates the consumption response to uncertainty. Alter-

natively, we can assume that only a fraction χ of the production impact translates

into consumption change and assume

∂Ct(Tt(s))

∂s
= χ

∂F (Tt(s))

∂s
,

0 < χ ≤ 1. Picking χ as the consumption rate we would more appropriately approxi-

mate the immediate cost of uncertainty for consumption, but neglect the consequences

for investment that would respond proportional to 1 − χ. This approach would un-

dervalue the costs of uncertainty. We derive the subsequent analysis using a general

χ, and Proposition B corresponds to the case where χ = 1. Then

zt(s) = −u′
t

(
F (Tt(s))− It

)
F ′
t (Tt(s))

[
t∑

τ=1

∂Tt

∂Mτ
(s)∂Mτ

∂E0

]

z′t(s) = −u′′
t

(
F (Tt(s))− It

)
χF ′

t (Tt(s))
2 T ′

t (s)

[
t∑

τ=1

∂Tt

∂Mτ
(s)∂Mτ

∂E0

]

−u′
t

(
F (Tt(s))− It

)
F ′′
t (Tt(s))T

′
t (s)

[
t∑

τ=1

∂Tt

∂Mτ
(s)∂Mτ

∂E0

]

−u′
t

(
F (Tt(s))− It

)
F ′
t (Tt(s))

[
t∑

τ=1

∂2Tt

∂Mτ∂s
(s)∂Mτ

∂E0

]

.

Defining At(s) =
t∑

τ=1

∂Tt

∂Mτ
(s)∂Mτ

∂E0
we obtain the second order derivative

z′′t (s) = −u′′′
t (·) χ

2 F ′
t (·)

3 T ′
t (·)

2At(s)− 2u′′
t (·) χ F ′

t (·)F
′′
t (·)T

′
t (·)

2At(s)

−u′′
t (·) χ F ′

t (·)
2 T ′′

t (·)At(s)− u′′
t (·) χ F ′

t (·)
2 T ′

t (·)A
′
t(s)

−u′′
t (·) χ F ′

t (·)F
′′
t (·)T

′
t (·)

2At(s)− u′
t(·)F

′′′
t (·)T ′

t (·)
2At(s)

−u′
t(·)F

′′
t (·)T

′′
t (·)At(s)− u′

t(·)F
′′
t (·)T

′
t (·)A

′
t(s)

−u′′
t (·) χ F ′

t (·)
2 T ′

t (·)A
′
t(s)− u′

t(·)F
′′
t (·)T

′
t (·)A

′
t(s)− u′

t(·)F
′
t (·)A

′′
t (s)
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Collecting terms delivers

z′′t (s) = −u′′′
t (·) χ

2 F ′
t (·)

3 T ′
t (·)

2At(s)− 3u′′
t (·) χ F ′

t (·)F
′′
t (·)T

′
t (·)

2At(s)

−u′′
t (·) χ F ′

t (·)
2 T ′′

t (·)At(s)− 2u′′
t (·) χ F ′

t (·)
2 T ′

t (·)A
′
t(s)− u′

t(·)F
′′′
t (·)T ′

t (·)
2At(s)

−u′
t(·)F

′′
t (·)T

′′
t (·)At(s)− 2u′

t(·)F
′′
t (·)T

′
t (·)A

′
t(s)− u′

t(·)F
′
t (·)A

′′
t (s).

Dividing by u′
t(Ct), −F ′(Tt(s)) > 0, and At results in

z′′t (s)

u′
t(·)(−F ′(·))At

= −u′′′

t (·)

u′′

t (·)
Ct

−F ′

t (·)T
′

t (·)

Ct

(

−u′′

t (·)

u′

t(·)
Ct

)
−F ′

t (·)T
′

t (·)

Ct
χ2 −3

u′′

t (·)

u′

t(·)
Ct

−F ′

t (·)T
′

t (·)

Ct

−F ′′

t (·)

−F ′

t (·)
Tt

T ′

t (·)

Tt
χ

−u′′

t (·)

u′

t(·)
Ct

−F ′

t (·)T
′(·)

Ct

T ′′

t (·)

T ′

t (·)
χ−2

u′′

t (·)

u′

t(·)
Ct

−F ′

t (·)T
′

t (·)

Ct

A′

t(·)

At
χ+

−F ′′′

t (·)

−F ′′

t (·)
Tt

T ′

t (·)

Tt

−F ′′

t (·)

−F ′

t (·)
Tt

T ′

t (·)

Tt

+
−F ′′

t (·)

−F ′

t (·)
Tt

T ′

t (·)

Tt

T ′′

t (·)

T ′

t (·)
+ 2

−F ′′

t (·)

−F ′

t (·)
Tt

T ′

t (·)

Tt

A′

t(·)

At
+

A′′

t (·)

A′

t(·)

A′

t(·)

At

= Prud ǫ̂c,s RRA ǫ̂c,s + 3RRA ǫ̂c,s Dam2 ǫ̂T,s + RRA ǫ̂c,s
T ′′

t (·)

T ′

t (·)
+ 2RRA ǫ̂c,s

A′

t(·)

At

+Dam3 ǫ̂T,s Dam2 ǫ̂T,s +Dam2 ǫ̂T,s
T ′′

t (·)

T ′

t (·)
+ 2Dam2 ǫ̂T,s

A′

t(·)

At
+

A′′

t (·)

A′

t(·)

A′

t(·)

At

= RRA ǫ̂c,s

[

2
A′

t(·)

At
+ Prud ǫ̂c,s + 3Dam2 ǫ̂T,s

]

+Dam2 ǫ̂T,s

[

2
A′

t(·)

At
+Dam3 ǫ̂T,s

]

+
T ′′

t (·)

T ′

t (·)
[RRA ǫ̂c,s +Dam2 ǫ̂T,s] +

A′′

t (·)

A′

t(·)

A′

t(·)

At

= 1
s2

{

RRA ǫc,s

[

2
sA′

t(·)

At
+ Prud ǫc,s + 3Dam2 ǫT,s

]

+Dam2 ǫT,s

[

2
sA′

t(·)

At
+Dam3 ǫT,s

]}

+ 1
s2

{
sT ′′

t (·)

T ′

t (·)
[RRA ǫc,s +Dam2 ǫT,s] +

sA′′

t (·)

A′

t(·)

sA′

t(·)

At

}

(19)

where we used the definitions RRA = −u′′′

t (·)

u′′

t (·)
c, Prud = −u′′′

t (·)

u′′

t (·)
c, Dam2 =

−F ′′

t (·)

−F ′

t (·)
T ,

Dam3 =
−F ′′′

t (·)

−F ′′

t (·)
T , the semi-elasticities ǫ̂c,s = − dc

ds/c = −χF ′
t (·)T

′
t (·)

1
c
and ǫ̂T,s =

dT
ds/T ,

and the regular elasticities ǫc,s = − dc
ds/c

s
= −χF ′

t (·)T
′
t (·)

s
c
and ǫT,s =

dT
ds/T

s
.
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Under Assumption A2 we have

Tt+1 = γ Tt + sΓ1(Mt+1) + Γ2(t) + ǫt

= γ
(
γTt−1 + sΓ1(Mt) + Γ2(t− 1) + ǫt−1

)

+sΓ1

(
Mt+1(Mt, Et)

)
+ Γ2(t) + ǫt

= γt+1T0 + s

t+1∑

τ=1

γt+1−τΓ1(Mτ (·)) +
t∑

τ=0

γt−τΓ2(τ) +
t∑

τ=0

γt−τ ǫ̃τ . (20)

Equation (26) in Appendix D.2 states the details of this relation for our numeric

DICE implementation. Because the equation is linear in climate sensitivity, we find

that
sT ′′

t (·)

T ′

t (·)
= 0. Moreover, from At(s) =

t∑

τ=1

∂Tt

∂Mτ
(s)∂Mτ

∂E0
we have

sA′
t(·)

At

=

s
t∑

τ=1

∂2Tt

∂s∂Mτ
(s)∂Mτ

∂E0

t∑

τ=1

∂Tt

∂Mτ
(s)∂Mτ

∂E0

=

s
t∑

τ=1

∂Γ1(Mτ )
∂Mτ

∂Mτ

∂E0

t∑

τ=1

s∂Γ1(Mτ )
∂Mτ

∂Mτ

∂E0

= 1

sA′′
t (·)

A′
t(·)

= 0.

Thus, under Assumption A2, equation (19) simplifies to

s2 z′′t (s)

u′
t(·)(−F ′(·))At(·)

(21)

= RRA ǫc,s [2 + Prud ǫc,s + 3Dam2 ǫT,s] + Dam2 ǫT,s [2 + Dam3 ǫT,s]
︸ ︷︷ ︸

≡Xt(·)

.

Combining equations (18) and (21), and properly writing E s again for the expected

climate sensitivity, we obtain the approximate risk premium to the SCC today in

consumption equivalents as

∆SCC0

Var(s)
≈

1

2u′
0(C0)

∞∑

t=1

βtz′′t ([E s]) =
1

2(E s)2

∞∑

t=1

βt u
′
t(Ct)

u′
0(C0)

(−F ′(·))At(·)Xt(·)

=
∞∑

t=1

t∑

τ=1

βt u
′
t(ct)

u′
0(c0)

∂Ft

∂Tt

∂Tt

∂Mτ

∂Mτ

∂E0

1

2(E s)2
Xt(·),

which concludes the proof of the proposition.
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Combining equations (18) and (19) generalizes the statement of Proposition 2 by

abandoning Assumption 1.

Corollary 1. Let Tt(s) denote future temperature as a function of climate sensitivity

(given emissions and today’s state) and define At(s) = ∂Tt

∂E0
(s) ≡

t∑

τ=1

∂Tt

∂Mτ
(s)∂Mτ

∂E0
.

Under Assumption A2, uncertainty over climate sensitivity increases the social cost

of carbon contribution from a given period if and only if

X∗
t (·) ≡ RRA ǫc,s

[

2
sA′

t(·)

At

+Prud ǫc,s+3Dam2 ǫT,s

]

+Dam2 ǫT,s

[

2
sA′

t(·)

At

+Dam3 ǫT,s

]

+
sT ′′

t (·)

T ′
t (·)

[RRA ǫ̂c,s +Dam2 ǫ̂T,s] +
sA′′

t (·)

A′
t(·)

sA′
t(·)

At

is greater than zero. Arguments and their period-dependence are suppressed.

Moreover, under a small risk approximation, the climate uncertainty premium is

∆SCC0 ≈ −E0

∞∑

t=1

βt u
′
t(Ct)

u′
0(C0)

︸ ︷︷ ︸

consumption
discount
factor

∂Ft

∂Tt

∂Tt

∂E0
︸ ︷︷ ︸

marginal
emission
damage

Var(s)

2(E s)2
X∗

t (·).

C Proof of Proposition 3

The proof runs analogously to that of Proposition 2 and we focus on the steps that

are different. The relevant uncertainty is now the one generated by the shock process

(ǫt)t∈IN to temperature rather than the epistemological uncertainty of climate sensi-

tivity s. We spell out equation (17) suppressing all dependencies but those on the

stochastic shock process

SCC0 =
1

u′
0(C0)

E

[
∞∑

t=1

βt u′
t

(
Ct(Tt(ε1, ..., εt−1))

)[

−∂Ft

∂Tt
(Tt(ε1, ..., εt−1))

][ t∑

τ=1

∂Tt

∂Mτ

∂Mτ

∂E0

]

︸ ︷︷ ︸

≡vt(ε1,...,εt−1)

]

.

The main difference to the case of climate sensitivity uncertainty is that the temper-

ature response to CO2,
∂Tt

∂Mτ
, is independent of the temperature shock εt and that we

face a sequence of stochastic shocks.

Because temperature behaves as an autoregressive process we have ∂Tt

∂ ετ
= γt−τ−1
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for τ < t and, therefore, ∂vt
∂ ετ

= γt−τ−1 ∂vt
∂ εt−1

. We find the small risk approximation

E

∑

t

βtvt(ε1, ..., εt−1)

≈
∑

t

βtvt(E ε1, ...,E εt−1) + E

∑

t

∑

τ<t

βt∂vt(E ε1, ...,E εt−1)

∂ ετ
(ετ −E ετ )

+E
1

2

∑

t

∑

τ<t

∑

k≤t

βt∂
2vt(E ε1, ...,E εt−1)

∂ ετ ∂ εk
(ετ −E ετ )(εk −E εk)

=
∑

t

βtvt(0, ..., 0) +
1

2

∑

t

∑

τ<t

βtγ2(t−τ−1)∂
2vt(E ε1, ...,E εt)

∂εt−1
2

Var(ετ )

+
∑

t

∑

τ<t

∑

k<τ

βtγt−τ−1γt−k−1∂
2vt(E ε1, ...,E εt)

∂εt−1
2

COV(ετ , εk).

Because the shocks are iid, the triple sum in the last line vanishes (COV(ετ , εk) = 0)

and Var ε ≡ Var ετ = Var εt. For small risk, the present day risk premium of the

SCC per unit variance is

∆̂SCC0

VAR(ε)
=

1

u′
0(C0)

E
∑∞

t=1 β
tvt(ε1, ..., εt)−

∑∞

t=1 β
tvt(0, ..., 0)

VAR(ε)

≈
1

2u′
0(C0)

∑

t

∑

τ≤t

βtγ2(t−τ)∂
2vt(0, ..., 0)

∂εt−1
2

=
1

2u′
0(C0)

∑

t

βt∂
2vt(0, ..., 0)

∂εt−1
2

∑

τ≤t

γ2(t−τ−1)

=
1

2u′
0(C0)

∑

t

βt1− γ2t

1− γ2

∂2vt(0, ..., 0)

∂εt−1
2

, (22)

where we used the closed-form expression for the geometric sum
∑

τ<t γ
2(t−τ−1) =

∑t−1
l=0 γ

2l = 1−γ2t

1−γ2 (note that index τ starts at zero whereas index t starts at unity).

The evaluation of ∂2vt(0,...,0)
∂εt−1

2 follows closely that of z′′(s) in the proof of Proposi-

tion 2. In contrast to climate sensitivity uncertainty, the temperature shocks εt leave

the temperature response to CO2,
∂Tt

∂Mτ
, unchanged. As a consequence, ∂2Tt

∂Mτ∂ǫt
= 0 and

the contributions relating to A′(s) in the case of climate sensitivity will be missing in
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the case of temperature stochasticity. A derivation analogous to equation (19) yields

∂2vt(0,...,0)
∂εt−1

2

u′
t(·)(−F ′(·))At

= 1
T 2
t
{RRA ǫc,T [Prud ǫc,T + 3Dam2] + Dam2 Dam3}

+ 1
T 2
t

{
TtT

′′
t (·)

T ′
t (·)

[RRA ǫc,T +Dam2]

}

︸ ︷︷ ︸

≡Zt(·)

, (23)

where ǫc,T = − dc
dT/ c

T
= F ′

t (·)
T
c
(and the other elasticity is unity). Under Assumption 2,

we know from equation (20) that T ′′
t (·) =

∂2Tt(·)

∂ǫ2t−1

= 0 and the second line vanishes.

Combining equations (22) and (23) (with T ′′
t (·) = 0) delivers the stochasticity

premium to the SCC today in consumption equivalents as

∆̂SCC0

Var(ǫ)
≈

1

2u′
0(C0)

∞∑

t=1

βt1− γ2t

1− γ2

∂2vt(0, ..., 0)

∂εt−1
2

=
1

2

∞∑

t=1

βt1− γ2t

1− γ2

u′
t(Ct)

u′
0(C0)

−F ′(·)At(·)

Tt

Zt(·)

=
∞∑

t=1

t∑

τ=1

βt1− γ2t

1− γ2

u′
t(Ct)

u′
0(C0)

∂Ft

∂Tt

∂Tt

∂Mτ

∂Mτ

∂E0

1

2(Tt)2
Zt(·),

where the terms are evaluated at the expected shock values (ǫt = 0 ∀t). Emphasizing

this evaluation for temperatures we write ETt instead of Tt in the Proposition. Having

proven the second part of Proposition 3, the first part follows as in the proof of

Proposition 2 from Jensen’s inequality and equation (23).

For an additional corollary we relax Assumption 1 in the last argument.

Assumption 1’. The temperature evolution is:

Tt+1 = γ Tt + sΓ1(Mt+1) + Γ2(t) + Γ3(ǫt)

where γ ∈ (0, 1), s is potentially uncertain, Γ1, Γ2, and Γ2 are real functions, and

(ǫt)t∈IN is an iid process of mean zero temperature shocks.

Then T ′′
t (·) = Γ′′

3(ǫt) no longer vanishes. Note that we maintain the autoregressive

structure of temperature to keep the simplified sum in equation (22) over shocks in

different periods. Then, combining equations (22) and (23) delivers the following

corollary.
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Corollary 2. Under Assumptions A1’ and A2, temperature stochasticity increases

the social cost of carbon contribution from a given period if and only if

Z∗
t (·) ≡ RRA ǫc,T [Prud ǫc,T + 3Dam2] + Dam2Dam3 +

TtΓ
′′
3(0)

Γ′
3(0)

[RRA ǫc,T +Dam2]

is greater than zero. Arguments and their period-dependence are suppressed.

Moreover, under a small risk approximation, the temperature stochasticity premium

is

∆̂SCC0 ≈
∞∑

t=1

t∑

τ=1

1− γ2t

1− γ2

︸ ︷︷ ︸

intertemporal
temperature
correlation

βt u
′
t(ct)

u′
0(c0)

︸ ︷︷ ︸

consumption
discount
factor

∂Ft

∂Tt

∂Tt

∂Mτ

∂Mτ

∂E0
︸ ︷︷ ︸

marginal
emission
damage

Var(ǫ)

2(ETt)2
Z∗

t (·).

D The Quantitative Model

This section introduces the quantitative model. It is based on the DICE-2013 model

with updated modifications derived in Traeger (2014a). These modification are help-

ful for a stochastic dynamic programming implementation, reducing the state space

and interpolating exogenous processes in closed-form. Moreover, they allow us to

fit the modified DICE in our generic IAM description presented in Section 2. As

a co-benefit, these modifications also reduce the slightly exaggerated sluggishness of

DICE’s climate model (Traeger 2014a, Van der Ploeg et al. 2020).

D.1 Details of the quantitative model

The following model emulates DICE-2013. The three most notable differences are the

annual time step (DICE-2013 features a five year time step), the infinite time horizon,

and the replacement of the ocean feedbacks by exogenous processes. We adopt the

latter simplification because the ocean carbon sink and ocean temperature would

each require an own state variable in a recursive framework, which is computationally

costly and would further complicate the analytic formulas. Conveniently, the “double-

delayed” climate dynamics of DICE was recently found to be a bit sluggish compared

to models used in the sciences Van der Ploeg et al. (2020). Instead, we calibrate a

decay rate for atmospheric carbon and a temperature difference between atmosphere

and ocean, which closely matches the behavior of a carbon cycle. For a detailed
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description of the procedure and its (very good) performance relative to the original

DICE model see Traeger (2014a), who compares both to the MAGICC model used

in the IPCC reports. That paper also shows how to reformulate the decision problem

expressing capital stock and consumption in efficient labor units, which is better suited

for the numeric implementation. All parameters are characterized and quantified in

Table 2 on page 63. These values are for DICE’s starting period and iterated forward

to the year 2020.22

Climate. Global average temperatures respond with a delay to the forcing of

atmospheric carbon stocks Mt (relative to preindustrial level Mpre) and other non-

CO2 forcing. Equation (27), marking conditional period t uncertainty with a tilde,

becomes

T̃t+1 = (1− σforc)Tt + σforc s̃

[
ln Mt

Mpre

ln 2
+

EFt+1

λ

]

− σocean∆Tt + ǫ̃t .

In equation (27) we use the definitions

χt(Mt+1, t) = σforc

log Mt+1

Mpre

log 2
+

EFt+1

ηforc
, and (24)

ξ(Tt, t) = (1− σforc)Tt − σocean∆Tt .

The ocean temperature difference ∆Tt replicates the relation between oceanic and

atmospheric temperatures in DICE. It follows the simple (fitted) quadratic equation

∆Tt = max{0.74 + 0.028. ∗ t− 0.00014. ∗ t.2 , 0.6} .

Exogenous forcing EFt from non-CO2 greenhouse gases, aerosols and other processes

is assumed to follow the process

EFt = EF0 + 0.01(EF100 − EF0)×max{10 + t, 90} .

We note that it starts out slightly negatively and that the 10 results from Nordhaus’

start date 2000 for EF (instead of 2010 as for the other variables). Carbon in the

22In particular, prescribing DICE climate evolution to 2020 suggests correctly a present warming
around 1.04◦C. The economic values are updated in our alternative calibration to PWT 2019 values,
see footnote 13 for details
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atmosphere accumulates according to

Mt+1 = Mpre + (Mt −Mpre) (1− δM(t)) + Et with

δM,t =
δM,1

1 + exp(δM,2 + δM,3 t)
.

The stock of CO2 (Mt) exceeding preindustrial levels (Mpre) decays exponentially at

the rate δM(M, t). This decay rate falls exogenously over time to replicate the carbon

cycle, mimicking that the ocean reservoirs reduce their uptake rate as they fill up (see

Traeger 2014a).

Emissions. Yearly CO2 emissions Et, consisting of industrial emissions and emis-

sions from land use change an forestry Bt are

Et = (1− µt) σtAtLtk
κ
t + Bt .

Emissions from land use change and forestry fall exponentially over time

Bt = B0 exp[gB t] .

Industrial emissions are proportional to gross production AtLtk
κ
t . They can be re-

duced by abatement µt, which DICE formulates as a fraction of potential or business

as usual emissions. As in the DICE model, the carbon intensity of production falls

at an exogenous rate of decarbonization σt

σt = σ0 exp

[
gσ((1 + δσ)

t − 1)

log(1 + δσ)

]

Economy. We denote global net output in per effective labor units by yt =
Yt

AtLt
.

Population grows exogenously as

Lt+1 = L0

(
Linf

L0

)1−(1−g∗L)
t/5

Here L0 denotes the initial and L∞ the asymptotic population. The parameter g∗L
characterizes the convergence from initial to asymptotic population. Technology

grows exogenously as

At+1 = At exp [gA,t] with gA,t = gA,0 ∗ exp [−δAt] .
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The economy accumulates capital according to

kt+1 = [(1− δk) kt + yt − ct] exp[−(gA,t + gL,t)] , (25)

where δK denotes the depreciation rate and ct denotes aggregate global consumption

of produced commodities per effective unit of labor. The growth rates in equation (25)

result from the effective unit per labor normalization.

Global net output results from the (reduced-form) Cobb-Douglas production (kκ
t )

less abatement costs and less damages

yt =
(
1− Λ(µt)

)(
1−D(Tt)

)
kκ
t

changing to yt =
1−Λ(µt)
1+D(Tt)

kκ
t for our DICE 2007 damage specification. Abatement costs

are

Λ(µt) = Ψtµ
a2
t

and characterized as percent of output. They depend on the emission control rate

µt ∈ [0, 1]. The coefficient of the abatement cost function Ψt follows

Ψt =
a0
a2

σt exp[−gΨ t]

with a0 denoting the initial cost of the backstop, a1 denoting the ratio of initial

over final backstop, and a2 denoting the cost exponent. The rate gΨ describes the

convergence from the initial to the final cost of the backstop.

Climate damage as a fraction of world output depends on the temperature differ-

ence Tt of current to preindustrial temperature and is

D(Tt) = b1T
b2
t .

Nordhaus (2008) estimates b1 = 0.0028 and b2 = 2, implying a quadratic damage

function with a loss of 0.28% of global GDP at a 1 degree Celsius warming.

We note that our DICE implementation indeed fits our generic integrated assess-

ment model where emissions are treated as a production factor. For this purpose, we

re-write the emission control rate µt = 1− Et

EBAU
t

as a function of actual and business

as usual emissions and the DICE production function in non-effective-labor units as

F (Kt, Tt, Et, t) = (AtLt)
1−κKκ

t

(

1−D(Tt)−Ψt

[

1−
Et

EBAU
t (Kt)

]2.8
)
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where EBAU
t (Kt) is DICE’s business as usual emission forecast as a function of the

(endogenous) capital stock.

D.2 Temperature is linear in climate sensitivity

This brief subsection shows that temperature is linear in climate sensitivity, irrespec-

tively of how many periods we look ahead into the future, in line with Assumption 1.

Advancing the temperature equation by one period and inserting for the previous

period’s temperature gives

T̃t+1 = (1− σforc)Tt + s̃
σforc

ln 2
ln

(
Mt+1

Mpre

)

+
σforc

λ
EFt − σocean∆Tt + ǫ̃t ,

T̃t+2 = (1− σforc)

(

(1− σforc)Tt + s̃
σforc

ln 2
ln

(
Mt+1

Mpre

)

+
σforc

λ
EFt − σocean∆Tt + ǫ̃t

)

+ s̃
σforc

ln 2
ln

(
Mt+2

Mpre

)

+
σforc

λ
EFt+1 − σocean∆Tt+1 + ǫ̃t+1 ,

= (1− σforc)
2Tt + (1− σforc)ǫ̃t + ǫ̃t+1

+(1− σforc)

(

s̃
σforc

ln 2
ln

(
Mt+1

Mpre

))

+ s̃
σforc

ln 2
ln

(
Mt+2

Mpre

)

+(1− σforc)
(σforc

λ
EFt − σocean∆Tt

)

+
σforc

λ
EFt+1 − σocean∆Tt+1 .

Iteratively we arrive at the formula

T̃t+τ = s̃
σforc

ln 2

τ∑

i=1

(1− σforc)
τ−i ln

Mt+i

Mpre

+
τ−1∑

i=0

(1− σforc)
τ−i−1 ǫ̃t+i (26)

+
τ−1∑

i=0

(1− σforc)
i
(σforc

λ
EFt+i − σocean∆Tt+i

)

+ (1− σforc)
τTt .

In particular, we observe that temperature in any period t + τ depends linearly on

climate sensitivity.

E Full Stochastic Dynamic Programming Model

The full stochastic model takes into account that future decision makers have more

information on climate dynamics than present decision makers. Section E.1 specifies

the informational dynamics (Bayesian updating) and the Bellman equation.
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E.1 Uncertainty and Bellman Equation

A dynamic model of climate sensitivity uncertainty naturally invites a Bayesian learn-

ing model; in contrast to our analytic formula, a full dynamic model has to explicitly

specify how uncertainty resolves over time.23 Our model follows Kelly & Kolstad

(1999) and represents uncertainty over climate sensitivity as a Bayesian prior. The

decision maker updates the prior annually based on stochastic temperature observa-

tions. Assuming a normal distribution for both the climate sensitivity prior and the

temperature shocks (likelihood) results in conjugate priors; the updated posterior will

be of the same class of distributions as the prior. This feature is extremely helpful

as it allows us to track information merely through the mean and the variance of

climate sensitivity, which fully characterize the normal distribution. Limiting the in-

formational states to two helps substantially when solving the Bellman equation for

an already state-rich integrated assessment model.

The social planner is uncertain about the value of climate sensitivity and holds

the following initial prior Π(s)

s̃0 ∼ Π(s) = N (µs,0, σ
2
s,0) with µs,0 = 3 σ2

s,0 = 3 .

Better estimates of the climate sensitivity result in a skewed distribution, but to

solve the stochastic dynamic programming problem we rely on conjugate priors using

the normal distribution. Given this limitation, σ2
s,0 = 3 is a rounded-up empirical

approximation to the set of distributions found in Stocker et al. (2013).24

We can learn the value of climate sensitivity from observing the CO2 stock and

temperatures over time. Every period the decision maker foresees what a future

realization of the temperature teaches her about climate sensitivity distribution and

updates her prior accordingly, where temperature follows

T̃t+1 = χt(Mt+1)s̃t + ξt(Tt) + ǫ̃t . (27)

The factor χt captures the forcing from atmospheric CO2 and other greenhouse gases.

23Our formula merely approximates today’s risk premium and we only have to model future un-
certainty as viewed from today. A full stochastic recursive dynamic programming model derives the
uncertainty as viewed from today from the actual uncertainty prevailing in future periods conditional
on future information. It thereby requires a more explicit formulation of the stochastic processes.

24A normal distribution with mean 3 and variance 3 has the one-standard-deviation bands
[1.27,4.73], which also mimics the IPCC’s “likely” range of [1.5,4.5].
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The term ξt reflects that atmospheric warming is a slow process and approximately

governed by an AR(1) type process with a moving target. See equation (24) for the

precise functional forms of χt and ξt. The structural parameter s̃ is the unknown

climate sensitivity over which the decision forms her prior; the time index merely

relates to the decision maker’s subjective prior, the climate sensitivity itself does not

change over time.

Each year random events ǫ̃ shock temperature. These “weather fluctuations” are

normally distributed with mean zero. For a given value of climate sensitivity, the

next period’s temperature is then normally distributed

T̃t+1 ∼ N (µT,t+1(s), σ
2
T ) with σ2

T = 0.042.

The variance σ2
T is exogenous. We estimate the annual volatility of global mean

temperature as σ2
T = 0.042 using GISTEMP (2018).25

The policy maker’s posterior in period t is the prior conditional on historic tem-

perature realizations Π(s|T̂1, ..., T̂t). This posterior also depends on the historic CO2

stock which we suppress for notational convenience. Given the current stock Mt, a

realization of temperature T̂t+1 in the subsequent period results in the updated poste-

rior Π(s|T̂1, ..., T̂t+1). In Appendix E.2 we show that the updated posteriors are again

normally distributed so that at all times Π(s|T̂1, ..., T̂t) = N (µs,t, σ
2
s,t) for some µs,t

and σ2
s,t. Appendix E.2 also derives the following updating rules for expected climate

sensitivity and its variance

µs,t+1 =
χ2
tσ

2
s,t

T̂t+1−ξt
χt

+ σ2
Tµs,t

χ2
tσ

2
s,t + σ2

T

and σ2
s,t+1 =

σ2
Tσ

2
s,t

χ2
tσ

2
s,t + σ2

T

, (28)

where T̂t+1 characterizes observed temperature, σ2
T is the variance of temperature

stochasticity (ǫt-shocks), and χt and ξt(Mt) abbreviate the relevant endogenous quan-

tities of the DICE model affecting the updating equation. The updated expected value

of climate sensitivity s is a weighted mean of the previous expected value and the

inferred “climate sensitivity observation”, T̂t+1−ξt
χt

. The weight on the new observa-

tion is proportional to the precision (the inverse of the variance) of the temperature

and the magnitude of the multiplicative factor χt(Mt), which increases in the carbon

25Kelly & Kolstad (1999) and Leach (2007) both use σ2

T = 0.1. Averaging temperatures over 174
countries and estimating yearly fluctuations with respect to a common trend over 109 years results
in our lower σ2

T = 0.042.
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stock. This stock dependence of the updates differs from the common normal-normal

updating formula and introduces active learning: by increasing the carbon stock the

decision maker can increase χt(Mt) and, thus, the learning speed.

The social planner maximizes her value function subject to the exogenous and

endogenous equations of motion for the economy and the climate summarized in

Appendix D.1 as well as the informational updating equation (28). The physical state

variables describing the system are capital k, CO2 stock M , and temperature T , and

the informational state variables µs,t and σ2
s,t characterizing the climate sensitivity

prior. We use the additional state time t to capture exogenously evolving processes,

such as population, technology, and time changing climate processes. For numerical

reasons, we express capital (and production and consumption) in effective labor units,

i.e. kt = Kt/AtLt where At is technology level and Lt population at time t. The Bellman

equation reads

V (kt,Mt, t, Tt, µs,t, σ
2
s,t) = max

ct,µt

(ct)
1−η̂

1− η̂
(29)

+βt E

[

V (kt+1,Mt+1, t+ 1, T̃t+1, µ̃s,t+1, σ̃
2
s,t+1)

]

,

where we marked one-step-ahead uncertainty by a tilde and the time index on the

discount factor β once again incorporates time-varying population. See Appendix D.1

for the transformation of population weighted average utility to the above form.

We solve the dynamic programming equation (29) by function iteration, using

the collocation method to approximate the value function. As basis functions we

choose Chebychev polynomials with 35, 200 Chebychev nodes and coefficients. The

normal distributions for temperature stochasticity and the climate sensitivity prior

are approximated by Gauss-Legendre quadrature with 3 nodes.26 Our convergence

criterion is a change in the value function coefficients of less than 10−4. The code

is written in Matlab, we use the CompEcon toolbox by Miranda & Fackler (2002)

to generate and evaluate the Chebychev polynomials, and we use KNITRO for the

optimization at a given node.

26The results are robust to increasing Gauss-Legendre nodes and Chebychev nodes.
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E.2 Derivation of Updating Rules

This appendix derives the updating rules for the climate sensitivity prior and the

predictive distribution for temperature. Let lt(xt+1|s) = N (µx,t+1, σ
2
T |s, xt, ht) denote

the likelihood function in period t. Then27

Π(s|T̂1, ..., T̂t+1) =
lt(xt+1|s)Π(s|T̂1, ..., T̂t)

∫∞

−∞
lt(xt+1|s)Π(s|T̂1, ..., T̂t)ds

.

We use ∝ to denote proportionality and suppress the normalization constants of the

distributions, finding

lt(x|s) Π(s|T̂1, ..., T̂t) ∝ exp

(

−
(x− µx,t+1(s))

2

2σ2
T

)

exp

(

−
(s− µs,t)

2

2σ2
s,t

)

∝ exp

(

−
(x− (sχt + ξt))

2

2σ2
T

−
(s− µs,t)

2

2σ2
s,t

)

∝ exp

(

−
x2 − 2x(sχt + ξt) + (sχt + ξt)

2

2σ2
T

−
s2 − 2sµs,t + µ2

s,t

2σ2
s,t

)

∝ exp

(

−
x2 − 2xsχt − 2xξt + s2χ2

t + 2sχtξt + ξ2t
2σ2

T

−
s2 − 2sµs,t + µ2

s,t

2σ2
s,t

)

∝ exp

(

−
1

2

[

s2
(
χ2
t

σ2
T

+
1

σ2
s,t

)

− 2s

(
(x− ξt)χt

σ2
T

+
µs,t

σ2
s,t

)

+
x2 − 2xξt + ξ2t

σ2
T

+
µ2
s,t

σ2
s,t

])

∝ exp

(

−
1

2

[

s2
(
χ2
t

σ2
T

+
1

σ2
s,t

)

− 2s

(
(x− ξt)χt

σ2
T

+
µs,t

σ2
s,t

)

+
(x− ξt)

2

σ2
T

+
µ2
s,t

σ2
s,t

])

∝ exp



−
1

2

(
χ2
t

σ2
T

+
1

σ2
s,t

)


s−

(x−ξt)χt

σ2
T

+ µs,t

σ2
s,t

χ2
t

σ2
T
+ 1

σ2
s,t





2



︸ ︷︷ ︸

≡Π̄

· exp




−

1

2




−

(
(x−ξt)χt

σ2
T

+ µs,t

σ2
s,t

)2

χ2
t

σ2
T
+ 1

σ2
s,t

+
(x− ξt)

2

σ2
T

+
µ2
s,t

σ2
s,t











27This simplified updating equation only using the latest prior and the latest observation is a
consequence of our convenient choice of the conjugate prior.
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∝ Π̄ · exp







1

2
✟
✟
✟
✟

✟✟(
(x−ξt)χt

σ2
T

)2

+ 2 (x−ξt)χt

σ2
T

µs,t

σ2
s,t

+
✚
✚

✚
✚(

µs,t

σ2
s,t

)2

−
✟

✟
✟
✟✟(x−ξt)2

σ2
T

χ2
t

σ2
T
−

µ2
s,t

σ2
s,t

χ2
t

σ2
T
− (x−ξt)2

σ2
T

1
σ2
s,t

−
✚

✚
✚✚µ2

s,t

σ2
s,t

1
σ2
s,t

χ2
t

σ2
T
+ 1

σ2
s,t







∝ Π̄ · exp



−
1

2σ2
Tσ

2
s,t

(x− ξt)
2 − 2(x− ξt)χtµs,t + µ2

s,tχ
2
t

χ2
t

σ2
T
+ 1

σ2
s,t





∝ Π̄ · exp

(

−
1

2

(x− ξt − χtµs,t)
2

χ2
tσ

2
s,t + σ2

T

)

.

The following predictive distribution Pt+1 governs the temperature realization in pe-

riod t+ 1 incorporating stochasticity and parameter uncertainty

Pt+1(x) =

∫ ∞

−∞

lt(xt+1|s)Π(s|T̂1, ..., T̂t)ds ∝ exp

(

−
1

2

(x− ξt − χtµs,t)
2

χ2
tσ

2
s,t + σ2

T

)

.

It is the normal distribution N (χtµs,t, χ
2
tσ

2
s,t + σ2

T ). We find the posterior

Π(s|T̂1, ..., T̂t+1) =
lt(xt+1|s)Π(s|T̂1, ..., T̂t)

∫∞

−∞
lt(xt+1|s)Π(s|T̂1, ..., T̂t)ds

∝ exp




−

1

2

(
χ2
t

σ2
T

+
1

σ2
s,t

)


s−

(T̂t+1−ξt)χt

σ2
T

+ µs,t

σ2
s,t

χ2
t

σ2
T
+ 1

σ2
s,t





2



 .

Thus, if Π(s|T̂1, ..., T̂t) is distributed normally with expected value µs,t and variance

σs,t, then the posterior in the subsequent period Π(s|T̂1, ..., T̂t+1) is also distributed

normally with expected value

µs,t+1 =

χ2
t

σ2
T

T̂t+1−ξt
χt

+ 1
σ2
s,t
µs,t

χ2
t

σ2
T
+ 1

σ2
s,t

=
χ2
tσ

2
s,t

T̂t+1−ξt
χt

+ σ2
Tµs,t

χ2
tσ

2
s,t + σ2

T

and variance

σ2
s,t+1 =

(
χ2
t

σ2
T

+
1

σ2
s,t

)−1

=
σ2
Tσ

2
s,t

χ2
tσ

2
s,t + σ2

T

.
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Table 2: Parameters of the model
Economic Parameters

η 2 intertemporal consumption smoothing and risk aversion
a = b1 0.00284 damage coefficient
b2 2 damage exponent
δu 1.34% pure rate of time preference
L0 6838 in millions, population in 2010
L∞ 10500 in millions, asymptotic population
g∗L 0.035 rate of convergence to asymptotic population
K0 135 in trillion 2005-USD, global capital stock in 2010
δK 10% depreciation rate of capital
κ 0.3 capital elasticity in production
A0 0.0067 initial labor productivity; corresponds to total factor

productivity of 0.02722 used in DICE
gA,0 2.35% initial growth rate of labor productivity; corresponds to

total factor productivity of 1.65% used in DICE
δA 0.6% rate of decline of productivity growth rate
σ0 0.133 CO2 emission in GtC per unit of GDP in 2010
gσ,0 −1% initial rate of decarbonization
δσ −0.1% rate of decline of the rate of decarbonization
a0 1261 cost of backstop in 2010
a1 2 ratio of initial over final backstop cost
a2 2.8 cost exponent
gΨ 0.5% rate of convergence from initial to final backstop cost

Climatic Parameters
T0 0.83 in ◦C, temperature increase of preindustrial in 2005
σ2
T 0.011 temperature stochasticity

Mpre 588 in GtC, preindustiral stock of CO2 in the atmosphere
M0 819 in GtC, stock of atmospheric CO2 in 2010
δM,1 1.0415% initial rate of decay of CO2 in atmosphere
δM,2 −5 timing correction for initial rate of decay
δM,3 4% decline of decay rate of CO2
B0 0.42 in GtC, initial CO2 emissions from LUCF
gB −4% growth rate of CO2 emisison from LUCF
µs,0 3 climate sensitivity prior mean in t = 0
σ2
s,0 3 climate sensitivity prior variance in t = 0

EF0 −0.06 initial external forcing
EF100 0.62 external forcing in year 2100 and beyond
σforc 2.6% warming delay, heat capacity atmosphere
σocean 0.18% warming delay, ocean related

63


	9196abstract.pdf
	Abstract




