
Kateregga, M.; Mataramvura, S.; Taylor, D.

Article

Subordinated affine structure models for commodity
future prices

Cogent Economics & Finance

Provided in Cooperation with:
Taylor & Francis Group

Suggested Citation: Kateregga, M.; Mataramvura, S.; Taylor, D. (2018) : Subordinated affine structure
models for commodity future prices, Cogent Economics & Finance, ISSN 2332-2039, Taylor &
Francis, Abingdon, Vol. 6, Iss. 1, pp. 1-26,
https://doi.org/10.1080/23322039.2018.1512360

This Version is available at:
https://hdl.handle.net/10419/245156

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1080/23322039.2018.1512360%0A
https://hdl.handle.net/10419/245156
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=oaef20

Cogent Economics & Finance

ISSN: (Print) 2332-2039 (Online) Journal homepage: https://www.tandfonline.com/loi/oaef20

Subordinated affine structure models for
commodity future prices

M. Kateregga, S. Mataramvura & D. Taylor |

To cite this article: M. Kateregga, S. Mataramvura & D. Taylor | (2018) Subordinated affine
structure models for commodity future prices, Cogent Economics & Finance, 6:1, 1512360, DOI:
10.1080/23322039.2018.1512360

To link to this article:  https://doi.org/10.1080/23322039.2018.1512360

© 2018 The Author(s). This open access
article is distributed under a Creative
Commons Attribution (CC-BY) 4.0 license.

Published online: 07 Sep 2018.

Submit your article to this journal 

Article views: 380

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=oaef20
https://www.tandfonline.com/loi/oaef20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/23322039.2018.1512360
https://doi.org/10.1080/23322039.2018.1512360
https://www.tandfonline.com/action/authorSubmission?journalCode=oaef20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=oaef20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/23322039.2018.1512360
https://www.tandfonline.com/doi/mlt/10.1080/23322039.2018.1512360
http://crossmark.crossref.org/dialog/?doi=10.1080/23322039.2018.1512360&domain=pdf&date_stamp=2018-09-07
http://crossmark.crossref.org/dialog/?doi=10.1080/23322039.2018.1512360&domain=pdf&date_stamp=2018-09-07


FINANCIAL ECONOMICS | RESEARCH ARTICLE

Subordinated affine structure models for
commodity future prices
M. Kateregga, S. Mataramvura and D. Taylor

Cogent Economics & Finance (2018), 6: 1512360

http://crossmark.crossref.org/dialog/?doi=10.1080/23322039.2018.1512360&domain=pdf&date_stamp=2018-08-20
http://crossmark.crossref.org/dialog/?doi=10.1080/23322039.2018.1512360&domain=pdf&date_stamp=2018-08-20


FINANCIAL ECONOMICS | RESEARCH ARTICLE

Subordinated affine structure models for
commodity future prices
M. Kateregga1*, S. Mataramvura1 and D. Taylor1

Abstract: To date the existence of jumps in different sectors of the financial market
is certain and the commodity market is no exception. While there are various
models in literature on how to capture these jumps, we restrict ourselves to using
subordinated Brownian motion by an α-stable process, α ∈ (0,1), as the source of
randomness in the spot price model to determine commodity future prices, a
concept which is not new either. However, the key feature in our pricing approach is
the new simple technique derived from our novel theory for subordinated affine
structure models. Different from existing filtering methods for models with latent
variables, we show that the commodity future price under a one factor model with a
subordinated random source driver, can be expressed in terms of the subordinator
which can then be reduced to the latent regression models commonly used in
population dynamics with their parameters easily estimated using the expectation
maximisation method. In our case, the underlying joint probability distribution is a
combination of the Gaussian and stable densities.
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1. Literature
A large volume of literature on commodities market has been published since the invention of the
continuous benchmark model of Black and Scholes (1973) for pricing options and corporate
liabilities. Among the many models developed, the widely used and referenced study on commod-
ities is the work by Schwartz (1997). From the latter, numerous models have been developed as a
result of the growing commodities market in terms of volumes traded and complexities of their
contracts over the years. We give an account of the various literatures relevant to this research in
Table 1.

The current research builds on findings from Kyriakou, Nomikos, Pouliasis, and Papapostolou
(2016) by extending the results to subordinated Brownian motion.

A selection of key commodity jump models that have developed overtime.

2. Introduction
Commodities exhibit distinctive features that a good model ought to capture. For instance to estimate
the commodities market as closely as possible, one has to factor in jumps in the underlying spot price.
However,models designedwith a jump component are non-trivial. In this research,we derive a relatively
easy estimation method for commodities prices using subordination as a proxy for introducing jumps.
Other features include mean-reversion, contango, backwardation and seasonality. Commodities also
experience extreme volatility and price spikes resulting in heavy-tailed distribution of the returns.
Commodity markets are unique compared with other markets such as equity, bond, currency or interest
rate markets in the sense that most commodities are real physical assets that are produced, trans-
ported, stored and consumed. They are not assets valued on long-lived companies like in equitymarkets.

As indicated in Fama and French (1988), commodity pricing can be approached from two
perspectives, the theory of storage which explains why high supplies and inventories running at
minimum would result into contango, low futures and spot price volatilities, and in turn futures
premiums being equivalent to full storage costs. On the other hand, why low supplies and
enhanced production inventory levels yield to backwardation, a rise in volatilities of the spot and
the nearby future prices. Another feature explained by this theory is the periodically continuously
compounded convenience yield (usually denoted by δ) on inventory which is the benefit of holding
a physical commodity as opposed to having a future contract of its delivery at some future time
and second, the cost of storage. The future price motivated by the theory of storage is given by

Ft;T ¼ Steðr�c�δÞðT�tÞ; (1)

Table 1. Various commodity jump models

Author(s) (Year) Study Result
G´omez-Valle and Martnez-
Rodr`ıguez (2017)

Jump size distribution More accurate than a diffusion
model

Kateregga, Mataramvura, and
Taylor (2017)

Jump distribution Better estimation method than
Maximum Likelihood

Kyriakou et al. (2016) Jumps & Heston-type stochastic
vol.

Evidence of jumps and stochastic
vol. in oil

Prokopczuk, Symeonidis, and
Simen (2015)

Characterisation of jumps Jump importance to vol.

Schmitz, Wang, and Kimn (2014) Stoch. vol., price jumps, seasonality
& stoch. cost of carry

A model that capture all the four
features.

Maslyuka, Rotarub, and
Dokumentovc (2013)

Frequency of price discontinuities Evidence of discontinuities

Deng (2000) Multiple jumps, regime–switching
& stoch. vol.

Prices of various commodities.
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where c accounts for the storage costs, r is the periodically continuously compounded interest
rate, St is the current spot price and T is the maturity date of the future contract.

The second perspective is the theory of expected risk premium discussed in Keynes (1930) and
Hicks (1939). It asserts that the future prices are given by the discounted (by the risk premium)
expected future spot price:

Ft;T ¼ Et½ST�e�rγ½T�t�; (2)

where γ is the risk premium and Et½�� ¼ E½�jF t�, F t is the filtration up to time t.

A number of models based on the latter approach have been developed over the years to mimic
the market as closely as possible for various commodities. This includes Schwartz’s common
continuous stochastic factor models Schwartz (1997), Schwartz and Smith (2000) and the jump
models of Kyriakou et al. (2016).

The motivation and contribution of this paper are based on the existing erratic features in
electricity and energy markets, where jumps are evident, resulting in skewed distributions of the
spot prices. We consider a subordinated Brownian motion by an α-stable process, α{ð0;1Þ, as the
source of randomness in the underlying asset to model commodity future prices. The stunning
feature in our pricing approach is the new simple technique derived from our novel approach for
subordinated affine structure models.

We show that the affine property is attainable and applicable to generalised commodity
spot models, and as illustration, we consider a stochastic differential equation with subordi-
nated Brownian motion as the source of randomness to derive the commodity future prices.
It is argued in some existing literature that the likelihood function exists in integrated form
for models with singular noise meanwhile for cases of partially observed processes, a filtering
technique is required, see for instance Date and Ponomareva (2010) and Yang, Lin, Luk, and
Nahar (2014). However, the work presented in this paper provides a new approach of pricing
commodity futures for models with latent variables using the maximum expectation max-
imisation. We show that the commodity future price under a one-factor model with a
subordinated random source driver can be expressed in terms of the subordinator, which
can then be reduced to the latent regression models commonly used in population dynamics
with their parameters estimated easily using the expectation maximisation method. In our
case, the underlying joint probability distribution is a combination of Gaussian and stable
densities.

The rest of the paper is organised as follows. The following Section 3 introduces some features of
stable processes essential to this work. In Section 4, we review the concept of affine models and
extend the idea of obtaining Laplace transforms of random processes to subordinated processes.
In Section 5, we derive our pricing formulas for commodity futures using the results derived in
Section 4. In Section 6, we discuss the numerical implementation of our one-factor commodity
future models. Section 7 concludes.

3. Stable processes
The discussion in this section is mainly based on Kateregga et al. (2017). A stable or α-stable
process, α{ð0;2�, belongs to the general class of Lévy distributions. It has a limiting distribution
with a definitive exponent parameter α that determines its shape. The following two definitions
follow from Rachev (2003).

Definition 3.1 Let X1;X2; � � � ;Xn be independent and identically distributed random variables and
suppose a random variable S defined by

Kateregga et al., Cogent Economics & Finance (2018), 6: 1512360
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1
an

∑
n

i¼1
Xi � bn

 !
! S; (3)

where “→” represents weak convergence in distribution, an is a positive constant and bn is real.
Then, S is a stable process. The constants an and bn need not to be finite.

Definition 3.1 allows the modelling of a number of natural phenomena beyond normality using
stable distributions. The fact that an and bn do not necessarily need to be finite provides the
generalised central limit theorem.

Definition 3.2 (Generalised Central Limit Theorem) Suppose X1; X2 � � � , denotes a sequence of
identically distributed independent random variables from some arbitrary distribution and let
sequences an{R and bn{Rþ. Then, we define a sequence

Zn :¼ 1
bn

∑
n

i¼1
Xi � an

 !
(4)

of sums Zn such that their distribution functions weakly converge to some limiting distribution.
That is

PðZn < xÞ ! HðxÞ; n ! 1; (5)

where H(x) is some limiting distribution.
The traditional central limit theorem assumes finite mean a :¼ E½Xi� and finite variance σ2 :¼

Var½Xi� and defines the sequence of sums

Zn :¼ 1
σ
ffiffiffi
n

p ∑
n

i¼1
Xi � na

 !
; (6)

such that the distribution functions of Zn weakly converge to hsGðxÞ. That is

Pðx1 < Zn < x2Þ !
ðx2
x1
hsGðxÞdx; n ! 1 (7)

where hsGðxÞ denotes the standard Gaussian density

hsGðxÞ ¼ 1ffiffiffiffiffiffi
2π

p expð�x2=2Þ: (8)

Suppose the identically distributed independent random variables Xi equal to a positive constant c
almost surely and the sequences an and bn in (4) are defined by an ¼ ðn� 1Þc and bn ¼ 1, then Zn
is also equal to c for all n > 0 almost surely. In this case, the random variables Xi are mutually
independent and as a consequence, the limiting distribution for the sums Zn belongs to the stable
family of distributions by definition. Therefore, stable distributions behave similarly to the central
limit theorem for distributions with a finite second-order moment (the Gaussian), Crosby (2008).
This is one reason why they are regarded as stable. They are also preferred compared with all
other laws such as the Normal Inverse Gaussian (NIG), Variance Gamma (VG) and other distribu-
tions from the generalised hyperbolic family because of their heavier tails.

Definition 3.3 Samoradnitsky and Taqqu (1994) An α-stable distribution is a four-parameter family
of distributions denoted by Sðα; β; ν; μÞ where

(1) α{ð0;2� is the characteristic exponent responsible for the tail of the distribution.

(2) β{½�1;1� is responsible for skewness.

Kateregga et al., Cogent Economics & Finance (2018), 6: 1512360
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(3) ν > 0 is the scale parameter (sometimes referred to as variance when α ¼ 2).

(4) μ{R is the location (sometimes referred to as mean).

Densities of α-stable distributions do not have closed-form representations except the Gaussian
(α ¼ 2), Cauchy (α ¼ 1) and Inverse Gaussian or Pearson (α ¼ 0:5) distributions.

The analysis of stable processes is usually through their characteristic functions and Laplace
or Fourier transformation. Unlike their densities, their characteristic functions always exist.
Literature on their integral representations and density functions is provided in Zolotarev (1964),
1980, Zolotarev (1986)). The distribution functions for the different α values have been tabulated in
Dumouchel (1971), Fama and Roll (1968) and Holt and Crow (1973).

Definition 3.4 (Gajda and Wyłoman`Ska (2012)) Let St and Lt denote an α-stable process and its
respective inverse. Then for t{½0; T�, we define the process Lt as1

Ls :¼ inf t : St>sf g if s{½0; StÞ
T if s ¼ ST:

�
(9)

St and Lt are non-decreasing and cádlág with their graphical representations given in Figure 1.

3.1. Density and characteristic functions
Let ðXt; t � 0Þ denote a Lévy process. The characterisation of Xt is usually given by the Lévy–
Khintchine formula.

Definition 3.5 (Lévy–Khintchine) Applebaum (2004) Consider a Lévy process X ¼ ðXtÞt�0. There exists
b{R and σ � 0 such that the characteristic function of X is

ΦðtÞ :¼ E½eitX� ¼ exp itb� 1
2
σ2t2 þ

ð
R� 0f g

ðeitx � 1� itxI xj j<1Þ�ðdxÞ
� �

; (10)

where I is the indicator function and � is a σ-finite measure satisfying the constraint

t

0

0.2

0.4

0.6

0.8

1

1.2
α-Stable Process

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.2
0.4
0.6
0.8

L t
S

t

1
1.2
1.4

Inverse α-Stable Process

Figure 1. The top graph shows a
plot of a stable process St and
the bottom graph shows its
inverse process Lt simulated
using exponent parameter
value, α ¼ 0:8, plotted against
time on the horizontal.
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ð
R

d� 0f g
minð1; jxj2Þ�ðdxÞ < 1; alternatively

ð
R

d� 0f g

jxj2
1þ jxj2

�ðdxÞ < 1: (11)

Definition 3.6 (The Lévy-Itô Decomposition) Applebaum (2004) If Xt is a Lévy process, there exists
b{R, a Brownian motion BσðtÞ with variance σ{Rþ and an independent Poisson random measure N
on Rþ � ðR� 0f gÞ such that, for each t � 0,

Xt ¼ btþ BσðtÞ þ
ð
jxj<1

x~Nðt;dxÞ þ
ð
jxj�1

xNðt;dxÞ; (12)

where

b ¼ E X1 �
ð

xj j�1
xNð1;dxÞ

� �
: (13)

To preserve the martingale property, the compound Poisson random measure is compensated
as ~N ¼ N� tλ where λ is a Lévy measure satisfying (11).
For process St, we require σ ¼ 0 in (10) or B ¼ 0 in (12) and the Lévy measure in (11) given by

�ðxÞ ¼ C

jxj1þα
dx; C > 0; (14)

The characteristic function Φ of St is obtained using the domain of attraction of stable random
variables (See Grigelionis, Kubilius, Paulauskas, Statulevicius, & Pragarauskas, 1999) and the Lévy–
Khinchine representation formula (See Definition 3.5 or Applebaum (2004) for a detailed explana-
tion), i.e.

ΦðθÞ ¼ E½expðiθSÞ� ¼ expð�ναjθjα½1� iβ signðθÞ tanðπα2 Þ� þ iμθÞ; for α�1:
expð�ν θj j½1þ iβ signðθÞ 2π log θj j� þ iμθÞ; for α ¼ 1:

�
(15)

Using Fourier transformation, the density function of St is given by

hSðt;uÞ ¼ 1
π

ð1
0
e�iuθΦðθÞdθ: (16)

From Definition 3.4, it is easy to see the equivalence relation

Su < t , Lt � u: (17)

It follows that Fðt;uÞ :¼ PðSu < tÞ ¼ PðLt � uÞ ¼
ð1
0
hLðτ; tÞτ where hLðu; tÞ denotes the probability

density function of Lt. Consequently

hLðu; tÞ ¼ � @Fðt;uÞ
@u

¼ � @

@u

ðt
�1

hSðτ;uÞdτ: (18)

According to Meerschaert and Straka (2013), the density hðt;uÞ can also be given by

hSðt;uÞ ¼ u�1=αhðtu�1=αÞ; (19)

where hðτÞ is the density of a standard stable process with a Laplace transform
~hðτÞ ¼ expð�ταÞ. This follows from the fact that Su has the same distribution as u1=αS1. As a
result, the density of the inverse stable process Lt can be given in terms of the standard
stable process by

hLðu; tÞ ¼ t
α
u�1�1=αhðtu�1=αÞ: (20)

Figure 2 shows density graphs of St for different exponent parameter values.
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3.2. Laplace transforms

Definition 3.7 Let Xu be a subordinator. The Laplace transform of Xu is defined by

E½e�τXu � ¼ e�uϕðτÞ; (21)

where ϕ is the Laplace exponent of Xu known as the Bernstein function represented by

ϕðτÞ ¼ aþ bτþ
ð
ð0;1Þ

ð1� e�τxÞ�ðdxÞ: (22)

where a;b > 0 and � is the Lévy measure on ð0;1Þ such that
ð

x
1þx�ðdxÞ < 1 :

The Laplace transform of the stable process Su is given by (see Meerschaert & Straka, 2013)

~hSðτ;uÞ ¼
ð1
0
e�tτhSðt;uÞdt ¼ expð�uCΓð1� αÞταÞ ¼ expð�uððτþ βÞα þ βαÞÞ: (23)

where 0 � β � 1. For C ¼ Γð1� αÞ (alternatively β ¼ 0), the Laplace transform simplifies to that of a
standard stable process:

~hSðτ;uÞ ¼ E½e�τSu � ¼ expð�uταÞ; 0 < α < 1: (24)

The Laplace transform ~hLðu; τÞ of the inverse stable process Lt is obtained from (18):

~hLðu; τÞ ¼ � @

@u
ðτ�1 expð�uððτþ βÞα þ βαÞÞÞ

¼ τ�1ððτþ βÞα þ βαÞexpð�uððτþ βÞα þ βαÞÞ:
(25)

where the Laplace transform of �t0 fðyÞy is τ�1~fðτÞ and hLðu; τÞ :¼ 0 for l < 0 or τ < 0. Since (25)
does not have the general form for a Laplace transform of a Lévy process, then Lt is not a Lévy
process.

3.3. Moment-generating function
There is a relationship between a moment-generating function of a random variable and its
Laplace transform.

Lemma 3.8 Let MuðτÞ and ~hðτ;uÞ denote the respective moment-generating function and Laplace
transform of a random variable then

Figure 2. The graphs represent
densities of an α-stable process
for different values of the
exponent parameter, α ˛ð0; 2�.
Observe the variation in the tail
sizes and the skewness as the
exponent parameter is varied.
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MuðτÞ ¼ ~hðτ;�uÞ þ ~hð�τ;uÞ; (26)

where

~hða;bÞ ¼
ð1
0
e�tahðt; bÞdt: (27)

Proof 3.9 This relationship is verified in Miller (1951).

As a consequence of Lemma 3.8 and the explicit Laplace transform given by (23), we can deduce
the first and second moments of St. That is

MuðτÞ ¼ expðuððτþ βÞα þ βαÞÞ þ expð�uðð�τþ βÞα þ βαÞÞ:

E½St� ¼ Muð0Þ ¼ αuβα�1½e2uβα þ e�2uβα �: (28)

Var½St� ¼ M
00
uð0Þ � ðM0

uð0ÞÞ2: (29)

¼ αðα� 1Þuβα�2½e2uβα � e�2uβα � þ α2uαβ2α½β2e2uβα þ e�uβα � (30)

3.4. Subordination
Let BSt denote subordinated Brownian motion where St is an α-stable process introduced before
with α{ð0;1Þ and B� represents standard Brownian motion with mean zero. We require Bt and
St to be independent. To ensure a complete working environment, we introduce a probability
space.

Let ðΩ;F ; PÞ ¼ ðΩB � ΩS;F B � F S; μB � μSÞ denote a complete joint probability space endowed

with a filtration ðF tÞt � 0 such that F t ¼ F B
t _ F S

t where F B
t and F S

t are filtrations generated by Bt
and St, respectively.

Definition 3.10 Let B ¼ ðBt; PxÞ ¼
ffiffiffi
2

p
B�
t where ðB�t Þt � 0 is standard Brownian motion in R. The

transition density pðx; y; tÞ of B is given by

pðx; tÞ ¼ 1
2
ffiffiffiffiffi
πt

p exp � xj j2=4t
� 	

; t > 0; x; y{R: (31)

The semi-group ðPt : t � 0Þ of B is given by

PtfðxÞ ¼ Ex½fðBtÞ� ¼
ð
R
pðx; y; tÞfðyÞdy; (32)

where f is a non-negative Borel function on R satisfying the following generator equation:

GfðxÞ :¼ lim
t#0

Ex½fðXÞ� � fðxÞ
t

¼ lim
t#0

PtfðxÞ � fðxÞ
t

: (33)

Definition 3.11 Suppose Yt :¼ BSt ; t � 0 is a subordinated Brownian motion. Its’ semi-group ðQt : t � 0Þ
is defined by

Qtfðy; tÞ ¼ Ey½fðYt; tÞ� ¼ Ey½fðBSt Þ� ¼
ð1
0
Pufðy;uÞhSðt;uÞdu: (34)

The semi-group Qt has a transition density qðy; z; tÞ ¼ qðy � z; tÞ defined by

qðy; tÞ ¼
ð1
0
pðy;uÞhSðt;uÞdu: (35)

Lemma 3.12 The mean and variance of BSt are given by
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Ey½BSt � ¼
ð1
0
Ey½Bs�hSðt;uÞdu ¼ 0: (36)

Ey½B2St � ¼
ð1
0
Ey½B2

s �hSðt;uÞdu ¼
ð1
0
uhs t;uð Þdu ¼ Ey St½ � (37)

Proof. Suppose f in Definition 3.10 and Definition 3.11 is such that fðz; tÞ ¼ z. Using (32) and (34)
and partitioning the time interval ½0; T� such that 0 < τ1 < � � �< τn < T, where τi are the jump times
of the process BSt , we observe that (36) and (37) hold for every interval ½τi; τiþ1Þ. Thus, in the limits,
their sums converge, respectively, to 0 and Ex½St� on ½0; T�.

Lemma 3.13 Let X be a Lévy process with characteristic exponent Ψ and S an independent
subordinator with Laplace exponent Φ. Then, the subordinated process XSt is a Lévy process with
characteristic exponent

mð�Þ ¼ ΦðΨð�ÞÞ: (38)

Proof 3.14 The proof is given in Bochner (2012).

It is known that any Lévy process Xs, t < s � T with drift μ is fully determined by its character-
istic function given by (see Fusai & Roncoroni, 2007)

E½eiλXs � ¼ eμΔþΨðλÞΔ (39)

where Δ ¼ s� t, μ is the drift parameter and ΨðλÞ is the characteristic exponent. A typical example
is Brownian motion whose characteristic function is given by

E½eiλBs � ¼ eμΔ�
1
2σ

2λ2Δ; where ΨðλÞ ¼ �1
2
σ2λ2: (40)

The characteristic exponent of subordinated Brownian motion BSt is deduced from (23), (38), (40):

mðuÞ ¼ �1
2
σ2u2 þ β

� �α

þ βα: (41)

4. Affine models
In this section, we provide an overview on affine processes. We retain some definitions and
notations used in Keller-Ressel (2008); Keller-Ressel, Schachermayer, and Teichmann (2011) and
Duffie, Filipovi´C, and Schachermayer (2003):

(1) D :¼ Rm�0 � Rn.

(2) U :¼ u{Cd : ReuI � 0;Re uJ ¼ 0

 �

,

where I :¼ 1; � � � ;mf g, J :¼ mþ 1; � � � ;mþ nf g and M :¼ I[ J ¼ 1; � � � ;df g.

(3) PtfðxÞ ¼ Ex½fðXtÞ� for all x{D; t � 0.

(4) O :¼ ðt;uÞ{R�0 � U : Psfuð0Þ�0"s{½0; t�f g.

(5) X will denote a closed state space.

Definition 4.1 (Keller-Ressel, 2008) A process is stochastically continuous if for any sequence
tn ! t in R�0, then the random variables Xtn converge to Xt in probability with respect to ðPxÞx{D.
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Definition 4.2 (Keller-Ressel, 2008) An affine process is a stochastically continuous time-homo-
geneous Markov process (Xt; P

x) with a state space D where the characteristic function is an

exponentially affine function of the state vector. In other words, there exist functions ψ0 : R�0 �
iRd ! C and ψ1 : R�0 � iRd ! Cd such that

Ex½euXt � ¼ expðψ0ðt;uÞ þ ψ1ðt;uÞxÞ; (42)

for all x{D and for all ðt;uÞ{R�0 � iR.

Definition 4.1 can be extended toO satisfying the following properties [Prop. 1.3, Keller-Ressel (2008)]:

(1) ψ0 maps O to C� where C� :¼ u{C : Reu � 0f g.

(2) ψ1 maps O to U.

(3) ψ0ð0;uÞ ¼ 0 and ψ1ð0;uÞ ¼ u for all u{U.

(4) ψ0 and ψ1 admit the `semi-flow property’:

● ψ0ðtþ s;uÞ ¼ ψ0ðt;uÞ þ ψ0ðs;ψ1ðt;uÞÞ;

● ψ1ðtþ s;uÞ ¼ ψ1ðs;ψ1ðt;uÞÞ, for all t; s � 0 with ðtþ s;uÞ{O.

(5) ψ0 and ψ1 are jointly continuous on O.

(6) With the remaining arguments fixed, uI 7!ψ0ðt;uÞ and uI 7!ψ1ðt;uÞ are analytic functions
in uI : Re uI<0; ðt;uÞ{Of g.

(7) Let ðt;uÞ; ðt;wÞ{O with Reu � Rew. Then

● Reψ0ðt;uÞ � ψ1ðt;RewÞ;

● Reψ1ðt;uÞ � ψ1ðt;RewÞ:

Lemma 4.3 An affine process ðXtÞt � 0 is regular if the following right derivatives exist for all u{U
and are continuous at u ¼ 0:

Fð1Þ uð Þ :
@ψ0

@t
ðt;uÞ t¼0þ ; Fð2Þ uð Þ :

@ψ1

@t
ðt;uÞ

����
����
t¼0þ

(43)

The regularity condition can be extended to O for which case the following Riccati equations hold:

@ψ0

@t
ðt;uÞ ¼ Fð1Þðψ1ðt;uÞÞ; ψ0ð0;uÞ ¼ 0; (44)

@ψ1

@t
ðt;uÞ ¼ Fð2Þðψ1ðt;uÞÞ; ψ1ð0;uÞ ¼ u: (45)

Proof 4.4 See Keller-Ressel (2008); Keller-Ressel et al. (2011); Rouah and Heston (2015).

Functions ψ0, ψ1 can be characterised respectively by admissible sets of parameters ða;b; c; πÞ
and ðp; q; r; μÞ where π and μ are measures. The details are given in Keller-Ressel (2008); Keller-
Ressel et al. (2011). We are interested in the affine property of the solution to the SDE:

Xt ¼ bðXtÞdtþ σðXtÞdMt; (46)
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where b : X ! Rd is continuous, σ : X ! Rd�d is measurable such that the diffusion matrix σðxÞσT is
continuous and Mt is a d-dimensional standard Lévy process such as Brownian motion.

The following theorem is one of the contributions in this paper.

THEOREM 4.5 Suppose Xt is a regular affine solution to (46). Then b and σ can be expressed as:

bðxÞ ¼ K0 þ K1x1 þ � � � þ Kdxd; Ki{Rd (47)

σðxÞσðxÞT ¼ H0 þ H1xþ � � � þ Hdxd; Hi{Rd � Rd; (48)

where i ¼ 0; � � �d. Moreover, the characteristic function of Xt has a log-linear form

E½eiu1Xð1Þ
t þ���þiudX

ðdÞ
t � (49)

¼ expðψ0ðt;u1; � � � ;udÞ þ ψ1ðt;u1; � � � ;udÞxð1Þ0 þ � � � þ ψdðt;u1; � � � ;udÞxðdÞ0 Þ: (50)

where ui{R. The coefficients ψ i are obtained by solving the system of Riccati equations:

FðiÞðt;ψ1; � � � ;ψdÞ ¼
@ψ i

@t
¼ KT

i ηþ
1
2
ηTHiη; i ¼ 0; � � � ; df g; (51)

where ηT ¼ ðψ1 � � �ψdÞ.

Proof. The proof is a generalisation of the two-dimensional case in Rouah and Heston (2015). ∎

There is extensive literature on affine processes Xt where M :¼ Bt or M :¼ Bt þ σ�1
ðt
0
�ss with �t,

a Poisson jump process. We are interested in the solution to

dYt ¼ bðYtÞdSt þ σðYtÞdBSt : (52)

Another contribution follows in the following theorem. We show that Yt ¼ XSt is affine in the
following theorem with d ¼ 1.

THEOREM 4.6 Let ðΩ;F ; Px; ðF tÞt�0Þ denote a joint probability space for ðStÞt�0, a non-decreasing
affine process taking values in D and ðXtÞt�0;X0 ¼ x, an independent Lévy process. Define a process

Yt :¼ XSt ; Y0 ¼ y with Lévy exponent mðwÞ and suppose ðStÞt�0 is regular with functional character-

istics Fð1ÞðuÞ; Fð2ÞðuÞ. Then ðYtÞt�0 is regular affine with functional characteristics

Fð1ÞðmðwÞÞ; Fð2ÞX ðmðwÞÞ and Fð2ÞY ðmðwÞÞ ¼ 0, u;w{iR with the characteristic function given by

Es½eiuYt � ¼ expðψ0ðt;mðwÞÞ þ ψ1ðt;mðwÞÞStÞ; (53)

for some functions ψ0 and ψ1.

Proof 4.7 The Markov property of St and the definition of its Laplace transform yields

Es½ewYτ F t� ¼ Es½ewXSt � ¼ Es½Es½expðwXStÞ
�� ��σðSsÞ0�s�t��:

¼ Es½expðmðwÞStÞ�:
¼ expðψ0ðt;mðwÞÞ þ ψ1ðt;mðwÞÞStÞ:

(54)

The last equality follows from the affine property of St (see Definition 4.2).

5. Commodity future pricing

5.1. Introduction
Wedevelop representation formulas for future prices using the concepts introduced before. The source
of randomness in the models developed in this section is Brownian motion subordinated by a non-
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decreasing α-stable process where α{ð0;1Þ. The aim is to obtain future price formulas for commodity
spot price models that incorporate stochastic volatility, jumps, seasonality andmean-reversion effects.

5.2. One-factor commodity spot model
We consider a one-factor commodity spot price model given by

zt ¼ fðtÞ þ expðYtÞ; (55)

where Yt satisfies (52) and seasonality is defined according to Kyriakou et al. (2016), as

fðtÞ ¼ δ0tþ δ1 sinðδ2½tþ 2π=264�Þ þ δ3 sinðδ4½tþ 4π=264�Þ; (56)

where δ0; δ1; δ2; δ3; δ4 account for deterministic regularities in the spot price dynamics.

The following theorem presents the first main contribution of this paper.

THEOREM 5.1 Suppose without seasonality (i.e.f ¼ 0), the commodity spot price z given by (55)
satisfies the following stochastic differential equation

dzt ¼ κðθ� ln ztÞztdSt þ σztdBSt ; (57)

where St is an independent, non-decreasing stable process with α{ð0;1Þ. Then, the future price is

FðT; STÞ ¼ exp �1
2
σ2 þ β

� �α

þ βα
� ��

γð1� e�κTÞ þ 1
4κ

σ2 �1
2
σ2 þ β

� �α

þ βα
� �2

ð1� e�2κTÞ

þ �1
2
σ2 þ β

� �α

þ βα
� �

STe�κT
�

(58)

where γ :¼ θ� σ2

2κ , β{½0;1� denotes the skewness parameter of the subordinator St.

Proof 5.2 See Appendix A

One of the advantages of the future prices above is that we can determine the price by
estimating the distribution of the latent variable ST. Moreover, this latency could be observed as
jumps, volatility or extreme events such as a tsunami, fire etc. However since two-factor models
have proven over the years to provide better fits, we propose one in the framework of subordina-
tion. This way we can separately represent volatility and jumps or extreme events.

5.3. The two-factor commodity spot model
In the two-factor spot model, the volatility is modelled as a stochastic process while retaining
jumps in the spot model. The future prices model is given by

Fðt; Xt;VtÞ ¼ fðtÞ þ E½expðXτ þ VτÞ�; (59)

We present the second main contribution of the paper in the following theorem.

THEOREM 5.3 Suppose without seasonality (i.e.f ¼ 0), the commodity spot price X satisfies the set of
subordinated stochastic differential equation

zt ¼ κðθ� ztÞSt þ
ffiffiffiffiffi
Vt

p
Bð1ÞSt

(60)

Vt ¼ λðε� VtÞtþ υ
ffiffiffiffiffi
Vt

p
Bð2Þ
t ; (61)

such that Bð1Þ
S� ; B

ð2Þ
�

h i
t
¼ ρAt where At ¼ gðt; StÞ some random process. The future price is:

F ¼ expðψ0 þ ψ1zt þ ψ2VtÞ; (62)

where the details of coefficients ψ0;ψ1 and ψ2 are given in Appendix A.
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6. Numerical implementation
We focus on the one-factor model to explain our approach for estimating the model para-
meters. The data used in this section are obtained from the US Energy Information
Administration and include future prices of Crude Oil (Light-Sweet, Cushing, Oklahoma)
from 30 March 1983 to 6 December 2016 (8452 observations), Reformulated Regular
Gasoline (New York Harbor) from 3 December 1984 to 31 October 2006 (5492 observations),
Heating Oil (New York Harbor) from 2 January 1980 to 6 December 2016 (9262 observations)
and Propane (Mont Belvieu, Texas) from 17 December 1993 to 18 September 2009 (3941
observations).

The parameters in the seasonality function (56) are estimated by fitting the function to the
historical spot prices. The spot prices used include Crude Oil from 2 January 1986 to 12 December
2016 (7807 observations), RBOB Regular Gasoline from 11 March 2003 to 12 December 2016 (3460
observations), No. 2 Heating Oil from 2 June 1986 to 12 December 2016 (7683 observations) and
Propane from 9 July 1992 to 12 December 2016 (6133 observations).

fðtÞ ¼ δ0tþ δ1 sinðδ2½tþ 2π=264�Þ þ δ3 sinðδ4½tþ 4π=264�Þ:

The accuracy of the fitting in Figure 3 depends on the choice of the initial parameters δ0, δ1, δ2, δ3
and δ4.

Figure 3. Seasonality is cap-
tured by the function fðtÞ
defined in the following table.
The best fit of fðtÞ can be
obtained by obtaining an opti-
mal set of the δ parameters.

Table 2. Estimation of parameters in the seasonality function

Commodity δ0 δ1 δ2 δ3 δ4

Crude Oil 0.01097129 −0.04210297 13.29908652 18.43819425 6.28446063

Gasoline 0.001018775 −0.515953818 6.27995144 1.252457783 6.28435941

Heating Oil 0.000287309 0.159154792 12.57029401 −0.49422029 6.28182486

Propane 0.000243901 −0.252880065 12.56438012 0.071328671 6.286055367
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6.1. Equivalent latent regression model
The de-seasonalised one-factor future price given by (58) can be written as

y ¼ aþ bxþ ε; (63)

where y ¼ ln F, x ¼ St and a and b are given by

a ¼ �1
2
σ2 þ β

� �α

þ βα
� �

γð1� e�κTÞ þ 1
4κ

σ2 �1
2
σ2 þ β

� �α

þ βα
� �2

ð1� e�2κTÞ (64)

b ¼ �1
2
σ2 þ β

� �α

þ βα
� �

e�κT; (65)

and ε is an independent random error distributed as Nð0;ΘÞ with zero mean and variance Θ.

Clearly, (63) belongs to the class of latent regression models since x ¼ St is not observable.

There is literature where this kind of problem is handled using expectation-maximisation (EM)
algorithms (see Dempster, Laird, and Rubin (1977)) to estimate the model parameters. The latent
variable x can be considered binary where in this case the EM algorithm would give estimates for a
two-component normal mixture model. On the other hand, x can be allowed to be continuous
between 0 and 1 with a beta distribution as in Tarpey and Petkova (2010). The EM algorithm for
estimating the model parameters in this case is more involved than for the two-component mixture
model and more computationally challenging, but can be done nonetheless. Basically, the latent or
unobserved x variables are imputed by their conditional expectation given the outcomes y. Our
approach is adaptable to the latter approach through the Dynkin–Lamperti Theorem (see Gupta and
Nadarajah (2004)) where the unobserved variable follows a stable distribution defined on ð�1;1Þ
with α{ð0;2� and the observable variable y represents the log-returns of the future prices. The

Figure 4. Detection of jumps in
crude oil future prices.
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algorithm is applied to the joint likelihood of the response y. We assume the error ε is independent of
the latent predictor x. The joint density for x and y is given by

hðx; yÞ ¼ hðyjx; a; b;ΘÞSðx;α; β; ν; μÞ:
¼ Nðy;aþ bx;ΘÞSðx;α; β; ν; μÞ; (66)

where Sðx; α; β; ν; μÞ is the α stable distribution, Nðy;A; BÞ denotes the normal distribution of a
random variable y with mean A and variance B; and Θ is the variance of the outcome sample
data. The marginal density of the response y is

fðyÞ ¼
ð

1ffiffiffiffiffiffi
2π

p Θ�1=2 expð�Θ�1ð�y � β0 � β1xÞ
0
Θ�1ðy � β0 � β1xÞ=2Þ

� Sðx; α; β; ν; μÞdx: (67)

Density (67) is an example of infinite mixture models used in ecological statistics (Fox, Negrete-
Yankelevich, and Sosa (2015)).

6.2. The EM algorithm
For a data set ðx1; y1Þ; � � � ; ðxn; ynÞ in (63). The log-likelihood is derived from (66) as

Lðα; β; ν; μ;Θ;a;bÞ ¼ �n
2
logð2πÞ � n

2
log Θj j

� ∑
n

i¼1
ðyi � β0 � β1xiÞ0ðyi � β0 � β1xiÞ=2

þ ∑
n

i¼1
logðSðxi; α; β; ν; μÞÞ:

(68)

Since x is not observable, the EM algorithm requires maximising the conditional expectation of the
log-likelihood given the response vector y. That is

E½Lðα; β; ν; μ;Θ;a;bÞjy�; (69)

where at each iteration of the EM algorithm, the above conditional expectation is computed using
the current parameter estimates. This current expectation-maximisation problem is similar to the
problem handled in Tarpey and Petkova (2010), which implies that a similar EM algorithm can be

applied here. That is, suppose ρ ¼ a
b

� �
is a 2� p dimension coefficient matrix where each of the p

columns of ρ provides the intercept and slope regression coefficients for each of the ρ response
variables. Then the design matrix is denoted by X whose first column consists of ones for the
intercept and the second column consists of the latent predictors xi; i ¼ 1; � � � ;n. The multivariate
regression model follows:

Y ¼ Xρþ ε: (70)

Moreover, and as indicated in Tarpey and Petkova (2010), the likelihood for the multivariate normal
regression model can be given as

Lðρ;ΘÞ ¼ ð2πÞ�np=2jΘj�1=2 expð�tr½Θ�1ðY� XρÞ0 ðY� XρÞ�=2Þ: (71)

The EM approach requires that we maximise the expectation of the logarithm of (71) conditional
on Y with respect to ρ and Θ. This leads to the following optimal factors:

ρ̂ ¼ ð~X
0
XÞ�1~X

0
Y: (72)

Θ̂ ¼ Y
0
Y� ρ̂

0 ð~X
0
XÞρ̂; (73)

where ~X ¼ E½XjY� and ð~X
0
XÞ ¼ E½X0

XjY�.
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To implement the EM method in the R programming language, we first highlight that there are a
minor differences to bear in mind before implementing the algorithm as we explain in the
following.

First and foremost, the density of the predicator in our case is from a stable distribution. Recall,
in general, the densities of stable processes cannot be expressed analytically, which makes it
difficult to compute the log-likelihood. However, with the help of inbuilt packages in R including
stabledist and StableEstim, the log likelihood can be satisfactorily estimated using EstimðÞ to obtain
the stable parameters of St, and dstableðÞ for its corresponding stable density.

Second, from the log-likelihood expression, we notice that we only require estimates of the
conditional expectations of x, x2 and log x with respect to the joint probability density given the
response vector y.

On the other hand, we retain some of the steps in Tarpey and Petkova (2010). The initial values
for the regression parameters a and b can be obtained from fitting a two-component finite mixture
model or by a preliminary search over the parameter space. Initial values for Θ can be obtained
using the sample covariance matrix from the raw data.

6.3. Data for the EM algorithm
The data used is stored in a data frame with three columns containing futures log-returns, spot
price log-returns and binary data of 1’s and 0’s representing whether or not a jump has occurred
within a given window size (see Table 4). Table 2 shows the estimated parameters as a result. The
parameters were obtained from 5000 data points of crude oil log-returns arranged as in Table 4.
We have displayed results from only two iterations because for large data sets the code tends to
be slow in addition to suffering convergence issues. However, this can be improved and using
faster machines.

The jump occurrence due to St is determined by the method discussed in Lee and Mykland
(2008) (also see Maslyuka et al., 2013). That is the realised return at any given time is compared
with a continuously estimated instantaneous volatility σti to measure local variation arising from
the continuous part of the process. The volatility σti is estimated using a modified version of
realised bipower variation calculated as the sum of products of consecutive absolute returns in
the local window (see Barndorff-Nielsen & Shephard, 2004). Then, the jump detection statistic Li{

testing for jumps in returns occurring at a time ti within a window size K is calculated as the ratio
of realised returns to estimated instantaneous volatility:

Table 3. Parameters obtained from maximum likelihood method

Parameter Estimation

Parameter 1st Iteration 2nd Iteration
loglike 30687 31133:2

a 7:74707e� 05 1:17456e� 05

b 0:00218499 0:00166723

α 1:6605 1:6605

β � 0:0651915 � 0:0651915

ν 0:00576286 0:00576286

μ 0:000415904 0:000415904

Θ 0:0106344 0:0110766

T 5000 days 5000 days
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Li ;
log Yti=Yti�1

σ̂ti
; (74)

where Yt at t � 0 represents the commodity spot price and σ̂ti is estimated by

σ̂2ti;
1

K� 2
∑
i�1

j¼i�Kþ2
logðYtj=Ytj�1Þ
��� ��� logðYtj�1=Ytj�2Þ

��� ���: (75)

Care must be taken in choosing K, it must be large enough to accurately estimate integrated
volatility but small enough for the variance to be approximately constant. In other words, K
should be large enough but smaller than N, the number of observations so that the effect of
jumps on estimating instantaneous volatility disappears. Some authors recommend K to be

computed as K ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
252 � np

, where n is the daily number of observations, whereas 252 is the

number of days in the (financial) year. Moreover, the window size should be such that K ¼
OðΔtλÞ with � 1<λ<� 0:5. For high-frequency data, Lee and Mykland (2008) recommend, for
returns sampled at frequencies of 60, 30, 15 and 5 minutes, the corresponding values of K to
be 78, 110, 156 and 270. For our case, we shall choose K ¼ 4 for crude oil future prices with
returns sampled daily.

6.3.1. Detection of jumps in the data
The test statistic L follows approximately a normal distribution when the data set has no jumps
and its value becomes large otherwise. According to Lee and Mykland (2008), the region for L is
chosen based on the distribution of its maximum. For instance, suppose a particular interval
ðti�1; ti� has no jumps and the distance between two consecutive observations in this interval is
small (i.e. Δ ! 0), then the maximum should converge to the Gumbel variable:

maxi{�AN
Lij j � cN

sN
! �; (76)

where � has a cumulative distribution function Pð� � xÞ ¼ expð�e�xÞ, �AN is the set of i{ 1;2; � � � ;Nf g
such that there is no jump in ðti�1; ti� and cN, sN are defined as

cN ¼ ð2 logNÞ1=2
0:8

� log π þ logðlogNÞ
1:6ð2 logNÞ1=2

: (77)

Table 4. A snapshot of the structure of the data used

Futures log-returns Spot log-returns Jump detection

−0.015646306 −0.020072054 0

0.0322302 0.047966668 0

0 −0.016401471 0

−0.001778683 0.001489862 0

−0.017271048 −0.019778648 1

−0.02611648 −0.022030684 1

−0.043103026 −0.033698961 0

0 −0.010387745 0

0.001808809 0.003969483 0

0.037999099 0.036829588 1

−0.030483308 −0.030057522 0

0.024152859 0.019704761 0

0.009625568 0.008368168 0

Kateregga et al., Cogent Economics & Finance (2018), 6: 1512360
https://doi.org/10.1080/23322039.2018.1512360

Page 18 of 26



sN ¼ 1

0:8ð2 logNÞ1=2
: (78)

The test is conducted by comparing the standardised maximum of Li in (76) to the critical values
from the Gumbel distribution where the null hypothesis of no jump is rejected when the jump
statistic is given by

Li>G�1ð1� λÞsN þ cN; (79)

where G�1ð1� λÞ is the ð1� λÞ quantile function of the standard Gumbel distribution. Suppose
λ ¼ 0:1, then we reject the null hypothesis of no jump when Li>sNη� þ cN where η� is such that

expð�e�η� Þ ¼ 1� η� ¼ 0:9. That is η� ¼ � logð� logð0:9ÞÞ ¼ 2:25. Figure 5 shows a graph of jumps
detected in crude oil future prices where we have used 1’s to record a jump occurrence and 0’s for
no jump.

7. Summary
We have shown that the affine property is attainable and applicable to generalised spot
models. We considered a stochastic differential equation with the source of randomness as
subordinated Brownian motion as a specific example to derive the futures price. Moreover, it
has been argued in some existing literature that the likelihood function exists in integrated
form for models with singular noise meanwhile for cases of partially observed processes, a
filtering technique is required. However, the work presented in this paper provided a new
approach of pricing commodity futures for models with latent variables using the maximum
expectation-maximisation, without using any filtering. Our approach is easy to implement once
the joint probability density is established. The numerical implementation of the two factor
model is left for future work.
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Appendix A
Proof for Theorem 5.1

By applying Itô’s formula to Yt ¼ ln zt, it is readily seen that

dYt ¼ κðγ � YtÞdSt þ σdBSt ; (80)

where γ :¼ θ� σ2

2κ and the future price with maturity date T is given by (see (see Schwartz (1997))

FðT; zTÞ ¼ E½zT� ¼ E½eYT �: (81)

Theorem 4.5 suggests an explicit representation of (81) is attainable and it can be deduced by
considering first, the continuous case E½eXt �. Suppose a continuous mean-reverting model given by

dXt ¼ κðγ � XtÞdtþ σdBt; X0 ¼ x: (82)

The corresponding affine forms of the coefficients according to Theorem 4.5 yield:

K0 ¼ κγ; K1 ¼ �κ; K2 ¼ 0; H0 ¼ H1 ¼ 0; H2 ¼ σ: (83)

Since Xt is regular affine and σ is constant for all t{½0; T�, then we have

E½eiuXt � ¼ expðψ0ðt;uÞ þ ψ1ðt; uÞxþ ψ2ðt; uÞσÞ; u{iR ¼ C; (84)

where the functions ψ0ðt;uÞ, ψ1ðt;uÞ and ψ2ðt;uÞ satisfy the set of Riccati equations:

@ψ0

@t
¼ KT

0ηþ
1
2
ηTH0η ¼ κγψ1; ψ0ð0;uÞ ¼ 0: (85)

@ψ1

@t
¼ KT

1ηþ
1
2
ηTH1η ¼ �κψ1; ψ1ð0;uÞ ¼ iu: (86)

@ψ2

@t
¼ KT

2ηþ
1
2
ηTH2η ¼ 1

2
σψ2

1; ψ2ð0;uÞ ¼ 0: (87)

where ηT ¼ ðψ1 ψ2Þ. The solution set to the system of Riccati equations is given by

ψ1ðt; uÞ ¼ iue�κt; (88)

ψ0ðt; uÞ ¼ iuγð1� e�κtÞ: (89)

ψ2ðt; uÞ ¼
σu2

4κ
ð1� e�2κtÞ: (90)
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Using (84) where u ¼ �i, one can easily deduce E½eXτ � leading to the price of a commodity future
price under a continuous model framework. Capitalising on the affine nature of Yt and Theorem

4.6, we deduce the representation for E½eYτ � as:

E½eiuYt � ¼ expðψ0ðt;mðuÞÞ þ ψ1ðt;mðuÞÞSt þ ψ2ðt;mðuÞÞσÞ; (91)

where the volatility σ is a constant and the system of Riccati equations takes the form

@ψ0

@t
ðt;mðuÞÞ ¼ κγψ1; ψ0ð0;mðuÞÞ ¼ 0: (92)

@ψ1

@t
ðt;mðuÞÞ ¼ �κψ1; ψ1ð0;mðuÞÞ ¼ mðiuÞ: (93)

@ψ2

@t
ðt;mðuÞÞ ¼ 1

2
σψ2

1; ψ2ð0;mðuÞÞ ¼ 0: (94)

Consequently, the solution set is directly deduced from (88) (90) to obtain

ψ1ðt;mðuÞÞ ¼ mðiuÞe�κt; (95)

ψ0ðt;mðuÞÞ ¼ mðiuÞγð1� e�κtÞ; (96)

ψ2ðt;mðuÞÞ ¼ 1
4κ

σmðiuÞ2ð1� e�2κtÞ: (97)

Setting u :¼ �i yields

E½eYt � ¼ expðmð1Þγð1� e�κtÞ þ 1
4κ

σ2mð1Þ2ð1� e�2κtÞ þmð1ÞSte�κtÞ: (98)

The required result follows by substituting the Lévy exponent mð1Þ from (41).

Justifications for theorem 5.3

ψ1ðt; u1;u2Þ ¼ mðiu1Þe�κt: (99)

ϕ2ðt;u1; u2Þ ¼ �2κmðiu1Þ
υ2

e�κt ∑
1

j¼1
djmðiu1Þje�jκt þ If ðt; u1Þ

Cðu1;u2Þ � 1
2 υ

2

ðt
0

If ðs;u1Þds
: (100)

ϕ0ðt;u1; u2Þ ¼ θmðiu1Þð1� e�κtÞ

þ �2κλεmðiu1Þ
υ2

∑
1

j¼1
djmðiu1Þj 1

κð1þ jÞ ð1� e�κtð1þjÞÞ
� �

:
(101)

þ
ðt
0

If ðs;u1Þ
Cðu1;u2Þ � 1

2 υ
2

ðs
0
If ðτ;u1Þdτ

ds; (102)

where coefficients dj

 �1

j¼1 satisfy
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djþ1 ¼
∑
j�1

i¼1
djdj�11j>1 � ρυ

κ dj1j>0 þ υ2

4κ2 1j¼0

ðjþ 1� κ�λ
κ Þ : (103)

Note that to ensure that the futures price is positive real, the values of ui{C; i ¼ 1;2f g have to be
chosen carefully which in this case it could be ui ¼ �i.

The factor Cðu1;u2Þ is defined as

Cðu1;u2Þ ¼
exp � ρυmðiu1Þ

κ þ 2 ∑
1

j¼1

di
1þj mðiu2Þjþ1

 !

mðiu2Þ þ 2κmðiu1Þ
υ2

∑
1

j¼1
djmðiu1Þj

: (104)

Finally, the integrating factor If is such that

If ðt;u1Þ ¼ exp �λt� ρυmðiu1Þ
κ

e�κt þ 2e�κt ∑
1

j¼1

dj

jþ 1
mðiu1Þjþ1

 !
: (105)

ðt
0
If ðτ; u1Þτ ¼

If ðt;uiÞ
ð�λþ ρυmðiu1Þe�κt � 2e�κt ∑

1

j¼1

dj
jþ1mðiu1Þjþ1

�
exp �ρυmðiu1Þ

κ þ 2 ∑
1

j¼1

dj
jþ1mðiu1Þjþ1

 !

ð�λþ ρυmðiu1Þ � 2 ∑
1

j¼1

dj
jþ1mðiu1Þjþ1Þ

: (106)

We provide the proof using the following proposition and subsequent lemmas.

Proposition 8.2 The mean and variance of the model (60)–(61) are given by

μ :¼ κðθ� XtÞ
λðε� VtÞ

� �
; σ :¼

ffiffiffiffiffi
Vt

p
0

ρυ
ffiffiffiffiffi
Vt

p
υ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p ffiffiffiffiffi
Vt

p
� �

;

H :¼ σσT ¼ Vt ρυVt

ρυVt υ2Vt

� �
:

(107)

Moreover, their affine forms can be given as linear models of both X and V:

μ ¼ K0 þ K1Xt þ K2Vt; (108)

H ¼ H0 þ H1Xt þ H2Vt; (109)

where

K0 ¼ κθ
λε

� �
; K1 ¼ �κ

0

� �
; K2 ¼ 0

�λ

� �
: (110)

H0 ¼ 0 0
0 0

� �
; H1 ¼ 0 0

0 0

� �
; H2 ¼ 1 ρυ

ρυ υ2

� �
: (111)

As a consequence, we deduce the following system of Riccati equations:
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@ψ0

@t
¼ KT

0ηþ
1
2
ηTH0η ¼ κθψ1 þ λεψ2; (112)

@ψ1

@t
¼ KT

1ηþ
1
2
ηTH1η ¼ �κψ1 (113)

@ψ2

@t
¼ KT

2ηþ
1
2
ηTH2η ¼ �λψ2 þ

1
2
ψ2
1 þ ρυψ1ψ2 þ

1
2
υ2ψ2

2; (114)

where ηT ¼ ðψ1 ψ2Þ with initial conditions ψ0ð0;mðu1Þ;mðu2ÞÞ ¼ 0, ψ1ð0;mðu1Þ;mðu2ÞÞ ¼ mðiu1Þ,
ψ2ð0;mðu1Þ;mðu2ÞÞ ¼ mðiu2Þ. The solutions take the form:

ψ1ðt; u1;u2Þ ¼ mðiu1Þe�κt: (115)

ψ0ðt; u1;u2Þ ¼ θmðiu1Þð1� e�κtÞ þ λε

ðt
0

ψ2ðs; u1;u2Þds: (116)

Proof 8.3 This follows from the applications of Theorems 4.5 and 4.6.

To obtain the solution ψ2 to the Riccati, Equation (114) is not trivial. However, a similar problem
has been handled in Kyriakou et al. (2016), see Lemmas 8.4 and 8.6.

Lemma 8.4 Consider Proposition 8.2 and let ζðyÞ; y{C� 0f g be such that it satisfies

dζðyÞ
dy

¼ ζðyÞ2 þ ðκ � λ

κy
� ρυ

κ
ÞζðyÞ þ υ2

4κ2
; (117)

then the solution to (114) can be expressed by

χðt;u1Þ ¼ �2κmðiu1Þ
υ2

e�κtζðmðiu1Þe�κtÞ: (118)

Moreover, the general solution to (114) takes the form

ψ2 ¼ χ þ 1
ω
; (119)

where ω satisfies

@ω

@t
þ ð�λþ ρυmðiu1Þe�κt þ υ2χÞω ¼ �1

2
υ2; (120)

with the general solution given by

ωðtÞ ¼
C� 1

2 υ
2
ðt
0
If ðsÞds

If ðtÞ
; (121)

where If is an integrating factor and C is the constant of integration.

Proof 8.5 Claim (118) is verified by differentiating with respect to t and relating it to (117) and (115):

@χ

@t
¼ �λχ þ 1

2
υ2χ2 þ ρυχψ1 þ

1
2
ψ2
1: (122)

Similarly, (119) is verified by substitution into (114) and relating it to (122) resulting into
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� 1
ω2

@ω

@t
¼ � λ

ω
þ 1
2
υ2

2χ
ω

þ 1
ω2

� �
þ ρυψ1

ω
; (123)

from which (120) follows. The general solution to (120) is obtained using the integrating factor

If ðt;u1Þ :¼ exp �λt� ρυmðiu1Þ
κ

e�κt � 2κmðiu1Þ
ð
e�κtζðmðiu1Þe�κtÞdt

� �

¼ exp �λt� ρυmðiu1Þ
κ

e�κt þ 2
ðmðiu1Þe�κt

0
ζðyÞdy

 !
: (124)

Lemma 8.6 A representation of the solution ψ2 to (114) is given by

ψ2ðt; u1;u2Þ ¼ �2κmðiu1Þ
υ2

e�κtζðmðiu1Þe�κtÞ þ If ðt;u1Þ

Cðu1; u2Þ � 1
2 υ

2

ðt
0
If ðs;u1Þds

; (125)

where the constant of integration C is determined by applying ψ2ð0;u1;u2Þ ¼ mðiu2Þ:

Cðu1;u2Þ ¼
expð� ρυmðiu1Þ

κ þ 2
ðmðiu1Þ

0
ζðyÞdyÞ

mðiu2Þ þ 2κmðiu1Þ
υ2

ζðmðiu1ÞÞ
: (126)

Proof 8.7 The function ζ can be expressed in the form (see Kyriakou et al. (2016)):

ζðyÞ ¼ ∑
1

j¼1
djyj; (127)

Functions ψ2ðt;u1;u2Þ and ψ0ðt;u1;u2Þ in (125) and (116), respectively, can be re-written as

ψ2ðt; u1;u2Þ ¼ �2κmðiu1Þ
υ2

e�κt ∑
1

j¼1
djmðiu1Þje�jκt

þ If ðt;u1Þ

Cðu1; u2Þ � 1
2 υ

2

ðt
0
If ðs;u1Þds

: (128)

ψ0ðt; u1;u2Þ ¼ θmðiu1Þð1� e�κtÞ

þ �2κλεmðiu1Þ
υ2

∑
1

j¼1
djmðiu1Þj 1

κð1þ jÞ ð1� e�κtð1þjÞÞ
� �

: (129)

þ
ðt
0

If ðs;u1Þ
Cðu1;u2Þ � 1

2 υ
2

ðs
0
If ðτ;u1Þdτ

ds; (130)

where the integrating factor introduced in (124) and its integral are given by

If ðt;u1Þ ¼ exp �λt� ρυmðiu1Þ
κ

e�κt þ 2e�κt ∑
1

j¼1

dj

jþ 1
mðiu1Þjþ1

 !
: (131)
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ðt
0
If ðτ; u1Þdτ ¼

If ðt; uiÞ
ð�λþ ρυmðiu1Þe�κt � 2e�κt ∑

1

j¼1

dj
jþ1mðiu1Þjþ1

�
exp �ρυmðiu1Þ

κ þ 2 ∑
1

j¼1

dj
jþ1mðiu1Þjþ1

 !

ð�λþ ρυmðiu1Þ � 2 ∑
1

j¼1

dj
jþ1mðiu1Þjþ1Þ

: (132)

Finally, the constant of integration (126) can be re-written as

Cðu1;u2Þ ¼
exp � ρηmðiu1Þ

κ þ 2 ∑
1

j¼1

di
1þj mðiu2Þjþ1

 !

mðiu2Þ þ 2κmðiu1Þ
η2

∑
1

j¼1
djmðiu1Þj

: (133)

This completes the proof.
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