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Assessment of model risk due to the use of an
inappropriate parameter estimator
Modisane B. Seitshiro1* and Hopolang P. Mashele2

Abstract: The purpose of this study is to assess model risk with respect to para-
meter estimation for a simple binary logistic regression model applied as
a predictive model. The assessment is done by comparing the effectiveness of
eleven different parameter estimation methods. The results from the historical
credit dataset of a certain financial institution confirmed that using several opti-
mization methods to address parameter estimation risk for predictive models is
substantial. This is the case, especially when there exists a numerical optimization
method that estimates the optimum parameters and minimizes the cost function
among alternative methods. Our study only considers a univariate predictor with
a static sample size of cases. This research work contributes to the literature by
presenting different parameter estimation methods for predicting the probability of
default through binary logistic regression model and determining optimum para-
meters that minimize the objective model’s cost function. The Mini-Batch Gradient
Descent method is revealed to be the better parameter estimator.
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1. Introduction
During the financial crisis and its systems reformation that took place in the years 2007 to 2009,
financial risk prediction was identified as a major concern for the public afterwards. As a result, an
understanding of model risk, especially the parameter estimation risk for predictive models is now
a significant interest to academics, policymakers and practitioners. According to Tunaru (2015),
parameter estimation risk is a problem in that the dynamic model’s specification and parameter
set are viewed as being known by the financial model developers and users whereas the true
parameter values are basically not known with certainty. Thus, either because of uncertainty in
model’s specifications or properties related to the parameter estimator being used or the reliability
of the estimated parameter computed through inappropriate parameter estimation method(s),
such that their proxies are returned to represent the true parameter values. Alternatively, the risk
that the estimated parameters used in the models are not true representative of future outcomes
is parameter estimation risk.

A financial institution that provides services to customers frequently rely on financial models to
ensure good service delivery of their financial products, such as personal loans, overdraft facility
and mortgage loan. Their daily operations may be negatively impacted by model risk, mainly due
to relying frequently on models for predicting the outcome of future events (such as defaults) and
for describing the relationship between variables (e.g., probability of default and the frequency of
payments during the contract). Model risk may be increased as a result of the financial crises,
because the usual functions of many models are stopped post the crises, investigations and
validations are performed for the purpose of reducing similar financial crises happening again in
the future. Among the causes of model risk is the inappropriate parameter estimator, which is the
risk related to an inappropriate numerical method used to estimate the parameter of a correct
model. Developers of the models regularly estimate and change the parameters of the model post
the crises without following the entire model development processes. Thus, increasing model risk
as a result of inappropriate parameter estimator.

In the literature, a comparison study of several statistical methods and unconstraint optimization
methods for obtaining the Maximum Likelihood Estimation (MLE) or minimizing the cost function from
the binary LRM,which is an objectivemodel that has not been looked at for different organizational fields
and academic problems (Borowicz & Norman, 2006; Diers, Eling, & Linde, 2013; Millar, 2011; Minka,
2003). Yang et al. (2016) show the use of Iteratively Reweighted Least Squares (IRLS) and Kalman Filter
with Expectation Maximization (EM) in measurement error covariance estimation. They reveal that on
average the IRLS converges quickly and gives a more accurate parameter estimate for the model of
interest. Despite the concavity of the objective function, literature reveals that for some data the MLE
may not exist. The issue of the MLE existence in binary LRMwas considered by Silvapulle (1981), Candès
and Sur (2018),Wang, Zhu, andMa (2018) and Albert and Anderson (1984). MLE computed through IRLS
method which is like the Newton-Raphson (NR) method is a widely preferred parameter estimator and
have desirable properties of large-sample normal distributions, asymptotical unbiasedness, asympto-
tical consistency, convergence of the parameters as the sample size n increases and asymptotical
efficiency, producing large-sample standard errors no greater than those from other estimation meth-
ods (Agresti & Kateri, 2011). According to Diers et al. (2013), asymptotic normality approach for
modelling parameter risk takes advantage of the fact that under the true distributionmodel, for example
the binary LRM, commonly used parameter estimators are asymptotically normally distributedwith zero
mean and the asymptotic variance-covariance matrix of the estimator as the sample size goes to
infinity. The asymptotic variance-covariance matrix may be constructed using the inverse of the Fisher
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information matrix (Agresti & Kateri, 2011). The distribution of the MLE may be approximated using the
normal distribution with the expected parameter estimator and the estimated variance-covariance
matrix. Dinse (2011) adopted the EM method for fitting a four-parameter LRM to binary response
data, and confirms that EMmethod automatically satisfies certain constraints, such as finding variance-
covariance matrix of estimates, that are more complicated to implement with other parameter estima-
tionmethods. Shen andHe (2015) proposed an EM test based on a small number of EM iterations toward
the logistic normal mixture model likelihood and obtained the test statistic which has asymptotic
representation. While, Hinton, Sabour, and Frosst (2018) achieved significantly better accuracy when
using EM algorithm. The EM algorithm for these recent articles has a similar implementation to be used
in this article. Stochastic Gradient Descent (SGD) and its variants were versatile parameter estimators
that have been proven invaluable as learning algorithms or step size for large datasets (Bottou, 2012).
Advice from the Bottou (2012), is for a successful application of these Batch Gradient Descent (BGD),
Mini-Batch GD (MBGD) and SGD to be considered when one performs small-scale problems, whereas the
majority of researchers allude that the methods work efficiently for large-scale problems (Minka, 2003;
Nocedal & Wright, 2006; Robles, Bielza, Larrañaga, González, & Ohno-Machado, 2008; Ruder, 2016).
Conjugate Gradient (CG)methodwas applied for the comparison of three Artificial Neural Network (ANN)
methods in the application of bankruptcy prediction (Charalambous, Charitou, & Kaourou, 2000). The
latter study provides superior results to ANNmethods against those obtained from the LRM. The field of
ANN has recently been explored and further research in this regard is eminent. The line search Newton
CG methods such as Truncated Newton (TN) method have been highly effective approaches for large-
scale unconstrained optimization (Dembo & Steihaug, 1983), but their use for LRM has not been fully
exploited, hence it has been considered in this article. Some of themost popular updates for minimizing
the unconstrained nonlinear functions, i.e., the cost function of binary LRM, are the Broyden, Fetcher,
Goldfarb and Shanno (BFGS) method and its variant Limited-Memory BFGS (LM-BFGS) methods. The LM-
BFGS is mostly used to save on the memory needed for computation of the Hessian matrix that BFGS
method usually waste (Nocedal &Wright, 2006). The Nelder Mead (NM) simplexmethod developed after
the Powell’s (PW)method is considered to be performing efficiently for the computation of symmetrical
balanced binary response in a widely used LRM (Noubiap & Seidel, 2000; Powell, 1964).

The question for this article is, given the parameter estimator that has been used extensively in
the past years, is there any other optimum parameter estimator’s that can be utilised to ensure
that model risk is significantly reduced? Hence, this research work consider the assessment of
model risk using eleven parameter estimation methods for the binary LRM. These methods are
chronologically given as BGD, SGD, MBGD, IRLS, EM, NM, PW, CG, TN, BFGS and LM-BFGS. Therefore,
our primary interest in this article is to explore and compare the methods when the binary Logistic
Regression Model (LRM) is used for predicting the probability of default (PD) in credit risk. The
fundamental returns of the latter, will be to limit the lending exposure and reduce the risk
associated with the financial institutions against counterparties. Furthermore, this is done to
address suggestions made by the Banking Supervision in the Basel II framework (see Basel
(2004) and Caruana (2010)) that the Financial institutions ought to gauge their model risk and
model validation as one component of the Pillar 1 Minimum Capital Requirements and Pillar 2
Supervisory Review Process guiding the process. The Basel Committee on Banking Supervision
(BCBS), i.e., on Basel III international regulatory framework for banks, picked some of the model
risk scenarios such as high ratings (i.e., AAA’s) in structured finance instruments, e.g., the mort-
gage-backed security, which financial institutions and investors believed to be validated by credit
enhancement methods from agencies as good credit. The financial crises triggered by financial
models started when the rating agencies downgrade the majority of the structured finance
instruments to being useless or of no value. The subprime mortgage market in the United States
that developed into a full-blown international banking crisis with the collapse of the investment
bank Lehman Brothers on 15 September 2008 led to the largest bankruptcy ever recorded by then
(Schiereck, Kiesel, & Kolaric, 2016). Given the latter crises, it is evident that a lack of model risk
management could have contributed significantly.
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According to Derman (1996) and Mashele (2016), a financial model may be correct in an
idealized world but incorrect when realities are taken into account. Therefore, model risk occurs
because either the financial model may be used inappropriately or the financial model may have
fundamental errors which can occur at any point from design through implementation and may
produce inaccurate outputs when viewed against the design objective and intended business uses.
There are three main reasons for model risk to be specified, given as

● the model parameters may not be estimated correctly,

● the model may be misspecified,

● the model may be incorrectly implemented.

Our focus in this article is drawn to the first bullet, where the model parameters may be estimated
using an inappropriate parameter estimators. We refer to this situation as parameter estimation
risk caused by the use of an inappropriate parameter estimator. Disregarding parameter estima-
tion risk means that point estimates for the model given the dataset are computed, whereas, it is
known from estimation theory that an estimator is a random variable by itself (Agresti, 2015).
Thus, a point estimator may not be asymptotically unbiased, efficient, consistent or normally
distributed. Hence, techniques that are heavily reliant on using a point estimate sometimes
neglect the properties of MLE and most importantly parameter estimation risk. Hence, we propose
a comparison of unconstrained optimization problems using the binary LRM with an application of
statistical parameter estimation and numerical optimization methods prior to the PD model
implementation and practical considerations.

The contribution of this article is presenting different parameter estimation methods for pre-
dicting PD through binary LRM and determining optimum parameters that minimize the objective
model’s cost function. The parameter estimation method with a minimum cost function among
the other methods is considered to be the better parameter estimator. Thus, the high the binary
LRM cost function the more inappropriate the parameter estimator becomes. The remainder of the
article is organized as follows: Section 2 briefly describes eleven parameter estimation methods for
determining the optimum parameter through minimizing the cost function of the binary LRM.
Section 3 provides the simulation construction process and the experimental results. Section 4
presents the application results from the real dataset. Section 5 discusses the simulation and
application results given in the tables and figures. Finally, section 6 summarizes and concludes the
article.

2. Parameter estimation methods for predictive models
In this section, the binary LRM with its cost function is briefly described. The eleven parameter
estimation methods for minimizing the cost function are all reviewed in the sub-sections. In order
to examine factors influencing a decision of whether an obligor experiences a default event or not,
we consider the following binary LRM to quantify the PD model, recommended by Neter, Kutner,
Nachtsheim, and Wasserman (1996):

Yi ¼ XT
i;pγþ εi; (1)

where Yi is a binary response variable indicating the status of the obligor, which should satisfy the
following:

Yi ¼ 1; if default event occurs
0; otherwise

;

�

Xi;p is the design matrix of p ¼ 2 predictor variables with the sample size n 2 N , cases i ¼ 1;2; . . . ;n,

γ is the vector of parameters for the binary LRM and assume that the error terms εi are indepen-

dent and identically logistic distributed. We let the conditional probability πi ¼ PðYi ¼ 1jXT
i;pÞ to be

PD event given the predictor variables, denoted by the logistic function as
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πi ¼
1

1þ eð�XT
i;pγÞ

: (2)

The model in Equation (1) can be estimated by MLE techniques and the use of Logit function
given by

ln
πi

1� πi

� �
¼ XT

i;pγ: (3)

The objective of the study is to estimate the parameter vector, γ, such that the cost function is
minimized or the following log-likelihood function is maximized

L ðγÞ ¼ ∑
n

i¼1
Yi lnðπiÞ þ ð1� YiÞ lnð1� πiÞ½ �: (4)

Since the maximization of L ðγÞ is the same as minimization of �L ðγÞ, we consider minimizing
the average cost over the entire dataset, and denote it with the cost function given as

C ðγÞ ¼ �1
n
∑
n

i¼1
Yi lnðπiÞ þ ð1� YiÞ lnð1� πiÞ½ �: (5)

Therefore, the estimator of interest is shown as

γ̂ ¼ arg max
γ

L ðγÞ½ � ¼ arg min
γ

CðγÞ½ �: (6)

To find the estimates given in Equation (6), we use different estimation methods described in the
following sub-sections. Equation (5) which is the cost function C ðγÞ of the binary simple LRM
represents the cost that the PD (PDi ¼ π̂i) that a model will have to pay if it predicts a value π̂i
while the actual cost label turns out to be Yi. For model risk mitigation the optimal parameter
estimation method should ensure that the cost function is minimized among all other optimization
method.

2.1. Batch gradient descent
The BGD method is a first-order iterative optimization algorithm for finding the minimum of
a nonlinear function. It minimizes the cost function C ðγÞ iteratively by starting from an initial
random value of γ and update the parameter values using some step size referred to as the
learning rate (Bottou, 2012). For each iteration step, the parameter value γ is updated by

γkþ1 ¼ γk � λ�C ðγkÞ; (7)

where

�C ðγkÞ ¼
@

@γk
C ðγÞ

and λ is the learning rate. The formulation can be described as starting from some random parameter
value γ0 and then for every iteration k � 0 towards the direction of � �C ðγkÞ by the learning rate λ to
the next parameter value γkþ1, this is done recursively until converging to a stationary parameter
value. The gradient of the cost function with respect to the slope γ1 is given as

�C ðγ1Þ ¼
1
n
∑
n

i¼1
Xiðπi � YiÞ: (8)

The gradient of the cost function with respect to the intercept γ0 is given as

�C ðγ0Þ ¼
1
n
∑
n

i¼1
ðπi � YiÞ: (9)

Therefore, Equations (8) and (9) respectively, may be expressed for slope γ1 as
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γ1;kþ1 ¼ γ1;k �
λ

n
∑
n

i¼1
Xiðπi � YiÞ; (10)

and for the intercept γ0 as

γ0;kþ1 ¼ γ0;k �
λ

n
∑
n

i¼1
ðπi � YiÞ: (11)

The disadvantage of the procedure is that, starting from different γ0 could lead to a distinct
optimum γkþ1, for some complicated cost function C ðγÞ with multiple local minima and high
computing time per iteration. If the learning rate λ is very small, then the minimization procedure
takes more time to converge. Otherwise, it could diverge from the optimum parameter.

2.2. Stochastic gradient descent
The SGD method is an alternative and simplified version of the BGD for minimizing the differenti-
able cost function (Bottou, 2010) given in Equation (5). It processes a single case chosen sequen-
tially or randomly per iteration, resulting in the parameters being updated after one iteration in
which only a selected case has been processed. The method outputs either the last iterate
parameter γnI or the mean of the iterated parameters

�γ ¼ ∑I
k¼1γk
I

;

where n denote the last case and the I is the number of iterations (Polyak & Juditsky, 1992).
Unlike the BGD, the SGD recursively computes the expression as

γkþ1 ¼ γk � λ�C iðγkÞ: (12)

The SGD approximates full gradient by an unbiased estimator given as

E �C iðγkÞ½ � ¼ �C ðγkÞ:

It remains the preferred method when the number of cases in a dataset are too large to fit, or data
cases arrive continuously. The SGD method updates the parameter estimates through the gradient
of the cost function with respect to γ1, expressed as

�C iðγ1Þ ¼ Xik ðπik � Yik Þ: (13)

The gradient of the cost function with respect to γ0 as

�C iðγ0Þ ¼ ðπik � YikÞ; (14)

where ik 2 ð1; . . . ;nÞ is chosen case at each iteration k. Therefore, Equations (13) and (14) respec-
tively, may be expressed for γ1 as

γ1;kþ1 ¼ γ1;k � λXik ðπik � YikÞ; (15)

and for the γ0 as

γ0;kþ1 ¼ γ0;k � λðπik � Yik Þ: (16)

The regular updates of parameters immediately give an insight into the performance of the model,
which can result in faster cost convergence. The noises can make it hard for the method to settle
on a cost function which is minimum for the model. According to Bottou (2012), SGD is a very
versatile technique, especially for too large datasets.

2.3. Mini-batch gradient descent
The MBSG is a sub-method of the BGD and SGD that partition the dataset into small batches of
dataset, used to compute the model cost function given in Equation (5) and update model
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parameter estimates in Equation (6). The sum of the gradient over the mini-batch reduces the time
spent for approximated convergence and the average of the gradient further reduces the variance
of the SGD. The MBGD chooses a random subset size b � ð1; . . . ;nÞ, such that b � n and recursively
computes the following expression at each iteration k

γkþ1 ¼ γk � λ�C jðγkÞ: (17)

The MBGD also approximate full gradient by an unbiased estimator given as

E
1
b
∑
b

j¼1
�C jðγkÞ

" #
¼ �C ðγkÞ:

The MBGD converges in fewer iterations than BGD because parameter estimates are updated more
frequently. For notational simplicity, we assume that the number of cases in the dataset n is divisible
by the number of mini batches m. Then, we partition the cases into m mini batches, each of size b, if
b ¼ n then the method is the same as BGD. BGD and SGD are traditional approaches that have high
cost, but MBGD have shown to be capable of decreasing the variance in the stochastic estimates, but
it also comes at a cost (Konečný, Liu, Richtárik, & Takàč, 2016). The MBGD method updates the
parameter estimates through the gradient of the cost function with respect to γ1 as

1
b
∑
b

j¼1
�C jðγ1Þ ¼

1
b
∑
b

j¼1
Xjkðπjk � YjkÞ: (18)

And the gradient of the cost function with respect to the γ0 as

1
b
∑
b

j¼1
�C jðγ0Þ ¼

1
b
∑
b

j¼1
ðπjk � YjkÞ; (19)

where b 2 ð1; . . . ;nÞ and m mini batches of the dataset are chosen at each iteration k. Therefore,
Equations (18) and (19) respectively, are substituted in Equation (17) and give an expression that
recursively updates γ1 as

γ1;kþ1 ¼ γ1;k �
λ

b
∑
b

j¼1
Xjkðπjk � YjkÞ; (20)

and an expression that recursively updates γ0 as

γ0;kþ1 ¼ γ0;k �
λ

b
∑
b

j¼1
ðπjk � YjkÞ: (21)

MBGD is practically preferred by industry since it tries to balance between the robustness of SGD
and the efficiency of BGD (Ruder, 2016). According to Konečný et al. (2016), MBGD reduces the
variance of the gradient estimates by a factor of 1

b , but it is also b times more expensive.

2.4. Iteratively re-weighted least squares
The IRLS is a numerical method used to find the optimum parameter value ðγÞ that maximizes the
log-likelihood function L ðγÞ given in Equation (4) or gives a gradient �L ðγÞ ¼ 0, known as the score
function. One of the fastest andmost applicable methods for maximizing a function is the NRmethod
(Lindstrom & Bates, 1988), which is based on approximating �L ðγÞ by a linear function of γ in a small
region. Utilizing the first-order Taylor series approximation and determining the starting estimate γ0
(usually through the Ordinary Least Squares (OLS)), the linear approximation is given as

�L ðγÞ ¼ �L ðγ0Þ � Iðγ0Þðγ� γ0Þ ¼ 0;

where IðγÞ is the expected information matrix. Solving for γ results in the expression

γ ¼ γ0 þ I�1ðγ0Þ�L ðγ0Þ:
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The process is continued recursively to find other parameter estimates. For k iterations, the next
parameter estimate is obtained from the previous parameter estimate using the expression

γkþ1 ¼ γk þ I�1ðγkÞ�L ðγkÞ; (22)

where the approximate variance-covariance matrix is the inverse of the expected information
matrix

�2L ðγkÞ ¼ I�1ðγkÞ ¼ ðXTWkXÞ�1

and Wk is the diagonal matrix with main diagonal elements given as πið1� πiÞ. The score function
�L ðγkÞ is the first derivative with respect to the parameter of interest given in Equations 8 and 9 for k
iterations. The following cost function can easily be retrieved, instead of using the log-likelihood func-
tion, as

C ðγÞ ¼ �1
n
�L ðγÞ:

This is reflected from Equation (4) to Equation (5). For large datasets, the expected information
matrix is the estimated variance-covariance matrix for the parameter estimate ðγkÞ (Agresti, 2015).
IRLS method using NR will converge to a local minimum of the cost function very consistently and
reparameterization is key to ensuring consistent convergence of the NR (Lindstrom & Bates, 1988).

2.5. Expectation maximization
The EM method may be utilized to obtain the maximum log-likelihood expectation for the para-
meter of interest (Dempster, Laird, & Rubin, 1977). The OLS method is used to obtain the starting
parameter, thereafter EM method recursively iterates between expectation and maximization
steps until convergence. Hinton et al. (2018) and Shen and He (2015) explain the cost function
that is minimized when using the EM procedure to fit a mixture of Gaussians. Similar steps are
followed for minimizing the cost function of LRM. At each iteration step k, the first step calculates
expectations of the sufficient statistics for the complete dataset, given the dataset and the current
parameter estimates. The second step calculates the parameter estimate value that minimizes the
cost function of the current complete dataset. Each EM iteration increases the likelihood of the
observed dataset. According to Scott and Sun (2013), the EM method is based on Polya-Gamma
data augmentation whereby at each iteration k the parameter estimates are updated as follows

γkþ1 ¼ ðXTΩkXÞ�1XTðy� 0:5Þ; (23)

where

Ωk ¼ diag
tanh½ðγ0 þ γ1xiÞ=2�

2ðγ0 þ γ1xiÞ
� �

;

for i ¼ ð1; . . . ;nÞ and 0:5 is the chosen probability threshold.

The EM method converges very slowly if a poor choice of initial parameter estimate values are
used and its rate of convergence is generally linear (Laird, Lange, & Stram, 1987). EM does not
automatically provide an estimate for the variance-covariance matrix of the parameter estimates.
However, this disadvantage can be easily dealt with by using appropriate methodology associated
with the EM (Mclachlan & Krishnan, 2007). The EM algorithm has an unusual property that when
there are no missing cases, the iterations are still computed the same way as IRLS, but the rate of
convergence changes from linear to quadratic.

2.6. Nelder–Mead simplex
The NM simplex method has always been the most widely used method for nonlinear uncon-
strained optimization (Nelder & Mead, 1965). The method minimizes a scalar-valued nonlinear
function of p real variables using the cost function values and disregarding any derivative
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information. Convergence to a minimizer is not guaranteed for general strictly convex functions
when NM is used, but it requires substantially fewer function evaluations. Audet and Tribes (2018)
give the details for the mechanism of the NM simplex algorithm.

The aim of the NM method is to solve Equation (6) for pþ 1 number of parameters in the
function C ðγÞ. It is based on the iterative update of a simplex made of pþ 1 points fvjgj¼1;pþ1,

known as the vertex. The vertices are related to the function value C j ¼ C jðvÞ for j ¼ 1;pþ 1. The

vertices are ordered by increasing function values in such a manner that the best vertex has index
1 and the worst vertex has index pþ 1, given as

C1 � C 2 � . . . � C p � C pþ1;

where v1 is the best since it relates to the lowest cost function C 1 and vpþ1 is the worst since it
relates to the largest cost function value C pþ1. The mean of the simplex

�γðiÞ ¼ 1
p

∑
j¼1;pþ1;j�i

vj

The method uses one coefficient ρ>0, known as the reflection factor. The standard value of this
coefficient is ρ ¼ 1. The method attempts to replace some vertex vi by the new vertex γðρ; iÞ on the
line from the vertex vi to the mean �γðiÞ by the expression

γðρ; iÞ ¼ ðpþ 1Þ�γðiÞ � ρvi: (24)

The method behaviour is compared against the PW method with regards to its free derivative. NM
method does not require as many function evaluations as compared to most of its variants and it can
become slower as the dimension increases. It converges to a non-stationary parameter point (Lagarias,
Reeds, Wright, & Wright, 1998). Further, NM method is efficient in moving to the general area of
a minimum point but it is not efficient in converging to a precise minimum value of the function.

2.7. Powell
The PW method is an optimization method that approximates the minimum value of a function by
making an assumption that the partial derivatives of the cost function does not exist (Powell, 1964,
2007; Powell, 1965). Let γ0 be an initial parameter guess at the location of the minimum of the cost
function C ðγÞ. The method instinctively approximate a minimum of the cost function C ðγÞ given in
Equation (5) by generating the next approximation parameter γ1 by proceeding successively to
a minimum of cost function C ðγÞ along each of the λ standard base vectors. The process generates

theI th sequence of points or a set of unit vectorswhich are chosen to be linear independent directions
λ0; λ1; . . . ; λI , in an iteration k. The next parameter point γ1 is determined to be the point at which the
minimum of the cost function occurs, along the vector λI � λ0. The method recursively moves along
one direction until a minimum is reached, then moves along the next direction until a minimum is
reached again, and so on. The optimization procedure will stop when

γkþ1 � γk
�� ��<1

2
εð γkþ1

�� ��� γkj jÞ; (25)

for the ðkþ 1Þth and kth iterations. ε is the scalar parameter (tolerance) determining when the
optimization procedure should stop.

The PW method’s is a robust direction set method and doe not find the local minimum as quickly as
othermethods. There is no guarantee that it will find the globalminimum for the cost function at the end
of all iterations. More implications of this method and its conditions are discussed by Powell (1964).

2.8. Conjugate gradient
The CG is a method that efficiently avoids the calculation of the inverse Hessian by iteratively
descending on the conjugate directions (pk). According to Nocedal and Wright (2006), the CG method
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are among the most useful techniques for solving large linear systems of equations and can be
modified to solve nonlinear optimization problems. The first nonlinear CG method was introduced by
Fletcher and Reeves in 1964 (Babaie-Kafaki & Ghanbari, 2015). We briefly describe the use of
a nonlinear conjugate gradient method of Polak and Ribiere, which is a variant of the Fletcher and
Reeves method. The method only considers the first derivative in the computation. Starting from an
initial parameter point γ0, the CG method generates a sequence of parameter points γk given by

γkþ1 ¼ γk � λkpk; (26)

where λk > 0 is a step length obtained from a line search, the search direction pk of the CG method
is defined as

pk ¼ ��C k; if k ¼ 0;
��C k þ βkpk�1; if k � 1;

;

�

where C k ¼ C ðγkÞ and βk is known as the Polak and Ribiere parameter (PRP) for CG method
defined as

βk ¼
ð�C k � �C k�1ÞT�C k

k �C k�1 k :

According to Babaie-Kafaki and Ghanbari (2015), Polak and Ribiere technique showed that when
the PRP formula and an exact line search are used, the CG method is globally convergent. However,
other researchers suggested a non-negative value of the Polak and Ribiere CG formula to ensure
global convergence since it does not guarantee global convergence in all nonlinear unconstrained
problems (Alhawarat, Salleh, Mamat, & Rivaie, 2017). The CG method uses relatively little memory
for large-scale problems and require no numerical linear algebra, thus each step is quite fast. It
converges much more slowly than Newton or Quasi-Newton methods. There are line search and
trust-region implementations of a strategy whereby CG is terminating if negative curvature is
encountered, which is called the Newton–CG. Modified Newton method is the second approach
consisting of modifying the Hessian matrix �2C ðγkÞ during each iteration so that it becomes
sufficiently positive definite.

2.9. Truncated Newton
The TN method is also known as the inline search Newton CG method. The TN method use less and
predictable amount of computational storage, and only require the objective function and its
gradient values at each iteration with no other information about the minimization problem. The
search direction is computed by applying the CG method to the Newton equations given by

Bkpk ¼ ��C k (27)

where Bk ¼ �2C ðγkÞ is the approximation of Hessian at kth iteration and �C k is the gradient.
When Bk is positive definite, the inner iteration sequence will converge to the Newton step pk
that solves Equation (27). At each iteration, the termination criteria ε is defined as

minð0:5; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffik �C kp Þ known as the forcing sequence (Nocedal & Wright, 2006). There are other
methods in the literature that can be utilized for the choice of the tolerance. If the Hessian is
detected to be an indefinite matrix then the CG iteration is terminated. The approximate
solution of the search direction pk is then used in a line search to get an updated parameter
point, through the expression

γkþ1 ¼ γk � λkpk; (28)

where λk>0 satisfies the Wolfe, Goldstein, or Armijo backtracking conditions and C kþ1 < C k (Nash
& Nocedal, 1991). The TN method has some similarities to BFGS to be discussed in the next section.
For a good performance of the TN method to be realized, the CG stopping criteria need to be tuned
so that the method uses just enough steps to get a good search direction.
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2.10. Broyden Fletcher Goldfarb Shanno
The BFGS method is a Quasi-Newton method also known as a variable metric algorithm. This is
a nonlinear optimization method for solving unconstrained problems (Nocedal & Wright, 2006;
Shanno, 1970). The method constructs an approximation to the second derivatives of the cost
function, given in Equation (5), using the difference between successive gradient vectors. By
combining the first and second derivatives the method can take Newton-type steps towards the
minimum value of the function. Therefore, it is a more direct approach to the approximation of
Newton’s update for the parameter estimates that minimize the cost function, C ðγÞ. The updates
at each iteration to the parameter estimates are given by the expression

γkþ1 ¼ γk þ λBðγkÞ�C ðγkÞ; (29)

where λ is the learning rate or the step size, γk is the old parameter estimate for the first iteration
k ¼ 0 γ0, and γkþ1 is the new parameter estimate. The procedure adopted by Quasi-Newton
methods is to approximate the inverse with a matrix BðγkÞ ¼ Bk, which is recursively refined by

the low rank updates to become a better approximation of the inverse Hessian matrix, H�1 ¼ 1
�2C k

.

The latter matrix is updated by recursively computing the expression

Bkþ1 ¼ Bk �
Bkςkς

T
kBk

ςTkBkς
T
k

þ vkvTk
vTkςk

;

where

ςk ¼ γkþ1 � γk

and

vk ¼ �C kþ1 � �C k:

The properties for BFGS should hold so that the method is efficient. The Hessian matrix, H, is
symmetric, so should its inverse be. Thus, it is reasonable that at each iteration approximation Hk

should be symmetric. If this holds for the update Bk then the Bkþ1 will inherit the symmetry from
Hk. Somewhere during the iteration the Quasi-Newton condition given as

Δγi ¼ Bkþ1Δvk;

should hold for 0 � i � k. As a result of Hk being symmetric and Quasi-Newton condition being
satisfied, then the approximation of the hessian will be positive definite. According to Nocedal and
Wright (2006), the BFGS method is the most effective among most of the Quasi-Newton updating
methods for unconstrained non-linear problems. It is considered successful due to being highly
independent on the line-search methods, such as PW method and others, for determining
a parameter point which is very near to the true minimum along the line. The BFGS method
spends less time refining each line search but needs a huge memory due to storage of the inverse
Hessian matrix, making it impractical if there exist a high number of parameters (Vetterling,
Teukolsky, Press, & Flannery, 1992).

2.11. Limited-memory Broyden Fletcher Goldfarb Shanno
The LM-BFGS method is an extension of BFGS method that belongs to the variants of Quasi-Newton
optimization problems. The method resolves the cost function minimization problem by calculating
approximations to the Hessian matrix for the function. The main idea of LM-BFGS method is to use
curvature information from the most recent iterations to construct the Hessian approximation. The
curvature information from earlier iterations, which is less likely to be relevant to the actual
behaviour of the Hessian at the current iteration, is discarded in the interests of saving storage
(Nocedal & Wright, 2006). The memory costs of the BFGS method can be significantly decreased by
computing the approximation Hessian matrix B using the same method as the BFGS algorithm but
beginning with the assumption that Bt is an identity matrix, rather than storing the approximation
from one step to the next. Its strategy with no storage can be generalized to include more
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information about the Hessian by storing some of the vectors used to update B at each iteration
step, which costs less.

3. Results
In the effort of trying to address Model Risk with respect to parameter estimations risk, we
compare the performance of the parameter estimates when the binary LRM is applied to estimate
the PD. Several optimization methods, given from Section 2.1 to 2.11, are employed to find the
optimal parameter estimates though minimizing the cost function given in Equation (5). For this,
the true underlying parameter values determining the PD must be known. All the codes of the
analysis were computed on Python version 3.7.1 with Jupyter Notebook version 5.7.4.

We set the parameter intercept γ0 ¼ 0:0 and the parameter slope γ1 ¼ 0:5. Therefore, we use
the simulation to produce the balanced dataset of default and non-default events. For each of the
true parameters and sample size of 6 400, the dataset was simulated and analyzed. To keep our
model simple, we included only one predictor variable which is uniformly distributed (i.e.,
Xi , U½�8;8�Þ for which the cost function C ðγÞ is investigated. The dataset was simulated using
the LRM and setting the parameter to 0.5 for a Bernoulli distribution resulting in a dichotomous
response variable Yi indicating whether an event occurred or not.

The PD is then estimated through the use of LRM given in Equation (5) as

PDi ¼ π̂i ¼ 1
1þ eð�γ̂0�γ̂1XiÞ

: (30)

We use the accuracy rate A to assess the performance of the optimized parameters in the model
given in Equation (30), which is expressed as

A ¼ ∑n
i¼1½Iðπ̂i � 0:5Þ;ðYi ¼ 1Þ� þ∑n

i¼1½Iðπ̂i<0:5Þ;ðYi ¼ 0Þ�
n

; (31)

where Ið:Þ ¼ f0;1g is the indicator function and n is the sample size.

4. Applications to real dataset
This section is based on the application of the proposed methodology in section 2 to the bench-
marking dataset. The anonymous dataset collected during the years 2016 to 2018 is from one of
the South African financial institutions that provide loans to clients. The dataset contains the
history of 1057 clients with the default indicator been the binary response variable (Y), i.e., default
= 1 and non-default = 0. To empirically compare the simulation and the real data results, we only
considered one predictor variable (Xi). This variable is the average percentage credit to disposable
income of the clients recorded monthly over the given period.

5. Results discussion
Tables 1 and 2 present the results of the optimized parameters for the binary LRM that minimizes
the cost function, computed using 11 different parameter estimation methods. The corresponding
graphical representations about the convergence of the parameter estimations cost function are
presented in Figures 2–5.

The BGD method described in Sub-Section 2.1 was configured to run 100 iterations for the
simulated dataset but reveals the convergence of the cost function CðγÞ ¼ 0:3881 in only two
iterations (i.e. κ ¼ 2). For the real unbalanced dataset the method of BGD cost function value is
very high. Figures 2 and 4 show the nature of convergence and its termination. The asymptotic
rate of convergence can be inferior to alternative methods when there are many variables to work
with. The method produced relatively reasonable cost function value with the learning rate of 0.01
while the parameter estimates are optimized, as illustrated by Figure 1. The SGD which is the
simplified version of the BGD method has a premature convergence, as it is revealed in the real
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dataset shown in Figure 4 and the highest cost function of 2.3416. This is mainly due to the regular
updates of the parameters through simulation (i.e., resampling without replacement for real
dataset) and huge memory utilization for their storage, thus computationally expensive. Figure 2
for the SGD show that the method converges very fast but not with the exact optimum para-
meters, this is shown by the randomness of the cost function until all the configured iterations are
executed.

Figure 1. Plot of a Cost
FunctionC ðγÞfor a simple binary
LRM.

Notes: The plot generated
using the BGD parameter esti-
mator. The blue dots represent
the variety values of the inter-
cept γ0 and the slope γ1 para-
meters, respectively, shown on
the axis. These parameters are
varied such that they minimize

Figure 2. The plot of the cost
function from five parameter
estimators against number of
iterations.

Notes: The plots of the cost
function values C ðγÞ against
the number of iterations I per
100 iterations computed on
the simulated dataset. The five
parameter estimation methods
are BGD, SGD, MBGD, IRLS and
EM.
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IRLS and EM methods described in Sub-section 2.4 and Sub-section 2.5 reveals similar optimized
parameters and minimized cost function values for the simulated and the real dataset. The only
difference observed from the simulated dataset is on the convergence rate of the cost function,
where IRLS method reaches convergence in only κ ¼ 7 iterations and terminate due to the
tolerance ε ¼ 1e� 08, which is similar for the real dataset. EM method reaches convergence in
39 iterations and terminates with a tolerance ε ¼ 1e� 08. We observe that the tolerance criterion
used for the EM method to be the size of the change in the cost function or parameter estimates
from one iteration to the next. This is a measure for lack of progress but not of the actual
convergence. We view this as a major drawback of the EM method. MBGD method computed
with simulated dataset show optimum parameters very closed to the true parameters and the
minimized cost function C ðγÞ ¼ 0:2936 among all the alternative optimization methods. MBGD
method show to have reduced the variance of the parameter updates, which leads to more stable
convergence of the cost function value between 0.25 and 0.31. Similarly, Figure 4—MBGD method
for the real dataset the cost function obtained are between 0.1 and 0.25. According to Ruder
(2016), MBGD does not always guarantee good convergence, but has few challenges that need to
be taken into consideration when implemented. In this study MBGD shows very clear convergence
and the challenge of the learning rate of 0.01 that we choose is efficient for the method. Also, the
choice of the mini-batch size for the given sample size is important for the model. For the
simulated dataset the mini-batch size is 40 and for the real dataset the mini-batch size is 12.
The remainder of numerical optimization methods, i.e., NM, PW, CG, TN, BFGS and LM-BFGS,
shows the same optimized parameters and cost functions with slightly different convergence
information presented in Figures 3 and 5. The measure for lack of progress but not of the actual
convergence is again observed for NM method. The progress in the convergence of the PW method

Figure 3. The plot of the cost
function from six parameter
estimators against number of
iterations.

Notes: The plots of the cost
function values C ðγÞ against
the number of iterations I per
100 iterations computed on
the simulated dataset. The six
parameter estimation methods
are NM, PW, CG, TN, BFGS and
LM-BFGS.
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is revealed to be fast, just like that of BGD for the simulated dataset. The progress in the
convergence of the IRLS method is revealed to be fast for the given real dataset.

6. Conclusion
In Section 2, the binary LRM is proposed as a default model to assess model risk with respect to
parameter estimation risk, that is an inappropriate parameter estimation method. The respective
Sub-sections 2.1 to 2.11 describe recommended numerical optimization methods as parameter
estimators for estimating the model parameters through minimization of the binary LRM cost
function. It is revealed that parameter risk is important and essential through the comparison of
numerical experiments and simulation done in section 3. MBGD method is shown to outperform
the alternative optimization methods. MBGD estimators are accurate, since the bias is smaller
among alternative methods, i.e.

Eðγ̂1Þ � γ1 ¼ 0:4996� 0:5 ¼ �0:0004

Disregarding parameter risk can lead to a significant under-estimation of risk capital require-
ments, depending on the size of the underlying datasets. Therefore, we conclude that predicting
PD using the binary LRM with the known varying thresholds will lead to substantially different
results when parameter risk is taken into consideration. That is, when several optimization
methods are employed. Numerical optimization estimation methods are identified as being the
ones that have parameters which minimize the cost function or maximizes the log-likelihood
function of the simple binary LRM. The impact of parameter estimation risk is depicted as an

Figure 4. The plot of the cost
function from five parameter
estimators against number of
iterations for real dataset.

Notes: The plots of the cost
function values C ðγÞ against
the number of iterations I per
100 iterations computed on
the real given dataset. The five
parameter estimation methods
are BGD, SGD, MBGD, IRLS and
EM.
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optimization method that yields the lowest cost function. Our experimental results support the
need for further research of estimation parameter risk for binary LRM and other family of
exponential models. Binary LRM with high order of predictor variables and interaction terms
with different distributions may exhibit high parameter estimation risk implications. Therefore, it
can be explored for further research on parameter estimation risk. Model risk management
researchers and practitioners are therefore encouraged to consider parameter estimation risk
through exploring different optimization methods as opposed to using the same traditional
estimation methods repeatedly.
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