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The location-inventory model with risk pooling
and split demand
Hao Xiong1 and Huili Yan2*

Abstract: In the traditional location-inventory system, every demand depot could
be served by only one distribution center (DC). This paper relaxes the assumption.
The demand depot could be split and served by more than one DC. First, based on
the capacitated location-inventory model, the location-inventory model with split
demand is presented. Second, the advantage of permitting split and the properties
of split are analyzed. Third, in order to solve this new model, a two-phase genetic
heuristic algorithm with priority allocating method based on an approximate indi-
vidual allocating cost are proposed. The results of numerical experiments are
compared with non-split version and an important conclusion is illustrated: a small
number of split points can make significant cost savings. The results of this study
provide a useful reference for location-inventory decision.

Subjects: Optimization; Linear & Nonlinear Optimization; Operations Research; Logistics;
Supply Chain Management

Keywords: Location-inventory; genetic heuristic algorithm; split demand; safety inventory

1. Introduction
With the rapid development of e-commerce, the ever-increasing customer demand and operating
costs pose significant challenges to the fulfillment operations of e-commerce. In order to improve
service level and delivery speed, certain number of distribution centers must be strategically
located closely to the associated cities. And the stocks in each distribution center must be set

Hao Xiong

ABOUT THE AUTHOR
Hao Xiong is working as a professor and doctoral
supervisor in Department of Management
Science at Hainan University, China. He had his
PhD degree from Tongji University and completed
his post-doctoral research at Central South
University. He has conducted an academic visitor
at Alliance Manchester Business School of the
University of Manchester for a year. His areas of
research include Operation Research, Tourism
management, Inventory control, Vehicle routing
problem, E-commerce and Machine learning etc.
He has directed many research projects, such as
projects from National Natural Science
Foundation of China and the project of China
Postdoctoral Science Foundation etc. And he has
published more than 40 papers in Chinese
authoritative journals.

PUBLIC INTREST STATEMENT
Location-inventory model could play an impor-
tant role in integral decision of location and
inventory in ecommerce logistics system, which
has a great pressure to reduce cost as much as
possible. However, in the traditional location-
inventory model, the assumption that one
demand depot must be served by only one dis-
tribution center is not necessary. So, this paper
relaxes the assumption and introduces the loca-
tion-inventory model with split demand. So, its
optimal solution is the lower bound of the tradi-
tional model since it is the relax of the traditional
model. That means the split version has the cost
saving advantage compare to the non-split
model. In this work, we explore the advantage
and the property of the split model. Further,
a two-phase genetic heuristic algorithm is
developed to solve the new location-inventory
model with split demand.
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precisely to satisfy the online order. So, both location decisions and inventory decisions play great
roles to obtain the competitive advantage of e-commerce. Generally, inventory decisions are
greatly affected by the location decisions as the number of DC and the assignment of cities always
impact the demand of the DC which is the base of the inventory decisions. Conversely, the location
decisions also are affected by the inventory decisions because the transportation cost from DC to
its associated cities is affected by the ordering quantities. So, decisions of location and inventory
control should be integrated.

For a standard location-inventory problem of e-commerce, the aim is to minimize the average
fulfilment cost of integrating location decisions and inventory decisions (Daskin, Coullard, & Shen,
2002; Shen, Coullard, & Daskin, 2003). The location decisions include the optimal number and the
location of distribution centers (DCs) and the associated cities should be allocated to DCs. The
inventory decisions, help to optimize the inventory level, include the ordering decision and safety
stock decisions. In the standard location-inventory problem, each city must be assigned to only
one DC. That is, each city is not allowed to be served by more than one DC.

However, in some cases, permit a city be assigned to more than one DC could bring some
advantages. A city is assigned to more than one DC means the demand of a city be split to many
parts and served by more than one DC. First, splitting of demand may reduce the inventory cost of
the logistics network system. The split of demand can get more combination of the demand of
cities, to get more opportunity to find some more efficient integrated location-inventory
strategy. Second, the split of demand may improve the capacity utilization of DC. When the
capacity of DCs is limited, after serve a certain number of associated cities, the left capacity of
a DC is not enough to satisfy the whole demand of a city, then the splitting demand could be
served by the left capacity. Third, a city could be served by different DCs may reduce the
transportation cost because there are more combinations of transportation pairs in the potential
possible solutions compare to the none-split version.

The conception of the split demand is originally introduced in the vehicle routing problem (VRP),
called VRP with split demand (or the split VRP). In the literature of Dror and Trudeau (1989) and
Archetti, Savelsbergh, and Speranza (2006), the advantages of split VRP compare to the non-split
VRP has been proved, including the improving of the vehicle utilization and the reducing of the
routing cost of VRP solution. Motivated by the idea of split demand in VRP, this paper tends to
present the split version of location-inventory problem.

In the split location-inventory problem, the restriction that each city is covered by only one DC is
removed. The allocation variables of cities are changed to be real number between 0 and 1 rather
than binary. So, we revise the capacitated location-inventory model to the model with split
demand. Two simple examples are given to illustrate the advantages of the split. Then, the
structural properties of optimal split location-inventory problem solutions are derived. As the
split version of location-inventory model is also a non-linear model and is more difficult to solve,
a two-phase genetic heuristic algorithm is proposed. At each iteration, the heuristic estimates the
individual allocation of each city and decides the split city for each DC as necessary. To show the
actual effect of the cost saving of split, we conduct two computational experiments, and compare
the results with the non-split version.

To summarize, we list the main contributions of this paper below:

– To begin with, we propose a new model for the location-inventory problem with split demand.
The model relax the constraints on city allocation: each city could be allocated to more than
one DC as necessary.

– We explore the advantage and the property of the solution in location-inventory problem with
split demand. In particular, advantage of the split may be the improvement of capacity
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utilization of DCs and the combination possibilities of inventory and transportation. The
properties could help to decide the possible number of every DC. This allows us to design
split location-inventory problem.

– Furthermore, we develop an efficient two-phase heuristic algorithm that allows us to solve the
model and builds on its characteristics.

– Last, we show the cost saving of split demand by comparing its results extensively with those
of a non-split version location-inventory problem. The split version reaches the highest cost
saving of 4.46% in one of the two numerical experiments.

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature.
In Section 3, the model of location-inventory with split demand is presented based on the
capacitated location-inventory model. Then, two simple examples are proposed to show the
advantage of the split. And three key structural properties of the optimal solution are derived
in some special conditions. Next, in Section 4, the solution method is analyzed. A two-phase
genetic heuristic algorithm with heuristic allocation method is proposed. In Section 5, two
computational experiments are presented. Finally, we conclude in Section 6 and give ideas for
future work.

2. Related literature
The relevant literature of this study is focus on the location-inventory problems with risk pooling
(LIRP) and their solutions. And a brief literature review about the vehicle routing problem with split
delivery is reported.

2.1. Location-inventory problem with risk pooling
Risk pooling is a safety stock strategy in the logistics network. Eppen (1979) developed what is
known as “risk pooling” in a multi-location newsboy problem with demand consolidated from
several facilities. Berman, Krass, and Mahdi Tajbakhsh (2011) verified that the risk pooling can
reduce inventory costs by the consolidation of multiple inventory locations into a single location.

Daskin et al. (2002) and Shen et al. (2003) used the idea of risk pooling in order to develop
a joint location-inventory problem with unlimited capacity at the warehouses. Their models
incorporate fixed facility location cost, working and safety-stock inventory costs at the DCs,
transportation costs from the supplier to the DCs, and local delivery costs from the DCs to the
retailers.

Ozsen, Coullard, and Daskin (2008) and Miranda and Garrido (2006) developed the capacitated
version of the LIRP. Ozsen et al. (2008) only considered the capacity constraints at the warehouses.
P A and Garrido (2006) considers two novel capacity constraints. The first constraint states
a maximum lot size for the incoming orders to each warehouse, and the second constraint is
a stochastic bound regarding inventory capacity.

Recently, the problem has been generalized in different directions. For example, Gebennini,
Gamberini, and Manzini (2009) generalizes the model to a dynamic case; Firoozi, Tang,
Ariafar, and Ariffin (2013) introduces a quantity discount policy in the model; Silva and Gao
(2013) presents the joint replenishment condition; Escalona, Ordóñez, and Marianov (2015)
proposes a LIRP with differentiated service levels；Ahmadi-Javid and Hoseinpour (2015)
incorporates the price decision into the location-inventory model; Diabat, Abdallah, and
Henschel (2015) gives a closed-loop LIRP model. For more detailed review on integrated
location-inventory models, we refer the reader to Farahani, Rashidi Bajgan, Fahimnia, and
Kaviani (2015). Amiri-Aref, Klibi, and Babai (2018) study the location-inventory model of
multi-sourcing. Meissner and Senicheva (2018) and van Wijk and Adan (2019) discuss the
transhipment in the location-inventory problem.
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All the location-inventory problems in the above literature have a default assumption that each
retailer must be served by only one DC. In this article, we relax the assumption and permit each
retailer could be split and served by more than one DCs, which could improve the utilization of DC
and save the total location and inventory cost.

2.2. Solution methods
Krarup and Pruzan (1983) has proved that the fixed charge location problem (UFLP) is an NP-Hard
Problem. Ozsen et al. (2008) think that LIRP model is an extension problem of UFLP by explicitly
incorporated inventory decisions into it. Then, we could announce that LIRP is also an NP-Hard
Problem, which make it is difficult to solve.

M S et al. (2002) developed a set covering formulation, while Shen et al. (2003) implemented
Lagrangian relaxation (LR). Both methods employ the same subproblem, which is solved in O
(nlogn) for two special cases: when the variance of the demand is proportional to the mean (as
in the Poisson demand case), or when the demand is deterministic. Under this assumption, the
objective function could be simplified to be a single nonlinear (concave) form for each retailer,
which underlies the efficient solution approach. Based on the same assumption, Ozsen et al.
(2008) proposed a Lagrangian method for the capacitated location-inventory problem.
Nevertheless, Lagrangian method could not solve the general location-inventory problem with-
out the assumption that the variance of the demand is equal to the mean of demand.

Recently, Atamtürk, Berenguer, and Shen (2012) has given a conic integer programming
approach to solve the capacitated location-inventory model, by transform the model to the
conic form based on the characters of the binary decision variables. However, the conic integer
programming approach is only suitable for the non-split version with the binary allocation
variables.

Another stream to solve the NP-hard problem is the heuristic algorithm including the genetic
algorithm, Particle Swarm algorithm (De, Wang, & Tiwari, 2019), hybrid algorithm (De, Choudhary,
& Tiwari, 2017; 2018), and so on. Silva and Gao (2013) proposes a Greedy Randomized Adaptive
Search Procedure (GRASP) to solve the location-inventory problem. Azad and Davoudpour (2008)
and Punyim, Karoonsoontawong, Unnikrishnan, and Xie (2018) presents a hybrid Tabu heuristic
algorithm to solve capacitated location-inventory problem. Diabat and Deskoores (2016) develops
a GA to solve a capacitated location inventory problem. So, based on Diabat and Deskoores
(2016), a two-phase heuristic genetic algorithm is presented in this paper.

2.3. Split literature
As mentioned earlier, the research on joint location-inventory problems has almost exclu-
sively assumed the demand depot can only be allocated to one distribution center, they can’t
be served by two or more distribution centres. To address the split issue into location-
inventory problems, we adopt a split idea in the vehicle routing problem with split deliveries
(VRPSD).

The VRPSD is introduced by Dror and Trudeau (1989). They showed how split deliveries could
result in savings, both in the total distance traveled and the number of vehicles utilized.
Archetti et al. (2006) study the maximum possible savings obtained by allowing split deliveries.
Then, VRPSD became a hot issue in the VRP research field and many researchers do the
extension study, such as Chen, Golden, and Wasil (2007), Hao and Huili(2015) and Gu,
Cattaruzza, and Ogier et al. (2019).

In light of the aforementioned points, one important aim of the current work is to extend the
traditional non-split location-inventory problem to account for split permitting. And show how split
demand could result in cost savings.
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3. Model and split analysis

3.1. Model
Our model is based on the basic capacitated location-inventory model, which was originally studied
by Ozsen et al. (2008). Our model assumes the following: for an e-commerce system, certain number
of DCs are needed to fulfil the demand of cities in a given certain area. All the cities are the potential
location of DCs. Shipments are direct from DCs to cities; Demand at each city is independent and
follow Normal distributions. The following notation will be used throughout this paper.

Under the assumptions and the parameters listed above, the joint location-inventory model is
formulated as follows:

Min∑
j2I

fjxj þ∑
i2I

dij þ aj
� �

μiyij þ rj þ gj
� �∑i2I μiyij

Qj
þ h

Qj

2
þ zαh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lj ∑

i2I
σ2i yij

r0
@

1
A (1)

Qj þ zα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lj ∑

i2I
σ2i yij

r
þ Lj ∑

i2I
μiyij � Cj; j 2 J; (2)

∑
i2I

yij ¼ 1; j 2 J; (3)

yij � xj; i 2 I; j 2 J ; (4)

xj 2 0;1f g; Qj � 0; j 2 J ; (5)

yij 2 0;1½ �; i 2 I; j 2 J ; (6)

The objective of (1) is to minimize total expected cost of location, shipment, and inventory
management. The first objective term is the fixed cost of locating. The second term is the cost
of shipping from DC j to the cities and from the supplier plant to DC. The third term in the objective
is the expected fixed cost of placing an order at DC and the expected fixed cost per shipment from
the central plant to DC. The fourth term is the average inventory holding cost at DC. The fifth term
is the expected safety stock cost at DC.

Constraint (2) defines the capacity of each DC to be the sum of the order quantity Qj and the
reorder point. Note that in defining the DC capacity, we consider the worst-case scenario, i.e., no

Table 1. The parameters
(µi σ) Demand at each city is independent and follow Normal distributions.

fj: fixed (annual) cost of locating a DC at j, for each j ∈ J;

dij: cost per unit to ship from city j to city i, for each i ∈ I and j ∈ J;

aj: cost per unit of a shipment from the plant to DC j;

rj: fixed administrative and handling cost of placing an order at DC j, for each j ∈ J;

gj: fixed shipment cost per shipment from the plant to DC j;

zα: service level relevant with desired fill rate α;

h: inventory holding cost per unit of product per year;

Lj: lead time of DC j in days;

xj = 1, if retailer j is selected as a distribution center location, and 0 otherwise for each j ∈ J;

yij ∈ [0,1], the proportion of the demand of retailer i is served by a distribution center based at retailer j for each
i ∈ I and each j ∈ J.
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demand is observed during lead time. The reorder point is the sum of the safety stock and the
expected demand during lead time. Constraint (3) ensures that the demand of each city is
satisfied. Constraint (4) guarantee that cities are only assigned to open DCs. Constraints (5) and
(6) define the domain of the decision variables.

Compared with the non-split model presented by Ozsen et al. (2008), the similarities and
the differences are almost self-explanatory. Clearly, the objective function remains the same.
One important difference is the 0–1 allocation variable become a continue variable between 0
and 1.

3.2. Illustration of the advantage of split
As the location-inventory model with split demand is a relax problem of non-split version. So,
obviously, the optimal solution of split version model is a lower bound of the optimal solution
of non-split version model. So, it is natural that the split version has cost saving advantage
compare to the non-split version. In order to get an intuitive illustration about the advan-
tages of split demand in location-inventory problem, two simple examples are shown in this
section.

For the capacitated location-inventory model, if the economic ordering quantity (EOQ) of
each DC satisfy the capacity limitation, the optimization objective function is similar to the
un-capacity version location-inventory model of the Daskin et al. (2002) and Shen et al.
(2003). The objective of the model with the working inventory term is given as following:

Min∑
j2I

fjxj þ∑
i2I

dij þ aj
� �

μiyij þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h rj þ gj
� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
i2I

μiyij
r

þ zαh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lj ∑

i2I
σ2i yij

r !
(7)

To simplify the problem, the safety inventory, ordering cost and the fixed transportation cost
are not considered in the examples. Then, the objective only including three term:

∑
j2J

fjxj þ∑
i2I

dijμiyij þ
ffiffiffiffiffiffiffiffiffi
2hrj

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
i2I

μiyij
r

(8)

Example 1. During a decision horizontal, assume there are three cities with demands u1 = 3, u2 = 4,
u3 = 3. All three cities are taken as the potential locations of distribution centers. The unit ordering
cost at three points are all equal to 1. The unit transportation cost between the points are: d12 = 1,
d23 = 2, d13 = 3; The fix location costs are equal: f1 = f3 = f2 = 6. The unit inventory cost and ordering
cost are all equal to 1: h1 = h2 = h3 = 1, r1 = r2 = r3 = 1. The capacities of potential distribution
centers in all cities are 5.

Figure 1(a) shows a non-split solution to the location-inventory problem: three distribution
centers are set to service its location city. The total cost only includes the fix location cost and
the inventory cost, is showed as following.

3�6þ
ffiffiffi
2

p ffiffiffi
4

p
þ

ffiffiffi
3

p
þ

ffiffiffi
3

p� �
¼ 25:7274

Figure 1 (b) shows the split solution to the location-inventory problem: only two distribution
centers are set to service three cities, and city 2 is split serviced by both DC 1 and DC 3. The total
cost includes the location cost, inventory cost and the transportation cost, is showed as:

2�6þ
ffiffiffi
2

p ffiffiffi
5

p
þ

ffiffiffi
5

p� �
þ 6 ¼ 24:3426

Example 1 showed the cost saving of solution of the split demand, which is mainly caused by
decreasing the number of DC and inventory cost.
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Example 2. Based on the parameter assumption of example 1, only the capacities of potential
distribution centers in city 1 and city 2 are changed to be 4 units and 7 units.

The non-split solution is showed in Figure 2 (a). In Figure 2 (a), no split is allowed and the capacity
limitation of DC in city 1 is 4. So, city 2 is assigned to the further DC in city 3. The total cost includes the fix
location cost, the inventory cost and the transportation cost, is showed as following:

2�6þ
ffiffiffi
2

p ffiffiffi
3

p
þ

ffiffiffi
7

p� �
þ 8 ¼ 26:1911

When split allowed, a part of demand of city 2 could be split and served by nearer DC in city 1
(Figure 2 (b)). So, the total cost also includes the location cost, inventory cost and the transporta-
tion cost, is showed as:

2�6þ
ffiffiffi
2

p ffiffiffi
6

p
þ

ffiffiffi
4

p� �
þ 5 ¼ 23:2925

Example 2 is designed to show the possible transportation cost saving of solution of the split
demand.

3.3. Properties of the optimal solutions of split demand
Motivated by the split VRP, similarly, we presented some properties of the split location-inventory
problem under some assumption.

In order to simplify the problem, we also assume the EOQ of each DC can satisfy their capacity
limitation, which means the ordering cost and inventory cost terms could simplified like the un-
capacitated location-inventory model of Daskin et al. (2002) and Shen et al. (2003). We also
assume the variance of the demand of each city to be proportional to the mean demand, in
particular, δi

2 = μi. Then the objective of the model is simplified as following:

Min∑
j2I

fjxj þ∑
i2I

dij þ aj
� �

μiyij þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h rj þ gj
� �q

þ zαh
ffiffiffiffi
Lj

q� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
i¼I

μiyij
r !

(9)

These assumptions make the objective only includes three terms. And the first term is related to
the fix location cost, the second term and the third term are related to the mean demand of cities.

Theorem 1: No two distribution center locations in the optimal solution can have more than one
split demand point in common.

Proof: For the sake of simplicity, assume two cities p and q with demand dp, and dq are served in
a split manner by the same two distribution center location 1 and location 2. The quantity (or
service) delivered to city p by center 1 is d1p and by center 2 is d2p. Similarly define d1q, and d2q. (d1p

A                             B

1 32 1 32
Figure 1. (a) The non-split solu-
tion and (b) the split solution

A                             B

1 32 1 32
Figure 2. (a) The non-split solu-
tion and (b) the split solution.
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+ d2p = dp; d1q+d2q = dq). This is illustrated in Figure 3. The delivery cost between the demand points
and the service depots are c1p, c1q, c2p, c2q.

It is easy to eliminate one of the two-split connects. However, we should prove that the
new service structure could decrease the value of the objective function. First, the four
deliveries d1p, d2p, d1q, d2q could be exchanged by three deliveries by the same two distribu-
tion center without violating the distribution centers capacity constraints. Let cmin = Min {c1p
+c2p, c1q+c2q}, assume for simplicity that cmin = c1q+c2q. Then let dmin = Min {d1q, d2q} and
assume that dmin = d1q. Obtain the new quantities delivered to retailer points p and q by
routes 1 and 2 as follows:

d0
1q ¼ d1q � d1q ¼ 0, d0

2q ¼ d2q þ d1q, d0
2p ¼ d2p � d1q, d0

1p ¼ d1p þ d1q

The capacities of the distribution center 1 and 2 are not violated and the total quantities
delivered to p and q remain the same as before. One is left with proving that eliminate one
connection can results in decreasing (non-increasing) the value of the objective function. As the
total demand allocated to the distribution centers are not changed, so the inventory cost doesn’t
change. The new total cost function changed only in the transportation cost as follows:

Δc ¼ d1q c1p þ c2q � c1q � c2p
� �

As we have assumed c1p + c2p ≤ c1q + c2q, so the cost is decreased.

Next, we present Theorem 2 for which we need the following definition.

Definition: Given k retailer points p1, p2, …, pk and k centers. Center 1 includes the points p1, p2;
Center 2 includes the points p2, p3; center k-1 includes points pk-1, pk; And center k includes points
pk, p1. (This implies that the points p1, p2, …, pk receive split services by the k respective centers and
possibly other centers.) We call this subset of demand points, a k-split cycle (show in Figure 4).

Theorem 2: There is no k-split cycle (for any k) in the optimal solution to the SLIRP.

Proof: The proof follows the same argument as in the proof of Theorem 1. Eliminate the least
delivery quantity connect of the k-split cycle will decrease the total cost without violating the
distribution center capacity constraints.

Theorem 3: The number of splits is less than the number of distribution centers.

Center
Retailer 

Figure 4. k-split cycle of the
split deliveries.

A. Two-split service                 B. One split service

p

q
1

2

d1p d2p

d2qd1q

p

q
1

d1p
' d2p

'

d2q
'

Figure 3. The two-distribution
center two-split city example.
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Proof: By contradiction. Consider a counterexample to the property with no k-split cycles and the
smallest number of the distribution centers. The whole proof process is the same with the property
of split-VRP (see in the Archetti et al. (2006)).

4. Solution procedure

4.1. Convex transformation analysis
There are two exist solve method to solve the capacitated location-inventory problem: Lagrangian
method (Ozsen et al., 2008) and Conic integer programming approach (Atamtürk et al., 2012).
Lagrangian method is a popular solving method of location-inventory problem with a specific
assumption that the variance of the demand is equal to the mean of demand, which limit it to be
a generate solving method for the split version of location-inventory.

Meanwhile, the Conic integer programming approach is only suitable for the non-split
version with the binary allocation variables. In which, the objective of the non-split model
is linearized by using tj and the auxiliary variables for zj for each city j. Specifically, the
following constraint (10) is related with the five term of the objective of formula (1). And
constraint (11) is derived from the third term and the fourth term. When no split is allowed,
then yij is binary and yij

2 = yij. Thus, the non-split location-inventory model could be trans-
formed to be a conic convex problem.

∑
i¼I

σiy
2
ij � t2j ; "j 2 J (10)

∑
i¼I

Hjμiy
2
ij þ Qj �

zj
2

� �2
�
z2j
4

� 0; "j 2 J (11)

However, when the split is permitted, yij ∈ [0,1] and yij
2 ≠ yij. Then, these two constraints turn back

into monomial form and posynomial form as following:

∑
i¼I

σiyij � t2j ; "j 2 J (12)

∑
i¼I

Hjμiyij þ Qj �
zj
2

� �2
�
z2j
4

� 0; "j 2 J (13)

Based on conic integer programming model proposed by Atamtürk et al. (2012), the split model
can be transformed into a geometric program in log-sum-exp convex form.

log ∑
i¼I

eŷijþ2t̂jþbi

 !
� 0; "j 2 J (14)

log e2k̂j�2ẑjþb� þ ∑
i¼I

eŷij�2ẑjþb̂ij

 !
� 0; "j 2 J (15)

with ŷij ¼ log yij, t̂j ¼ log tj, bi ¼ log σi, b̂ij ¼ Hjμi, b
� ¼ log 4, ẑj ¼ log zj, k̂j ¼ log Qj � zj

2

� �
.

However, this convex problem is still very hard to be solved. So, in the next section we proposed
a heuristic algorithm to solve the problem.

4.2. Two-phase genetic heuristic method
In this section, we propose a two-phase genetic heuristic method based on approximate individual
allocating cost and priority allocating method to solve the new model.
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4.2.1. Location search
The evolutionary properties of genetic algorithm can be exploited to determine the location. We
represent the chromosome using a binary vector that contains the location decisions including the
FDCs alternative locations. Each gene in the chromosome carries a value between 0 and 1,
representing for whether a candidate location is selected to locate the FDC (see in Figure 5).
Thus, the number of genes in a chromosome is equal to the number of the potential locations.

4.2.2. Allocation heuristic method
(1) Individual allocating cost

Once the location of DCs is set, each city should be assigned to an DC. In order to do a quick
allocation of the cities, we construct an individual cost function to approximate the real
allocating cost.

Based on the objective of un-capacitated location-inventory model (see formulation (7)), only
the last three terms, including the transportation cost, the inventory cost and safety stock cost, are
strongly related to the assignment of cities. So, we take these three terms as the allocating cost
and decomposed them to the individual of every city as their allocating cost when allocating them
to DCs. The formulation of approximate allocating cost is:

cij ¼ μi dij þ aj
� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2h rj þ gj
� �q ffiffiffiffi

μi
p þ hzαε

ffiffiffiffi
Lj

q
σi (16)

where cij is the cost of allocating city i to DC j, ε is an adjustment parameter of safety stock
cost. In the allocating cost function (16), the first term is the cost of long-haul transportation
and local transportation. The second term is the cost unit of ordering and inventory holding.
The third term of function (16) is the safety stock holding cost. The sum of these decomposed
individual cost is:

∑
i2I

cik ¼ ∑
i2I

μi dij þ aj
� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2h rj þ gj
� �q

∑
i2I

ffiffiffiffi
μi

p þ hzα
ffiffiffiffi
Lj

q
∑
i2I

σi (17)

which is very similar with the last three terms of the objective function (7), which is the approx-
imate of the objective function (1).

In fact, having found the locations of DCs and the allocation of cities, the third decision variable
Qk should be determined according to EOQ and the constrain (2) as follow:

Q�
j ¼ min EOQj;Qlimit

j

n o
j 2 J (18)

where Qlimit
j � Ck � Lj ∑

i2I
μi � zα

ffiffiffiffi
Lj

p ffiffiffiffiffiffiffiffiffiffi
∑
i2I

σ2i

r

Then, the difference between the cost from objective function (1) and the sum of individual
allocation cost (17) is:

Δ ¼ rj þ gj
� �∑i2Iμi

Q�
j

þ h
Q�
j

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h rj þ gj
� �q

∑
i2I

ffiffiffiffi
μi

p
" #

þ hzα
ffiffiffiffi
Lj

q
ε∑
i2I

σi �
ffiffiffiffiffiffiffiffiffiffi
∑
i2I

σ2i

r !
(19)

If we set a proper adjustment parameter of safety stock cost, such as:

Potential
locations 0

1

0

2

1

3

0

4

1

5

1

6

0

7

0

8

1

9

0

10

1

11

0

12

0

13

The selected FDCs

Figure 5. Individual represen-
tation of our GA.
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ε ¼
ffiffiffiffiffiffiffiffiffiffi
∑
i2I

σ2i

r ,
∑
i2I

σi

Then second term of the cost difference Δ is zero. So, the cost difference Δ only be affected by the
first term, which depend on the robust of EOQ.

(2) Priority allocating method

Based on the individual allocating cost, we proposed a way to calculate the priorities of cities to
allocate them to DCs. The un-allocated city with the highest priority will be allocated firstly. The
priority evaluating formula is:

pi ¼ c i; k�� ið Þð Þ � c i; k� ið Þð Þ (20)

where pi is the priority of city i; c(i, k**(i)) is the second lowest allocating cost between city i andDC and c(i,
k*(i)) is the lowest allocating cost between city i and DC.

(3) Decide the split cities

According to the given Theorem 3, every chosen distribution center has no more than one split
city. So, in our two-phase genetic heuristic method, when the left capacity of DC can’t satisfy the
whole demand of the last allocated city, the demand of the last assigned city should be split and
the split proportion is:

y iþ1ð Þj ¼ Cleft
	
ΔQiþ1 (21)

Cleft ¼ Cj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h rj þ gj
� �q ffiffiffiffiffiffiffiffiffi

∑
i2I

μi

r
� zα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lj ∑

i2I
σ2i

r
þ Lj ∑

i2I
μi (22)

ΔQiþ1 ¼ ΔEOQþ Ljμiþ1 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
Ljσ2iþ1

q
(23)

However, the optimal ordering quantity of DC with certain assigned cities is difficult to get if the
allocation is not finished. To simple the question and get the satisfied solution, we use the EOQ of
the DC with cities has allocated to calculate the left capacity of the DC，which is showed as
formula (22). Furthermore, as showed in formula (23), we also use EOQ to estimate the change
of ordering quantity and take the safety inventory increase as the approximate of the inventory
increase when the last city is allocated to the DC. Obviously, the rationality of this heuristic
procedure is also dependent on the robust of the EOQ.

4.3. Fitness and other genetic operators
Having found the locations of DCs, the allocation of cities and the split proportion of split point, the
third decision variable Qk should be determined according to EOQ and the equality (18). Then, the
objective function for each chromosome can be evaluated. As it is a minimization problem, the
fitness function (objective function of the problem) assigns the highest fitness value to the lowest
objective function.

Next, the genetic operators, including selection, crossover and mutation should be applied to
search for the optimum solution. First, selection method is the roulette selection method,
associated a selection probability of each individual chromosome according to its fitness
value. Then, the crossover uses randomly created crossover mask to decide the gene get
from the parents’ chromosome. Finally, the mutation operator involves generating a random
variable for each bit in a sequence. This random variable tells whether a gene will be modified.
The parameters of crossover rate and mutation rate of genetic heuristic algorithm could be
trial to find the best ones.
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5. Computational experiments and results discussion
In this section, two numerical experiments are presented to illustrate this cost saving. One
experiment data is extracted from Daskin (1995) since many literatures (Daskin et al. (2002),
Shen et al. (2003), Ozsen et al. (2008), Atamtürk et al. (2012)) uses them as the location-
inventory benchmark data. We choose the 88-node data from the data set of Daskin (1995) as
a typical ecommerce application scene in USA. Similarly, we construct a 31-node data case as
a typical ecommerce logistics network in China.

Then, the two-phase genetic heuristic algorithm discussed in the previous sections is used to
solve both the split version and the non-split version. We compare the result of split version with
the result of the non-split version to show the impact of the split on the solutions. The parameter
values of our genetic algorithm are trial to set as following: maximal number of generations is 800,
the crossover rate is 0.9, the mutation rate is 0.2.

5.1. Numerical experiments on revised benchmark data
The first numerical experiment in this paper use data from the 1990 U.S. Census described in
Daskin (1995). We employ the 88-node data set. However, we need to set the capacities
limitation as the original data did not consider the capacity limit. Furthermore, we have
noticed that the facility capacities in the data set from Ozsen et al. (2008) were often
loose and the facility capacities in the data set from Atamtürk et al. (2012) were too tight.
To have DC with a rational capacity limitation, we set the capacities of all the DC are equal to
the biggest demand of the cities. So, in 88-node experiment, the capacity is 7400.

To vary the difficulty of problem instances, similar in the literature of Ozsen et al. (2008), β is set
as the weight factor associated with the transportation cost. θ is set as the weight factor
associated with the inventory cost. Here, we set β and θ values to 0.001 and 0.1 and then to
0.005 and 20.

In Table 2, we report the results obtained by running two-phase genetic heuristic algorithm on
both the split version and non-split version of the 88-node data set. We report the objective, the
location of the DCs, and the split point for the split version. Focusing on the results obtained by the
same solve method, we observe that: first, all the solutions of split version cases have some cost
saving compared to the non-split version; second, in the solution of split version, the split happens
and the number of split is not more than the number of DCs; the number of DCs do not necessarily
decrease the split version compared to the non-split version.

Figure 6 summarizes the cost-reduction percentage of the split version compare with the
objective of non-split version. The max reduction percentage is 1.6%.

5.2. Numerical experiments on a new simulation data
To verify the comparison conclusion from the first experiments, the second numerical experi-
ment is necessary. So, we generated a 31-node data based on cities of China using the
similar collect method in Daskin (1995). Each of the 31 nodes represents the capital cities and
the municipalities. The demand is the total retail sales of consumer goods of the cities. The
fixed facility location cost can be obtained by dividing the average house price by 10. The
number of the cities are the orders when the cities are ranked in the order of the demands.
The capacity is also set as 8400, which is the biggest demand of the cities. Also, in all cases,
we set dij the unit cost of shipping from candidate DC j to cities i, to the great circle distance
between these locations. See Table 1 in Table A1 for the data of 31-node experiment.

In Table 3, we report the results obtained by running two-phase genetic heuristic algorithm on
both the split version and non-split version of the 31-node data set. Similarly, we observe the
results and find that: all three conclusions found in the first experiment are verified in this second
experiment again.
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Figure 7 summarizes the cost reduction percentage of the split version in 31-node case. The cost
reduction is more obvious than the reduction in first experiment. The max reduction percentage is
even higher to be 4.46% in 31-node.

6. Conclusions
This paper studies a location-inventory model with split demand, which is an extension of the
traditional capacitated location-inventory model. We relax the constraint that every city must
be served by only one DC and permit a city could be served by more than one DCs as
necessary. And we assumed that the normal inventory and safety inventory should both served
by different DCs according to the assigned split proportion when the demand of the city is split.
Then, based on the capacitated location-inventory model, the location-inventory model with
split demand is presented. And two simple examples are proposed to show the advantage of
the split. Next, inspired by the split VRP, three properties about the structure and the number of
the split point of the split location-inventory problem are derived, which could give an approx-
imate way to decide the split points. Furthermore, due to the complexity of the new model,
conic integrating programming method can’t be applied any more, we proposed a two-phase
genetic heuristic algorithm with an approximate allocation method and approximate split
method. Finally, two numerical experiments are presented. The computational results illu-
strated the advantage of the split and some important conclusions:

(a) the great cost-saving effect of the split version compared to the non-split version. The saving
percentage can even reach to 4.46%.

(b) if splitting is allowed, splitting some points is always a good choice and the number of split
points is not more than the number of DCs;

(c) the number of DCs do not necessarily decrease in the split version compare to the non-split
version.

The main contributions are as follows. First, to our best knowledge, this is the first time to
propose location-inventory model with the split demand, which can reduce the total location and
inventory cost of the logistics system. Second, the advantage of permitting split demand and the
properties are analyzed, which is capable enough to give practical managerial insights for location-
inventory by split management. Third, in order to solve this new model, a two-phase genetic
heuristic algorithm with priority allocating method based on an approximate individual allocating
cost are proposed. The accuracy of this algorithm is mainly based on the robustness of EOQ.

Throughout this paper, there are three analysis are based on EOQ ordering assumption, such as:
the analysis of three properties of the split location-inventory model, the calculation of individual
allocation cost of city and the estimation of the split proportion of the city, and so on. However, it
might be the case that the EOQ formulation sometimes will violate the capacity constraints. Then
the decision based on the hypothesis that the order quantities of DCs are EOQs may not be the
optimal solution. How will the EOQ assumption affect the objective value of the solution is still

Figure 6. The percentage cost
reduction in the split version of
88-node case.
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unknown. This, in our opinion, provides a promising direction for future research. Another impor-
tant future direction is to develop more efficient heuristic or hybrid meta-heuristic methods to
solve the location-inventory model with split demand, and the heuristic algorithm based on log-
sum-exp convex form.
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City No. Latitude Longitude Retail sales
(ten thousand
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House price
(yuan/square

meter)
Beijing 1 39.91 116.40 8375.12 4540.00

Shanghai 2 31.24 121.47 8052.00 4186.50

Guangzhou 3 23.13 113.34 6882.85 2096.30

Chongqing 4 29.55 106.55 4599.77 694.20

Tianjin 5 39.10 117.25 4470.43 1800.70

Wuhan 6 30.56 114.38 3916.60 1148.80

Chendu 7 30.71 104.09 3752.88 812.80

Nanjing 8 32.06 118.80 3531.73 2132.00

Hangzhou 9 30.27 120.17 3531.17 1908.90

Shenyang 10 41.83 123.42 3186.09 721.60

Changsha 11 28.21 113.01 2801.97 663.70

Jinan 12 36.65 117.00 2743.35 1107.40

Harbin 13 45.97 126.72 2728.29 742.40

Fuzhou 14 26.08 119.31 2681.72 1564.60

Zhengzhou 15 34.78 113.66 2586.42 1018.80

Xian 16 34.26 108.94 2548.02 695.20

Shijiazhuang 17 38.07 114.49 1972.35 935.50

Changchun 18 43.89 125.32 1970.04 646.70

Kunming 19 25.01 102.70 1702.30 830.40
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Table A1. (Continued)

City No. Latitude Longitude Retail sales
(ten thousand

yuan)

House price
(yuan/square

meter)

Hefei 20 31.80 117.26 1480.84 1185.40

Nanning 21 22.65 108.31 1450.84 725.50

Taiyuan 22 37.84 112.52 1281.46 807.20

Huhehaote 23 40.87 111.81 1142.36 653.30

Nanchang 24 28.75 115.83 1132.77 909.20

Wulumuqi 25 43.81 87.61 970.05 662.70

Lanzhou 26 36.08 103.76 843.87 877.00

Guiyang 27 26.54 106.76 785.66 630.40

Haikou 28 20.02 110.33 490.05 766.10

Yinchuan 29 38.48 106.27 348.06 501.70

Xining 30 36.63 101.78 317.46 579.40

Lhasa 31 29.66 91.13 144.11 780.80
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