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Abstract

We study the role of wealth effects, i.e. the revaluation of stocks, bonds, and human wealth,
in the monetary policy transmission mechanism. The analysis of wealth effects requires to
incorporate realistic asset-pricing dynamics and heterogeneous households’ portfolios. Thus,
we build an analytical heterogeneous-agents model with two main ingredients: i) rare disasters
and ii) positive private debt. The model captures time-varying risk premia and precautionary
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1 Introduction

A long tradition in monetary economics emphasizes the role of wealth effects, i.e. the revaluation

of real and financial assets, in the economy’s response to changes in monetary policy. Its impor-

tance can be traced back to both classical and Keynesian economists, such as Pigou, Patinkin,

Metzler and Tobin.1 Keynes himself described the effects of interest rate changes as follows:

There are not many people who will alter their way of living because the rate of interest has
fallen from 5 to 4 per cent, if their aggregate income is the same as before. [...] Perhaps the
most important influence, operating through changes in the rate of interest, on the readiness
to spend out of a given income, depends on the effect of these changes on the appreciation or
depreciation in the price of securities and other assets.
- John Maynard Keynes, The General Theory of Employment, Interest, and Money.

Recently, wealth effects have regained relevance. In an influential paper, Kaplan et al. (2018)

build a quantitative heterogeneous-agents New Keynesian (HANK) model and find only a small

role for the standard intertemporal-substitution channel, leading the way to a more important

role for wealth effects. Much of the literature has focused on the role of heterogenous marginal

propensities to consume (MPCs) in settings with idiosyncratic income risk. In contrast, relatively

little work has been done on the role of aggregate risk and risk premia, which are central to cap-

ture the wealth effects induced by monetary policy, despite ample evidence of their relevance.2 A

reason for this is that incorporating risk premia represents a challenge for the standard New Key-

nesian framework, as models with rich asset-pricing dynamics require the use of complex global

or high-order perturbation methods. However, these models lack the insights on the role of these

channels provided by analytically tractable models.

Our paper fills this gap. We provide a tractable unifying framework to study the role of risk

and household heterogeneity in the monetary transmission mechanism. We obtain time-varying

risk premia without the need for higher-order perturbation techniques, which allows us to pro-

vide a complete analytical characterization of the channels involved. Moreover, we capture key

features of HANK models, such as precautionary savings and heterogeneous marginal propen-

sities to consume (MPCs), in a setting with positive private debt, a combination that has been

elusive in the analytical HANK literature. The model quantitatively captures key features of the

monetary transmission mechanism, including important asset-pricing moments, such as the term

premium, the equity premium, and corporate spreads, as well as the differential responses of

borrowers and savers to monetary shocks observed in the data. Despite still being stylized, the

1The revaluation of government liabilities was central to Pigou (1943) and Patinkin (1965), while Metzler (1951)
considered stocks and money. Tobin (1969) focused on how monetary policy interacted with the value of real assets.

2The effect of monetary policy on stock prices is considered by e.g. Bernanke and Kuttner (2005) and Kekre and
Lenel (2020), while the effect on bonds is studied by e.g. Gertler and Karadi (2015) and Hanson and Stein (2015).
The role of heterogeneous portfolios and the associated redistribution channel was originally considered by Auclert
(2017). Cieslak and Vissing-Jorgensen (2020) show that policymakers track the behavior of stock markets because of its
consumption wealth effect, while Chodorow-Reich et al. (2019) empirically establish the importance of this channel on
the dynamics of consumption.
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ability of the model to match these moments suggests that it can provide a useful assessment of

the quantitative importance of the channels through which monetary policy affects households’

consumption.3 In particular, we find that time-varying risk and private debt account for more

than 80% of the economy’s response to a monetary shock. We conclude that risk and household

heterogeneity combined are, therefore, major drivers of the economy’s response to monetary pol-

icy.

We build an analytical HANK model with two main ingredients: i) rare disasters and ii) pos-

itive private debt. Rare disasters allow us to capture both a precautionary savings motive and

realistic risk premia. Private debt is an important component of households’ portfolios, represent-

ing 75% of GDP, and, as recently shown by Cloyne et al. (2020), borrowers account for the bulk of

the response of aggregate consumption to changes in interest rates. Thus, by incorporating private

debt, we are able to capture the role of revaluations in both gross and net asset positions.

We begin our analysis by considering an economy populated by two types of households, bor-

rowers and savers, where borrowers are relatively impatient. Households are subject to borrowing

constraints, and, in equilibrium, borrowers will be constrained at all times. By allowing house-

holds to borrow positive (but limited) amounts, we depart from most of the analytical HANK

literature that focuses on the case of zero private liquidity. The zero liquidity assumption allowed

the analytical literature to capture two key features of quantitative HANK models: a precaution-

ary savings motive and heterogeneous MPCs. We capture these same two features in an economy

with positive private debt by introducing an aggregate disaster risk, where the productivity of the

economy is permanently reduced after a shock hits, as in the work of Barro (2006, 2009).4 More-

over, this formalization allows us to effectively discipline the magnitude of the precautionary

savings motive with asset-pricing data.

We then study the impact of monetary shocks by perturbing the economy around a stationary

equilibrium with positive aggregate risk instead of adopting the more common approach of ap-

proximating around a non-stochastic steady state. By perturbing around the stochastic stationary

equilibrium, we are able to obtain time variation in precautionary motives and risk premia using

a first-order approximation, while the standard approach would require a third-order approxima-

tion (see e.g. Andreasen 2012). Moreover, by linearizing around an economy with zero monetary

risk, we are able to solve for the stochastic stationary equilibrium in closed form, avoiding the

need to compute the risky steady state numerically, as in Coeurdacier et al. (2011). This hybrid

approach allows us to capture the effect of aggregate risk on asset prices in a linearized model.

Our first result states that output satisfies an aggregate Euler equation, where its sensitivity to

interest rates depends on the disaster risk and on the level of private debt. With zero private liq-

3In order to obtain tractability, our model does not incorporate the rich heterogeneity in households’ MPCs empha-
sized in the literature. However, our focus is on borrowers and savers, and we use the empirical findings in Cloyne et
al. (2020) to discipline the model.

4Rare disasters have been widely used to explain a range of a asset-pricing facts; see e.g. Rietz (1988), Barro (2006),
Gabaix (2008), Wachter (2013), Farhi and Gabaix (2016), and Barro and Liao (2020).
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uidity and constant disaster probability, our economy features a discounted Euler equation, where

output is less sensitive to future interest rate changes due to a precautionary motive, as in the

incomplete-markets model of McKay et al. (2017). The presence of private debt acts in the op-

posite direction, as it pushes the economy towards compounding in the Euler equation, even with

acyclical income inequality. We find that the second effect dominates in our calibration, so the

aggregate Euler equation features compounding, even though, at the micro level, savers’ Euler

equation always features discounting.

We turn next to the channels through which monetary policy affects the economy. We show

that equilibrium output can be characterized as the sum of four terms: the intertemporal-substitution
effect (ISE); the inside wealth effect, i.e. the change in valuation of assets in zero net supply; the out-
side wealth effect, i.e. changes in the valuation of assets in positive net supply; and a time-varying
risk effect.5

The ISE corresponds to the output response that operates through changes in the timing of

output but not its overall (present value) level. While this channel is quantitatively important

in the textbook New Keynesian model, we find that it has a marginal impact in the presence of

heterogeneous agents and risk.

Most of the response in the economy can be explained by wealth effects and the associated

time-varying risk effect. The inside wealth effect corresponds to a channel that is present only

with heterogeneous MPCs and positive private debt.6 It captures the aggregate implications of

the differential response of borrowers and savers to changes in interest payments. An increase

in nominal interest rates creates a positive wealth effect on savers, as they receive a higher in-

come from private lending, and a corresponding loss to borrowers. Given the higher MPC for

borrowers, this generates a negative aggregate response of output on impact.

Time-varying risk has a significant impact on how output responds to monetary shocks. When

the probability of disaster is constant, the model is able to capture important unconditional asset-

pricing moments, such as the level of the equity premium and an upward-sloping yield curve,

but it fails to generate the observed response of risk premia to monetary shocks. This failure has

important real consequences, as aggregate risk has then only a minor impact on the response of

output and inflation. With time-varying disaster risk, the model is able to simultaneously match

how long-term bonds, corporate spreads, and equities respond to monetary shocks in the data,

and the impact on output increases almost threefold. This highlights the importance of match-

ing the empirical response of asset prices to properly assess the role of risk in determining how

monetary policy affects the economy.

Finally, the outside wealth effect is the sum of the change in wealth for all households in the

economy. This includes the change in the value of stocks, government bonds, and human wealth,

5The notion of inside/outside wealth is reminiscent of inside/outside money as used by Gurley and Shaw (1960),
and, more recently, inside/outside liquidity by Holmstrom and Tirole (2011).

6Note that previous analytical HANK models focused on either the case of heterogeneous MPC but no private debt,
as in Bilbiie (2018), or positive private debt and no heterogeneity in MPC, as in Acharya and Dogra (2020).
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net of the impact of discount rates on the present discounted value of consumption. We find that

the outside wealth effect interacts with the presence of private debt in interesting ways. As we

mentioned above, private debt introduces a force towards compounding in the Euler equation.

This compounding amplifies the effect of changes in the value of households’ wealth on equilib-

rium output, analogously to the debt-deflation effect. Lower asset prices reduce aggregate demand,

which lowers output and inflation. Lower inflation increases the real burden on borrowers, gen-

erating an extra effect on aggregate demand.

An important result of our analysis is that the outside wealth effect is tightly connected to the

response of fiscal policy to monetary shocks. In particular, we show that the outside wealth effect

is proportional to the revaluation of public debt and the fiscal backing, that is, the change in taxes

and transfers in response to monetary shocks. Intuitively, in a closed economy, the government

is the only trading counterpart to the household sector as a whole, so the outside wealth effect

can be inferred from the impact of monetary policy on government finances. More importantly,

this result implies that we can use standard VAR techniques to identify the fiscal response to

a monetary shock and discipline the ability of the model to generate quantitatively meaningful

wealth effects. These findings have important implications for the quantitative assessment of

monetary models. We find that when constrained to match the estimated fiscal response, the

standard RANK model generates a substantially weaker output response to monetary shocks than

when fiscal backing is determined by the standard Taylor rule that restricts monetary shocks to

an AR(1) process. Equivalently, these results imply that the standard Taylor equilibrium requires

a (passive) fiscal response that is counterfactually large. Our results can be made consistent with

a Taylor equilibrium by allowing a more general specification of the monetary shock. In this case,

we can use both monetary and fiscal data to discipline the parameters of the interest rate rule. It is

in this context that the presence of heterogeneity and risk becomes particularly relevant, as these

forces can compensate for the missing fiscal response.

To quantify the importance of the channels that are present in the model, we decompose the re-

sponse of output by sequentially adding time-varying risk and private debt to the standard RANK

model. We find that adding time-varying risk accounts for more than 50% of the overall output

response, while private debt accounts for roughly 30%. Moreover, we find that time-varying risk

has a larger impact on the economy in the presence of private debt and vice versa, showing the

importance of considering risk and heterogeneity simultaneously.

Literature review. Wealth effects have a long tradition in monetary economics. Pigou (1943)

relied on a wealth effect to argue that full employment could be reached even in a liquidity trap.

Kalecki (1944) argued that these effects apply only to government liabilities, as inside assets cancel

out in the aggregate, while Tobin highlighted the role of private assets and high-MPC borrowers.7

7Tobin (1982) describes the role of inside assets: “The gross amount of these ’inside’ assets was and is orders of
magnitude larger than the net amount of the base. Aggregation would not matter if we could be sure that the marginal
propensities to spend from wealth were the same for creditors and debtors. But if the spending propensity were

4



Our work is closely related to two strands of literature. First, it relates to the analytical HANK

literature, such as Werning (2015), Debortoli and Galí (2017), and Bilbiie (2018, 2019). While this

literature focuses mostly on how the cyclicality of income interacts with differences in MPCs, we

focus instead on how heterogeneous asset positions interact with differences in MPCs. We see

these two channels as mostly complementary: even though Cloyne et al. (2020) do not find sig-

nificant differences in income sensitivity across borrowers and savers, Patterson (2019) found a

positive covariance between MPCs and the sensitivity of earnings to GDP across different demo-

graphic groups, suggesting that the income-sensitivity channel is operative for a different cut of

the data. We share with Eggertsson and Krugman (2012) and Benigno et al. (2020) the emphasis

on private debt, but they abstract from a precautionary motive and focus instead on the impli-

cations of deleveraging. Iacoviello (2005) also considers a monetary economy with private debt,

but focuses instead on the role of housing as collateral. Our work is also related to Auclert (2017),

which studies the redistribution channel of monetary policy arising from portfolio heterogeneity.

Our paper emphasizes the redistribution channel in the context of a general equilibrium setting

with aggregate risk.

Second, our paper is also closely related to work on how monetary policy affects the economy

through changes in asset prices, including models with sticky prices, such as Caballero and Simsek

(2020), and models with financial frictions, such as Brunnermeier and Sannikov (2016), Drechsler

et al. (2018), and Di Tella (2019).8 In recent contributions, Kekre and Lenel (2020) consider the role

of the marginal propensity to take risk in determining the risk premium and shaping the response

of the economy to monetary policy, and Campbell et al. (2020) use a habit model to study the role of

monetary policy in determining bond and equity premia. Our model highlights instead the role of

heterogeneous MPCs, positive private liquidity, and disaster risk in an analytical framework that

preserves the tractability of standard New Keynesian models.

A recent literature studies rare disasters and business cycles. Gabaix (2011) and Gourio (2012)

consider a real business cycle model with rare disasters, while Andreasen (2012) and Isoré and

Szczerbowicz (2017) allow for sticky prices. They focus on the effect of changes in disaster proba-

bility, while we study monetary shocks in an analytical HANK model with rare disasters.

Our result regarding how asset revaluations depend on fiscal variables is related to work on

fiscal policy and asset prices. Croce et al. (2012) and Gomes et al. (2013) study how fiscal policy

affects asset prices in neoclassical economies, while Jiang (2019) and Corhay et al. (2018) study

exchange rates and bond returns, respectively, in a fiscally active regime.

Outline. The paper is organized as follows. Section 2 presents the model used in the analysis.

It shows how heterogeneity, positive private liquidity, and risk feed into the the aggregate Euler

equation. In Section 3 we study the equilibrium dynamics, focusing on the determination of inside

systematically greater for debtors, even by a small amount, the Pigou effect would be swamped by this Fisher effect.”
8 A related literature focuses instead on the revaluation of housing, as in Berger et al. (2018) and Guren et al. (2018).
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and outside wealth effects. We turn to the role of risk in Section 4. We conclude in Section 5.

2 D-HANK: An Analytical Rare Disasters HANK Model

In this section, we consider an analytical HANK model with two main ingredients: the possibility

of rare disasters and positive private liquidity. By introducing aggregate disaster risk instead of

the commonly adopted idiosyncratic income risk, we are able to capture a precautionary savings

motive and an explicit role for liquidity in a setting with heterogeneous MPCs without having to

keep track of a non-degenerate distribution of wealth.

2.1 The Model

Environment. Time is continuous and denoted by t ∈ R+. The economy is populated by house-

holds, firms, and a government. There are two types of households, borrowers and savers, who dif-

fer in their discount rates. A mass 0 ≤ µb < 1 of households are borrowers and a mass µs = 1− µb

are savers. Households can borrow or lend at a riskless rate, but they are subject to a borrowing

constraint.

Firms can produce final or intermediate goods. Final-goods producers operate competitively

and combine intermediate goods using a CES aggregator with elasticity ε > 1. Intermediate-

goods producers use labor as their only input and face Rotemberg pricing adjustment costs.9

Intermediate-goods producers are subject to an aggregate productivity shock: with Poisson in-

tensity λt ≥ 0, they receive a shock that permanently reduces their productivity. This shock is

meant to capture the possibility of rare disasters: low-probability, large drops in productivity and

output, as in the work of Barro (2006, 2009). We say that periods that predate the realization of

the shock are in the no-disaster state, and periods that follow the shock are in the disaster state. The

disaster state is an absorbing state, and there are no further shocks after the disaster is realized.

Assuming an absorbing disaster state simplifies the presentation, but it can be easily relaxed, as

shown in Appendix A.2.10

The government sets fiscal policy, comprising a sales tax on intermediate-goods producers and

transfers to borrowers and savers, and monetary policy, specified by an interest rate rule subject

to a sequence of monetary shocks. We assume that the government issues long-term nominal

bonds which pay exponentially decaying coupons, as in Woodford (2001), where the coupon in

period t is given by e−ψdt. The rate of decay ψd is inversely related to the bond’s duration, where

a perpetuity corresponds to ψd = 0 and the limit ψd → ∞ corresponds to the case of short-term

bonds. We denote by QL,t the nominal price of the bond in the no-disaster state and by Q∗
L,t the

9Rotemberg costs simplify the derivations in the disaster state, but they are not essential for our results.
10Allowing for partial recovery after a disaster, as in Barro et al. (2013) and Gourio (2012), introduces dynamics in

the disaster state, but it does not change the main implications for the no-disaster state, which is our focus.
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price of the bond in the disaster state, where the star superscript is used throughout the paper to

denote variables in the disaster state.

Households’ problem. Households face a portfolio problem where they choose how much to

invest in short-term and long-term bonds. For simplicity, we assume that borrowers issue only

short-term bonds and the government issues only long-term bonds. The nominal return on the

long-term bond is given by

dRL
t =

!
1

QL,t
+

Q̇L,t

QL,t
− ψd

"
dt +

Q∗
L,t − QL,t

QL,t
dNt,

where Nt is a Poisson process with arrival rate λt.

Let Bj,t = BS
j,t + BL

j,t denote the total value of bonds (in real terms) held by a type-j household,

j ∈ {b, s}, that is, the sum of short-term (BS
j,t) and long-term (BL

j,t) bonds. The problem of a house-

hold of type j is to choose consumption Cj,t, labor supply Nj,t, and long-term bonds BL
j,t, given an

initial real value of bonds Bj,t, to solve the following problem:

Vj,t(Bj,t) = max
[Cj,z,Nj,z,BL

j,z]z≥t

Et

#

$
ˆ t∗

t
e−ρj(z−t)

%

&
C1−σ

j,z

1 − σ
−

N1+φ
j,z

1 + φ

'

( dz + e−ρj(t∗−t)V∗
j,t∗(B∗

j,t∗)

)

* ,

subject to the flow budget constraint

dBj,t =

!
(it − πt)Bj,t + rL,tBL

j,t +
Wt

Pt
Nj,t + Πj,t + +Tj,t − Cj,t

"
dt + BL

j,t
Q∗

L,t − QL,t

QL,t
dNt,

and the borrowing constraints

Bj,t ≥ −Dp and BL
j,t ≥ 0,

where ρb > ρs > 0, Wt is the nominal wage, Pt is the price level, Πj,t denotes real profits from

corporate holdings, +Tj,t denotes government transfers, and rL,t ≡ 1
QL,t

+
Q̇L,t
QL,t

− ψd − it is the excess

return on long-term bonds conditional on there being no disasters. The random (stopping) time t∗

represents the period in which the aggregate shock hits the economy. V∗
j,t∗(·) and B∗

j,t∗ denote, re-

spectively, the value function and the real value of bonds in the disaster state. The non-negativity

constraint on BL
j,t captures the assumption that only the government can issue long-term bonds.

We assume that Bs,0 > 0 and Bb,0 = −Dp. For sufficiently large ρb, borrowers are constrained

in all periods. We also assume that Πb,t = 0, that is, firms are entirely owned by savers.11

In Appendix A, we show that the labor supply is determined by the standard condition

Wt

Pt
= Nφ

j,tC
σ
j,t.

11Alternatively, we could have assumed that households can trade shares of the firms. In steady-state, borrowers
would choose to sell their shares and firms would be entirely held by savers.
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The Euler equation for short-term bonds, if Bj,t > −Dp, is given by

Ċj,t

Cj,t
= σ−1(it − πt − ρj) +

λt

σ

,-
Cj,t

C∗
j,t

.σ

− 1

/
, (1)

where C∗
j,t is the consumption of household j in the disaster state.12 The first term captures the

usual intertemporal-substitution force present in RANK models. The second term captures the

precautionary savings motive generated by the disaster risk, and it is analogous to the precautionary

motive that emerges in HANK models with idiosyncratic risk.

The Euler equation for long-term bonds, if BL
j,t > 0, is given by

rL,t = λt

-
Cs,t

C∗
s,t

.σ

0 12 3
price of

disaster risk

QL,t − Q∗
L,t

QL,t
0 12 3

quantity of
risk

. (2)

This expression captures a risk premium on long-term bonds, which pins down the level of long-

term interest rates in equilibrium. The premium on long-term bonds is given by the product of

the price of disaster risk, the compensation for a unit exposure to the risk factor, and the quantity of
risk, the loss the asset suffers conditional on switching to the disaster state.

Firms’ problem. Intermediate-goods producers are indexed by i ∈ [0, 1] and operate the linear

technology Yi,t = AtNi,t. Productivity in the no-disaster state is given by At = A and productivity

in the disaster state is given by At = A∗, where 0 < A∗ < A. Intermediate-goods producers

choose the rate-of-change of prices πi,t = Ṗi,t/Pi,t, given the initial price Pi,0, to maximize the ex-

pected discounted value of real (after-tax) profits subject to Rotemberg quadratic adjustment costs:

Qi,t(Pi,t) = max
[πi,z]z≥t

Et

,
ˆ t∗

t

ηz

ηt

4
(1 − τ)

Pi,z

Pz
Yi,z −

Wz

Pz

Yi,z

A
− ϕ

2
π2

i,t

5
dz +

ηt∗

ηt
Q∗

i,t∗(Pi,t∗)

/
, (3)

subject to the demand Yi,t =
6

Pi,t
Pt

7−ε
Yt and Ṗi,t = πi,tPi,t, where ηt denotes the stochastic discount

factor (SDF) that is relevant to firms and Q∗
i,t(Pi) denotes the firms’ value function in the disaster

state. Note that the price Pi,t is a state variable in the firms’ problem and πi,t is a control variable.

The parameter ϕ controls the magnitude of the pricing adjustment costs. We assume that these

costs are rebated to households, so they do not represent real resource costs. Moreover, as firms

are owned by savers, we assume that firms discount profits using the SDF ηt = e−ρstC−σ
s,t .

Combining the first-order condition and the envelope condition for problem (3), we obtain the

12In discrete time, we obtain C−σ
j,t = (1 − ρj∆t)(1 + rt∆t)

!
(1 − λt∆t)C−σ

j,t+∆t + λt∆t(C∗
j,t+∆t)

−σ
"
. After some re-

arrangement, we get
C−σ

j,t+∆−C−σ
j,t

∆t = −(rt − ρj)C−σ
j,t+∆t − λt((C∗

j,t+∆t)
−σ − C−σ

j,t+∆t) + o(∆t), which gives equation (1) as
∆t → 0.
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non-linear New Keynesian Phillips curve:

π̇t =

4
it − πt + λt

η∗
t

ηt

5
πt − ϕ−1(ε − 1)

4
ε

ε − 1
Wt

Pt

1
A

− (1 − τ)

5
Yt, (4)

assuming a symmetric initial condition Pi,0 = P0, for all i ∈ [0, 1].

Time-varying risk. Motivated by the literature on time-varying risk premia and rare disasters,

we allow for a time-varying disaster probability.13 To capture the effect of monetary policy on

the market price of risk, as documented e.g. by Gertler and Karadi (2015) and Hanson and Stein

(2015), we assume that monetary shocks affect directly the probability of disasters: λt = λ(it −
rn), for a given function λ(·). Importantly, we assume that λ(·) is an increasing function, such

that a contractionary monetary shock raises the probability of a disaster.14 This reduced-form

assumption allows us to capture the quantitative effect of monetary policy on risk premia in a

parsimonious way while keeping the analysis tractable.

Government. The government’s flow budget constraint in the no-disaster state is given by

Ḋg,t = (it − πt + rL,t)Dg,t + ∑
j∈{b,s}

µj+Tj,t − τYt,

and the No-Ponzi condition limt→∞ E0[ηtDg,t] ≤ 0, Dg,t denotes the real value of government debt

and Dg,0 = Dg is given. We assume that government transfers to borrowers are determined by the

policy rule +Tb,t = +Tb(Yt), where transfers depend on aggregate output and the elasticity of +Tb(·)
determines the cyclicality of government transfers to borrowers and, ultimately, the cyclicality of

borrowers’ consumption.

In the no-disaster state, monetary policy is determined by the policy rule

it = rn + φππt + ut, (5)

where φπ > 1, ut represents monetary shocks, and rn denotes the real rate when πt = ut = 0 at

all periods. In the disaster state, we assume that there are no monetary shocks, that is, i∗t = r∗n +
φππ∗

t . By abstracting from the policy response after a disaster, we isolate the impact of changes in

monetary policy during “normal times.”

Market clearing. The market-clearing conditions for goods, labor, and bonds are given by

∑
j∈{b,s}

µjCj,t = Yt, ∑
j∈{b,s}

µjNj,t = Nt, ∑
j∈{b,s}

µjBL
j,t = Dg,t, ∑

j∈{b,s}
µjBS

j,t = 0.

13See Tsai and Wachter (2015) for a review of this literature.
14For direct evidence on this channel, see Schularick et al. (2021), who find that contractionary monetary policy

shocks lead to a substantial increase in the probability of future crises.
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2.2 Equilibrium dynamics

Stationary equilibrium. We define a stationary equilibrium as an equilibrium in which all vari-

ables are constant in each aggregate state. In particular, the economy will be in a stationary equi-

librium in the absence of monetary shocks, that is, ut = 0 for all t ≥ 0. Since variables are constant

in each state, we drop time subscripts and write, for instance, Cj,t = Cj and C∗
j,t = C∗

j . For ease

of exposition, we follow Bilbiie (2019) and focus on a symmetric stationary equilibrium, where +Tb

implements the same consumption level for each household, and discuss the general case Cb ∕= Cs

in the appendix.

The natural interest rate, the real rate in the stationary equilibrium, is given by

rn = ρs − λ

!4
Cs

C∗
s

5σ

− 1
"

,

where 0 < C∗
s < Cs and, with a slight abuse of notation, λ = λ(0) > 0 is the disaster intensity

when it = rn. The presence of a precautionary motive depresses the natural interest rate relative

to the one that would prevail in a non-stochastic economy. Moreover, we show in Appendix A.2.1

that the precautionary motive depends on the extent to which savers can self-insure. In particular,

holding everything else constant, a higher level of private debt Dp implies a weaker precautionary

motive and a higher natural interest rate.

From Equation (2), we obtain the term spread, the difference between the yield on the long-

term bond and the short-term rate,15

iL − rn = λ

4
Cs

C∗
s

5σ QL − Q∗
L

QL
,

where iL is the yield on the long-term bond in the stationary equilibrium. We show in Appendix

A.2.2 that the term spread iL − rn is strictly positive. Thus, our model generates an upward-

sloping yield curve, where the yield on the long-term bond exceeds the natural (short-term) rate,

consistent with the data.16

Log-linear dynamics. Following the practice in the literature on monetary policy, we focus on a

log-linear approximation of the equilibrium conditions. However, instead of linearizing around

the non-stochastic steady state, we linearize the equilibrium conditions around the (stochastic)

symmetric stationary equilibrium described above. Formally, we perturb the allocation around

the economy where ut = 0, while the standard approach would perturb around the economy

15The result follows from noting that the yield on the bond is given by iL,t = Q−1
L,t − ψd and, in a stationary equilib-

rium, the expected excess return conditional on no disaster rL equals the term spread iL − rn.
16The mechanism behind the upward-sloping yield curve is related to the lack of precautionary savings in the dis-

aster state. We would obtain similar results by introducing expropriation and inflation in a disaster, as in Barro (2006).

10



where ut = λt = 0.17 This will enable us to capture the effects of (time-varying) precautionary

savings and risk premia in a linear setting.

Let lower-case variables denote log-deviations from the stationary equilibrium, e.g., cj,t ≡
log Cj,t/Cj and nj,t ≡ log Nj,t/Nj. Borrowers’ consumption is given by

cb,t = (1 − α)(wt − pt + nb,t) + Tb,t − (it − πt − rn)dp,

where 1 − α ≡ WN
PY is the labor share in the stationary equilibrium, Tj,t ≡

!Tj,t−!Tj
Y , and dp ≡ Dp

Y .

Using the fact that transfers satisfy Tb,t = T′
b(Y)Yyt, and solving for the real wage, we obtain

cb,t = χyyt − χr(it − πt − rn), (6)

where

χy ≡
T′

b(Y)Y + (1 − α)(1 + φ)(1 + φ−1σ)

1 + (1 − α)φ−1σ
, χr ≡

dp

1 + (1 − α)φ−1σ
.

The coefficient χy controls the cyclicality of income inequality and has been extensively studied by

the literature on analytical HANK models. We focus throughout the paper on the case in which

0 < χy < µ−1
b , such that the consumption of both agents increases with yt.18 The second term

is not present in the commonly studied case of zero private liquidity, dp = 0, and it captures the

impact of monetary policy on the consumption of constrained agents that is not directly mediated

by aggregate output yt. The coefficient χr plays an important role in the analysis that follows.

Next, consider the savers’ problem. Recall that we assume that the disaster probability de-

pends on the interest rate, λt = λ(it − rn). In our linearized setting, the only relevant parameter

is the semi-elasticity of the disaster probability with respect to monetary shocks, ελ ≡ λ′(0)/λ(0).

We focus on the case in which ελ ≥ 0, with ελ = 0 corresponding to a constant probability bench-

mark. Then, the savers’ Euler equation is given by

ċs,t = σ−1(it − πt − rn) + λ

4
Cs

C∗
s

5σ

cs,t + χpελ(it − rn), (7)

where χp ≡ λ
σ

86
Cs
C∗

s

7σ
− 1

9
is a parameter capturing the strength of the precautionary motive in

the stationary equilibrium. Importantly, time-varying disaster risk introduces a new precaution-

ary savings channel for savers, which ultimately shapes the impact of changes in nominal rates on

households’ consumption.

Combining condition (6) for borrowers’ consumption, equation (7) for savers’ Euler equation,

and the market-clearing condition for goods, we can derive the evolution of aggregate output.

17This method then differs from the perturbation procedure considered by Fernández-Villaverde and Levintal
(2018), and it is also distinct from Coeurdacier et al. (2011), as we linearize around a stochastic steady state of an
economy with no monetary shocks, instead of the stochastic steady state of the economy with both shocks.

18The role of χy, including the case where χy > µ−1
b , was originally considered by Bilbiie (2008). The cyclicality of

income inequality also plays an important role in the aggregation results in Werning (2015) and Bilbiie (2018).
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Proposition 1 characterizes the dynamics of aggregate output and inflation.

Proposition 1 (Aggregate dynamics). The dynamics of output and inflation is described by the condi-
tions:

i. Aggregate Euler equation:

ẏt = σ̃−1(it − πt − rn) + δyt + vt, (8)

where σ̃−1, δ, and vt are given by

σ̃−1 ≡ (1 − µb)σ
−1 − µbχrρ

1 − µbχy
, δ ≡ λ

!
Cs

C∗
s

"σ

− µbχrκ

1 − µbχy
, .

and
vt ≡

µbχr

1 − µbχy
(ρ(it − rn)− i̇t) +

1 − µb

1 − µbχy
χpελ(it − rn)

ii. New Keynesian Phillips curve:

π̇t = ρπt − κyt, (9)

where ρ ≡ ρs + λ and κ ≡ ϕ−1(ε − 1)(1 − τ)(φ + σ).

Proof. See Appendix B.1.

Condition (8) represents the aggregate Euler equation for this economy. The aggregate Euler

equation has three terms. The first term, the product of the (aggregate) elasticity of intertemporal

substitution (EIS) and the real interest rate, corresponds to the one present in RANK models. The

dependence of the aggregate EIS on the cyclicality of inequality is well-known in the literature,

while the result that private liquidity may reduce σ̃−1 is, to the best of our knowledge, new.19

The second term, δyt, captures how the impact of real interest rate changes can be compounded

or discounted in equilibrium. The sign of δ and, therefore, whether the economy exhibits com-

pounding or discounting, depends on two forces.20 With disaster risk but in the absence of private

debt, so that λ > 0 and χr = 0, we obtain δ > 0. This corresponds to the discounted Euler equation

of McKay et al. (2017), where aggregate disaster risk plays the role of idiosyncratic income risk. In

contrast, if λ = 0 but χr > 0, we get compounding, that is, δ < 0. As a contractionary monetary

shock depresses the economy and reduces inflation in all periods, it increases the real burden of

debt for borrowers, amplifying the effect of the monetary shock. This amplification translates into

a compounded response of output to future interest rate changes. More generally, the aggregate

Euler equation (8) can feature compounding or discounting. In particular, if λ is sufficiently small,

we can have that savers’ consumption satisfies a discounted Euler equation while the aggregate

Euler equation features compounding.
19In the calibration for the numerical exercises, we obtain σ̃−1 > 0. However, most of our results do not rely on this.
20Note that, assuming vt = 0, output is given by yt = −

´ ∞
t e−δ(s−t)(is − πs − rn)ds, so the effect of future changes

in the real interest rates on output is dampened (or discounted) if δ > 0 and it is compounded if δ < 0.
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The third term in the aggregate Euler equation, vt, captures a direct effect of monetary policy

on households, one which is not mediated by changes in aggregate demand. First, in an economy

with positive private liquidity, monetary policy directly affects borrowers’ disposable income,

the high-MPC agents in this economy. Second, the time-varying component of the disaster risk

directly impacts the savers’ precautionary savings motives. Therefore, monetary policy has real

effects even in the complete absence of intertemporal-substitution forces.

Finally, Proposition 1 defines the New Keynesian Phillips curve in this economy. The lin-

earized Phillips curve coincides with the one obtained from models with Calvo pricing. As in

a textbook New Keynesian model, inflation is given by the present discounted value of future

output gaps

πt = κ

ˆ ∞

t
e−ρ(s−t)ysds.

One distinction relative to the standard formulation is that future output gaps are not discounted

by the natural rate rn, but by a higher rate ρ > rn. This is a consequence of the riskiness of the

firm’s value, so the appropriate discount rate incorporates an adjustment for risk.

Asset prices. The response of asset prices to monetary policy depends in an important way on

the behavior of the price of disaster risk. In its log-linear form, the price of disaster risk is given

by

pd,t ≡ σcs,t + ελ(it − rn). (10)

Note that the expression has two terms. The first term captures the change in the savers’ consump-

tion drop if the disaster shock is realized. The second term represents the change in the disaster

probability after a monetary shock.

We show in Appendix A.3 that the (linearized) price of the long-term bond in t = 0 is given by

qL,0 = −
ˆ ∞

0
e−(ρ+ψd)t(it − rn)dt

0 12 3
path of nominal interest rates

−
ˆ ∞

0
e−(ρ+ψd)trL pd,tdt

0 12 3
term premium

. (11)

The yield on the long-term bond, expressed as deviations from the stationary equilibrium, is given

by −Q−1
L qL,0, which can be decomposed into two terms: the path of nominal interest rates, as in

the expectations hypothesis, and a term premium, capturing variations in the compensation for

holding long-term bonds. Because the term premium responds to monetary shocks, the expecta-

tion hypothesis does not hold in this economy. This is important since the term premium accounts

for the bulk of the response of long rate to monetary policy in the data.

We have a pricing condition for stocks which is analogous to the one for bonds, where the
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equity premium depends on the price of disaster risk and the quantity of risk:21

Πt

Qt
+

Q̇t

Qt
− (it − πt) = λt

-
Cs,t

C∗
s,t

.σ
Qt − Q∗

t
Qt

,

where Qt is the value of a claim on firms’ profits. The price in period 0 is given by

q0 =
Y
Q

ˆ ∞

0
e−ρt [(1 − τ)yt − (1 − α)(wt − pt + nt)] dt

0 12 3
dividends

−
ˆ ∞

0
e−ρt [it − πt − rn + rS pd,t] dt

0 12 3
discount rate

, (12)

where rS ≡ λ
6

Cs
C∗

s

7σ Q−Q∗

Q is the (conditional) equity premium in the stationary equilibrium. This

expression shows that the valuation of assets responds to changes in monetary policy through

two channels: a dividend channel, capturing changes in firms’ profits, and a discount rate channel,
capturing changes in real interest rates and risk premia.

2.3 Intertemporal budget constraint and discount-rate neutrality

Individual intertemporal budget constraint. An intertemporal budget constraint, computed

with the SDF ηt, holds with equality for both types of households:

E0

!
ˆ ∞

0

ηt

η0
Cj,tdt

"
= Bj,0 + E0

!
ˆ ∞

0

ηt

η0
Πj,tdt

"
+ E0

!
ˆ ∞

0

ηt

η0

4
Wt

Pt
Nj,t + +Tj,t

5
dt
"

,

where the intertemporal budget constraint holds for savers because of the transversality condi-

tion and holds for borrowers because limt→∞ Et[ηt] = 0 and Bb,t is constant. Thus, the present

discounted value of consumption equals the value of households’ assets: the total value of short-

term and long-term bonds, the value of stocks (the discounted value of profits), and the value of

human wealth (the discounted value of labor income inclusive of transfers).

Let Yj,t ≡ Πj,t +
Wt
Pt

Nj,t + +Tj,t denote household j’s income. Then, we can write the intertem-

poral budget constraint as QCj,0 = Bj,0 + QYj,0, where QCj,t is the value of a claim on consumption

and QYj,t is the value of a claim on income for household j. In log-linear form, we obtain:

ˆ ∞

0
e−ρtcj,tdt = b

L
j qL,0 +

ˆ ∞

0
e−ρt

!
yj,t − (qyj − qcj)(it − πt − rn)− λ

4
Cs

C∗
s

5σ 6
qyj − q∗yj

− (qcj − q∗cj
)
7

pd,t

"
dt.

where yj,t ≡
Yj,t−Yj

Yj
, qcj ≡

QCj
Y , and qyj ≡

QYj
Y . This expression illustrates how consumption on aver-

age reacts to changes in income and discount rates. Importantly, the effect of changes in discount

rates depends on the mismatch on households’ balance sheets. Consider first the case of borrowers,

where b
L
b = 0, qyb > qcb , and qyb − q∗yb

= qcb − q∗cb
. An increase in the real interest rate has a nega-

21Note that this represents the equity premium conditional on no disasters. The unconditional equity premium is

given by the closely related expression: λt

!#
Cs,t
C∗

s,t

$σ
− 1

"
Qt−Q∗

t
Qt

.
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tive impact on the average consumption of borrowers, everything else constant. In the language

of Auclert (2017), they have an unhedged interest rate exposure. In contrast to borrowers, savers

are also exposed to changes in risk premia. Movements in risk premia affect average consumption

to the extent that there are differences in the riskiness of income and consumption which are not

hedged by the bonds. Therefore, changes in risk premia depends on the unhedged risk exposure of

household j.22

Aggregate intertemporal budget constraint. By combining the intertemporal budget constraint

for each household, we obtain the economy’s aggregate intertemporal budget constraint:

ˆ ∞

0
e−ρt (µbcb,t + (1 − µb)cs,t) dt = Ω0, (13)

where Ω0 denotes the outside wealth effect, and it is given by

Ω0 ≡ dgqL,0 +

ˆ ∞

0
e−ρt

8
(1 − τ)yt + Tt + dg(it − πt − rn + rL pd,t)

9
dt, (14)

where dg ≡ Dg
Y is the public debt-to-GDP ratio.

Condition (13) presents the (linearized) aggregate intertemporal budget constraint. Note that

a simple rearrangement of (13) and (14) gives the government’s intertemporal budget constraint

(or valuation equation). By writing it this way, we make explicit the role of the outside wealth effect
Ω0, which captures the revaluation of assets in positive net supply: stocks, human wealth, and

government bonds. This is in contrast with the effect of the revaluation of assets in zero net supply,

such as private debt, which we refer to as the inside wealth effect. We define the wealth effect net of

the impact of changes in discount rates in the present discounted value of consumption, which can

be thought of as a form of households’ liabilities. This definition implies that a negative wealth

effect means that the household’s original consumption bundle is not affordable after the shock.

An important implication of Equation (14) is that an increase in discount rates do not create

a negative (outside) wealth effect in the absence of government debt, everything else constant.

This may sound surprising at first, as an increase in interest rates or risk premia would reduce the

value of stocks even absent changes in dividends. However, this does not take into account the

impact on the value of households’ planned consumption. Without government debt, aggregate

consumption equals dividends plus (after-tax) labor income, so there is no unhedged interest rate

or risk exposure. The initial consumption bundle is still affordable. In the presence of short-term

government debt or when government debt is a perpetuity, one can show that Ω0 does not depend

directly on pd,t. In this case, the unhedged risk exposure is zero, so changes in risk premia do not

affect Ω0, everything else constant.

22Formally, the unhedged risk exposure at date t corresponds to qyj − q∗yj
− (qcj − q∗cj

) + e−ψdt(b
L
s − b

L,∗
s ). If the

unhedged risk exposure is zero at all dates, then variations in the price of risk cancel out of the intertemporal budget
constraint.
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3 Monetary Policy and Wealth Effects

In this section, we study how households’ balance sheets determine the impact of monetary pol-

icy on the dynamics of the economy. The main result of this section presents a decomposition that

identifies the contribution of the different forces of the model to the aggregate dynamics of the

economy. In particular, we isolate the role of intertemporal substitution, precautionary savings,

and wealth effects in the transmission of monetary shocks to the economy. To derive this decom-

position, we proceed in two steps. First, we express the evolution of output and inflation in terms

of equilibrium policy variables, that is, the path of nominal interest rates {it} and the correspond-

ing fiscal backing {Tt}. Second, we derive an implementability result which shows how to map the

path of policy variables to an underlying monetary shock ut in the interest rate rule (5).

3.1 The dynamic system

We can express output and inflation in terms of policy variables by solving the system of differen-

tial equations described in Proposition 1:

,
ẏt

π̇t

/
=

,
δ −σ̃−1

−κ ρ

/ ,
yt

πt

/
+

,
ṽt

0

/
, (15)

where ṽt ≡ σ̃−1(it − rn) + vt depends only on the path of the nominal interest rate. The eigenval-

ues of the system are given by

ω =
ρ + δ +

:
(ρ + δ)2 + 4(σ̃−1κ − ρδ)

2
, ω =

ρ + δ −
:
(ρ + δ)2 + 4(σ̃−1κ − ρδ)

2
.

The following assumption, which we will assume holds for all subsequent analysis, guarantees

that the eigenvalues are real-valued and that they have opposite signs, that is, ω > 0 and ω < 0.

Assumption 1. The following condition holds: ρδ < σ̃−1κ.

Assumption 1 implies that the system lacks exactly one boundary condition. This is consistent

with the results in Acharya and Dogra (2020), who find that indeterminacy under an interest rate

peg requires a discounting parameter that is not overly large. Next, we show that the missing

boundary condition can be provided by an intertemporal budget constraint.

From equation (13), we have that the aggregate intertemporal budget constraint is a necessary

equilibrium condition. The next lemma establishes the sufficiency of the aggregate intertemporal

budget constraint for pinning down the equilibrium. That is, it shows that if [yt, πt]∞0 satisfies

system (15) and the aggregate intertemporal budget constraint (in its log-linear form), then we

can determine the value of consumption and labor supply for each household, wages, and prices

such that all equilibrium conditions are satisfied.
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Lemma 1. Suppose that, given a path for the nominal interest rate [it]∞0 , [yt, πt]∞0 satisfy system (15) and
the aggregate intertemporal budget constraint (13). Then, [yt, πt]∞0 can be supported as part of a competitive
equilibrium.

Proof. See Appendix B.2.

Therefore, the equilibrium dynamics can be characterized as the solution to the dynamic sys-

tem (15), subject to the boundary condition (13).

3.2 Intertemporal substitution, risk and wealth effects

The next proposition characterizes the output response to a sequence of monetary policy shocks,

for a given value of the outside wealth effect Ω0. We provide a full characterization of Ω0 in Section

3.3. For ease of exposition, we focus on the case of exponentially decaying nominal interest rates;

that is, we assume it − rn = e−ψmt(i0 − rn), where ψm determines the persistence of the path of

interest rates.

Proposition 2 (Aggregate output in D-HANK). Suppose that it − rn = e−ψmt(i0 − rn). The path of
aggregate output is then given by

yt = σ−1ŷt

0 12 3
ISE

+ χpελŷt

0 12 3
time-varying risk

+
µbχr

1 − µb
ψmŷt

0 12 3
inside wealth effect

+ (ρ − ω)eωtΩ0,0 12 3
GE multiplier×

outside wealth effect

(16)

where ŷt is given by

ŷt =
1 − µb

1 − µbχy

(ρ − ω) eωt − (ρ + ψm) e−ψmt

(ω + ψm) (ω + ψm)
(i0 − rn), (17)

and satisfies
ˆ ∞

0
e−ρtŷtdt = 0,

∂ŷ0

∂i0
< 0.

Proof. See Appendix B.3.

Proposition 2 shows that output can be decomposed into four terms: an intertemporal-substitution

effect (ISE), a time-varying risk channel, a revaluation of inside assets, and a revaluation of outside

assets. An important feature of the decomposition is that each term can be included or excluded

by choosing the value of the parameters that determine the channel’s strength. Moreover, given

a path of nominal interest rates, the ISE, the time-varying risk, and the inside wealth effect are

uniquely determined.

The ISE captures the equilibrium implications of the intertemporal-substitution channel. In the

absence of outside wealth effects, monetary policy affects only the timing of output, as the present

value of economic activity is determined entirely by Ω0 (that is, we have that
´ ∞

0 e−ρtŷtdt = 0 and
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´ ∞
0 e−ρtytdt = Ω0). Similar in logic to the substitution effect in introductory microeconomics, an

increase in nominal interest rates reduces consumption today, while it increases future consump-

tion.23 In this sense, the intertemporal-substitution channel of monetary policy operates simply

by shifting demand over time, and it is ineffective in the absence of an intertemporal-substitution

motive; that is, we obtain σ−1ŷt = 0 in all periods if σ−1 = 0. Note that ŷt is multiplied by a

factor that is increasing in the parameter that controls the (counter-) cyclicality of inequality χy.

This amplification lies at the heart of the mechanism in analytical HANK models with zero private

liquidity.

The second term captures the role of time-varying risk. Given Ω0, time-varying risk am-

plifies the response of output in a way that is similar to that of the ISE, and the magnitude of

the amplification depends crucially on the strength of the precautionary motive, as captured by

χp = λ
σ

86
Cs
C∗

s

7σ
− 1

9
, and the degree of time-varying risk, as captured by ελ. Consider a con-

tractionary monetary shock. If ελ > 0, the increase in the nominal interest rate increases the

probability of a disaster shock, which increases savers’ precautionary motive. Thus, aggregate

demand decreases. As the nominal interest rate reverts back to its long-run level, the probability

of disaster decreases, and savers’ demand increases above its long-run target. Thus, we have that

the present discounted value of the time-varying risk term is zero, i.e.
´ ∞

0 e−ρtχpελŷtdt = 0.

The third term corresponds to the inside wealth effect, and it is present only in economies with

positive private debt and heterogeneous MPCs. The inside wealth effect is analogous to the ISE

and the time-varying risk in many respects, as it operates by shifting demand over time, and it

satisfies
´ ∞

0 e−ρtχrψmŷtdt = 0. A key distinction is that the strength of the inside wealth effect

depends on the persistence of the monetary shock, and it is equal to zero when the monetary

shock is permanent, ψm = 0.

An important implication of this result is that the effectiveness of monetary policy depends

on the persistence of monetary shocks. For instance, by promising to keep interest rates low for

a very long period of time, the monetary authority increases the persistence of the shock and,

therefore, reduces the importance of inside wealth effects and the overall output response. To

understand this result, note that an increase in interest rates has a negative impact on borrowers

and a positive impact on savers. When the shock is temporary, the impact of the change in interest

rates is initially larger on borrowers, as savers respond less strongly to the change in wealth to

smooth consumption. If the shock is permanent, however, there is no reason to smooth the shock.

In this case, the savers’ response coincides with the borrowers’ response, and the inside wealth

effect is exactly zero. Thus, it is the variability of interest rates rather than the average level that

matters for the inside wealth effect.

The last term in expression (16) plays a crucial role, as the outside wealth effect determines

the average level of output. Holding everything else constant, the impact of a wealth effect Ω0 on

23Our definition of ISE coincides with the textbook substitution effect in the limit case λ = κ = 0, where there is no
distinction between changes in nominal and real rates, and there is no precautionary motive.
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consumption would be simply ρΩ0, as households attempt to smooth the impact of the change

in wealth over time. However, the response of initial consumption is amplified in general equi-

librium, as a positive wealth effect generates inflation, which reduces real interest rates and shifts

consumption to the present. As we show in the next section, this effect can be quantitatively sig-

nificant. Moreover, an important factor determining the size of the GE multiplier is the discount-

ing/compounding parameter δ. It can be shown that the GE multiplier in period 0 is decreasing

in δ. Therefore, the precautionary savings motive dampens the effect of the outside wealth effect,

while positive private debt reduces the value of δ, which increases the effect of the outside wealth

effect.

Inflation. The next proposition characterizes the response of inflation to monetary policy shocks

in the context of our heterogeneous-agent economy.

Proposition 3 (Inflation in D-HANK). Suppose it − rn = e−ψmt(i0 − rn). The path of inflation is given
by

πt = σ−1π̂t + χpελπ̂t +
µbχr

1 − µb
ψmπ̂t + κeωtΩ0, (18)

where π̂t is given by

π̂t =
1 − µb

1 − µbχy

κ(eωt − e−ψmt)

(ω + ψm)(ω + ψm)
(i0 − rn), (19)

and satisfies ∂π̂t
∂i0

≥ 0.

Proof. See Appendix B.3.

Inflation can be analogously decomposed into four terms. The first three terms capture the

impact of the ISE, the inside wealth effect and the time-varying risk, while the last term captures

the impact of the outside wealth effect. Because π̂0 = 0, the first three terms are initially zero. This

implies that initial inflation is determined entirely by the outside wealth effect, a consequence of

the forward-looking nature of the New Keynesian Phillips curve. Moreover, π̂t is increasing in the

nominal interest rate. That is, this economy features a Neo-Fisherian behavior in the absence of the

outside wealth effect, as an increase in interest rates leads to an increase in inflation. This sheds

new light on how monetary policy controls inflation: monetary policy is able to reduce inflation

by increasing interest rates only if it creates a negative net revaluation of households’ assets.
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3.3 Outside Wealth Effects

We consider next the determination of the outside wealth effect Ω0. The outside wealth effect

depends on the path of output and inflation:

Ω0 =

ˆ ∞

0
e−ρt

8
(1 − τ)yt + Tt + dg(it − πt − rn + rL pd,t)

9
dt− dg

ˆ ∞

0
e−(ρ+ψd)t[it − rn + rL pd,t]dt.

(20)

But output, inflation and the price of risk in turn depend on the outside wealth effect,

yt = χŷt + (ω − δ)eωtΩ0, πt = χπ̂t + κeωtΩ0, (21)

pd,t = p̂d,t + σ

4
1 − µbχy

1 − µb
(ρ − ω)− µbχr

1 − µb
κ

5
eωtΩ0, (22)

where χ ≡ σ−1 + χpελ + µbχr
1−µb

ψm, and p̂d,t collect the terms that are a function only of [it]∞0 .

This simultaneity reflects the fact that asset prices react to the level of aggregate demand, as

shown by equation (20), and that spending decisions depend on the level of asset prices, as shown

by (21). By combining these expressions, we can express Ω0 in terms of policy variables, that is,

the path of nominal interest rates, it, and the fiscal backing to the monetary shock, Tt. In particular,

we can express Ω0 as follows:

Ω0 = (1 − εΩ)Ω00 12 3
aggregate demand effect

+

ˆ ∞

0
e−ρt

8
Tt + dg(it − χπ̂t − rn + rL p̂d,t)

9
dt − dg

ˆ ∞

0
e−(ρ+ψd)t[it − rn + rL p̂d,t]dt

0 12 3
direct effect

,

where εΩ is a constant defined in the appendix. The first term captures the impact of aggregate

demand on the valuation of stocks, bonds, and human wealth, while the second term captures the

impact of changes in monetary and fiscal variables that are not mediated by aggregate demand.

Assumption 2 guarantees that outside wealth reacts less than one-to-one to aggregate demand.24

Assumption 2. The parameters of the model are such that εΩ ∈ (0, 1).

The next proposition shows that the outside wealth effect can be expressed as the product of a

multiplier and an autonomous term, that is, a term that does not depend directly on Ω0.

24Assumption 2 implies that either the primary surplus or the cost of servicing the debt increases with economic
activity, as captured by Ω0. It essentially implies that monetary policy has fiscal consequences.
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Proposition 4. Suppose Assumption 2 holds. The outside wealth effect is then given by

Ω0 =
1

εΩ

!
ˆ ∞

0
e−ρt

8
Tt + dg(it − χπ̂t − rn + rL p̂d,t)

9
dt − dg

ˆ ∞

0
e−(ρ+ψd)t[it − rn + rL p̂d,t]dt

"
.

(23)

Proof. See Appendix B.4.

Proposition 4 introduces an important relationship between the model-implied revaluation

of assets in positive net supply, Ω0, and the equilibrium path of policy variables. For example,

expression (23) shows that, in the absence of any fiscal backing (Tt = 0) or government debt

(dg = 0), the outside wealth effect is zero. Monetary policy still has an effect on the value of stocks

and human wealth, as can be seen in (12), but the reduction in the value of households’ assets is

exactly offset by the reduction in the value of households’ liabilities (in the form of consumption),

as discussed in Section 2.3. Under Assumption 2, the aggregate demand effect cannot sustain a

positive value of Ω0 in the absence of a direct effect of policy variables.

By incorporating fiscal data into the analysis, this relationship provides a way to discipline the

model’s economic forces. One can estimate the fiscal response to a monetary shock in the data and

introduce the estimated values into expression (23) to obtain the model’s prediction for Ω0.

3.4 Implementability condition

The results in (16) and (18) express output and inflation in terms of the path of nominal interest

rates and of the outside wealth effect Ω0, while equation (23) gives Ω0 in terms of the underlying

fiscal backing Tt. In combination, these results demonstrate how the policy variables (it, Tt) affect

output and inflation. However, both the nominal interest rate and the associated fiscal backing are

endogeneous variables and depend on the monetary policy rule (5). The next proposition shows

how the monetary authority can implement a desired equilibrium path of nominal interest rates

and fiscal backing by appropriately choosing the exogenous process for the monetary shock ut.

Proposition 5 (Implementability). Let yt be given by (16) and πt be given by (18), for a given path of
nominal interest rates it − rn = e−ψmt(i0 − rn), where ψm ∕= −ω, and the associated fiscal backing Tt. Let
[it, yt, πt]∞0 denote the (bounded) solution to the system comprising the Taylor rule (5), the aggregate Euler
equation (8), and the New Keynesian Phillips curve (9), and suppose the monetary shock ut is given by

ut = νe−ψmt(i0 − rn) + θeωt. (24)

Then, there exists parameters ν and θ such that it = it, yt = yt, and πt = πt.

Proof. See Appendix B.5.

Proposition 5 shows that the process for the monetary shock uniquely pins down (it, Tt), so one

can equivalently express the solution either in terms of equilibrium policy variable or in terms of
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the underlying process for the ut. The formulation in equation (24) generalizes the process for

monetary shocks frequently used in the literature, where the parameter θ is usually set to zero.

While ν simply scales the shock such that the initial nominal interest rate equals a given i0, θ pins

down the outside wealth effect Ω0 and the underlying fiscal backing. An important feature of

specification (24) is that the path of the nominal interest rate is the same for any value of θ, so the

parameter θ affects only Ω0.25

The extra degree of freedom given by the parameter θ will be important to discipline the out-

side wealth effect empirically. If we impose θ = 0, we obtain the standard process ut = e−ψmtu0

for some innovation u0. In this case, the corresponding fiscal backing is given by

ˆ ∞

0
e−ρtTtdt = − τ

(ω + ψm)(ω + ψm)

1 − µb

1 − µbχy

4
σ−1 + χpελ +

µbχr

1 − µb
ψm

5
(i0 − rn),

where we set dg = 0 for simplicity. This particular value may be inconsistent with its empirical

counterpart, which implies that the outside wealth effect implied by the model will also be coun-

terfactual. By considering the generalized process (24), the model will be able to simultaneously

match the persistence of the equilibrium interest rate and the corresponding fiscal backing.

4 The Quantitative Importance of Wealth Effects

In this section, we study the quantitative importance of wealth effects in the transmission of mone-

tary shocks. We calibrate the model to match key unconditional and conditional moments, includ-

ing of asset-pricing dynamics and the fiscal response to a monetary shock. We find that household

heterogeneity and time-varying risk (rather than its steady-state level) are the predominant chan-

nels of transmission of monetary policy. Notably, time-varying risk and household heterogeneity

interact, both in amplifying the response of output to a monetary shock and in improving the

microeconomic predictions of the model.

4.1 Calibration

The parameter values are chosen as follows. The discount rate of savers is chosen to match a

natural interest rate of rn = 1%. We assume a Frisch elasticity of one, φ = 1, and set the elasticity

of substitution between intermediate goods to ε = 6, common values adopted in the literature.

The fraction of borrowers is set to µb = 30%, and the parameter dp is chosen to match a household

debt-to-disposable income ratio of 1 (consistent with the U.S. Financial Accounts). The parameter

dg is chosen to match a public debt-to-GDP ratio of 66%, and we assume a duration of five years,

consistent with the historical average for the United States. The tax rate is set to τ = 0.27 and the

25This can be seen by noting that the sign of the effect of a monetary shock on nominal interest rates depends on the
persistence of the shock (see chapter 3 of Galí 2015). If ψm < |ω|, a contractionary shock increases nominal rates, while
it reduces nominal rates if ψm > |ω|. If ψm = |ω|, then the nominal interest rate do not react to a monetary shock.
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parameter T′
b(Y) is chosen such that χy = 1, which requires countercyclical transfers to balance

the procyclical wage income. A value of χy = 1 is consistent with the evidence in Cloyne et al.

(2020) that the net income of mortgagors and non-mortgagors reacts similarly to monetary shocks.

The pricing cost parameter ϕ is chosen such that κ coincides with its corresponding value under

Calvo pricing and an average period between price adjustments of three quarters. The half-life of

the monetary shock is set to three and a half months to roughly match what we estimate in the

data.

We calibrate the disaster risk parameters in two steps. For the stationary equilibrium, we adopt

a calibration mostly based on the parameters adopted by Barro (2009). We choose λ (the steady-

state disaster intensity) to match an annual disaster probability of 1.7%, and A∗ to match a drop in

output of 1 − Y
Y∗ = 0.39.26 The risk-aversion coefficient is set to σ = 4, a value within the range of

reasonable values according to Mehra and Prescott (1985), but is substantially larger than σ = 1,

a value often adopted in macroeconomic models. Note that the equity premium in the stationary

equilibrium is
Π
Q

+
Et[dQ]

Qdt
− rn = λ

!4
Cs

C∗
s

5σ

− 1
"

Q − Q∗

Q
,

where Q and Q∗ are the value of intermediate-good firms in the no-disaster and disaster states,

respectively. Our calibration implies an equity premium in the stationary equilibrium of 6.1%,

in line with the observed equity premium of 6.5%. This suggests that the model is able to match

movements in marginal utility caused by the rare disaster when σ = 4. Moreover, by setting σ = 4

we obtain a micro EIS of σ−1 = 0.25, in the ballpark of an EIS of 0.1 as recently estimated by Best

et al. (2020). We discuss the calibration of ελ, which determines the elasticity of asset prices to

monetary shocks, in the next subsection.

For the policy variables, we estimate a standard VAR augmented to incorporate fiscal vari-

ables, and compute empirical IRFs applying the recursiveness assumption of Christiano et al.

(1999). From the estimation we obtain the path of monetary and fiscal variables: the path of the

nominal interest rate, the change in the initial value of government bonds, and the path of fiscal

transfers. We provide the details of the estimation in Appendix C. Figure 1 shows the dynamics

of fiscal variables in the estimated VAR in response to a contractionary monetary shock. Govern-

ment revenues fall in response to the contractionary shock, while government expenditures fall

on impact and then turn positive, likely driven by the automatic stabilizer mechanisms embedded

in the government accounts. The present value of interest payments increases by 69 bps and the

initial valye of government debt drops by 50 bps.27 In contrast, the present value of transfers Tt,

26As discussed in Barro (2006), it is not appropriate to calibrate A∗/A to the average magnitude of a disaster, given
that empirically the size of a disaster is stochastic. We instead calibrate A∗/A to match E[(Cs/C∗

s )
σ] using the empirical

distribution of disasters reported in Barro (2009).
27The present discounted value of interest payments is calculated as ∑T

t=0

#
1−λ
1+ρs

$ t
4
!
d

g
t (îL,t − π̂t)

"
, where T is the

truncation period, îL,t is the IRF of the 5-year rate estimated in the data, and π̂t is the IRF of inflation. We choose
T = 60 quarters, when the main macroeconomic variables, including government debt, are back to their pre-shock
values. Other present value calculations follow a similar logic.
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Figure 1: Estimated fiscal response to a monetary policy shock

Note: IRFs computed from a VAR identified by a recursiveness assumption, as in Christiano et al. (1999). Variables
included: real GDP per capita, CPI inflation, real consumption per capita, real investment per capita, capacity utiliza-
tion, hours worked per capita, real wages, tax revenues over GDP, government expenditures per capita, federal funds
rate, 5-year constant maturity rate and the real value of government debt per capita. We estimate a four-lag VAR using
quarterly data for the period 1962:1-2007:3. The real value of government debt and the 5-year rate are ordered last, and
the fed funds rate is ordered third to last. Gray areas are bootstrapped 95% confidence bands. See Appendix C for the
details.

drops by 12 bps.28 Moreover, we cannot, at the 95% confidence level, reject the possibility that the

present discounted value of the primary surplus does not change in response to monetary shocks

and that the increase in interest payments is entirely compensated by the initial reaction in the

value of government bonds.

4.2 Asset-pricing implications of time-varying risk

Recall that the price of a long-term government bond is given by

qL,0 = −
ˆ ∞

0
e−(ρ+ψd)t(it − rn)dt −

ˆ ∞

0
e−(ρ+ψd)trL(σcs,t + ελ(it − rn))dt,

where pd,t = σcs,t + ελ(it − rn) is the price of the disaster risk. We use this expression and cali-

brate ελ to match the initial response of the 5-year yield on government bonds. Consistent with

Gertler and Karadi (2015) and our own estimates reported in Appendix C, we find that a 100 bps

increase in the nominal interest rate leads to an increase in the 5-year yield of roughly 20 bps. This

procedure leads to a calibration of ελ of 2.25, which implies an annual increase in the probability

of disaster of roughly 0.55% after a 100 bps increase in the nominal interest rate. Figure 2 shows

the response of the yield on the long bond and the contributions of the path of future interest rates

and the term premium. We find that the bulk of the reaction of the 5-year yield reflects movements

in the term premium, a finding that is consistent with the evidence.

The model is also able to capture the responses of other asset prices, which are not directly

targeted in the calibration. We consider first the response of the corporate spread, the difference

28In the data, expenditures also include the response of government consumption and investment. When run sep-
arately, however, we cannot reject the possibility that the sum of these two components is equal to zero in response to
monetary shocks.
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Government bond yield Corporate spread Stocks

Figure 2: Asset-pricing response to monetary shocks with time-varying risk.

between the yield on a corporate bond and the yield on a government bond (without risk of

default) with the same promised cash flow. This corresponds to the way in which the GZ spread

is computed in the data by Gilchrist and Zakrajšek (2012). Let e−ψct denote the coupon paid by the

corporate bond. We assume that the monetary shock is too small to trigger a corporate default,

but the corporate bond defaults if a disaster occurs, where lenders recover the amount 1 − ζc in

case of default. We calibrated ψc and ζc to match a duration of 6.5 years and a credit spread of

200 bps in the stationary equilibrium, which is consistent with the estimates reported by Gilchrist

and Zakrajšek (2012). Note that the calibration targets the unconditional level of the credit spread.

We evaluate the model on its ability to generate an empirically plausible conditional response to

monetary shocks.

The price of the corporate bond can be computed analogously to the computation of the long-

term government bond

qC,0 = −
ˆ ∞

0
e−(ρ+ψc)t(it − rn)dt −

ˆ ∞

0
e−(ρ+ψc)t

!
λ

4
Cs

C∗
s

5σ QC − Q∗
C

QC
(σcs,t + ελ(it − rn))

"
dt,

where QC and Q∗
C denote the price of the corporate bond in the stationary equilibrium in the no-

disaster and disaster states, respectively. Given the price of the corporate bond, we can compute

the corporate spread. Figure 2 shows that the corporate spread responds to monetary shocks by

8.9 bps. We introduce the excess bond premium (EBP) in our VAR and find an increase in the

EBP of 6.5 bps and an upper bound of the confidence interval of 10.9 bps, consistent with the

prediction of the model. Thus, even though this was not a targeted moment, time-varying risk is

able to produce quantitatively plausible movements in the corporate spread.

Another moment that is not targeted by the calibration is the response of stocks to monetary

shocks. We find a substantial response of stocks to changes in interest rates, which is explained

mostly by movements in the risk premium. In contrast to the empirical evidence, we find a positive
response of dividends to a contractionary monetary shock. This is the result of the well-known

feature of sticky-prices models that profits are strongly countercyclical. This counterfactual pre-

diction could be easily solved by introducing some form of wage stickiness. Despite the positive
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Decomposition in D-HANK Output in RANK and HANK

Figure 3: Output in RANK and HANK.

Note: In both plots, the path of the nominal interest rate is given by it − rn = e−ψmt(i0 − rn), where i0 − rn equals 100
bps, and the fiscal backing corresponds to the value estimated in Section 4.1.

response of dividends, the model generates a decline in stocks of 2.15% in response to a 100 bps

increase in interest rates, which is smaller than the point estimate of Bernanke and Kuttner (2005),

but is still within their confidence interval.29 Fixing the degree of countercyclicality of profits

would likely bring the response of stocks closer to their point estimate.

4.3 Wealth effects in the monetary policy transmission mechanism

Figure 3 (left) presents the response of output and its components to a monetary shock in the New

Keynesian model with heterogeneous agents and time-varying risk. We find that output reacts by

−1.05% to a 100 bp increase in the nominal interest rate, which is consistent with the empirical

estimates of e.g. Miranda-Agrippino and Ricco (2020). In terms of its components, time-varying

risk (TVR) and the outside wealth effect are the two main components determining the output

dynamics, representing 39% and 47% of the output response, respectively. In contrast, the ISE

accounts for only 6.5% of the output response, indicating that intertemporal substitution plays

only a minor role in the monetary transmission mechanism.

These findings stand in sharp contrast to the dynamics in the absence of heterogeneity and

time-varying risk. Figure 3 (right) plots the response of output for different combinations of het-

erogeneity (µb > 0 and µb = 0) and time-varying risk (ελ > 0 and ελ = 0). By shutting down

the two channels, denoted by “RANK” in the figure, the initial response of output would be only

−0.14%, a more than sevenfold reduction in the impact of monetary policy. There are two reasons

for this result. First, our calibration of σ = 4 implies an EIS that is one fourth of the standard

calibration. This significantly reduces the quantitative importance of the ISE, even if the intertem-

poral substitution channel represents a large fraction of the output response in the RANK model.

Second, our estimate of the fiscal response is substantially lower than the one implied by a stan-

29We follow common practice in the asset-pricing literature and report the response of a levered claim on firms’
profits, using a debt-to-equity ratio of 0.5, as in Barro (2006).
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Constant Risk (ελ = 0) Time-Varying Risk (ελ > 0)

Figure 4: Consumption of borrowers and savers with constant risk and time-varying risk.

Note: In both plots, the path of the nominal interest rate is given by it − rn = e−ψmt(i0 − rn), where i0 − rn equals 100
bps, and the fiscal backing corresponds to the value estimated in Section 4.1.

dard Taylor equilibrium that imposes an AR(1) process for the monetary shock. We discuss the

role of fiscal backing and the implications for the New Keynesian model in Section 4.5 below.

Figure 3 (right) also plots the response of output when there is household heterogeneity but not

time-varying risk (“HANK” in the figure), and the response of output when there is time-varying

risk but not household heterogeneity (“TVR-RANK” in the figure). We find that heterogeneity

increases the response of output by 22 bps while time-varying risk increases it by 54 bps. Notably,

by combining both features we get an increase in the response of output of 86 bps, which is 10

bps larger than the sum of the individual effects. Thus, heterogeneity and time varying risk rein-

force each other. In terms of the fraction of the response of output that can be attributed to each

channel, we find that 20.5% can be attributed to household heterogeneity, 51.5% corresponds to

time-varying risk, and 9.7% is the amplification effect of heterogeneity together with time-varying

risk, while the remaining contribution represents the channels in the RANK model.

Finally, time-varying risk is important for properly capturing the heterogeneous response to

monetary policy. Figure 4 shows that borrowers are disproportionately affected by monetary

shocks. The magnitude of the relative response of borrowers and savers, however, is too large

in the economy without time-varying risk. The drop in borrowers’ consumption is 7 times greater

than the decline in savers’ consumption with a constant disaster probability, while it is 3 times

greater in the economy with time-varying risk. Cloyne et al. (2020) estimate a relative peak re-

sponse of mortgagors and home-owners of roughly 3.6. Therefore, allowing for time-varying risk

is also important if we want to capture the heterogeneous impact of monetary policy.

4.4 The limitations of the constant disaster risk model

We have established that time-varying risk can significantly amplify the effect of monetary policy

on output. Here, we show that it is the time-varying component of the disaster risk rather than its

level in the stationary equilibrium that matters for the effects of monetary policy. In other words, it
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Bond yield decomposition Output

Figure 5: Long-term bond yields and output for economies with and without risk.

is the conditional asset-pricing moments rather than the unconditional ones that affect the monetary

transmission mecanism.

Consider the response of asset prices to monetary shocks. Figure 5 shows that the yield on the

long bond increases by 6.5 bps, which implies a decline of the value of the bond of 32 bps (given

a 5-year duration), less than half of the response estimated by the VAR in Section 4.1. Moreover,

movements in the yield of the long bond are almost entirely explained by the path of nominal

interest rates, while the term premium is nearly indistinguishable from zero. This stands in sharp

contrast to the evidence reported in Gertler and Karadi (2015) and Hanson and Stein (2015). Simi-

larly, it can be shown that most of the response of stocks in the model is explained by movements

in interest rates instead of changes in risk premia, a finding that is inconsistent with the evidence

documented in e.g. Bernanke and Kuttner (2005).

Figure 5 enables us to compare the response of output to monetary shocks for the heterogeneous-

agent economy with aggregate risk (D-HANK) and without aggregate risk (HANK), and similarly

for the representative-agent economy. We find that risk has only a minor impact on the response of

output. Aggregate risk increases the value of the discounting parameter δ, which reduces the GE

multiplier and dampens the initial impact of the monetary shock. Given that the term premium

barely moves, disaster risk plays only a small role in determining the outside wealth effect. In

contrast, the role of heterogeneity can be clearly seen by comparing the response of the D-HANK

and D-RANK economies.

Therefore, while introducing a constant disaster probability allows the model to capture im-

portant unconditional asset-pricing moments, such as the (average) risk premium or the upward-

sloping yield curve, the model is unable to match key conditional moments, in particular, the re-

sponse of asset prices to monetary policy. The limitations of the model with constant disaster

probability in matching conditional asset-pricing moments were recognized early on in the litera-

ture, leading to an assessment of the implications of time-varying disaster risk, as in Gabaix (2012)

and Wachter (2013). This justifies our focus on time-varying disaster risk and how it affects the

asset-pricing response to monetary shocks and, ultimately, its impact on real economic variables.
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RANK (Taylor) RANK (Data) D-HANK

Figure 6: Output in RANK vs D-HANK with time-varying risk.

Note: The first two panels show output in RANK (µb = λ = 0) with unit EIS (σ−1 = 1). In the left panel, fiscal backing
is determined by a Taylor rule, while in the middle panel fiscal backing corresponds to the value estimated in the data.
The right panel corresponds to the D-HANK economy with time-varying risk and the estimated fiscal backing.

4.5 The role of fiscal backing

We have found that time-varying risk and heterogeneity substantially amplify the impact of mon-

etary policy on the economy. To properly assess the importance of these two channels, however, it

was crucial to control for the implicit fiscal backing, as discussed in Section 3.3. Figure 6 illustrates

this point. In the three panels, we show the impact of a monetary shock that leads to an increase

in nominal interest rates on impact of 100 bps. In the left panel, we consider a RANK economy

(µb = λ = 0) with the standard value for the EIS (σ−1 = 1) and fiscal backing implicitly deter-

mined by a Taylor rule with a monetary shock that follows a standard AR(1) process. In the middle

panel, we consider the same economy but the fiscal backing corresponds to the value estimated in

the data, which corresponds to a Taylor equilibrium with a monetary shock that follows the more

general specification. The right panel shows our D-HANK model with time-varying risk and the

calibrated value of the EIS, σ−1 = 0.25. The response of the textbook economy is only slightly

smaller than that of our D-HANK economy despite the lack of time-varying risk or heterogeneous

agents. The main difference is the value of the implicit fiscal backing, which is almost ten times

larger in the textbook economy compared with the one we estimated in the data. The response of

output drops by almost half when the fiscal backing is the same as in the data.

Note that the value of the EIS also plays an important role. Even with fiscal backing directly

from the data, the response of output is still significant, only slightly less than that in our D-RANK

with time-varying risk. But this same response comes from very different channels. In the RANK

economy, the ISE accounts for roughly 40% of the output response, while in our D-RANK the

ISE accounts for less than 7% of that response. Therefore, the strong response of the ISE in RANK

relies to a great extent on having a value of the EIS that is much larger than the empirical estimates,

as in Best et al. (2020).

These results suggest that the quantitative success of the RANK model (see, for example, Chris-

tiano et al. (2005)) are likely to be the result an implausibly large fiscal backing in response to
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monetary shocks and a strong intertemporal-substitution channel, which compensate for missing

heterogeneous agents and risk channels. Once we discipline the fiscal backing with data and cal-

ibrate the EIS to the estimates obtained from microdata, our model suggests that heterogeneous

agents and, in particular, time-varying risk are crucial for generating quantitatively plausible out-

put dynamics. It is important to note, however, that our model made several simplifications to

incorporate indebted agents and time-varying aggregate risk without sacrificing the tractability

of standard macro models. A natural extension would be to incorporate these channel into a

medium-sized DSGE model to obtain a better assessment of the quantitative properties of the

New Keynesian model.

5 Conclusion

In this paper we provide a novel unified framework in which we analyze the role of heterogeneity

and risk in a tractable linearized New Keynesian model. We are able to study the implications of

positive private liquidity and heterogeneous MPCs, a combination that has been proven elusive to

the analytical HANK literature. Moreover, we capture both important unconditional asset-pricing

moments, such as the equity premium and an upward-sloping yield curve, and conditional mo-

ments, such as the response of government bonds, corporate bonds, and equities, in response to

monetary shocks. Despite its richness, the model can be fully characterized in closed-form.

We show how monetary policy affects the economy through the intertemporal-substitution

channel as well as inside and outside wealth effects, and time-varying risk premia. We find that

wealth effects play an important role in the transmission of monetary shocks. Quantitatively, we

find that time-varying risk explains roughly 50% of the output response, while the presence of

private debt accounts for 30% of the response.

The methods introduced in this paper can be applied beyond the current model. For instance,

it can be applied to a full quantitative HANK model with idiosyncratic risk, extending the results

of Ahn et al. (2018) to allow for time-varying risk premia. Alternatively, one could introduce risky

household debt, or a richer capital structure for firms, and study the pass-through of monetary

policy to households and firms. These methods may enable us to bridge the gap between the

extensive existing work on heterogeneous agents and monetary policy and the emerging literature

on the role of asset prices in the transmission of monetary shocks.
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Appendix: For Online Publication

A Derivations for Sections 2 and 3

In this appendix, we provide the derivations of the expressions provided in Section 2 and 3. We consider
first the optimality conditions for the non-linear model, then the derivation of the stationary equilibrium,
and, finally, the log-linear equilibrium conditions.

A.1 The non-linear model

Households’ problem. The household problem is given by

Vj,t(Bj) = max
[Cj,z ,Nj,z ,BL

j,z ]z≥t

Et

#

$
ˆ t∗

t
e−ρj(z−t)

%

&
C1−σ

j,z

1 − σ
−

N1+φ
j,z

1 + φ

'

( dz + e−ρj(t∗−t)V∗
j,t∗(B∗

j,t∗)

)

* , (A.1)

subject to the flow budget constraint

dBj,t =

+
(it − πt)Bj,t + rL,tBL

j,t +
Wj,t

Pt
Nj,t +

Πj,t

Pt
+ T̃j,t − Cj,t

,
dt + BL

j,t
Q∗

L,t − QL,t

QL,t
dNt, (A.2)

and the borrowing constraint and no-negativity constraint for long-term bonds

Bj,t ≥ −Dp, BL
j,t ≥ 0, (A.3)

given the initial condition Bj,t = Bj ≥ −Dp, where rL,t ≡ 1
QL,t

+
Q̇L,t
QL,t

− ψd − it is the excess return on
long-term bonds conditional on no disasters.30

The HJB equation is given by

ρjVj,t = max
Cj ,Nj ,BL

j

%
&

'
C1−σ

j,t

1 − σ
−

N1+φ
j,t

1 + φ
+

∂Vj,t

∂B

(
(it − πt)Bj,t + rL,tBL

j,t +
Wj,t

Pt
Nj,t +

Πj,t

Pt
+ T̃j,t − Cj,t

)
+ V̇j,t + λt(V∗

j,t − Vj,t)

*
+

, ,

(A.4)

where V∗
j,t is evaluated at B∗

j,t = Bj,t + BL
j,t

Q∗
L,t−QL,t

QL,t
, the value of household j’s wealth after the disaster.

The first-order conditions are given by

C−σ
j,t =

∂Vj,t

∂B
, Nφ

j,t =
∂Vj,t

∂B
Wj,t

Pt
,

∂Vj,t

∂B
rL,t ≤ λt

∂V∗
j,t

∂B
QL,t − Q∗

L,t

QL,t
. (A.5)

The solution is also subject to the state-constraint boundary condition31

∂Vj,t(−Dp)

∂B
≥

!
−(it − πt)Dp +

Wj,t

Pt
Nj,t +

Πj,t

Pt
+ T̃j,t

"−σ

, (A.6)

which implies that Ḃj,t ≥ 0 at Bj,t = −Dp, which guarantee that the borrowing constraint is not violated.

30Formally, households also face the constraint B∗
j,t ≥ −Dp, which effectively imposes an upper bound on BL

j,t. Given
that this constraint will not be binding in equilibrium, we presented the relaxed problem without this constraint.

31See Achdou et al. (2017) for a discussion of state-constraint boundary conditions in the context of continuous-time
savings problems with borrowing constraints.
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Combining the first-order conditions for consumption and labor, we obtain the labor-supply condition

Wt

Pt
= Nφ

j,tC
σ
j,t, (A.7)

which coincides with the expression provided in the main text.
The first-order condition for long-term bonds, expressed as an equality, can be written as

rL,t = λt
(C∗

t )
−σ

C−σ
t

QL,t − Q∗
L,t

QL,t
, (A.8)

using the first-order condition for consumption to eliminate the partial derivatives of the value function.
The envelope condition with respect to Bj,t for an unconstrained household is given by

ρj
∂Vj,t

∂B
= (it − πt)

∂Vj,t

∂B
+

Et[d
-

∂Vj,t
∂B

.
]

dt
. (A.9)

Combining the expression above with the first-order condition for consumption, we obtain

Et[dC−σ
j,t ]

dt
= −(it − πt − ρj)C−σ

j,t . (A.10)

Expanding the expectation of the marginal utility, we obtain the Euler equation for savers

Ċs,t

Cs,t
= σ−1(it − πt − ρj) +

λt

σ

/0
Cs,t

C∗
s,t

1σ

− 1

2
, (A.11)

which coincides with expression (7) provided in the main text.

Firms’ problem. Final goods are produced according to the production function

Yt =

0
ˆ 1

0
Y

ε
ε−1

i,t

1 ε−1
ε

. (A.12)

The problem of the final-goods producer is given by

max
[Yi,t ]

1
i=0

Pt

0
ˆ 1

0
Y

ε−1
ε

i,t di

1 ε
ε−1

−
ˆ 1

0
Pi,tYi,tdi. (A.13)

The demand for variety i and the price level are given by

Yi,t =

!
Pi,t

Pt

"−ε

Yt, Pt =

0
ˆ 1

0
P1−ε

i,t di

1 1
1−ε

. (A.14)

The intermediate-goods producers’ problem is given by

Qi,t(Pi) = max
[πi,s ]s≥t

Et

/
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t

ηs

ηt

!
(1 − τ)

Pi,s
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, (A.15)
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subject to Yi,t =
-

Pi,t
Pt

.−ε
Yt and Ṗi,t = πi,tPi,t, given Pi,t = Pi.

The HJB equation for this problem is

0 = max
πi,t

ηt

!
(1 − τ)

Pi,t

Pt
Yi,t −

Wt

Pt

Yi,t

A
− ϕ

2
π2

i,t

"
dt + Et[d(ηtQi,t)]. (A.16)

Applying Ito’s lemma for jump processes, we obtain

Et[d(ηtQi,t)] = Et[dQi,t] + Et[dηt] + λt (η
∗
t − ηt)

3
Q∗

i,t − Qi,t
4

dt. (A.17)

The drift of Qi,t and ηt are given by

Et[dQi,t] =

+
∂Qi,t

∂t
+

∂Qi,t

∂Pi
πi,tPi,t + λt(Q∗

i,t − Qi,t)

,
dt, Et[dηt] = −(it − πt)ηtdt, (A.18)

where we used the fact that the value of firm i is a function of calendar time and the price level, so the drift
of Qi,t can be computed using Ito’s lemma, and we used the household’s Euler equation to obtain the drift
of the SDF, ηt = e−ρtC−σ

s,t .
Combining Equations (A.17) and (A.18), the drift of ηtQi,t can be written as

Et[d(ηtQi,t)]

ηtdt
=

∂Qi,t

∂t
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∂Qi,t

∂Pi
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"σ 3
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4

. (A.19)

Plugging the result above into Equation (A.16), the firms’ HJB equation can be written as

0 = max
πi,t

!
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Pt
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4
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(A.20)

where η∗
t ≡ e−ρt(C∗

s,t)
−σ.

The first-order condition is given by
∂Qi,t

∂Pi
Pi,t = ϕπi,t. (A.21)

The change in πt conditional on no disaster is then given by

0
∂2Qi,t

∂t∂Pi
+

∂2Qi,t

∂P2
i

πi,tPi,t

1
Pi,t +

∂Qi,t

∂Pi
πi,tPi,t = ϕπ̇i,t. (A.22)

The envelope condition with respect to Pi,t is given by

0 =

!
(1 − ε)(1 − τ)
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Pt
+ ε

Wt

Pt A
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Multiplying the expression by Pi,t and using Equations (A.22) and (A.23), we obtain

0 =

!
(1 − ε)(1 − τ)

Pi,t

Pt
+ ε

Wt

Pt A

"!
Pi,t

Pt

"−ε

Yt + ϕπ̇t − (it − πt)ϕπi,t + λt
η∗

t
ηt

ϕ(π∗
i,t − πi,t). (A.24)

Rearranging the expression above, we obtain the non-linear New Keynesian Phillips curve

π̇t =

!
it − πt + λt

η∗

ηt

"
πt − (ε − 1)ϕ−1

!
ε

ε − 1
Wt

Pt

1
A

− (1 − τ)

"
Yt, (A.25)

where we have assumed that Pi,t = Pt for all i ∈ [0, 1] and that π∗
t = 0.

A.2 Stationary equilibrium

Introducing recurrent shocks. Suppose aggregate productivity follows the following process:32

dAt

At
= −ζdNt, (A.26)

given A0 = A and 0 < ζ < 1, where Nt is a Poisson process with arrival rate λt = λ(it − ρ; At).
This formulation generalizes the one considered in the text. Note that the above process implies that

aggregate productivity after a Poisson event is given by A(1 − ζ) ≡ A∗. The setting discussed in the main
text corresponds to the case where λ(it − ρ; A) > 0 and λ(it − ρ; At) = 0 for At < A. This formulation also
captures the case of recurrent shocks assumed by Barro (2009), where λt is constant and positive for all t.

A.2.1 Consumption and natural interest rate

Consumption determination in a stationary equilibrium. In a stationary equilibrium, all variables
are independent of calendar time and depend only on aggregate productivity At, so they are constant
between the realization of disasters. We can then write, for instance, consumption and output as Cj,t =

Cj(At) and Yt = Y(At), where Cj(·) and Y(·) are functions we need to solve for.
First, note that, imposing Ċs,t = 0 in the Euler equation (1), we obtain the natural rate rn(A)

rn(A) = ρs − λ(A)

+!
Cs(A)

Cs(A(1 − ζ))

"σ

− 1
,

, (A.27)

where we abuse notation and write λ(A) instead λ(0; A) in a stationary equilibrium.
The consumption of borrowers satisfies the condition

Cb(A) =
5

A(1 − τ)(1 − ε−1)
6 1+φ

φ C
− σ

φ

b (A) + Tb(A)− rn(A)Dp, (A.28)

where Tb(A) represents the level of transfers as a function of productivity, and we used the labor supply
condition to solve for Nb and the fact that the real wage is given by

Wt

Pt
= At(1 − τ)(1 − ε−1), (A.29)

32The process can be easily generalized to allow for trend growth, dAt = gAtdt − ζAtdNt. The expressions in the
text apply to this case as well after all variables are properly detrended.
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obtained by imposing πt = 0 in the non-linear New Keynesian Phillips curve (4).
The consumption of savers satisfies the condition

Cs(A) =
5

A(1 − τ)(1 − ε−1)
6 1+φ

φ C
− σ

φ
s (A) +

1 − (1 − τ)(1 − ε−1)

1 − µb
Y(A)− µbTb(A)

1 − µb
+

rn(A)µb
1 − µb

Dp, (A.30)

where used the government’s flow budget constraint to eliminate T̃s,t, the market clearing condition for

bonds to write Bs =
Dg+µbDp

1−µb
and the fact that profits received by savers can be written as

Πs,t = (1 − τ)
1 − (1 − ε−1)

1 − µb
. (A.31)

Given that Y(A) = ∑j∈{b,s} µjCj(A), the above conditions provide a pair of functional equations that
determine Cj(A). To ease notation, we write Cj ≡ Cj(A) and C∗

j ≡ Cj(A(1 − ζ)) to denote variables in the
no-disaster and disaster states, respectively.

Symmetric stationary equilibrium. Note that, using µb = 0 and Cs = Y in the expression for Cs, we
can solve for output in a representative-agent economy:

Y(A) = A
1+φ
σ+φ

5
(1 − τ)(1 − ε−1)

6 1
σ+φ . (A.32)

We obtain the output level Y(A) in the economy with µb > 0 if Tb(A) satisfies

Tb(A) =
5
1 − (1 − τ)(1 − ε−1)

6
Y(A) +

0
ρs − λ(A)

/0
Y(A)

Y(A(1 − ζ))

1σ

− 1

21
Dp. (A.33)

Plugging the value of Tb(A) into the expression for Cj(A), we obtain

Cb(A) =
5

A(1 − τ)(1 − ε−1)
6 1+φ

φ C
− σ

φ

b (A) + [1 − (1 − τ)(1 − ε−1)] ∑
j∈{b,s}

µjCj(A)

+ λ(A)Dp

/!
Cs(A)
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"σ

−
0

Y(A)
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1σ2
, (A.34)

Cs(A) =
5

A(1 − τ)(1 − ε−1)
6 1+φ

φ C
− σ

φ
s (A) + [1 − (1 − τ)(1 − ε−1)] ∑

j∈{b,s}
µjCj(A)

− λ(A)
µbDp

1 − µb

/!
Cs(A)

Cs(A(1 − ζ))

"σ

−
0

Y(A)

Y(A(1 − ζ))

1σ2
. (A.35)

A solution to the above system is Cj(A) = Y(A). In this case, we obtain a symmetric stationary equi-
librium, where consumption in both households is the same. Moreover, consumption is a power function
of productivity, which implies that C∗

s is given by

C∗
s = (1 − ζ)

1+φ
σ+φ Cs. (A.36)
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Therefore, in a symmetric stationary equilibrium, the real interest rate is given by

rn(A) = ρs − λ(A)

+
(1 − ζ)

−σ
1+φ
σ+φ − 1

,
. (A.37)

Note that this result holds for both the case of non-recurrent shocks, where λ(A) > 0 and λ(A∗) = 0,
and the case of recurrent shocks, where λ(A) is independent of productivity level A.

Role of private debt. In a symmetric stationary equilibrium, the government effectively taxes all of the
income savers receive by lending to borrowers, so the natural interest rate is independent of the level of
private debt. To allow a role for private debt in determining the natural rate, we assume that transfers to
borrowers satisfy the condition

Tb(A∗) =
5
1 − (1 − τ)(1 − ε−1)

6
Y(A∗), (A.38)

and transfers to borrowers are given by (A.33) if At ∕= A∗. This provides the minimal deviation from the
symmetric stationary equilibrium that allows a role for private debt in determining the natural rate. For
simplicity, we focus on the case of non-recurrent shocks.

Proposition 6. Suppose Tb(A∗) is given by (A.38) and the shocks are non-recurrent. Let Cs = Cs(A) and C∗
s =

Cs(A∗), where A∗ = A(1 − ζ). Then, the natural interest rate rn = rn(A) is given by

rn = ρs − λ

+!
Cs

C∗
s

"σ

− 1
,

, (A.39)

and it is strictly increasing in Dp.

Proof. Consider first the determination of (C∗
s , C∗

b ). The condition for C∗
b is given by

0 =
5

A∗(1 − τ)(1 − ε−1)
6 1+φ

φ
(C∗

b )
− σ

φ +
5
1 − (1 − τ)(1 − ε−1)

6
Y(A∗)− r∗nDp − C∗

b , (A.40)

where r∗n = ρs in the case of non-recurrent shocks. .
The right-hand side of the above expression is positive for sufficiently small C∗

b , it is negative for suf-
ficiently large C∗

b , and it is strictly decreasing in C∗
b . Therefore, there is a unique solution to the above

non-linear equation, given the value of Dp, which we denote by C∗
b (Dp). Applying the implicit function

theorem to the above expression, we can show that C∗
b (Dp) is strictly decreasing in Dp:

∂C∗
b (Dp)

∂Dp
= − r∗n

1 + σ
φ [A∗(1 − τ)(1 − ε−1)]

1+φ
φ (C∗

b )
− σ+φ

φ

< 0. (A.41)

Savers’ consumption is determined by g(C∗
s ) = 0, where g(C∗

s ) is given by

g(C∗
s ) =

!
A∗(1 − τ)(1 − ε−1)

" 1+φ
φ

(C∗
s )

− σ
φ − (1− τ)(1− ε−1)C∗

s +µb
(1 − (1 − τ)(1 − ε−1))(C∗

b (Dp)− Y(A∗)) + r∗nDp

1 − µb
.

(A.42)

Note that g(·) is strictly decreasing, and it approaches infinity as C∗
s → 0 and approaches −∞ as C∗

s →
∞. The continuity of g(·) then implies that a solution C∗

s (Dp) exists and is unique.
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Applying the implicit function theorem, we obtain

∂C∗
s

∂Dp
=

1
∆C

µbr∗n
1 − µb

#

7$1 − 1 − (1 − τ)(1 − ε−1)

1 + σ
φ [A∗(1 − τ)(1 − ε−1)]

1+φ
φ (C∗

b )
− σ+φ

φ

)

8* > 0, (A.43)

where ∆C ≡ (1 − τ)(1 − ε−1) + σ
φ

9
A∗(1 − τ)(1 − ε−1)

: 1+φ
φ (C∗

b )
− σ+φ

φ , where we used Equation (A.41).
Given that the solution coincides with Y(A∗) if Dp = 0, we conclude that C∗

s (Dp) > Y(A∗) for Dp > 0.
Since Cs = Y(A), rn is increasing in Dp and it is larger than in the symmetric stationary equilibrium.

A.2.2 Risk premia

Equity premium. The value of the intermediate-goods firms satisfies the standard pricing condition

Qt = Et

+
ˆ ∞

t

ηs

ηt
Πsds

,
, (A.44)

where Πt = (1 − τ)Yt − Wt
Pt

Nt, which represents the sum of the profit of the intermediate-goods producer
and the rebate to households of the cost of adjusting prices.

We can write the condition above in recursive form:

Πt

Qt
dt +

Et[d(ηtQt)]

ηtQt
= 0. (A.45)

Applying Ito’s lemma for jumping processes, we get an expression for the expected return on the firm:

Πt

Qt
dt +

Et[dQt]

Qt
=

#

7777$
(it − πt); <= >
interest rate

+ λt
(C∗

s,t)
−σ − C−σ

s,t

C−σ
s,t

Qt − Q∗
t

Qt
; <= >

risk premium

)

8888*
dt. (A.46)

In a stationary equilibrium, profits are given by Πt = ε−1(1− τ)Yt and the value of the firm is given by
Qt = Q(At). We can write the dividend-yield as follows:

Πt

Qt
= rn,t + λt

0
Cs,t

C∗
s,t

1σ !
1 − Πt

Qt

Q∗
t

Π∗
t

Π∗
t

Πt

"
. (A.47)

Rearranging the above expression, we obtain

Πt

Qt
=

ρs + λt

1 + λt
Cs,t
C∗

s,t

σ Q∗
t

Π∗
t

Π∗
t

Πt

, (A.48)

using the fact that rn,t + λt

-
Cs,t
C∗

s,t

.σ
= ρs + λt

We will consider the value of Πt/Qt under both non-recurrent and recurrent shocks. Consider first the
case where λt > 0 in the no-disaster state and λt = 0 in the disaster state. Therefore, Π∗

t = ρsQ∗
t and Πt/Qt
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can be written as
Πt

Qt
=

ρs + λt

1 + λt
Cs,t
C∗

s,t

σ (1−ζY)
ρs

, (A.49)

where 1 − ζY ≡ Y∗
Y .

The (unlevered) equity premium can then be written as

Π
Q

dt + λ
Q∗ − Q

Q
− rn = λ

3
(1 − ζY)

−σ − 1
4
%

&1 − (ρs + λt)(1 − ζY)

ρs + λt
Cs,t
C∗

s,t

σ

'

( , (A.50)

using the fact that Π∗
t /Πt = 1 − ζY.

Consider the case of recurrent shocks, such that λt = λ for all t ≥ 0. The dividend-yield is then given
by

Πt

Qt
= rn + λ(1 − ζy)

−σζY, (A.51)

using the fact that Π
Q = Π∗

Q∗ .
In this case, the equity premium is given by

Π
Q

dt + λ
Q∗ − Q

Q
− rn = λ

3
(1 − ζY)

−σ − 1
4

ζY, (A.52)

which coincides with the expression for the risk premium in Barro (2009).

Term spread. From the first-order condition (A.8), the excess return on the long-term bonds satisfies

1
QL,t

+
Q̇L,t

QL,t
− ψd − it = λt

!
Ct

C∗
t

"σ QL,t − Q∗
L,t

QL,t
. (A.53)

Let iL,t denote the yield on the long-term bond, then iL,t satisfies

QL,t =

ˆ ∞

t
e−(iL+ψd)(s−t)ds ⇒ 1

QL,t
= iL,t + ψd. (A.54)

We consider next a stationary equilibrium with non-recurrent shocks. Combining the previous two
expressions, we obtain that the term spread, the difference between the long and short interest rate, is given
by

iL − rn = λ

!
Cs

C∗
s

"σ QL − Q∗
L

QL
. (A.55)

The price of the long-term bond in the disaster state is given by

Q∗
L =

1
i∗L + ψd

, (A.56)

where i∗L = r∗n is the yield on the long-term bond.
We can then express the term spread as follows

iL − rn = λ

!
Cs

C∗
s

"σ i∗L − iL

i∗L + ψd
. (A.57)
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Rearranging the above expression, we obtain

iL − rn = λ

!
Cs

C∗
s

"σ r∗n − rn

r∗n + ψd + λ
-

Cs
C∗

s

.σ .

Note that iL > rn and the difference is decreasing in ψd, so the yield increases with the bond duration.
The term spread coincides with the expected excess return on the bond conditional on no disaster. The
(unconditional) expected excess return on the long-term pond is given by

1
QL

− ψd + λ
Q∗

L − QL

QL
− rn = iL − rn − λ

i∗L − iL

i∗L + ψd
=

+
1 −

!
C∗

s
Cs

"σ,
(iL − rn), (A.58)

which is proportional to the term spread.

Yield curve. We show next that the yield curve is upward-sloping in this model. Let QL,t(τ) denote the
price of a (real) zero-coupon bond maturing τ periods ahead. The value of the bond is given by

QL,t(τ) = Et

/
e−ρsτ

!
Cs,t+τ

Cs,t

"−σ
2
= e−(ρs+λ)τ

!
Cs,t+τ

Cs,t

"−σ

+ (1 − e−λτ)e−ρsτ

!C∗
s,t+τ

Cs,t

"−σ

. (A.59)

In a stationary equilibrium, we obtain

QL(τ) = e−(ρs+λ)τ + (1 − e−λτ)e−ρsτ

!
C∗

s
Cs

"−σ

. (A.60)

The yield on the bond is given by rL(τ) ≡ − log QL(τ)/τ and can be written as

rL(τ) = ρs + λ − 1
τ

log
+

1 + (eλτ − 1)
!

Cs

C∗
s

"σ,
. (A.61)

Approximating the above expression, we obtain

rL(τ) = rn + λ

!!
Cs

C∗
s

"σ

− 1
"

τ +O(τ2), (A.62)

which is increasing in τ.

Corporate bond premium. We can also price a corporate bond, which is a defautable bond. Let QC,t

denote the value of a bond that pays off coupons e−ψCt in nominal terms in the absence of default. We
assume that monetary shocks are too small to trigger default, so there is no default in the no-disaster state,
and that the bond suffers a loss 1 − ζc conditional on a disaster.

The value of the corporate bond in the disaster state is given by

Q∗
C =

1 − ζc

r∗n + ψc
. (A.63)

A derivation analogous to the one for government bonds shows that the yield on the corporate bond,
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which is given by iC,t = Q−1
C,t − ψC, can be expressed as follows in a stationary equilibrium

iC − rn = λ

!
Cs

C∗
s

"σ QC − Q∗
C

QC
. (A.64)

In the stationary equilibrium, the value of the corporate bond in the no-disaster state is given by

QC =
1 + λ

-
Cs
C∗

s

.σ
Q∗

C

ψC + ρs + λ
. (A.65)

The yield on the corporate bond is given by iC,t = Q−1
C,t −ψC. The corporate spread, the difference between

the yield on the corporate bond and a government bond with the same coupons, is given by in the stationary
equilibrium

rC =
ψC + ρs + λ

1 + λ
-

Cs
C∗

s

.σ
Q∗

C

− ψC + ρs + λ

1 + λ
-

Cs
C∗

s

.σ
Q∗

C/(1 − ζc)
. (A.66)

A.3 Log-linear dynamics

We use lower-case variables to denote log-deviations from the stationary equilibrium, e.g. cj,t ≡ log Cj,t/Cj

and nj,t = log Nj,t/Nj. We derive the equilibrium conditions for the general case where Cb may differ from
Cs, and then specialize to the Cb = Cs case considered in Section 2.

A.3.1 Consumption of borrowers and savers

Labor supply and market clearing. The labor supply condition can be written as

wt − pt = φnj,t + σcj,t. (A.67)

Log-linearizing the market-clearing conditions for consumption and labor, we obtain

µc
bcb,t + (1 − µc

b)cs,t = yt, µn
b nb,t + (1 − µn

b )ns,t = nt, (A.68)

where µc
b ≡ µbCb

Y and µn
b ≡ µb Nb

N .
Given cb,t and yt, we can use the above equations to solve for the real wage, savers’ consumption, and

labor supply for both agents. Equating the labor-supply condition for both agents, we obtain

ns,t = nb,t + φ−1σ(cb,t − cs,t)

= nb,t + φ−1σ(1 − µc
b)

−1(cb,t − yt), (A.69)

using the market-clearing condition for goods to eliminate cs,t.
Plugging the above expression into the market-clearing condition for labor, we obtain

nb,t = (1 + φ−1σ)yt − φ−1σcb,t + φ−1σ
µc

b − µn
b

1 − µc
b
(yt − cb,t). (A.70)
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The real wage is given by

wt − pt = (φ + σ)yt + σ
µc

b − µn
b

1 − µc
b
(yt − cb,t). (A.71)

Borrowers’ consumption. Linearizing the borrowers’ budget constraint, we obtain

cb,t =
WNb
PCb

(wt − pt + nb,t) + Tb,t − (it − πt − rn)dP. (A.72)

where Tb,t ≡
T̃b,t−T̃b

Cb
, and dp ≡ Dp

Cb
.

Plugging the expressions for the real wage and labor supply into the above expression, we obtain

cb,t =
WNb
PCb

+
(1 + φ−1)(φ + σ)yt − φ−1σcb,t + (1 + φ−1)σ

µc
b − µn

b
1 − µc

b
(yt − cb,t)

,

+ Tb,t − (it − πt − rn)dP. (A.73)

Transfers to borrowers are given by
Tb,t = T′

b(Y)yt. (A.74)

Combining the previous two conditions, we obtain

cb,t = χyyt − χr(it − πt − rn), (A.75)

where

χy ≡
T′

b(Y) +
WNb
PCb

5
(1 + φ−1)(φ + σ) + (1 + φ−1)σ

µc
b−µn

b
1−µc

b

6

1 + WNb
PCb

5
φ−1σ + (1 + φ−1)σ

µc
b−µn

b
1−µc

b

6 (A.76)

χr ≡
dp

1 + WNb
PCb

5
φ−1σ + (1 + φ−1)σ

µc
b−µn

b
1−µc

b

6 . (A.77)

The expression in the text is obtained by imposing Cb = Cs = Y, so µc
b = µn

b = µb and 1 − α ≡ WN
PY .

Savers’ consumption. From the borrowers’ consumption and market clearing, we obtain

cs,t =
1 − µbχy

1 − µb
yt +

µbχr

1 − µb
(it − πt − rn). (A.78)

A.3.2 Asset pricing

Stocks and human wealth. The value of the firm satisfies the condition

Πt

Qt
+

Q̇t

Qt
= it − πt + λt

0
Cs,t

C∗
s,t

1σ !
1 − Q∗

Qt

"
. (A.79)
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After some rearrangement, the above expression can be written as

Q̇t =

/
it − πt + λt

0
Cs,t

C∗
s,t

1σ2
Qt − λt

0
Cs,t

C∗
s,t

1σ

Q∗ − Πt. (A.80)

Log-linearizing the above expression, we obtain

q̇t = ρqt + (it − πt − rn) + λ

!
Cs

C∗
s

"σ Q − Q∗

Q
(σcs,t + ελ(it − rn))−

Y
Q

((1 − τ)yt − (1 − α)(wt − pt + nt)) ,

(A.81)

where we defined qt ≡ (Qt − Q)/Q.
Solving the above equation forward, we obtain

q0 =
Y
Q

ˆ ∞

0
e−ρt [(1 − τ)yt − (1 − α)(wt − pt + nt)] dt

−
ˆ ∞

0
e−ρt

+
it − πt − rn + λ

!
Cs

C∗
s

"σ Q − Q∗

Q
(σcs,t + ελ(it − rn))

,
dt. (A.82)

The change in the value of stocks depends on the change in dividends, firms’ profits, and on changes in
the discount rate, captured by changes in the real interest rate and the risk premium. Note that the present
discount value of savers’ consumption is given by

ˆ ∞

0
e−ρtcs,tdt =

µbχr

1 − µb

ˆ ∞

0
e−ρt(it − πt − rn)dt +

1 − µbχy

1 − µb
Ω0, (A.83)

using cs,t =
1−µbχy

1−µb
yt +

µbχr
1−µb

(it − πt − rn).
For a given value of Ω0, an increase in real rates will raise the risk premium on average. Therefore, the

response of the risk premium will amplify the response of real rates when Ω0 = 0.
Similarly, if we define human wealth as the present discount value of (after-tax) labor income Ht =

Et

5
´ ∞

t
ηz
ηt

-
Wz
Pz

Nz + Tz

.
dz
6
, we can then write the linearized value of human wealth as follows:

h0 =
Y
H

ˆ ∞

0
e−ρt [(1 − α)(wt − pt + nt) + Tt] dt (A.84)

−
ˆ ∞

0
e−ρt

+
it − πt − rn + λ

!
Cs

C∗
s

"σ H − H∗

H
(σcs,t + ελ(it − rn))

,
dt. (A.85)

Long-term bonds. The pricing condition for bonds can be written as

1
QL,t

+
Q̇L,t

QL,t
− ψd − it + λt

0
Cs,t

C∗
s,t

1σ
Q∗

L,t − QL,t

QL,t
= 0. (A.86)

Rearranging the above expression, we obtain

Q̇L,t = (it + ψd)QL,t − 1 + λt

0
Cs,t

C∗
s,t

1σ

(QL,t − Q∗
L,t). (A.87)
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Linearizing the above expression, we obtain

q̇L,t = (ρ + ψd)qL,t + it − rn + λ

!
Cs

C∗
s

"σ QL − Q∗
L

QL
(σcs,t + ελ(it − rn)). (A.88)

Solving the above equation forward, we obtain

qL,0 = −
ˆ ∞

0
e−(ρ+ψd)t

+
it − rn + λ

!
Cs

C∗
s

"σ QL − Q∗
L

QL
(σcs,t + ελ(it − rn))

,
dt. (A.89)

The yield on the long-term bond can then be written as

iL,0 − iL = (iL + ψd)

ˆ ∞

0
e−(ρ+ψd)t

+
it − rn + λ

!
Cs

C∗
s

"σ QL − Q∗
L

QL
(σcs,t + ελ(it − rn))

,
dt, (A.90)

using the fact that Q−1
L = iL + ψd.

Corporate bonds. The linearized price of the corporate bond is given by an expression analogous to the
one for government bonds:

qC,0 = −
ˆ ∞

0
e−(ρ+ψc)t

+
it − rn + λ

!
Cs

C∗
s

"σ QC − Q∗
C

QC
(σcs,t + ελ(it − rn))

,
dt. (A.91)

The yield on the corporate bond is iC,0 − iC = −Q−1
C qC,0, which can be written as

iC,0 − iC = (iC + ψc)

ˆ ∞

0
e−(ρ+ψc)t

+
it − rn + λ

!
Cs

C∗
s

"σ QC − Q∗
C

QC
(σcs,t + ελ(it − rn))

,
dt, (A.92)

using the fact that Q−1
C = iC + ψc.

The corporate spread is rC,0 = iC,0 − iC,0, where iC,0 is the yield of a government bond with the same
coupons as the corporate bond.

rC,0 = rC

ˆ ∞

0
e−(ρ+ψc)t(it − rn)dt+

9
(iC + ψc)(iC − i)− (iC + ψc)(iC − i)

: ˆ ∞

0
e−(ρ+ψC)t(σcs,t + ελ(it − rn))dt,

where iC − i = λ
-

Cs
C∗

s

.σ QC−Q∗
C

QC
is the difference between the corporate bond yield and the short-term

nominal rate in the stationary equilibrium and iC − i is the corresponding object for a bond without default
risk.

A.3.3 Flow budget constraints.

The flow budget constraint for savers can be written as

bs ḃs,t = (it − πt − rn)bs + r̂L,tb
L
s + rnbsbs,t + rLb

L
s bL

s,t +
WNs

PCs
(wt − pt + ns,t)

+
(1 − τ)yt − (1 − α)(wt − pt + yt)

1 − µc
b

+ Ts,t − cs,t, (A.93)
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where 1 − α ≡ WN
PY is the labor share, Ts,t ≡ T̃s,t−T̃s

Cs
, bs ≡ Bs

Cs
, b

L
s ≡ BL

s
Cs

, and

r̂L
t = λ

!
Cs

C∗
s

"σ QL − Q∗
L

QL
[σcs,t + ελ(it − ρ)] + λ

!
Cs

C∗
s

"σ Q∗
L

QL
qL,t. (A.94)

The government’s budget constraint is given by

dgḋg,t = (it − πt + r̂L − rn)dg + (rn + rL)dgdg,t + ∑
j∈{b,s}

µc
j Tj,t − τyt. (A.95)

B Proofs

B.1 Proof of Proposition 1

Proof. Consider first the New Keynesian Phillips curve

π̇t =

!
it − πt + λt

η∗
t

ηt

"
πt − (ε − 1)ϕ−1

!
ε

ε − 1
W
PA

ewt−pt − (1 − τ)

"
Yeyt . (B.1)

Linearizing the above expression, and using ε
ε−1

W
P

1
A = (1 − τ), we obtain

π̇t =

!
rn + λ

!
Cs

C∗
s

"σ"
πt − ϕ−1(ε − 1)(1 − τ)(wt − pt). (B.2)

Using the expression for wt − pt, we obtain

π̇t = (ρs + λ)πt − κyt, (B.3)

where κ ≡ ϕ−1(ε − 1)(1 − τ)(φ + σ) and we used the fact that rn + λ
-

Cs
C∗

s

.σ
= ρs + λ.

Consider next the generalized Euler equation. From the market-clearing condition for goods and bor-
rowers’ consumption, we obtain

cs,t =
1 − µbχy

1 − µb
yt +

µbχr

1 − µb
(it − πt − rn). (B.4)

The Euler equation for savers is given by

ċs,t = σ−1(it − πt − rn) + λ

!
Cs

C∗
s

"σ

cs,t + σ−1 pdελ(it − rn), (B.5)

where pd ≡ λ
5-

Cs
C∗

s

.σ
− 1

6
is the price of disaster risk and ελ ≡ λ′(0)/λ(0) is the semi-elasticity of λt =

λ(it − rn) with respect to it.
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Combining the previous two conditions, we obtain

ẏt =
1 − µb

1 − µbχy
σ−1(it − πt − rn) +

1 − µb
1 − µbχy

+
λ

!
Cs

C∗
s

"σ

cs,t + σ−1 pdελ(it − rn)

,
− µbχr

1 − µbχy
(i̇t − π̇t)

=

+
1 − µb

1 − µbχy
σ−1 − µbχr

1 − µbχy
ρ

,
(it − πt − rn) +

+
λ

!
Cs

C∗
s

"σ

− µbχr

1 − µbχy
κ

,
yt −

µbχr

1 − µbχy
(i̇t − ρ(it − rn))

+
1 − µb

1 − µbχy
σ−1 pdελ,i(it − rn), (B.6)

where we used (B.3) and (B.4) to replace for π̇t and cs,t in the second equality.

We can then write the aggregate Euler equation:

ẏt = σ̃−1(it − π − rn) + δyt + vt, (B.7)

where the constants σ̃−1, δ, and vt are defined in the proposition.

B.2 Proof of Lemma 1

Proof. We first derive the (non-linear) intertemporal budget constraint, then derive its log-linearized version
and show the sufficiency of system (15) and the intertemporal budget constraint.

Non-linear intertemporal budget constraint. The dynamics of the SDF can be written as

dηt

ηt
= −(it − πt)dt +

(C∗
s,t)

−σ − C−σ
s,t

C−σ
s,t

(dNt − λtdt). (B.8)

Applying Ito’s lemma to d(ηtBj,t), we obtain

E[d(ηtBj,t)] = ηtEt[dBj,t] + Bj,tEt[dηt] + λt(η
∗
t − ηt)(B∗

j,t − Bj,t)dt

= ηt

+
(it − πt)Bj,t +

!
rL,t + λt

Q∗
L,t − QL,t

QL,t

"
BL

j,t +
Wj,t

Pt
Nj,t +

Πj,t

Pt
+ T̃j,t − Cj,t

,
dt

− (it − πt)ηtBj,tdt + λt(η
∗
t − ηt)BL

j,t
Q∗

L,t − QL,t

QL,t
dt. (B.9)

Using expression (2) to replace rL,t if BL
j,t > 0, we obtain

E[d(ηtBj,t)] = ηt

+Wj,t

Pt
Nj,t +

Πj,t

Pt
+ T̃j,t − Cj,t

,
dt. (B.10)

Integrating d(ηtBj,t) and taking expectations, we obtain

E0[ηtBj,t]− η0Bj,0 = E0

+
ˆ t

0
ηz

!
Wz

Pz
Nj,z + Πj,z + T̃j,z − Cj,z

"
dz
,

. (B.11)

Note that limt→∞ E0[ηtBb,t] = 0, as Bb,t is constant in equilibrium and limt→∞ E0[ηt] = 0. The borrow-
ing constraint implies that limt→∞ E0[ηtBs,t] ≥ 0, which, combined with the No-Ponzi condition for the gov-
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ernment, market clearing for bonds, and the previous result for borrowers, implies that limt→∞ E0[ηtBs,t] =

0. Therefore, we conclude that limt→∞ E0[ηtBj,t] = 0 for both types of households.
Taking the limit as t → ∞ of the previous expression, using the fact that limt→∞ E0[ηtBj,t] = 0, and

aggregating across households, we obtain

E0

+
ˆ ∞

0

ηt

η0
(µbCb,t + (1 − µb)Cs,t) dt

,

; <= >
≡QC,0

= Dg,0 + E0

+
ˆ ∞

0

ηt

η0

3
(1 − τ)Yt + T̃t

4
dt
,

; <= >
≡QY,0

, (B.12)

using the fact that Wt
Pt

Nt + (1 − µb)Πs,t = (1 − τ)Yt.
The above expression can then be written as

QC,0 = Dg,0 + QY,0 (B.13)

where QC,0 is the initial value of the consumption claim and QY,0 is the initial value of a claim on after-tax
profits, wages, and transfers.

Log-linearized intertemporal budget constraint. The linearized budget constraint can be written as

QCqC,0 = DgqL,0 + QYqY,0, (B.14)

where qC,0 ≡ log QC,0
QC

, qY,0 ≡ log QY,0
QY

, and QC and QY denote the value of the consumption claim and the
(after-tax) income claim, respectively, in the no-disaster state of the stationary equilibrium.

Following a derivation analogous to the one for the value of stocks in Section A.3, we obtain

qC,0 =
Y

QC

ˆ ∞

0
e−ρt [µbcb,t + (1 − µb)cs,t] dt −

ˆ ∞

0
e−ρt

+
it − πt − rn + λ

!
Cs

C∗
s

"σ QC − Q∗
C

QC
pd,t

,
dt (B.15)

qY,0 =
Y

QY

ˆ ∞

0
e−ρt [(1 − τ)yt + Tt] dt −

ˆ ∞

0
e−ρt

+
it − πt − rn + λ

!
Cs

C∗
s

"σ QY − Q∗
Y

QY
pd,t

,
dt, (B.16)

where Tt = µbTb,t + (1 − µb)Ts,t, pd,t ≡ σcs,t + ελ(it − rn) is the (log-linear) price of disaster risk.
The intertemporal budget constraint can then be written as

ˆ ∞

0
e−ρt [µbcb,t + (1 − µb)cs,t] dt = dgqL,0 +

ˆ ∞

0
e−ρt [(1 − τ)yt + Tt] dt+

ˆ ∞

0
e−ρt QC − QY

Y
(it − πt − rn) +

ˆ ∞

0
e−ρt

+
λ

!
Cs

C∗
s

"σ !QC − QY
Y

−
Q∗

C − Q∗
Y

Y

"
pd,t

,
dt. (B.17)

The left-hand side represents the dividend effect on the consumption claim. The right-hand side is
given by the sum of the revaluation of government bonds, the dividend effect on the claim on profits,
wages, and transfers, and the last two terms capture the net discount rate effect. Note that discount rate
effects only appear to the extent there is some mismatch between assets and liabilities, that is, if QC ∕= QY.

In a stationary equilibrium, we infer that QC = Dg + QY and Q∗
C = Dg + Dg

Q∗
L−QL
QL

+ Q∗
Y, which allows

us to write

Ω0 =

ˆ ∞

0
e−ρt

5
(1 − τ)yt + Tt + dg(it − πt − rn + rL pd,t)

6
dt − dg

ˆ ∞

0
e−(ρ+ψd)t [it − rn + rL pd,t] dt, (B.18)
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where rL ≡ λ
-

Cs
C∗

s

.σ QL−Q∗
L

QL
and we used the expression for qL,0 derived in Section A.3.2.

Sufficiency of the intertemporal budget constraint. Suppose [yt, πt]∞0 satisfy system (15) and the
intertemporal budget constraint (13) in the no-disaster state. We will show that [yt, πt]∞0 can be supported
as an equilibrium. Consider first the disaster state. We set Ts,t = ρsbsbs,t∗ , where t∗ denotes the time the
economy switches to the disaster state, and i∗t = ρs. All the remaining variables are equal to zero in the
disaster state. The equation for the real wage, w∗

t − p∗t = (φ + σ)y∗t = 0, and the labor-supply condition for
each household, w∗

t − p∗t = σc∗j,t + φn∗
j,t, are also satisfied. The same applies to the savers’ Euler equation

and the market clearing condition for goods, labor, and bonds. Borrowers’ and savers’ budget constraint
are satisfied,

c∗b,t = (1 − α)(w∗
t − p∗t + n∗

b,t) + T∗
b,t − (i∗ − π∗

t − ρs)dp (B.19)

bs ḃs,t = bsρsbs,t + (1 − α)(w∗
t − p∗t + n∗

s,t) +
(1 − τ)y∗t − (1 − α)(w∗

t − p∗t + n∗
t )

1 − µb
+ T∗

s,t + (i∗ − π∗
t − ρs)bs − c∗s,t, (B.20)

which implies that bs,t is constant in the disaster state at the bs,t∗ level.
Consider now the no-disaster state. The real wage is given by wt − pt = (φ + σ)yt. Borrowers’ and

savers’ consumption are given by

cb,t = χyyt − χr(it − πt − r − n), cs,t =
1 − µbχy

1 − µb
yt +

µbχr

1 − µb
(it − πt − rn), (B.21)

and the labor supply is given by nj,t = φ−1(wt − pt)− φ−1σcj,t.
By construction, the market-clearing condition for goods and labor and the labor supply for each house-

hold are all satisfied. Because yt satisfies the aggregate Euler equation, the savers’ Euler equation is also
satisfied. Because πt satisfies the New Keynesian Phillips curve, the optimality condition for firms is satis-
fied. Bond holdings by savers and government debt evolve according to

bs ḃs,t = rnbsbs,t + (1 − α)(wt − pt + ns,t) + Ts,t +
(1 − τ)yt − (1 − α)(wt − pt + nt)

1 − µb

+ (i − πt − rn)bs + r̂L,tb
L
s + rLb

L
s bL

s,t − cs,t, (B.22)

dgḋg,t = dg(rn + rL)dg,t + Tt − τyt + (it − πt − rn + r̂L,t)dg, (B.23)

where bs,0 = b
L
s

bs
qL,0 and dg,0 = dgqL,0.

The value of cb,t is such that the flow budget constraint for borrowers also hold:

0 = (1 − α)(wt − pt + nb,t) + Tb,t − (it − πt − rn)dp − cb,t. (B.24)

Aggregating the budget constraint of borrowers and savers and using the market clearing condition for
goods and labor, we obtain

(1 − µb)bs ḃs,t = rn(1 − µb)bsbs,t + Tt − τyt + (i − πt − rn)
5
(1 − µb)bs − µbdp

6
+ (r̂L,t + rLbL

s,t)(1 − µb)b
L
s

(B.25)

Note that bsbs,l = b
S
s bS

s,t + b
L
s bL

s,t. We set bS
s,t = 0, so the market for short-term bonds clear at all periods.

It remains to show that the market for long-term bonds also clears. Subtracting the government’s flow
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budget constraint from the condition above, we obtain

(1 − µb)b
L
s ḃL

s,t − dgḋg,t = (rn + rL)((1 − µb)b
L
s bL

s,t − dgdg,t), (B.26)

using bsbs,t = b
L
s,tbL

s,t and (1 − µb)bs − µbdp = (1 − µb)b
L
s = dg.

Integrating the expression above, we obtain

(1 − µb)b
L
s bL

s,t − dgdg,t = e(rn+rL)t
5
(1 − µb)b

L
s bL

s,0 − dgdg,0

6
= 0, (B.27)

where the second equality uses the initial conditions for bL
s,0 and dg.

Therefore, the market clearing condition for long-term bonds is satisfied in all periods. The only condi-
tion that remains to be checked is the No-Ponzi condition for the government or, equivalently, the aggregate
intertemporal budget constraint. Because condition (13) is satisfied, the No-Ponzi condition for the govern-
ment is also satisfied.

B.3 Proof of Propositions 2 and 3

Proof. We can write dynamic system (15) in matrix form as follows:

Żt = AZt + Bνt, (B.28)

where B = [1, 0]′.
Applying the spectral decomposition to matrix A, we obtain

A = VΩV−1, (B.29)

where

V =

/
ρ−ω

κ
ρ−ω

κ

1 1

2
; V−1 =

κ

ω − ω

/
−1 ρ−ω

κ

1 − ρ−ω
κ

2
; Ω =

/
ω 0
0 ω

2
. (B.30)

Decoupling the system, we obtain
żt = Ωzt + bνt, (B.31)

where zt = V−1Zt and b = V−1B.
Solving the equation with a positive eigenvalue forward and the one with a negative eigenvalue back-

ward, we obtain

z1,t = −b1

ˆ ∞

t
e−ω(z−t)νzdz (B.32)

z2,t = eωtz2,0 + b2

ˆ t

0
eω(t−z)νzdz. (B.33)

Rotating the system back to the original coordinates, we obtain output and inflation

yt = V12

-
V21y0 + V22π0

.
eωt − V11V11

ˆ ∞

t
e−ω(z−t)νzdz + V12V21

ˆ t

0
eω(t−z)νzdz (B.34)

πt = V22

-
V21y0 + V22π0

.
eωt − V21V11

ˆ ∞

t
e−ω(z−t)νzdz + V22V21

ˆ t

0
eω(t−z)νzdz, (B.35)
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where Vi,j is the (i, j) entry of matrix V−1.
Integrating e−ρtyt and using the intertemporal budget constraint,

Ω0 = V12

-
V21y0 + V22π0

. 1
ρ − ω

− 1
ρ − ω

V11V11
ˆ ∞

0

-
e−ωt − e−ρt

.
νtdt +

1
ρ − ω

V12V21
ˆ ∞

0
e−ρtνtdt.

(B.36)

Rearranging the above expression, we obtain

V12

-
V21y0 + V22π0

.
= (ρ − ω)Ω0 +

ρ − ω

ρ − ω
V11V11

ˆ ∞

0

-
e−ωt − e−ρt

.
νtdt − V12V21

ˆ ∞

0
e−ρtνtdt. (B.37)

Consumption is then given by
yt = ỹt + (ρ − ω)eωtΩ0, (B.38)

where

ỹt = − ω − ρ

ω − ω

ˆ ∞

t
e−ω(z−t)νzdz +

ω − δ

ω − ω

ˆ t

0
eω(t−z)νzdz − ρ − ω

ω − ω
eωt
ˆ ∞

0
e−ωzνzdz. (B.39)

Inflation is given by
πt = π̃t + κeωtΩ0, (B.40)

where

π̃t =
κ

ω − ω

ˆ ∞

t
e−ω(z−t)νzdz +

κ

ω − ω

ˆ t

0
eω(t−z)νzdz − κ

ω − ω
eωt
ˆ ∞

0
e−ωzνzdz. (B.41)

We can write ỹt and π̃t as follows:

ỹt = −εF
y,t

ˆ ∞

t
e−ω(z−t)νzdz + εB

y,t

ˆ t

0

-
e−ωz − e−ωz

.
νzdz (B.42)

π̃t = εF
π,t

ˆ ∞

t
e−ω(z−t)νzdz + εB

π,t

ˆ t

0

-
e−ωz − e−ωz

.
νzdz, (B.43)

where

εF
y,t =

(ω − ρ) + (ω − δ)e−(ω−ω)t

ω − ω
, εB

y,t =
ρ − ω

ω − ω
eωt (B.44)

εF
π,t =

κ

ω − ω

-
1 − e−(ω−ω)t

.
, εB

π,t =
κ

ω − ω
eωt, (B.45)

and
νt =

1 − µb
1 − µbχy

σ−1(it − rn) +
1 − µb

1 − µbχy
χpελ(it − rn)−

µbχr

1 − µbχy
i̇t. (B.46)

If it − rn = e−ψmt(i0 − rn), then i̇t = −ψm(it − rn). This allows us to write

ỹt = σ−1ŷt + χpελŷt +
µbχr

1 − µb
ψmŷt, π̃t = σ−1π̂t + χpελπ̂t +

µbχr

1 − µb
ψmπ̂t (B.47)

53



where

ŷt =
1 − µb

1 − µbχy

/
− (ω − ρ)eωt + (ω − δ)eωt

(ω − ω)(ψm + ω)
e−(ψm+ω)t +

ρ − ω

ω − ω
eωt

0
1 − e−(ψm+ω)t

ψm + ω
− 1 − e−(ψm+ω)t

ψm + ω

12
(i0 − rn),

=
1 − µb

1 − µbχy

+
− ψm + ρ

(ψm + ω)(ψm + ω)
e−ψmt +

ρ − ω

(ψm + ω)(ψm + ω)
eωt

,
(i0 − rn), (B.48)

and

π̂t =
1 − µb

1 − µbχy

/
κ

eωt − eωt

(ω − ω)(ψm + ω)
e−(ψm+ω)t + κ

eωt

ω − ω

0
1 − e−(ω+ψm)t

ω + ψm
− 1 − e−(ω+ψm)t

ω + ψm

12
(i0 − rn)

=
1 − µb

1 − µbχy

κ(eωt − e−ψmt)

(ω + ψm)(ω + ψm)
(i0 − rn), (B.49)

consistent with the results in Propositions 2 and 3.
Note that the present discounted value of ŷt is given by

ˆ ∞

0
e−ρtŷtdt =

1 − µb
1 − µbχy

+
− ψm + ρ

(ψm + ω)(ψm + ω)

1
ρ + ψm

+
ρ − ω

(ψm + ω)(ψm + ω)

1
ρ − ω

,
(i0 − rn) = 0,

(B.50)
and the initial value ŷ0 satisfies

∂ŷ0

∂i0
= − 1 − µb

1 − µbχy

1
ψm + ω

< 0 (B.51)

B.4 Proof of Proposition 4

Proof. From conditions (11) and (13), we can write Ω0 as follows:

Ω0 =

ˆ ∞

0
e−ρt

5
(1 − τ)yt + Tt + dg(it − πt − rn + rL pd,t)

6
dt − dg

ˆ ∞

0
e−(ρ+ψd)t [it − rn + rL pd,t] dt. (B.52)

We can write the price of disaster risk as follows

pd,t = σcs,t + ελ(it − rn)

= σ
1 − µbχy

1 − µb
yt + σ

µbχr

1 − µb
(it − πt − rn) + ελ(it − rn)

= σ
1 − µbχy

1 − µb
ŷt + σ

µbχr

1 − µb
(it − χπ̂t − rn) + ελ(it − rn) + εpd ,ΩeωtΩ0

= p̂d,t + εpd ,ΩeωtΩ0, (B.53)

where εpd ,Ω ≡ σ
-

1−µbχy
1−µb

(ω − δ)− µbχr
1−µb

κ
.

.

Using the fact that yt = χŷt + (ω − δ)eωtΩ0,
´ ∞

0 e−ρtytdt = Ω0, and πt = χπ̂t + κeωtΩ0, we obtain

Ω0 = (1 − εΩ)Ω0 +

ˆ ∞

0
e−ρt

5
Tt + dg(it − χπ̂t − rn + rL p̂d,t)

6
dt − dg

ˆ ∞

0
e−(ρ+ψd)t (it − rn + rL p̂d,t) dt,

(B.54)
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where

εΩ ≡ τ +
κdg

ω − δ
−

ψdrLdg

ρ + ψd − ω
εpd ,Ω. (B.55)

Rearranging the expression for Ω0, we obtain

Ω0 =
1

εΩ

+
ˆ ∞

0
e−ρt

5
Tt + dg(it − χπ̂t − rn + rL p̂d,t)

6
dt − dg

ˆ ∞

0
e−(ρ+ψd)t (it − rn + rL p̂d,t) dt

,
. (B.56)

B.5 Proof of Proposition 5

Proof. We divide this proof in three steps. First, we derive the condition for local uniqueness of the solution
under the policy rule (5). Second, we derive the path of [yt, πt, it]∞0 for a given path of monetary shocks.
Third, we show how to implement a given path of nominal interest rates it − rn = e−ψmt(i0 − rn) and a
given value of Ω0, which maps to a given value of fiscal backing

´ ∞
0 e−ρtTtdt.

Equilibrium determinacy First, note that we can write νt as follows,

νt =
1 − µb

1 − µbχy
σ−1(it − rn)−

µbχr

1 − µbχy
i̇t +

1 − µb
1 − µbχy

χpελ(it − rn)

=

+
1 − µb

1 − µbχy
σ−1 +

1 − µb
1 − µbχy

χpελ

,
(φππt + ut)−

µbχr

1 − µbχy
(φππ̇t + u̇t)

= σ̃−1
+

1 +
1 − µb

1 − µbχy
σ̃χpελ

,
φππt +

µbχr

1 − µbχy
φπκyt + ν̃t, (B.57)

where ν̃t ≡
5

1−µb
1−µbχy

σ−1 + 1−µb
1−µbχy

χpελ

6
ut − µbχr

1−µbχy
u̇t.

The dynamic system for yt and πt can now be written as

/
ẏt

π̇t

2
=

/
δ̃ −σ̃−1(1 − φ̃π)

−κ ρ

2 /
yt

πt

2
+

/
1
0

2
ν̃t, (B.58)

where δ̃ ≡ δ + µbχr
1−µbχy

φπκ and φ̃π ≡
5
1 + 1−µb

1−µbχy
σ̃χpελ

6
φπ .

The eigenvalues of the system above are given by

ωT =
ρ + δ̃ +

?
(ρ + δ̃)2 + 4(σ̃−1(1 − φ̃π)κ − ρδ̃)

2
, ωT =

ρ + δ̃ −
?
(ρ + δ̃)2 + 4(σ̃−1(1 − φ̃π)κ − ρδ̃)

2
.

(B.59)

The system has a unique bounded solution if both eigenvalues have positive real parts. A necessary
condition for the eigenvalues to have positive real parts is

ρ + δ +
µbχr

1 − µbχy
φπκ > 0 ⇐⇒ φπ > −(ρ + δ)

!
µbχrκ

1 − µbχy

"−1
= 1 −

!
ρ + λ

!
Cs

C∗
s

"σ" 1 − µbχy

µbχrκ
. (B.60)

If the condition above is violated, then the real part of ωT is negative. Another necessary condition for
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the eigenvalues to have positive real parts is

σ̃−1(1 − φ̃π)κ < ρ

+
δ +

µbχr

1 − µbχy
φπκ

,
, (B.61)

which after some rearrangement gives us

φπ >
σ̃−1 − ρδ/κ

σ̃−1 + µbχrρ
1−µbχy

+
(1−µb)χpελ

1−µbχy

= 1 −
χpελ + ρλ

κ
1−µbχy

1−µb

-
Cs
C∗

s

.σ

χpελ + σ−1 . (B.62)

If the above condition is violated, then the eigenvalues are real-valued and ωT < 0. This establishes the
necessity of the condition

φπ > max

@
AB

AC
1 −

χpελ + ρλ
κ

1−µbχy
1−µb

-
Cs
C∗

s

.σ

χpελ + σ−1 , 1 −
!

ρ + λ

!
Cs

C∗
s

"σ" 1 − µbχy

µbχrκ

D
AE

AF
. (B.63)

Suppose that the above condition is satisfied. If the eigenvalues are complex-valued, then the above
condition guarantees that ρ + δ̃ > 0, so the eigenvalues’ real part is positive. If the eigenvalues are real-

valued, the above condition guarantees that
?
(ρ + δ̃)2 + 4(σ̃−1(1 − φπ)κ − ρδ̃) < ρ + δ̃, so ωT > 0. There-

fore, the condition is necessary and sufficient for both eigenvalues to have a positive real part. Note that, if
µbχy < 1, then φπ > 1 is sufficient to guarantee the local uniqueness of the solution.

Solution to the dynamic system. The dynamic system for [yt, πt]∞t=0 is given by

/
ẏt

π̇t

2
=

/
δ̃ −σ̃−1(1 − φ̃π)

−κ ρ

2 /
yt

πt

2
+

/
1
0

2
ν̃t. (B.64)

In matrix form, the system is given by

˙̃Zt = ÃZ̃t + Bν̃t,

where B = [1, 0]′.
Applying the spectral decomposition to matrix Ã, we obtain

Ã = ṼΩTṼ−1,

where

Ṽ =

/
ρ−ωT

κ
ρ−ωT

κ

1 1

2
; Ṽ−1 =

κ

ωT − ωT

/
−1 ρ−ωT

κ

1 − ρ−ωT
κ

2
; ΩT =

/
ωT 0
0 ωT

2
.

Decoupling the system, we obtain
˙̃zt = ΩT z̃t + b̃ν̃t,

where z̃t = Ṽ−1Z̃t and b̃ = Ṽ−1B.
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Solving the system forward, we obtain

z1,t = −Ṽ11
ˆ ∞

t
e−ωT(z−t)ν̃zdz

z2,t = −Ṽ21
ˆ ∞

t
e−ωT(z−t)ν̃zdz,

where Ṽi,j is the (i, j) entry of the matrix Ṽ−1.
Rotating the system back to the original coordinates, we obtain output and inflation

yt = −Ṽ11Ṽ11
ˆ ∞

t
e−ωT(z−t)ν̃zdz − Ṽ12Ṽ21

ˆ ∞

t
e−ωT(z−t)ν̃zdz

πt = −Ṽ21Ṽ11
ˆ ∞

t
e−ωT(z−t)ν̃zdz − Ṽ22Ṽ21

ˆ ∞

t
e−ωT(z−t)ν̃zdz.

We rewrite the above expression as follows,

yt = − ωT − ρ

ωT − ωT

ˆ ∞

t
e−ωT(z−t)ν̃zdz +

ωT − ρ

ωT − ωT

ˆ ∞

t
e−ωT(z−t)ν̃zdz

πt = − κ

ωT − ωT

ˆ ∞

t

-
e−ωT(z−t) − e−ωT(z−t)

.
ν̃zdz,

where ν̃t ≡
5

1−µb
1−µbχy

σ−1 + 1−µb
1−µbχy

χpελ

6
ut − µbχr

1−µbχy
u̇t.

Using the fact that ut = e−ψmtu0, we obtain

yt = − ρ + ψm

(ωT + ψm)(ωT + ψm)

1 − µb
1 − µbχy

!
σ−1 + χpελ +

µbχr

1 − µb
ψm

"
ut

πt = − κ

(ωT + ψm)(ωT + ψm)

1 − µb
1 − µbχy

!
σ−1 + χpελ +

µbχr

1 − µb
ψm

"
ut,

where (ωT + ψm)(ωT + ψm) = σ̃−1κ(φ̃π − 1) + (δ̃ + ψm)(ρ + ψm) > 0.
The wealth effect is given by

Ω0 = − 1
(ωT + ψm)(ωT + ψm)

1 − µb
1 − µbχy

!
σ−1 + χpελ +

µbχr

1 − µb
ψm

"
u0. (B.65)

The nominal interest rate is given by

it = rn +

+
1 − κφπ

(ωT + ψm)(ωT + ψm)

1 − µb
1 − µbχy

!
σ−1 + χpελ +

µbχr

1 − µb
ψm

"
ut

,
ut

= rn +
(δ + ψm)(ρ + ψm)− σ̃−1κ

(δ̃ + ψm)(ρ + ψm) + σ̃−1κ(φ̃π − 1)
ut.
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Note that if ψm = −ω > 0, then the nominal interest is given by

it − rn =
(δ − ω)(ρ − ω)− σ̃−1κ

(δ̃ − ω)(ρ − ω) + σ̃−1κ(φ̃π − 1)
ut

=
ρδ − σ̃−1κ − ω(ρ + δ) + ω2

(δ̃ − ω)(ρ − ω) + σ̃−1κ(φ̃π − 1)
ut

=
ωω − ω(ω + ω) + ω2

(δ̃ − ω)(ρ − ω) + σ̃−1κ(φ̃π − 1)
ut = 0, (B.66)

using the fact that ωω = ρδ − σ̃−1κ and ω + ω = ρ + δ.
Despite the zero interest rate, the impact on output and inflation is non-zero. In particular, the outside

wealth effect is given by

Ω0 = − 1
(ωT − ω)(ωT − ω)

!
1 − µb

1 − µbχy
(σ−1 + χpελ)−

µbχr

1 − µbχy
ω

"
u0. (B.67)

Implementability condition. Suppose ut = νe−ψmt(i0 − rn) + θeωt and denote by (it, yt, πt) the value
of the nominal interest rate, output, and inflation under the Taylor rule. Given the linearity of the system,
the solution will be sum of the solutions for u1,t = νe−ψmt(i0 − rn) and u2,t = θeωt. The nominal interest
rate is then given by

it − rn =
(δ + ψm)(ρ + ψm)− σ̃−1κ

(δ̃ + ψm)(ρ + ψm) + σ̃−1κ(φ̃π − 1)
νe−ψmt(i0 − rn) +

(δ − ω)(ρ − ω)− σ̃−1κ

(δ̃ − ω)(ρ − ω) + σ̃−1κ(φ̃π − 1)
νeωt

= e−ψmt(i0 − rn), (B.68)

using the fact that the nominal interest rate is zero under u2,t and

ν =
(δ̃ + ψm)(ρ + ψm) + σ̃−1κ(φ̃π − 1)

(δ + ψm)(ρ + ψm)− σ̃−1κ
=

(ωT + ψm)(ωT + ψm)

(ω + ψm)(ω + ψm)
. (B.69)

The outsider wealth effect Ω0 =
´ ∞

0 e−ρtytdt is given by

Ω0 = −
1−µb

1−µbχy
(σ−1 + χpελ) +

µbχr
1−µbχy

ψm

(ωT + ψm)(ωT + ψm)
ν(i0 − rn)−

1−µb
1−µbχy

σ−1 − µbχr
1−µbχy

ω

(ωT − ω)(ωT − ω)
θ (B.70)

To implement a Ω0 = Ω0, we must choose θ as follows

θ =
(ωT + |ω|)(ωT + |ω|)

1−µb
1−µbχy

(σ−1 + χpελ) +
µbχr

1−µbχy
|ω|

(ΩAR(1)
0 − Ω0), (B.71)

where ΩAR(1)
0 = − 1

(ωT+ψm)(ωT+ψm)

-
1−µb

1−µbχy
σ−1 + µbχr

1−µbχy
ψm

.
ν(i0 − rn).
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Given the process for ut and the values of ν and θ, output can be written as

yt = − ρ + ψm

(ω + ψm)(ω + ψm)

1 − µb
1 − µbχy

!
σ−1 + χpελ +

µbχr

1 − µb
ψm

"
e−ψmt(i0 − rn)− (ρ − ω)

-
ΩAR(1)

0 − Ω0

.
eωt

=
(ρ − ω)eωt − (ρ + ψm)e−ψmt

(ω + ψm)(ω + ψm)

1 − µb
1 − µbχy

!
σ−1 + χpελ +

µbχr

1 − µb
ψm

"
(i0 − rn) + (ω − δ)eωtΩ0

= σ−1ŷt + χpελŷt +
µbχr

1 − µb
ψmŷt + (ω − δ)eωtΩ0 (B.72)

which coincides with (16), where we used ρ − ω = ω − δ. This result also implies that πt = πt, as πt =

κ
´ ∞

0 e−ρtytdt = κ
´ ∞

0 e−ρtytdt = πt.

Fiscal transfers. To determine the value of fiscal transfers to savers, we need first to solve for the real
interest rate and for the wealth effect. The real interest rate is given by

it − πt − rn =

+
1 − κ(φπ − 1)

(ωT + ψm)(ωT + ψm)

!
1 − µb

1 − µbχy
σ−1 +

µbχr

1 − µbχy
ψm

",
ut

=
(ρ + ψm)

-
δ + µbχrκ

1−µbχy
+ ψm

.

σ̃−1κ(φπ − 1) + (δ̃ + ψm)(ρ + ψm)
ut.

The wealth effect is given by

Ω0 = − 1
(ωT + ψm)(ωT + ψm)

!
1 − µb

1 − µbχy
σ−1 +

µbχr

1 − µbχy
ψm

"
u0.

Note that an increase in u0 always creates a negative wealth effect regardless of the sign of the response
of interest rates. The present discounted value of transfers satisfies

ˆ ∞

0
e−ρtµsTs,tdt =

ˆ ∞

0
e−ρt

5
(τ − µbT′

b(Y))yt − dg(it − πt − rn)
6

dt

= (τ − µbT′
b(Y))Ω0 − dg

εr,uu0

ρ + ψm
.
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C Empirical Evidence on the Fiscal Response to Monetary Shocks

We estimate the empirical IRFs using a VAR identified by a recursiveness assumption, as in Christiano et
al. (1999), extended to include fiscal variables.

The variables included in the VAR are: real GDP per capita, CPI inflation, real consumption per capita,
real investment per capita, capacity utilization, hours worked per capita, real wages, tax revenues over
GDP, government expenditures per capita, the federal funds rate, the 5-year constant maturity rate, and
the real value of government debt per capita. We estimate a four-lag VAR using quarterly data for the
period 1962:1-2007:3. The identification assumption of the monetary shock is as follows: the only variables
that are allowed to react contemporaneously to the monetary policy shock are the federal funds rate, the
5-year rate and the value of government debt. All other variables, including government tax revenues
and expenditures, are allowed to react with a lag of one quarter. This assumption is the natural extension
of Christiano et al. (1999): while agents’ decisions (with agents, in our case, including households and
the government) cannot react to the shock contemporaneously, financial variables (in our case, the federal
funds rate, the 5-year rate, and the value of government debt) immediately incorporate the information of
the shock.

Data sources All the variables are obtained from standard sources (see below), except for the real value
of debt, which we construct from the series provided by Hall et al. (2018).33 These data provide the market
value of government debt held by private investors at a monthly frequency from 1776 through 2018. We
transform the series into quarterly frequency by keeping the market value of debt in the first month of the
quarter. This choice is meant to avoid capturing changes in the market value of debt arising from changes
in the quantity of debt after a monetary shock instead of changes in prices.

The data sources are:
Nominal GDP: BEA Table 1.1.5 Line 1
Real GDP: BEA Table 1.1.3 Line 1
Consumption Durable: BEA Table 1.1.3 Line 4
Consumption Non Durable: BEA Table 1.1.3 Line 5
Consumption Services: BEA Table 1.1.3 Line 6
Private Investment: BEA Table 1.1.3 Line 7
GDP Deflator: BEA Table 1.1.9 Line 1
Capacity Utilization: FRED CUMFNS
Hours Worked: FRED HOANBS
Nominal Hourly Compensation: FRED COMPNFB
Civilian Labor Force: FRED CNP16OV
Nominal Revenues: BEA Table 3.1 Line 1
Nominal Expenditures: BEA Table 3.1 Line 21
Nominal Transfers: BEA Table 3.1 Line 22
Nominal Gov’t Investment: BEA Table 3.1 Line 39
Nominal Consumption of Net Capital: BEA Table 3.1 Line 42
Effective Federal Funds Rate (FF): FRED FEDFUNDS
5-Year Treasury Constant Maturity Rate: FRED DGS5

33For recent work using a similar data construction, see e.g., Cochrane (2019) and Jiang et al. (2019).
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Figure C.1: Estimated IRFs.

Market Value of Government Debt: Hall et al. (2018)

VAR estimation. Figure C.1 shows the results. As is standard in the literature, we find that a con-
tractionary monetary shock increases the federal funds rate and reduces output and inflation on impact.
Moreover, the contractionary monetary shock reduces consumption, investment, and hours worked.

The Government’s Intertemporal Budget Constraint The fiscal response in the model corresponds
to the present discounted value of fiscal transfers over an infinite horizon, that is, ∑∞

t=0 β̃tTt, where β̃ = 1−λ
1+ρs

.
We next consider the empirical counterpart of this quantity. First, we calculate a truncated intertemporal
budget constraint from period zero to T :

byb0

;<=>
debt

revaluation

=
T
∑
t=0

β̃t

#

777$
τyt + τt

; <= >
tax revenue

− β̃−1by(im
t−1 − πt − rn)

; <= >
interest payments

)

888*
− T0,T + β̃T bybT

; <= >
other transfers/expenditures

& final debt

(C.1)

The right-hand side of (C.1) is the present value of the impact of a monetary shock on fiscal accounts.
The first term represents the change in revenues that results from the real effects of monetary shocks. If
a contractionary monetary shock generates a recession, government revenues will naturally decrease as
a consequence, both because output decreases and because the average tax decreases if the tax system is
progressive. The second term represents the change in interest payments on government debt that results
from change in nominal rates. For example, a contractionary monetary shock increases nominal payments
on government debt. The last two terms are adjustments in transfers and other government expenditures,
and the final debt position at period T , respectively. In particular, T0,T represents the present discounted
value of transfers from period 0 through T . Provided that T is large enough, such that (yt, τt, it) have
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(1) (2) (3) (4) (5) (1) - (2) - (3) + (4) - (5)
Revenues Interest Payments Transfers & Debt in T Initial Debt Residual

Expenditures

Data -26 68.88 -12.09 2.91 -49.74 30.13
[-72.89,20.89] [30.01,107.75] [-48.74,24.56] [-12.79,18.62] [-68.03,-31.46] [-4.74,65]

Table C.1: The impact on fiscal variables of a monetary policy shock
Note: Calculations correspond to a a 100 bps unanticipated interest rate increase. Confidence interval at 95% confidence level.

essentially converged to the steady state, then the value of debt at the terminal date, bT , equals (minus) the
present discounted value of transfers and other expenditures from period T onward. Hence, the last two
terms combined can be interpreted as the present discounted value of fiscal transfers from zero to infinity.

The left-hand side represents the revaluation effect of the initial stock of government debt. In the pres-
ence of long-term bonds, a contractionary monetary shock reduces the initial value of government bonds.
Hence, part of the adjustment in response to the shock comes from a reduction in the value of debt, instead
of coming entirely from raising present or future taxes.

Table C.1 shows the impact on the fiscal accounts of a monetary policy shock, both in the data and in
the estimated model. We start by testing whether our estimate of the fiscal response to a monetary shock
is consistent with the government’s intertemporal budget constraint. To test this, we apply equation (C.1)
to the data and check whether the difference between the left-hand side and the right-hand side is different
from zero. We decompose the fiscal response in the data into six groups: the present value (PV) of revenues,
the PV of interest payments, the PV of transfers and expenditures, the final value of debt, the initial value
of debt, and a residual. The residual is calculated as

Residual = Revenues - Interest Payments - Transfers + Debt in T - Initial Debt

We truncate the calculations to quarter 60, that is, T = 60 (15 years) in equation (C.1). The results reported in
Table C.1 imply that we cannot reject the possibility that the residual is zero and, therefore, we cannot reject
the possibility that the intertemporal budget constraint of the government is satisfied in our estimation.

The adjustment of the fiscal accounts in the data corresponds to the patterns we observed in Figure 1.
The contractionary monetary policy shock leads to an increase in the present value of interest payments
and of transfers and expenditures. The present value of revenues drops in response to the shock, mostly
as a result of the recession generated by the monetary shock. The response of initial debt is quantitatively
important, and it accounts for the bulk of the adjustment in the fiscal accounts.

EBP. To estimate the response of the corporate spread in the data, we add the EBP measure of Gilchrist
and Zakrajšek (2012) into our VAR (ordered after the fed funds rate). Since the EBP is only available starting
in 1973, we reduce our sample period to 1973:1-2007:7. The estimated IRFs are in line with those obtained
for the longer sample. We find a significant increase of the EBP on impact, of 6.5 bps, in line with the
estimates reported in Gertler and Karadi (2015).
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Figure C.2: IRFs for the federal funds rate and excess bond premium.
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