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Volatility behavior of asset returns based on
robust volatility ratio: Empirical analysis on global

stock indices
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Abstract: In this paper, we come up with an alternate theoretical proof for the

independence and unbiased property of extreme value robust volatility estimator
with respect to the standard robust volatility estimator. We show that the robust
volatility ratio is unbiased both in the population and in the finite samples. We

empirically test the robust volatility ratio on nine global stock indices from America,
Asia Pacific and EMEA markets for the period from January 1996 to June 2017 based
on daily open, high, low and close prices to understand the volatility behavior of
stock returns over a period of time. Our results show that robust volatility ratio for
different k-month periods is significantly less than 1 for all the global stock indices,
thus finding the clear evidence of random walk behavior. This is possibly the first
study based on robust volatility ratio to understand the volatility behavior of global

stock indices.
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1. Introduction

Estimation of volatility in asset returns has been an important area of research in the finance
literature. Volatility is considered to be a valuable measure to estimate and used in diverse fields
such as risk management, portfolio management, asset allocation, option pricing, foreign exchan-
geand the term structure of interest rates. Since volatility is a measure of dispersion and not
observable, an extensive research in this area has resulted in developing various volatility estima-
tor models such as ARCH/GARCH-type models, stochastic volatility models, range-based volatility
models and more recently high-frequency realized volatility models.

In general, most of the volatility estimation models in the financial markets are based on the
two famous proxy variables: (1) the squared returns and (2) the absolute returns, i.e. absolute
deviation (Ghysels, Harvey, & Renault, 1996). Statistically, when the distribution of the financial
data follows Gaussian normal distribution and is free of outliers, the standard deviation is con-
sidered to be a more efficient measure of dispersion than the absolute mean deviation (Fisher,
1920; Stigler, 1973; Aldrich, 1997; Hinton, 1995). However, in “realistic situations“ where some
measurements are in error (i.e. in the presence of outliers) or for the distributions other than
perfect normal, the superiority of standard deviation over the absolute mean deviation diminishes
(Eddington, 1914; Fama, 1963; Barnett & Lewis, 1978; Huber, 1981). Even though the standard
deviation based on squared returns as a proxy of volatility has a statistical drawback over absolute
deviation, the latter has been used extensively in the advancement of volatility estimation models
in the financial literature (Black & Scholes, 1973; Engle, 1982; Bollerslev, 1986; Hull & White, 1987;
Andersen & Bollerslev, 1997, Andersen, Bollerslev, & Ebens, 2001; Adriana & Chris, 2014).

Modeling the volatility based on the absolute returns can be traced back to the work of Taylor
(1986). The volatility model using absolute returns is found to be more robust against non-
normality (Davidian & Carroll, 1987). The specification of volatility based on absolute returns is
empirically found to produce better volatility forecasts relative to squared returns (Ding,
Granger, & Engle, 1993; Ederington & Guan, 2004). Theoretically, it was proved that absolute
returns are more persistent and better in predicting future volatility than squared returns
(Forsberg & Ghysels, 2007). Absolute return volatility is easier to calculate and as a risk indicator
has approximately the same sensitivity as realized volatility. However, realized volatility esti-
mators require much effort and resources to implement as argued by Rogers and Zhou (2008).
The usual absolute return volatility models are based on the closing prices alone.

It is well established in the literature that volatility estimation models based on extreme values
of asset prices {High, Low, Open, Close} are more efficient and convenient when compared to the
usual volatility estimator based on closing prices alone. The volatility estimators that use the
extreme values of asset prices in the literature are Parkinson (1980) estimator that uses the {High,
Low} prices, Garman and Klass (1980) estimator that uses {High, Low, Open, Close} prices, Rogers
and Satchell (1991) estimator, Kunitomo (1992) estimator, Yang and Zhang (2000) estimator,
Alizadeh, Brandt, and Diebold (2002), Chou (2005) and Maximum Likelihood estimator as in Ball
and Torous (1984), Magdon Ismail and Atiya (2003) and Horst, Rodriguez, Gzyl, and Molina (2012).
In this paper, we use Classical Robust Volatility Estimator (CRVE) and a new volatility estimator (i.e.
Extreme Value Robust Volatility Estimator (EVRVE)) that uses a robust volatility proxy, i.e. absolute
returns, along with extreme values of asset prices as mentioned in papers by Muneer and
Maheswaran (2018b). These robust volatility estimators are also used in the research by Muneer
and Maheswaran (2018a) to find the evidence of excess volatility based on the cross-sectional
average of the constituent stocks of India’s BSE Sensex and the USA’s Dow Jones stock indices.

We provide an alternate proof to show that the proposed EVRVE is independent and unbiased
relative to the CRVE. We find the closed form solution to the joint probability density of the running
maximum and the drawdown of the standard Brownian motion with no drift parameter at the
random stopping time. Based on the theoretical result, we show the independence of the proposed
EVRVE relative to the CRVE. Since the proposed estimators are independent of each other, we
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further propose a robust volatility ratio (RVR) to show that the EVRVE is unbiased relative to the
CRVE both in the population and in finite samples.

The rest of the paper is organized as follows: We first discuss the methodology of this
paper. Second, we discuss the robust volatility estimation and show the independence and bias
properties of extreme value robust volatility estimators relative to the CRVEs. Finally, we provide
the empirical findings of our model based on the global stock indices like CAC 40, DAX 30, DOW 30,
FTSE 100, IBOVESPA, NIKKEI 225, NIFTY 50, S & P 500 and SET 50.

2. Methodology

In this section, we find the closed form solution for the joint probability density of the running
maximum and the drawdown of the standard Brownian motion with no drift parameter at the
random stopping time z~Exp(A)' and is independent of the Brownian motion. Based on the
theoretical result, we show that the proposed robust volatility estimator based on extreme values
of asset prices is independent of the usual robust volatility estimator based on the absolute
deviation. Further, we propose the RVR to show that the Extreme Value Robust Volatility
Estimator (EVRVE) is unbiased relative to the CRVE in the population. Also in the finite sample,
we propose the correction procedure to adjust the bias in the robust volatility estimator based on
extreme values of asset prices.

In general, volatility estimation models are based on the assumption that asset returns follow
Gaussian normal distribution. However, the distribution of the real-world financial asset returns
data is found to exhibit substantial fat tails and also asymmetry around the mean relative to those
of normal distribution. In this paper, we make use of a mixture of distribution hypothesis, which
models the asset returns as a function of the random process of information arrival (Clark, 1973;
Tauchen & Pitts, 1983; Harris, 2001; Richardson & Smith, 1994). The mixture of distribution models
is more flexible to capture the leptokurtic and multimodal characteristics of real-world financial
time series data (Kon, 1984). We choose the exponential mixture of the normal distribution as we
are able to theoretically show that it is equal to the double exponential distribution [See, Proof of
Claim 1 in the Appendix section]. In particular, we take insights from the work of Linden (2001)
which mentions that double exponential distribution suits well for daily and weekly observations of
stock return data.

2.1. Theoretical framework

Here, we demonstrate the theoretical setup that has been followed in this paper. We show the
proofs of the reflection principle for the Brownian motion along with the joint probability of the
running maximum and the drawdown of the Brownian motion in the below subsections which
form the base for coming up with the robust volatility estimation technique as proposed in the
following sections.

2.1.1. Reflection principle for Brownian motion

Lemma 1: The reflection principle for the Brownian motion states that when =0,

P(Xe < X,M¢ > b) = P(Xe > U)[y_pp =1 — @ (%)

u=2b—x

for b>0, x < b where “x“ and “b” are the specific levels on the Brownian motion path. That is to
say, the joint probability of the terminal value (X;) and the running maximum (M;) of the standard
Brownian motion at a fixed time “t“ with no drift parameter (i.e. » = 0) will be equal to the
univariate probability. Here, ®(.) denotes the cumulative distribution function of the standard
normal distribution.
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Proof: In order to prove this, let us define the random stopping time of the Brownian motion for
specified level b as

Ty =inf{t > 0,X; > b}forb>0

By using the symmetric property of the Brownian motion over the set (t > T},), we have,
P(Xt§X|.7:Tb)=P(Xt2U|]:Tb) (1)

Here, Fr, represents the filtration at the random stopping time Ty
Now let us consider the L.H.S of Equation (1). We get that

Therefore, we have shown that

PXe < X[ F1,)leor, = PXe < X, Mt = b)|iq,

Now consider the R.H.S of Equation (1). We get that,

RHS =PX: > u|Fr1,)lesr, = E{lixoun) |71, Hesor, = B{E{Ixou Loty F, 3}

=E{lx>utst,)} = PXe > u,t > Tp) = P(Xe > u,M; > b)

=PXt>u)=1 —‘D(\%))

Thus, by making use of the symmetric property of the Brownian motion, we have shown that the
joint probability of the terminal value and running maximum of the standard Brownian motion
converges to a univariate probability. Thus, the reflection principle of the Brownian motion when
u=0and for x < b,b >0 is given as,

u=2b—x = 1 - ®<u>
(t)

2.1.2. Joint probability of the running maximum and the drawdown of the Brownian motion

P(Xt S X, Mt Z b) = P(Xt Z U) (2)

u=2b—x

Hence, Lemma 1 is proved.

Lemma 2: Let (M., Y,) denote the value of the running maximum and the “drawdown” of the
standard Brownian motion at a stochastic time 7 .

The “drawdown” (Y) of the Brownian motion is defined as the difference between the running
maximum (M) and the terminal value (X). That is to say, we have Y =M — X.

Let us assume that the stochastic time 7 is independent of the Brownian motion and is
distributed exponentially with the parameter 4 i.e. 7~ Exp(4).

Then, the joint probability of M, and Y, where b > 0, y > 0 and =~ Exp(4) is,

Proof: Let us recall the result of Lemma 1 of the ABC procedure paper (Maheswaran & Kumar,
2013). It says,

Let (X;, M) denote the value of a stochastic process and its running maximum at a fixed point in
time “t”. Let us say that H(x,b) = P(X; < x,M; > b) for b>0,x < b. If u is sufficient for H(x,b) and H
is differentiable with respect to both arguments, then for b>0,y <0, we have,

P(Yt 2 y, Mt Z b) = ZP(Xt S X7Mt Z b)'x:b—y

We make use of the above result to prove our Lemma 2.
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P(M, >b.Y, >y) =e e ¥ 3)

Now let us consider the L.H.S of Equation (3), we get,

(M, >b,Y, >y) = J Je~MP(My > b, Y; > y)dt
0

3

o

3

P
_ J 26 H2P(X; < X,M; > by ,dt = | AeH2P(X > )],y dt

0
JeH Z{Jo %tb(%) }dtdz = Jz:u { Jtzoue*ﬂ % (I)(\%)dt}dz

= 2 rc letLpL dt.“}dz:JOC 2{1pe-r2) dz:ro e PZdz
JZ:U { vt (\/f) Z=u {Zﬂ } Z:uﬂ

t=0
Now let us say W=pr=2z=%= dz:%"". Also, if z € (u, 00), then w € (Bu, 00) .

Therefore, we have,

LHS=PM,>b,Y,>y) = J e dw =e M
pu
= e b)) — e MeWoverb >0,y >0=RHS

Since L.H.S =R.H.S for b > 0, y > 0, we have,
J 167 P(M; > b, Y; > y)dt = e Poe W
0

That is to say, when =~ Exp(1), we have
P(M,>b,Y, >y)=e e ¥

Therefore, the joint probability of the running maximum and the drawdown of the standard
Brownian motion at a stochastic time =~ Exp(4) which is independent of the Brownian motion

are i.i.d exponential random variables with the parameter g where = v/21.
Hence, Lemma 2 is proved.

2.2. Robust estimation of volatility for Brownian motion

Here, we assume that the process X; follows Brownian motion with no drift parameter at a random
stopping time z. We suppose that the random stopping time z is exponentially distributed with
parameter A and is independent of the Brownian motion. Based on this, we derive robust extreme
value estimators and discuss their properties.

Suppose, {0, H, L, C}; denote the opening, high, low and close price of an asset for an x; = In(C;) —
In(0;) day. Based on the set of ith price series, we derive the triplet {x, b, c}; such that
x; = In(C;) — In(0y)
b,‘ = ln(H,) — ln(O,)
Ci = ln(L,) — ln(O,)

Here {x,b,c} be specific levels on the Brownian motion path representing the terminal value,
running maximum and running minimum, respectively. We have, x>0,b>0,c<0,b > xand c < x.

Now let us introduce the CRVE, denoted as “ Sigx” by letting Y, = |x| defined as,
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. 1|N
Sigx = ; {Eﬂx,@ (4)

In Equation (1), it is important to note that the proposed CRVE, denoted as Sigx, only uses the open
and close price series of an asset.

We further introduce the EVRVE, denoted as “ Sigux” by letting Y1 = u — |x||,_,,_x defined as,

N
Sigux = (3. (u ~ b ©)
=1

By using the symmetric property of the Brownian motion, we can define “ Sigvx” by letting Y5 =
V—IX][y—2cx @S,

Sigvx = 1 [%(v - x;)] (6)
N |5

Here, we have defined {u,v} as u=2b — x and v = 2c — x.

Based on the proposed extreme value robust volatility estimators, Sigux and Sigvx as mentioned
above in Equations (5) and (6), we can further define another estimator as,

Sigux + Sigvx

2 7

Siguxvx = avg{Sigux, Sigvx} =

It is important to note that the proposed EVRVE, Sigux uses open, high and close price series of an
asset. Sigvx uses open, low and close price series of an asset and Siguxvx uses all the extreme
value information of asset price series, i.e. open, high, low and close prices.

We further show the independence of Y; and Y, by using the joint probability densities and by
applying the theoretical framework of Lemma 1 and Lemma 2 as shown in Section 2.2 of this
paper. Later, we show the bias property of EVRVE relative to the CRVE both in the population and in
the finite sample by proposing a RVR.

2.2.1. Independence property of Y1 and Y2
Let us introduce the generic terms X; and X, which are i.i.d exponential with parameter g = /22
and is defined as

X1=b=M1X2 =y=Yr

Then, the joint probability density of {X1,X;} at specific points {x1,x,} for x;>0,x, >0 can be
written as

fXLXZ (X17 XZ) = [ﬂeiﬂm“ﬁeiﬂxz] (8)

since X1,X; are i.i.d exponential with parameter  where = /21 based on Lemma 2.

Now let us introduce random variables, Y; and Y, which are defined in terms of b,y as
Y1=U—[Xllygp 5 = 2min(b,y) & Y, =x=b—y

In order to show the independence property of Y; and Y5, let us consider two cases.
Case 1: Let us consider the special case when 0<x; <x; .

In such a case, we have x; — x, > 0.
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Therefore, |x1 — Xx2| = X1 — Xa.
We have Y; based on robust extreme values defined as,

Yl =u- |X||u:2bfx = (Zb - X) - ‘XHx:bfy = (b +y) - |b _yHble,y:xz
=(X1+X2) —|X1 —X2| = (X1 +X2) — (X1 — X2) = 2min(x1,x2)|0xzx1 = 2X;

Similarly, let us define? Y, as
Yo=x=b-y=x1—x;

That is to say, when 0 < x, < x1, we have,
Yi=2X &Y, =X1 — X

Now let us consider the inverse transformation of Y; and Y,, we get

Y Y1 1
X2 :?l(]ndX‘l :Yz + X2 :Yz +?1:§~Y1+Y2

Now let us represent the same in matrix notation, we get
1
=11 o))
X2 3 0 Y,
The Jacobian of the transformation is given by
11
<[ o
10
Thus, we have,

1
det(J)| =

Now, the domain of the generic random variables X;, X is given by
Dy = {(X1,X%2) : 0<x2<X1}

The domain of the transformed random variables Y,,Y; is given by
Dg = {(y1,y2) : y1>0,y,>0}

Therefore, let us derive the joint probability density® as
Irv,(V1,y2) = |det(J)[fi, x, (X1, X2) = 3 pe /By perl]

= % pre Pyl = 1g2a-flntyel — [pe ™[k pe2

Nl

That is to say, the joint probability density of Y1,Y, when 0<x, <x; is given by

9v..Y, ()/1 ayZ) = [ﬂefﬂyl} |:%ﬂe*/i)’z:| o

DB

Case 2: Now let us consider the special case when 0 <x1 <X;.
In such a case we have x; — x; <0.
Therefore

|X1 —X2| = —(Xl —Xz) = X — X1.
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We have Y; defined as

Y1 =U—[Xllygpy = (2b = X)=[X[|,_p_, = (b+y)*|b Yllb=x,
= (X1 4+ X2) — |¥1 — X2| = (X1 + X2) — (X2 — x1) = 2min X17X2$/|0x1x2 =2x1

Similarly, let us define Y; as
Y,=x=b—-y=x1—X;

That is to say, when 0<x; <x, we have,
Yi=2x1andY; =x1 — X3

Now let us consider the inverse transformation of Y; and Y,, we get

1 andxz = X1 —Yz :l.Yl —Y2

=z 2

Now let us represent the same in matrix notation, we get

FNHRIR

The Jacobian of the transformation is given by

4]

Thus, we have,

[EN]]

J=

NN

1
|det(J)| =5

Now, the domain of the generic random variables X;, X; is given by
Dy = {(X1,X2) : 0<x1 <Xz}
The domain of the transformed random variables Y1, Y, is given by
D = {(y1,y2) : y1>0,y, <0}
Therefore, let us derive the joint probability density® of Y1,Y, as
Iy (y1.¥2) = |det())|f,x, (x1,%2) = J e/ peVin il

=1p? e Pi+yi-val — 1p2e -yl = [pe- )L pe-bal)

That is to say, the joint probability density of Y;,Y, when 0< x; <X, is given by

av.yv, V1,y2) = [pe ™) Bﬂe—ﬂ\yz\} o

DBy

Finally, let us combine the results of both cases (1) & (2). Therefore, from Equations (9) and (10),
we get the joint probability density of Y;,Y, as

gyl o
av,y, (yl7y2) = [ﬂe ﬂyl”iﬂe ﬁ‘yz‘HhO‘}’zeR (11)
From Equation (11), it is clear that Y, & Y, are independent of each other. In particular, we have

shown that Y; which is defined as Y; = u — |x| = 2.min(b, y) is independent of Y, which is defined
as Y, = x = b — y with specific exponential distributions as,
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Y1~ Exp(f)
and
Y2~ DExp(p)

where “Exp” denotes exponential distribution and “DExp” denotes double exponential distribution.

2.3. Bias property

In this section, we theoretically check the bias property of the EVRVE relative to theCRVE both in
the case of the population and in the case of the finite sample. We show that in the case of
population, EVRVE is unbiased relative to the CRVE by finding the proposed RVR to be equal to 1.
Also, we allow the Finite Sample Correction Procedure to adjust the insignificant bias of EVRVE
relative to the CRVE in the case of the finite sample. We show that the proposed Modified Robust
Volatility Ratio (MRVR) is unbiased and is equal to 1 in the finite sample.

2.3.1. Bias in the population

Theorem 1: In the population, the RVR is unbiased. That is to say, the EVRVE is unbiased relative to
the CRVE in the case of population. That is,

Robust Volatility Ratio (RVR) = {W} =1

Proof:
Let us consider Y; defined as

Yi=u—|x|

where.

Y1~ Exp(f)and g = V2.1

In order to get the EVRVE, we take the expected value of Y;. That is to say,
E(Y1) = B(u—|x]) = J:C wpe P dw

Now puty =pw=w= )7; Therefore,

Blu—[x) = | Jerdy =31 yerdy =31 = 4

Hence, in the population, we define the EVRVE as,

1

E(u— |x|) = N (12)
Now let us consider Y3 defined as

Y, = |x]|

where

Y,~Exp(f)and g = V24

In order to get the CRVE, we take the expected value of Y,. That is to say,
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B(Y) = B() = 5= =

Hence, in the population, we have the CRVE defined as,

1
E(|x])) =— (13)
(Ix[) 75
Therefore, from the results of Equations (12) and (13), we define the RVR in the population as
1
RmmaVMmmemm(mm):@9239:4:1 (14)
E(x) 1

We have found the RVR to be equal to 1. That is to say, EVRVE is unbiased relative to CRVE in the
population at the random stopping time ¢ of the Brownian motion with no drift parameter.

Hence, we have proved the Theorem.

2.3.2. Bias in the finite sample
Here, we check the bias property in the case of the finite sample. Let us recall Y; defined as
Y1 =u—|x| =2.min(b,y) and Y1~Exp(f).

Since we know that the exponential distribution with parameter g is same® as the Gamma
distribution with parameter {a,N} when a =  and N = 1. We can say that
Y1~ Exp(p)issameas Y1 ~T'(a,N)|,_sn_1)
That is to say, if we consider {y; : 1 <i < N}~ iid Exp(f), then each individual
YiT(a, N)| (g not)
Therefore, their sum will also have the probability density function of gamma distribution. That is,
ThyT@N)|
Now let us find about the distribution of the average of the individual
YiT(a, N)| (g not)
In order to find that, let us consider the generic random variables, namely,

X= Sy T@n)|

1| N 1
W== | ==X

NL§4 N
Now let us take the inverse transformation and we get
X=NW

The Jacobian of the transformation can be written as

oX

aw =N

We derive the joint probability density as,
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gw(w) = INIfx (0 Lo = Ny €N

- 0 N —(a - *
= Ngye ™WINW)N T = (e @MW )N = 1, N)|

a*=aN

That is to say, we have proved that if the individual y; is gamma distributed, then the average is
also gamma distributed,

~ ]~ N

a*=aN

Therefore, we define the EVRVE in the finite sample as

Sigux =~ {z, L(u—|xi| ]~r(a*,N) (15)
a*=aN
Now let us find the expected value of the estimator Sigux. We get,
E[Sigux] = E[N(a* N)|, ] = [ Wi e N Tdw = %J e "wNdw
0
_ (@)"T(N+1) _ T(N+1) @)V _ NC(N) (@N) 1
T T(N) (@)™ = T(N) (@)1 7~ T(N) (aN)¥1 ~ @
Therefore, in the finite samples, we have,
1 & 1
E[Sigux] = E[l'(a”,N)|—on] = B4 § _Zl(u —Df =2
iz
Thus, the expected value of the EVRVE in the finite sample is given by,
E[Sigux] = 1 wherea == v2.2 (16)
a
Now let us recall Y, defined as Y; = |x| and Y>~Exp(B)|,_ 57
We know that
Y,~ Exp(p)issame asY,~I'(a, N)\(a:/,‘,\,:m
That is to say,
IXi|~T'(a,N)|(—pn-1)
Therefore, their sum will also have the probability density function of gamma distribution.
N
iq|Xi|~T(a,N
S~ TN
We get that their average is also gamma distributed. That is
. 1
Sigx = & | Za il ~ (@ N)| (17)
a*=aN
Now let us find the expected value of the CRVE denoted by Sigx as
E[Sigx] = E[l(a*,N)|,_nal = J w. (r"(,zl; e« WiN-1dw = (;'(,\),';J e WyNdw =1
0 0
That is to say, the expected value of the CRVE is given by,
E[Sigx] = % wherea == v2.2 (18)
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Therefore, from Equations (16) and (18), we have found that the expected value of the EVRVE is
same as the expected value of the CRVE.

i.e. E[Sigux] = E[Sigx] :%

Now let us define the RVR in the finite sample as

LIZE = 1xi)
RVR = {N [% [zlf.v_1|x,»] } (19)

Now let us find the expected value of RVR, we get

- |x,~|>}

E[RVR] = E{ ; [ZLIX:I]

We know that the numerator and denominator are independent of each other.” We make use of
the independence property and write the expected value of the RVR estimator as,

Y RN ORI I (S o) B
BIRVR] = E{§ [211(u - )] | E{%[z,-”nx,»]} (20)

From Equations (15) and (16), we have,

. 1
E[Sigux] = E{N

(- x,~|>} } -1 @)

i=1

From Claim 4, mentioned in the Appendix section of this paper, we have

X Ixil

i=1

1 N
SRe ~ (s (22)
N

The RVR in the finite sample will be unbiased if the expected value will be equal to 1. In order to
check the unbiasedness property, let us find the expected value of RVR in the finite sample. That is,

BRVR] = B{A (2 bl x Bt = @) ) = ()

That is to say, we have found that the RVR in the finite sample is biased insignificantly and is equal

to ().

2.3.3. Modified Robust Volatility Ratio (MRVR)
In order to make the estimator unbiased in the finite sample, we introduce the modified version of
the RVR defined as

Modified RVR = {M-11{RVR} = {N-1} x {%} (23)

The MRVR Estimator will be unbiased if the expected value of the estimator will be equal to 1. That
is to say,

E[Modified RVR] = {N11E{RVR} = (N1} { M} =1

Hence, we have shown that the MRVR is unbiased in the finite sample.
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3. Empirical study

In this section, we check the empirical behavior of the proposed RVR by using the daily {Open, High,
Low, Close} prices of the global stock indices. In this study, we undertake the empirical work on
nine stock indices covering three different markets [Americas, Asia Pacific and EMEA (European,
Middle Eastern & Africa)] as mentioned in Bloomberg. Table 1 provides the information on the
global stock indices considered in our study.

In Table 2, we provide a summary of the descriptive statistics for the global stock indices
considered in our study. The summary statistics are provided for return series calculated based
on the closing prices of the respective stock indices. The sample period for all the stock indices is
from the period January 1996 to June 2017. The daily price series data are collected from the
Bloomberg source. We observe that the standard deviation is highest for the IBOVESPA index with
the value of 2.048 and the lowest is for the FTSE 100 stock index with the value of 1.177. We find
that all the stock indices are highly kurtotic. Of the nine global indices, we find that seven stock
indices are negatively skewed and only two stock indices, namely, IBOVESPA and SET 50 are
positively skewed. The count of the daily data observations for the stock indices ranges between
5259 and 5476 for the sample period from 1996 to 2017.

In Table 3, we provide the results of normality and stationary tests performed on the asset
returns of global stock indices. It is clear from the Jarque-Bera normality test that all the
global stock index returns are not normally distributed as all the values are statistically
significant at 99% level of confidence. Hence, we reject the null hypothesis of normality for
all the nine stock indices. We further perform the Augmented Dickey-Fuller test under three
different scenarios, i.e. (with no drift & no trend, with drift & no trend, with drift & trend) to
check whether the asset returns of stock indices are stationary or not. We find that under all
the scenarios, the asset returns of stock indices are stationary at 99% confidence level.

3.1. Hypothesis testing

Theoretically, we have shown that the proposed two versions of RVRs as mentioned in Equations
(14) and (23) are unbiased. The objective of our hypothesis is to find out empirically whether the
unbiasedness in the proposed RVR exists even in case of global stock indices data or not. That is to
say, we would like to check whether the EVRVE is unbiased relative to the CRVE with regard to the
daily global stock indices data.

We test the below two hypothesis. In the first hypothesis test, we check whether Plain Robust
Volatility Ratio (as mentioned in Equation (14)) is unbiased or not

Ho: Plain Robust Volatility Ratio (PRVR) = 1
H.: Plain Robust Volatility Ratio (PRVR) # 1

In the second hypothesis test, we check whether MRVR (as mentioned in Equation (23)) is
unbiased or not.

Ho: Modified Robust Volatility Ratio (MRVR) = 1
Hq: Modified Robust Volatility Ratio (MRVR) # 1

3.2. Interpretation

If the t-test statistic for both the hypothesis tests is found to be significant and negative, we
conclude that the EVRVE is downward biased relative to the CRVE. That is to say, PRVR or MRVR
will be less than 1 and it happens due to the random walk effect. If the test statistic is found to be
insignificant, then we conclude that EVRVE is unbiased relative to the CRVE. That is to say, PRVR or
MRVR will be equal to 1 and it happens due to the Brownian motion.
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3.3. Findings

Here, we provide the results of our empirical work on the global stock indices data. We perform the
k-month analysis for different k-month time periods {1,2,3,6,12,24,36,48,60, Full Sample}. The idea
of k-month analysis is to fix the parameters (namely, mean and variance) to be constant for
a particular k-month rolling period. Also, we perform the Bootstrap analysis with 1000 replications
to find the bootstrap standard error. We have calculated the t-statistic based on the robust
bootstrap standard errors. We observe that the findings of Plain and Modified RVRs are similar to
the findings of Variance Ratio’s based on Rogers and Satchell (1991) estimator as mentioned in
Maheswaran, Balasubramanian, and Yoonus (2011) and Maheswaran and Kumar (2014).

In Table 4, we present the results of Plain RVR for different k-month periods considered at
a time. We find that the Plain RVR is significantly <1 for all the global indices. For example, in the
case of the CAC 40 stock index, the Plain RVR for k-month = 1 is 0.944 with a bootstrap standard
error of 0.016 and t-statistic value of — 3.44 relative to 1. If we observe the column of stock index
CAC 40, we can find that Plain RVR remains to be significant at 99% level of confidence for all
different k-month time periods (i.e. for k-month = {1, 2, 3, 6, 12, 24, 36, 60, Full Sample}). Also, the
test statistics mentioned in the parenthesis remain to negative. This suggests that for index CAC
40, the Plain RVR remains to be significantly less than 1.

In case of other stock indices, namely, {DAX 30, DOW 30, FTSE 100, IBOVESPA, NIKKEI 225, NIFTY
50, S&P 500 and SET 50}, the values of the Plain RVR as mentioned in Table 4 based on k-month
analysis of Full Sample are {0.868,0.749,0.747,0.700,0.761,0.844,0.718,0.668}, respectively. We
find that the t-statistic values for all the global stock indices for different k-month periods are
significantly less than 1 and the extent of the bias depends on which data set we consider. In other
words, we can say that the EVRVE is significantly downward biased relative to the CRVE. The
downward bias in the stock index can intuitively happen due to the random walk effect.

Similarly, in Table 5, we present the results of MRVR for different k-month periods considered at
a time. We find MRVR to be significantly <1 for all the global stock indices data. For example, in
case of NIFTY 50 stock index, the value of MRVR for k-month = 1 is 0.839 with a bootstrap standard
error of 0.020 and t-statistic of — 8.16 relative to 1. If we observe the column of stock index NIFTY
50, we can find that the values of MRVR remain to be significant at 99% level of confidence for all
different k-month time periods (i.e. for k-month = {1, 2, 3, 6, 12, 24, 36, 60, Full Sample}). Also, the
test statistics mentioned in the parenthesis remain to be negative. This suggests that for index
NIFTY 50, the MRVR remains to be significantly less than 1. In other words, we can say that the
EVRVE is significantly downward biased relative to the CRVE. The downward bias in the stock index
can intuitively happen due to the random walk effect. In case of other stock indices, namely, {CAC
40, DAX 30, DOW 30, FTSE 100, IBOVESPA, NIKKEI 225, S&P 500 and SET 50}, the values of the
MRVR based on k-month analysis of Full Sample are 0.902,0.867,0.749,0.747,0.700,0.761,0.718
and 0.688, respectively. We find that the t-statistic values for all the global stock indices are
significantly less than 1 and for all the different k-month periods.

In Figure 1, we display the plots for PRVR for different k-month periods considered at a time for all
the nine global stock indices considered in our study. Similarly, in Figure 2, we show the plots for
MRVR. In both the figures, we can clearly observe that all the lines of different stock indices
considered in our study are significantly less than the benchmark value of 1. One interesting finding
is that we observe the downward bias is found to be more in case of MRVR for all the global stock
indices compared to the PRVR.

In order to check whether the proposed RVRs are robust in case of the presence of outliers in the
data or not, we have performed the similar empirical analysis on Nifty 50 stock index excluding outliers
in the data. We have removed the outliers in the NIFTY 50 stock index data for the period from
January 1996 to June 2017 and computed the Plain and Modified RVR for different k-month periods. In
Table 6, we find that the t-statistics are significant and negative and conclude that even after
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Figure 1. Plots of k-month plain 1.200
robust volatility ratio for global
stock indices. o
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Figure 2. Plots of k-month 1.200
modified robust volatility ratio
for global stock indices. -
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removing the outliers, we get the similar result that Plain and Modified RVR is significantly downward
biased in case of the Nifty Stock Index. For example, for k-month equal to 1, the value of Plain RVR is
0.876 with bootstrap standard error to be 0.016 and t-statistic value of — 7.81. Similarly, the MRVR is
0.833 with bootstrap standard error to be 0.019 and t-statistic value of — 8.81. Hence, we can say that
the proposed RVRs remain to be robust even with and without the presence of outliers in the data.

4. Conclusion

In this paper, we derive the reflection principle for the standard Brownian motion and find the joint
probability of the terminal value and the running maximum at a fixed time with no drift parameter.
We then find the closed-form solution for the joint probability of the running maximum and the
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drawdown of the standard Brownian motion at a stochastic time ¢ which is independent of the
Brownian motion and is distributed exponentially with the parameter 4.

In this paper, we have provided an alternate proof to show that the EVRVE is found to be
independent of the CRVE with specific exponential distributions. We further found that the robust
volatility ratio is unbiased both in the population and in the finite sample.

We have empirically checked the Plain and Modified RVRs on real-world financial data of global
stock indices, namely, CAC 40, DAX 30, DOW 30, FTSE 100, IBOVESPA, NIKKEI 225, NIFTY 50, S &
P 500 and SET 50 for the period from the year 1996 to 2017. We find that the RVRs are downward
biased in case of all the global stock indices due to the random walk effect. That is to say, the
proposed EVRVE is found to be significantly downward biased relative to the CRVE in global stock
indices. In particular, the significant downward bias is more in case of MRVR when compared to the
Plain RVR.

The study has implications for the policymakers and practitioners who would like to understand
the volatility behavior in asset returns based on the outcome of the RVR. If the RVR is less than 1,
then it intuitively means that the stock price process follows random walk movement due to which
the stock indices tend to be efficient. Further research can be extended to find the efficiency and
the performance of this robust volatility estimator with regard to the volatility estimators in the

existing literature.
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Notes

1. Here 2 is the exponential parameter.

2. We define “y” as the drawdown of the Brownian
motion, i.e. y = b — x. Therefore, we can write
x=b-y.

3. Incase 1, we have x1 =3y1 +y, and x; = 1y1.

4. In case 2, we have x; =3y; and x, = 1y; —y,.

5. In Section 2.3.1, from Equation (11), we have shown,
Y, = x is double exponentially distributed. When we
have its modulus, i.e. Y, = |x|, then Y, will be expo-
nentially distributed.

6. We use the  mathematical
EXp(f) = T(a.N)| 4y nor)-

7. If X and Y are independent of each other, then
E(¥) = EX) E(}). .

8. We make use of the integral propertyJ e ™dx =21 in
solving the integral. 0

9. See the Appendix section, Claim 2 & Claim 3 results to
get the values of conditional and unconditional char-
acteristic function of x; where x;~N(0, 6% = Y;) and
Yi~Exp(2).

result that
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Appendix
Claim 1: The Exponential Mixture of the Normal distribution is the Double Exponential.

Proof: Let us suppose that x;: is double exponentially distributed. Therefore, the unconditional
probability density function of double exponential distribution with the exponential parameter g is
given as,

fr(X) = %ﬂe‘/’(‘xD for p<0,x € R.

We know that the unconditional characteristic function of x; (i.e. ¢,,) for a random variable ¢ is

9 () =E[e™] = rc et {1 ge=(x) } dx

—00

Now let us decompose the above definite integral into parts as I(+) and I(-). That is to say,

ro e"CX{%ﬁe—/’UXD}dx =I(+)+1(-)

—00

where we have,

ei{x {%ﬂefﬂx}dx

(o)

I(+) =J

0
0 . 1

I(-) = J e’c"{iﬁeﬂx}dx
Now, let us solve I(+) and I(-) separately.?
I(+) = J exflpe P ldx =1 J e V-itkdx =1p| 1

(+) . {3pe P }dx =3p . zﬂ[ﬂ—n:}

0 .

Also, we have, I(—) = [ e {1pe/*ldx.

Now put w = —x = x = —w. Also, if x € (—c0,0) = w € (0,00) and dx = dw.

Therefore, we have,

1
B+

00
JOo

I-) = [: e tWilpe-MWldw =1p [ e PHicwdy = %ﬂ[

Now add both the integral parts I(+) and I(-) to get the value of the unconditional characteristic
function ¢, (). We get,
&) =10 +1(0) = 3p[e + ] = — A
1+ (ﬁ%) e
That is to say, we have shown that if the probability density function of x; is double exponentially

distributed as fi, (x) = 1pe#IX) for >0 and x € R, then the unconditional characteristic function is
given as

oy (0) = ﬁ (24)
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We know that the unconditional characteristic function of x; where x¢~N(0, 6> = Y;) and Y;~Exp(4)
is given as®

1

25
1+ (22 23

Px, (C) =

Therefore, by comparing Equations (24) and (25), we get

pr=21=p=V21

Hence, we have shown that the exponential mixture of the normal distribution is the double
exponential distribution with the parameter g = v/22.

Claim 2: The conditional characteristic function of x; is
_1p2

§0xt(C|Yt =y)= el =]

Proof:

Let us suppose that the conditional daily returns x; are normally distributed with mean 0 and
variance Y, i.e..

(Xt|Y)~N(0,6%2 = Yy)
Also, the unobserved stochastic volatility Y:~Exp(1).
We know that the characteristic function for a random variable (¢) is given as
0 (0) = Ele]
Therefore, we have,

Px, (€|Yt = y) = ]E[eiéXtIYt:y]

We know that the moment generating function for a random variable (¢) is given as,

E[e] — e+t

Now let us replace r =i,y =0and s? =y .

Thus, we get the conditional characteristic function of x; as

1

0x (Ve = y) = B[P Y] = el HY]
Hence, claim is proved.

Claim 3: The unconditional characteristic function of x; is

1

@5, () :W
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Proof: ~
LHS =g, (0) = Ele®] = E{E[e®]} = JO 1&g (C|Ye = y)}dy

= J JeWel=¥Yldy  (from claim 2) = J Ao~y dy
0 0

_ > —HA YAy, — 1
= AJO e Wt lydy = e~ R.H.S

Since L.H.S = R.H.S, the claim is proved.

Claim 4:

LHS = E{%} — J 1 ()N e_rfﬁw.WN—ldW _ (a*)N J e_a*'W.WN_ZdW
0

MEEbal?  fo wo TN T(N)
_ (@) T(N-1) _  T(N-1) (@ _ (aN)V _ aN
T(N) * (@)¥1 — (N-)T(N=-1) " (1)1 7 (N-1).(aN)V-1 — N-1
= (%).a =RHS

Since L.H.S = R.H.S, the claim is proved.
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