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Filtered belief revision and generalized
choice structures

Giacomo Bonanno∗

Department of Economics, University of California, Davis, USA
gfbonanno@ucdavis.edu

Abstract

In an earlier paper [Rational choice and AGM belief revision, Artificial Intelli-
gence, 2009] a correspondence was established between the choice structures
of revealed-preference theory (developed in economics) and the syntactic
belief revision functions of the AGM theory (developed in philosophy and
computer science). In this paper we extend the re-interpretation of (a gen-
eralized notion of) choice structure in terms of belief revision by adding:
(1) the possibility that an item of “information” might be discarded as not
credible (thus dropping the AGM success axiom) and (2) the possibility that
an item of information, while not accepted as fully credible, may still be
“taken seriously” (we call such items of information “allowable”). We es-
tablish a correspondence between generalized choice structures (GCS) and
AGM belief revision; furthermore, we provide a syntactic characterization
of the proposed notion of belief revision, which we call filtered belief revision.

∗A first version of part of this paper was presented at the TARK 2019 conference and an extended
abstract published in: Lawrence S. Moss (editor): Proceedings Seventeenth Conference on Theoretical
Aspects of Rationality and Knowledge (TARK 2019), Electronic Proceedings in Theoretical Computer
Science 297, pp. 82-90, July 2019.
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1 Introduction

In Bonanno (2009) a correspondence was established between rational choice
theory – also known as revealed-preference theory1 – and the AGM theory of
belief revision.2

Revealed-preference theory considers choice structures
〈
Ω,E, f

〉
consisting

of a non-empty set Ω (whose elements are interpreted as possible alternatives
to choose from), a collection E of subsets of Ω (interpreted as possible menus,
or choice sets) and a function f : E → 2Ω (2Ω denotes the set of subsets of Ω),
representing choices made by the agent, conditional on each menu. Given this
interpretation, the following restriction on the function f is a natural require-
ment (the alternatives chosen from menu E should be elements of E): ∀E ∈ E,

f (E) ⊆ E. (1)

The objective of reveled-preference theory is to characterize choice structures
that can be “rationalized" by a total pre-order% on Ω, interpreted as a preference
relation,3 in the sense that, for every E ∈ E, f (E) is the set of most preferred
alternatives in E: f (E) = {ω ∈ E : ω % ω′,∀ω′ ∈ E}.

The AGM theory of belief revision is a syntactic theory that takes as starting
point a consistent and deductively closed set K of formulas in a propositional
language, interpreted as the agent’s initial beliefs, and a function BK : Φ → 2Φ

(where Φ denotes the set of formulas and 2Φ the set of subsets of Φ), called
a belief revision function based on K, that associates with every formula φ ∈ Φ
(interpreted as new information) a set BK(φ) ⊆ Φ, representing the agent’s
revised beliefs in response to information φ. If the function BK satisfies a set
of six properties, known as the basic AGM postulates, then it is called a basic
AGM belief revision function, while if it satisfies two additional properties (the
so-called supplementary postulates) then it is called a supplemented AGM belief
revision function. We denote a (basic or supplemented) AGM belief revision
function by B∗K.4

In Bonanno (2009) the two theories were linked by means of a re-interpretation
of the set-theoretic structures of revealed-preference theory, as follows. The set

1See, for example, Rott (2001) and Suzumura (1983).
2Alchourrón et al. (1985), Gärdenfors (1988)
3Thus the intended meaning of ω % ω′ is “alternative ω is considered to be at least as good as

alternative ω′".
4In the literature it is common to denote an AGM belief revision function by ∗ : Φ→ 2Φ and to

denote by K ∗ φ the belief set resulting from revising K by φ. However, we will continue to use the
notation of Bonanno (2009).
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Ω is interpreted as a set of states. A model based on (or an interpretation of ) a
choice structure

〈
Ω,E, f

〉
is obtained by adding a valuation V that assigns to

every atomic formula p the set of states at which p is true. Truth of an arbitrary
formula at a state is then defined as usual. Given a model

〈
Ω,E, f ,V

〉
, the initial

beliefs of the agent are taken to be the set of formulas φ such that f (Ω) ⊆ ||φ||,
where ||φ|| denotes the truth set of φ; hence f (Ω) is interpreted as the set of
states that are initially considered possible. The events (sets of states) in E
are interpreted as possible items of information. If φ is a formula such that
||φ|| ∈ E, the revised belief upon learning that φ is defined as the set of formulas ψ
such that f (||φ||) ⊆ ||ψ||. Thus the event f (||φ||) is interpreted as the set of states
that are considered possible after learning that φ is the case. In light of this
interpretation, condition (1) above corresponds to the success postulate of AGM
theory (one of the six basic postulates): ∀φ ∈ Φ,

φ ∈ BK(φ), (2)

according to which any item of information is always accepted by the agent
and incorporated into her revised beliefs.

The correspondence between choice structures and AGM belief revision is
as follows. First of all, define a choice frame to be supplemented AGM-consistent
if, for every interpretation of it, the associated partial belief revision function
(‘partial’ because, typically, there are formulas φ such that ||φ|| < E) can be
extended to a (full-domain) supplemented AGM belief revision function (that is,
one that satisfies the six basic AGM postulates as well as the two supplementary
ones). In Bonanno (2009) it is shown that a finite choice frame is strongly AGM-
consistent if and only if it is “rationalizable", that is, if and only if there is a total
pre-order % on Ω such that, for every E ∈ E, f (E) = {ω ∈ E : ω % ω′,∀ω′ ∈ E}.
In this context the interpretation of the relation % is no longer in terms of
preference but in terms of plausibility: the intended meaning ofω % ω′ is “state
ω is considered to be at least as plausible as state ω′". Thus, for every item of
information E ∈ E, f (E) is the set of most plausible states compatible with the
information.

In this paper we continue the analysis of the relationship between choice
structures and AGM belief revision by removing restrictions (1) and (2), thus
considering a more general notion of belief revision.

The success axiom has been criticized in the AGM literature on the grounds
that individuals may not be prepared to accept every item of “information” as
credible. For example, during the U.S. Presidential campaign in 2016, a "news"
item appeared on several internet sites under the title “"Pope Francis shocks
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world, endorses Donald Trump for president”.5 While, perhaps, some people
believed this claim, many discarded it as “fake news”. In today’s political
climate, many items of “information” are routinely rejected as not credible.

There is a recent literature in the AGM tradition that relaxes the success
axiom (2) and allows for some formulas to be treated as not credible, so that
the corresponding “information" is not allowed to affect one’s beliefs.6 This
paper’s contribution follows this literature, while adding a further possibility.

First of all, we allow for some events – in the set of potential items of
information E – to be treated as not credible, so that

f (E) = f (Ω) if E ∈ E is rejected as not credible. (3)

Secondly, for information E ∈ E which is credible we postulate the “success”
property (1):

f (E) ⊆ E, if E ∈ E is credible.

Finally, we also add a third type of information, which is taken seriously but not
given the same status as credible information. For example, a detective might have
come to believe that of the three suspects suggested by preliminary evidence –
Ann, Bob and Carla – Ann should be discarded in light of her impeccable past
behavior, that is, the detective forms the belief that Ann is innocent. Suppose
now that new evidence points to Ann as the person who committed the crime.
In that case, while not forming the belief that Ann is indeed the culprit, the
detective might now add Ann as a serious possibility, by no longer believing
in her innocence; that is, the detective now considers it possible that Ann is the
culprit. We call an item of information that is taken seriously, while not treated
as fully credible, allowable and we capture possibility in terms of belief revision
by the following condition that says that allowable information is not ruled out
by the revised beliefs:

f (E) ∩ E , ∅ if E ∈ E allowable. (4)

We model credibility, allowability and rejection by partitioning the set E of
possible items of information into three sets: the set EC of credible items, the
set EA of allowable items and the set ER of rejected items. Thus we consider
generalized choice structures (GCS for short)

〈
Ω, {EC,EA,ER}, f

〉
such that:

5See: https://www.cnbc.com/2016/12/30/read-all-about-it-the-biggest-fake-news-stories-of-2016.
html (accessed June 3, 2019).

6See Booth et al. (2012; 2014), Boutilier et al. (1998), Fermé and Hansson (1999), Hansson (1999),
Hansson et al. (2001), Makinson (1997), Schlechta (1997).

https://www.cnbc.com/2016/12/30/read-all-about-it-the-biggest-fake-news-stories-of-2016.html
https://www.cnbc.com/2016/12/30/read-all-about-it-the-biggest-fake-news-stories-of-2016.html


G Bonanno 5

1. Ω , ∅,

2. EC,EA,ER are mutually disjoint subsets of 2Ω with Ω ∈ EC and
∅ < EC ∪ EA,7

3. f : E → 2Ω (where E = EC ∪ EA ∪ ER) is such that

(a) f (Ω) , ∅,

(b) if E ∈ ER then f (E) = f (Ω),

(c) if E ∈ EC then ∅ , f (E) ⊆ E,

(d) if E ∈ EA then f (E) ∩ E , ∅.

Remark 1. Note that if EA = ER = ∅ then the above definition of GCS coincides
with the definition of choice frame in Bonanno (2009), which we will now call a simple
choice frame.

On the syntactic side we consider partitions of the set Φ of formulas into three
sets: the set ΦC of credible formulas (which contains, at least, all the tautologies),
the set ΦA of allowable formulas and the set ΦR of rejected formulas (which
contains, at least, all the contradictions). As in Bonanno (2009) we then use
valuations to link syntax and semantics through interpretations and associate,
with every interpretation of a GCS, a partial belief revision function. We then
define a GCS to be basic-AGM consistent if, for every interpretation (or model)
of it, the associated partial belief revision function can be extended to a full-
domain belief revision function BK : Φ → 2Φ such that, for some basic AGM
belief revision function B∗K : Φ→ 2Φ, ∀φ ∈ Φ:

BK(φ) =


K if φ ∈ ΦR

B∗K(φ) if φ ∈ ΦC

K ∩ B∗K(φ) if φ ∈ ΦA.

Thus

1. if information φ is rejected then the original beliefs are maintained,

2. if φ is credible then revision is performed according to the basic AGM
postulates, and

7These sets may be “small", that is, we do not assume that EC ∪EA ∪ER covers the entire set 2Ω.
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3. if φ is allowable then revision is performed by contracting the original
beliefs by the negation of φ (by the Harper identity the contraction by
¬φ coincides with taking the intersection of the original beliefs with the
revision by φ).

Proposition 2 in Section 3 provides necessary and sufficient conditions for a GCS
to be basic-AGM consistent. As a preliminary step, in Section 2 we define the
syntactic notion of filtered belief revision and provide a characterization in terms
of AGM consistency. In Section 4 we extend to the current framework the result
of Bonanno (2009), concerning the correspondence between rationalizability by
a plausibility order and supplemented AGM consistency.

2 The syntactic approach

Let Φ be the set of formulas of a propositional language based on a countable
set A of atomic formulas.8 Given a subset K ⊆ Φ, its PL-deductive closure [K]PL

(where ‘PL’ stands for Propositional Logic) is defined as follows: ψ ∈ [K]PL if
and only if there exist φ1, ..., φn ∈ K (with n ≥ 0) such that (φ1 ∧ · · · ∧φn)→ ψ is
a tautology (that is, a theorem of Propositional Logic).9 A set K ⊆ Φ is consistent
if [K]PL , Φ (equivalently, if there is no formula φ such that both φ and ¬φ
belong to [K]PL). A set K ⊆ Φ is deductively closed if K = [K]PL.

Let K be a consistent and deductively closed set of formulas, representing
the agent’s initial beliefs, and let Ψ ⊆ Φ be a set of formulas representing
possible items of information. A belief revision function based on K and Ψ is a
function BK,Ψ : Ψ → 2Φ that associates with every formula φ ∈ Ψ (thought of
as new information) a set BK,Ψ(φ) ⊆ Φ (thought of as the revised beliefs upon
learning that φ). If Ψ , Φ then BK,Ψ is called a partial belief revision function,
while if Ψ = Φ then BK,Ψ is called a full-domain belief revision function and it is
more simply denoted by BK. If BK,Ψ is a partial belief revision function and B′K
is a full-domain belief revision function, we say that B′K is an extension of BK,Ψ
if, for all φ ∈ Ψ, B′K(φ) = BK,Ψ(φ).

A full-domain belief revision function B∗K : Φ → 2Φ is called a basic AGM
function if it satisfies the first six of the following properties and it is called a
supplemented AGM function if it satisfies all of them. The following properties
are known as the AGM postulates: ∀φ,ψ ∈ Φ,

8Thus Φ is defined recursively as follows: if p ∈ A then p ∈ Φ and if φ,ψ ∈ Φ then ¬φ ∈ Φ and
(φ ∨ ψ) ∈ Φ. The connectives ∧,→ and↔ are defined as usual.

9Note that, if F is a set of formulas, ψ ∈ [F ∪ {φ}]PL if and only if (φ→ ψ) ∈ [F]PL.
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(AGM1) B∗K(φ) = [B∗K(φ)]PL.
(AGM2) φ ∈ B∗K(φ).
(AGM3) B∗K(φ) ⊆ [K ∪ {φ}]PL.
(AGM4) if ¬φ < K, then [K ∪ {φ}]PL

⊆ B∗K(φ).
(AGM5) B∗K(φ) = Φ if and only if φ is a contradiction.
(AGM6) if φ↔ ψ is a tautology then B∗K(φ) = B∗K(ψ).

(AGM7) B∗K(φ ∧ ψ) ⊆
[
B∗K(φ) ∪

{
ψ
}]PL

.

(AGM8) if ¬ψ < B∗K(φ), then
[
B∗K(φ) ∪

{
ψ
}]PL
⊆ B∗K(φ ∧ ψ).

AGM1 requires the revised belief set to be deductively closed.
AGM2 postulates that the information be believed.
AGM3 says that beliefs should be revised minimally, in the sense that no new
formula should be added unless it can be deduced from the information re-
ceived and the initial beliefs.10

AGM4 says that if the information received is compatible with the initial beliefs,
then any formula that can be deduced from the information and the initial be-
liefs should be part of the revised beliefs.
AGM5 requires the revised beliefs to be consistent, unless the information φ is
a contradiction (that is, ¬φ is a tautology).
AGM6 requires that if φ is propositionally equivalent to ψ then the result of
revising by φ be identical to the result of revising by ψ.

AGM1-AGM6 are called the basic AGM postulates, while AGM7 and AGM8
are called the supplementary AGM postulates.
AGM7 and AGM8 are a generalization of AGM3 and AGM4 that

“applies to iterated changes of belief. The idea is that if BK(φ) is a
revision of K [prompted by φ] and BK(φ) is to be changed by adding
further sentences, such a change should be made by using expan-
sions of BK(φ) whenever possible.11 More generally, the minimal
change of K to include both φ and ψ (that is, BK(φ ∧ ψ)) ought to
be the same as the expansion of BK(φ) by ψ, so long as ψ does not

10Note that (see Footnote 9) ψ ∈ [K ∪ {φ}]PL if and only if (φ → ψ) ∈ K (since, by hypothesis,
K = [K]PL).

11The expansion of B∗K(φ) by ψ is [B∗K(φ) ∪
{
ψ
}
]PL. Note, again, that, for every formula χ,

χ ∈ [B∗K(φ) ∪
{
ψ
}
]PL if and only if (ψ→ χ) ∈ B∗K(φ) (since, by AGM1, B∗K(φ) = [B∗K(φ)]PL).
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contradict the beliefs in BK(φ)” (Gärdenfors (1988), p. 55; notation
changed to match ours).

For an extended discussion of the rationale behind the AGM postulates see
Gärdenfors (1988).

We now extend the notion of belief revision by allowing the agent to dis-
criminate among different items of information.

Definition 2.1. Let Φ be the set of formulas of a propositional language. A
credibility partition is a partition of Φ into three sets ΦC, ΦA and ΦR such that

1. ΦC is the set of credible formulas and is such that

(a) it contains all the tautologies,

(b) if φ ∈ ΦC then φ is consistent,

(c) if φ ∈ ΦC and ` (φ ↔ ψ) then ψ ∈ ΦC, that is, ΦC is closed under
logical equivalence.

2. ΦA is the (possibly empty) set of allowable formulas. We assume that if
φ ∈ ΦA then φ is consistent and that ΦA is closed under logical equiva-
lence.

3. ΦR is the set of rejected formulas, which contains (at least) all the contra-
dictions.

Definition 2.2. Let K be a consistent and deductively closed set of formulas
(representing the initial beliefs). A (full-domain) belief revision function based
on K, B◦K : Φ → 2Φ, is called a filtered belief revision function if it satisfies the
following properties: ∀φ,ψ ∈ Φ,

(F1) if φ ∈ ΦR then B◦K(φ) = K,
(F2) if ¬φ < K then

(a) if φ ∈ ΦC then B◦K(φ) = [K ∪ {φ}]PL

(b) if φ ∈ ΦA then B◦K(φ) = K,
(F3) if ¬φ ∈ K then B◦K(φ) is consistent and deductively closed and

(a) if φ ∈ ΦC then φ ∈ B◦K(φ)
(b) if φ ∈ ΦA then B◦K(φ) ⊆ (K \ {¬φ})

and [B◦K(φ) ∪ {¬φ}]PL = K,
(F4) if ` φ↔ ψ then B◦K(φ) = B◦K(ψ).



G Bonanno 9

By (F1), if information φ is rejected, then the original beliefs K are preserved.
(F2) says that if, initially, the agent did not believe ¬φ, then (a) if φ is credible
then the new beliefs are given by the expansion of K by φ, while (b) if φ
is allowable then the agent does not change her beliefs (since she already
considered φ possible).
(F3) says that if, initially, the agent believed ¬φ, then (a) if φ is credible, then
the agent switches from believing ¬φ to believing φ, while (b) if φ is allowable,
then the agent revises her beliefs by removing ¬φ from her original beliefs in a
minimal way (in the sense that she does not add any new beliefs and if she were
to re-introduce ¬φ into her revised beliefs and close under logical consequence
then she would go back to her initial beliefs).
By (F4) belief revision satisfies extensionality: if φ is logically equivalent to ψ
then revision by φ coincides with revision by ψ.

The following proposition provides a characterization of filtered belief re-
vision in terms of basic AGM belief revision.12 The proof is given in Appendix
A.

Proposition 1. Let K be a consistent and deductively closed set of formulas and
B◦K : Φ→ 2Φ a belief revision function based on K. Then the following are equivalent:

(A) B◦K is a filtered belief revision function,

(B) there exists a basic AGM belief revision function B∗K : Φ→ 2Φ such that, ∀φ ∈ Φ,

B◦K(φ) =


K if φ ∈ ΦR

B∗K(φ) if φ ∈ ΦC

K ∩ B∗K(φ) if φ ∈ ΦA

(5)

(5) says the following:

1. if information φ is rejected then the original beliefs are maintained,

2. if φ is credible then revision is performed according to the basic AGM
postulates, and

3. if φ is allowable then revision is performed by contracting the original
beliefs by the negation of φ (by the Harper identity the contraction by
¬φ coincides with taking the intersection of the original beliefs with the
revision by φ).

12Note that if ΦA = ∅ then we are in the binary case of “credibility limited revision” of Makinson
(1997), Fermé and Hansson (1999), Hansson et al. (2001).
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Remark 2. Note that if ¬φ < K then, by AGM3 and AGM4, B∗K(φ) = [K∪ {φ}]PL
⊇ K

and thus K∩ B∗K(φ) = K so that information φ ∈ ΦA has no effect on the initial beliefs.
Thus, if φ ∈ ΦA, belief change occurs only when ¬φ ∈ K, that is, when initially
the agent believes ¬φ; in this case, since ¬φ ∈ K (implying, by consistency of K, that
φ < K) andφ ∈ B∗K(φ) (implying, by consistency of B∗K(φ), that¬φ < B∗K(φ)), it follows
that φ < B◦K(φ) and ¬φ < B◦K(φ), so that the agent’s reaction to being informed that
φ (with φ ∈ ΦA) is to suspend judgment concerning φ, in other words, to consider
both φ and ¬φ as possible.

3 Semantics: generalized choice structures

Definition 3.1. A generalized choice structure (GCS) is a tuple
〈
Ω, {EC,EA,ER}, f

〉
such that:

1. Ω , ∅,13

2. EC,EA,ER are mutually disjoint subsets of 2Ω with Ω ∈ EC and∅ < EC∪EA,

3. f : E → 2Ω (where E = EC ∪ EA ∪ ER) is such that

(a) f (Ω) , ∅,

(b) if E ∈ ER then f (E) = f (Ω),

(c) if E ∈ EC then ∅ , f (E) ⊆ E,

(d) if E ∈ EA then f (E) ∩ E , ∅.

Next we introduce the notion of a model, or interpretation, of a GCS.
Fix a propositional language based on a countable set A of atomic formulas

and let Φ be the set of formulas. A valuation is a function V : A → 2Ω that
associates with every atomic formula p ∈ A the set of states at which p is true.
Truth of an arbitrary formula at a state is defined recursively as follows (ω |= φ
means that formula φ is true at state ω):
(1) for p ∈ A, ω |= p if and only if ω ∈ V(p),
(2) ω |= ¬φ if and only if ω 6|= φ,
(3) ω |= (φ ∨ ψ) if and only if either ω |= φ or ω |= ψ (or both).
The truth set of formula φ is denoted by ||φ||. Thus ||φ|| = {ω ∈ Ω : ω |= φ}.

13We do not assume that Ω is finite.
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Given a valuation V, define:14

K =
{
φ ∈ Φ : f (Ω) ⊆ ||φ||

}
, (6)

Ψ =
{
φ ∈ Φ : ||φ|| ∈ E

}
and (7)

BK,Ψ : Ψ→ 2Φ given by: BK,Ψ(φ) =
{
χ ∈ Φ : f

(
||φ||

)
⊆ ||χ||

}
. (8)

Since f (Ω) is interpreted as the set of states that the individual initially considers
possible, (6) is the initial belief set. It is straightforward to show that K is
consistent (since, by 3(a) of Definition 3.1, f (Ω) , ∅) and deductively closed.
(7) is the set of formulas that are potential items of information.
(8) is the partial belief revision function encoding the agent’s disposition to
revise her beliefs in response to items of information in Ψ (for E ∈ E, f (E)
is interpreted as the set of states that the individual considers possible after
receiving information E).

Definition 3.2. Given a GCS
〈
Ω, {EC,EA,ER}, f

〉
, a model or interpretation of it

is obtained by adding to it a pair ({ΦC,ΦA,ΦR} ,V) (where {ΦC,ΦA,ΦR} is a
credibility partition of Φ, Definition 2.1, and V is a valuation) such that, ∀φ ∈ Φ,

1. if ||φ|| ∈ EC then φ ∈ ΦC,

2. if ||φ|| ∈ EA then φ ∈ ΦA,

3. if ||φ|| ∈ ER then φ ∈ ΦR.

Definition 3.3. A generalized choice structure C =
〈
Ω, {EC,EA,ER}, f

〉
is basic-

AGM consistent if, for every model 〈C, {ΦC,ΦA,ΦR} ,V〉 of it, letting BK,Ψ be the
corresponding partial belief revision function (defined by (8)), there exist

1. a full-domain belief revision function BK : Φ→ 2Φ that extends BK,Ψ (that
is, for every φ ∈ Ψ, BK(φ) = BK,Ψ(φ)) and

2. a basic AGM belief revision function B∗K : Φ→ 2Φ

such that, for every φ ∈ Φ,

BK(φ) =


K if φ ∈ ΦR

B∗K(φ) if φ ∈ ΦC

K ∩ B∗K(φ) if φ ∈ ΦA.

(9)

14All these objects, including the truth sets of formulas, are dependent on the valuation V and
thus ought to be indexed by it; however, in order to keep the notation simple, we will omit the
subscript ‘V.
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That is, by Proposition 1, a GCS is basic-AGM consistent if, for every model of
it, there exists a filtered belief revision function (Definition 2.2) that extends the
partial belief revision function generated by the model.

The following proposition gives necessary and sufficient conditions for a
GCS to be basic-AGM consistent. The proof is given in Appendix B.

Proposition 2. Let C =
〈
Ω, {EC,EA,ER}, f

〉
be a generalized choice structure. Then

the following are equivalent:

(A) C is basic-AGM consistent.

(B) C satisfies the following properties: for every E ∈ EC ∪ EA,

1. if E ∩ f (Ω) , ∅ then

(a) if E ∈ EC then f (E) = E ∩ f (Ω),

(b) E ∈ EA then f (E) = f (Ω),

2. if E ∩ f (Ω) = ∅ and E ∈ EA then f (E) = f (Ω) ∪ E′ for some ∅ , E′ ⊆ E.

4 Rationalizability and supplemented AGM
consistency

In this section we investigate what additional properties a GCS needs to sat-
isfy in order to obtain a correspondence result analogous to Proposition 2 but
involving supplemented, rather than basic, AGM belief revision (that is, belief
revision functions that satisfy the six basic AGM postulates as well as the two
supplementary ones).

From now on we will focus on basic-AGM-consistent GCS, which – in virtue
of Definitions 3.1 and 3.3 and Proposition 2 – can be redefined as follows.

Definition 4.1. A basic-AGM-consistent generalized choice structure (BGCS) is a
tuple

〈
Ω, {EC,EA,ER}, f

〉
such that:

1. Ω , ∅,

2. EC,EA,ER are mutually disjoint subsets of 2Ω with Ω ∈ EC and∅ < EC∪EA,

3. f : E → 2Ω (where E = EC ∪ EA ∪ ER) is such that

(a) f (Ω) , ∅,



G Bonanno 13

(b) if E ∈ ER then f (E) = f (Ω),

(c) if E ∈ EC then ∅ , f (E) ⊆ E and if E∩ f (Ω) , ∅ then f (E) = E∩ f (Ω),

(d) if E ∈ EA then

i. if E ∩ f (Ω) , ∅ then f (E) = f (Ω),
ii. if E ∩ f (Ω) = ∅ then f (E) = f (Ω) ∪ E′ for some ∅ , E′ ⊆ E.

In order to obtain a characterization in terms of supplemented AGM belief
revision we need to add more structure.

Definition 4.2. A BGCS is called partitioned if there is a partition {ΩC,ΩA,ΩR}

of the set of states Ω (the elements of ΩC are called credible states, the elements
of ΩA are called allowable states and the elements of ΩR are called rejected states)
such that

1. ΩC , ∅

2. If E ∈ EC then

(a) E ∩ΩC , ∅,

(b) E ∩ΩC ∈ EC,15

(c) f (E) = f (E ∩ΩC) ⊆ ΩC.16

3. If ΩA , ∅ then ΩA ∈ EA. Furthermore, if E ∈ EA then

(a) E ∩ΩC = ∅,

(b) E ∩ΩA , ∅,

(c) E ∩ΩA ∈ EA,

(d) f (E) = f (E ∩ΩA).

4. If E ∈ ER then E ⊆ ΩR.

Note that

• by Point 2, if information E has a credible content (E ∩ΩC , ∅), then the
agent revises her beliefs based exclusively on the credible content of the
information ( f (E) = f (E∩ΩC)) and incorporates it into her revised beliefs
( f (E) ⊆ E ∩ΩC),

15 Note that, since Ω ∈ EC, ΩC ∩Ω = ΩC and ΩC , ∅, it follows that ΩC ∈ EC.
16Since, by 3(c) of Definition 4.1, f (E) ⊆ E, it follows that f (E) ⊆ E ∩ ΩC. In particular, f (Ω) =

f (ΩC) ⊆ ΩC.
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• by Point 3, if information E does not have a credible content (E∩ΩC = ∅)
but does not consist entirely of rejected states either (E ∩ ΩA , ∅), then
the agent revises her beliefs based exclusively on the “allowable” content
of the information ( f (E) = f (E ∩ΩA)),

• by Point 4, if information E is rejected then it consists entirely of rejected
states (E ⊆ ΩR).

We are interested in determining when a BGCS can be rationalized by a
plausibility order.

Definition 4.3. Let Ω be a set and let {ΩC,ΩA,ΩR} be a partition of Ω with
ΩC , ∅. A plausibility order on Ω is a total pre-order17 %⊆ Ω × Ω such that,
letting � denote the strict component of % and ∼ the equivalence component of
%,18

∀ω,ω′ ∈ Ω,

1. if ω ∈ ΩC and ω′ ∈ ΩA ∪ΩR then ω � ω′,

2. if ω ∈ ΩA and ω′ ∈ ΩR then ω � ω′.

Condition 1 says that credible states (those in ΩC) are more plausible than
allowable or rejected states (those in ΩA ∪ ΩR) and Condition 2 says that al-
lowable states (those in ΩA) are more plausible than rejected states (those in
ΩR).

For every F ⊆ Ω, we denote by best% F the set of most plausible elements of
F (according to %), that is,

best% F := {ω ∈ F : ω % ω′,∀ω′ ∈ F}. (10)

Definition 4.4. A partitioned BGCS
〈
{ΩC,ΩA,ΩR} , {EC,EA,ER} , f

〉
is rational-

izable if there exists a plausibility order % on Ω such that, ∀E ∈ E, (where
E = EC ∪ EA ∪ ER)

f (E) =


best% E if E ∩ΩC , ∅

best%Ω ∪ best% E if E ∩ΩC = ∅ and E ∩ΩA , ∅.

best%Ω if E ⊆ ΩR.

(11)

If (11) is satisfied, we say that the plausibility order% rationalizes the partitioned
BGCS.

17Thus % is complete or total (∀ω,ω′ ∈ Ω either ω % ω′ or ω′ % ω or both) and transitive
(∀ω,ω′, ω′′ ∈ Ω if ω % ω′ and ω′ % ω′′ then ω % ω′′).

18That is, (1) ω � ω′ if ω % ω′ and not ω′ % ω, and (2) ω ∼ ω′ if both ω % ω′ and ω′ % ω.
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Note that, by 2(c) of Definition 4.3, best%Ω ⊆ ΩC and thus best%Ω = best%ΩC;
furthermore, Properties 2 and 3 of Definition 4.2 are consistent with (11): for
example, if E ∩ΩC , ∅ then best% E = best% (E ∩ΩC), so that f (E) = f (E ∩ΩC).

The following proposition provides necessary and sufficient conditions for
a BGCS to be rationalizable. The proof is given in Appendix C.

Proposition 3. A partitioned BGCS
〈
{ΩC,ΩA,ΩR} , {EC,EA,ER} , f

〉
is rationalizable

if and only if, for every sequence 〈E1, ...,En,En+1〉 in E with En+1 = E1, conditions (A)
and (B) below are satisfied:

(A) if (Ek ∩ΩC) ∩ f (Ek+1 ∩ΩC) , ∅, , ∀k = 1, ...,n, then
(Ek ∩ΩC) ∩ f (Ek+1 ∩ΩC) = f (Ek ∩ΩC) ∩ (Ek+1 ∩ΩC) , ∀k = 1, ...,n.

(B) if Ek ∩ΩC = ∅, ∀k = 1, ...,n, and
(Ek ∩ΩA) ∩ f (Ek+1 ∩ΩA) , ∅, , ∀k = 1, ...,n, then
(Ek ∩ΩA) ∩ f (Ek+1 ∩ΩA) = f (Ek ∩ΩA) ∩ (Ek+1 ∩ΩA) , ∀k = 1, ...,n.

Conditions (A) and (B) in Proposition 3 are a generalization of what is known
in the revealed preference literature as the Strong Axiom of Revealed Preference
(SARP), which is a necessary, but not sufficient, condition for rationalizability
by a total pre-order (see Hansson (1968)).19

The following definition mirrors Definition 3.3.

Definition 4.5. A partitioned BGCS C =
〈
{ΩC,ΩA,ΩR}, {EC,EA,ER}, f

〉
is supplemented-

AGM consistent if, for every model 〈C, {ΦC,ΦA,ΦR} ,V〉 of it, letting BK,Ψ be the
corresponding partial belief revision function, there exist

1. a full-domain belief revision function BK : Φ→ 2Φ that extends BK,Ψ (that
is, for every φ ∈ Ψ, BK(φ) = BK,Ψ(φ)) and

2. two supplemented AGM belief revision functions B∗CK : Φ → 2Φ and
B∗AK : Φ→ 2Φ

such that, for every φ ∈ Φ,

BK(φ) =


K if φ ∈ ΦR

B∗CK (φ) if φ ∈ ΦC

K ∩ B∗AK (φ) if φ ∈ ΦA.

(12)

19Let
〈
Ω,E, f

〉
be a simple choice structure (that is, in our context, Ω = ΩC and E = EC) and

let 〈E1, ...,En,En+1〉 be a sequence in E with En+1 = E1. Then SARP is the following condition: if
Ek ∩ f (Ek+1) , ∅, , ∀k ∈ {1, ...,n}, then there exists a j ∈ {1, ...,n} such that E j ∩ f (E j+1) = f (E j)∩ E j+1.
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The following proposition extends Propositions 7 and 8 in Bonanno (2009)
to the current framework. The proof is given in Appendix D.

Proposition 4. LetC =
〈
{ΩC,ΩA,ΩR}, {EC,EA,ER}, f

〉
be a partitioned BGCS where

Ω = ΩC ∪ΩA ∪ΩR is finite. Then the following are equivalent:
(A) C is supplemented AGM consistent,
(B) C is rationalizable.

As explained in Bonanno (2009), the assumption that Ω is finite is needed to
ensure that best%E , ∅, for every ∅ , E ⊆ Ω. If one strengthens the definition
of plausibility order by requiring that, ∀E ⊆ Ω, if E , ∅ then best%E , ∅ then
the assumption of finiteness of Ω can be dropped.

5 Summary and conclusion

We put forward a notion of belief revision that allows for two possibilities: (1)
that an item of information be discarded as not credible and thus not allowed
to affect one’s beliefs and (2) that an item of information be treated as a serious
possibility without assigning full credibility to it. We first defined the syntactic
version of this notion, which we called “filtered belief revision" and character-
ized it in terms the notion of basic AGM belief revision. We then introduced the
notion of generalized choice structure, which provides a simple set-theoretic
semantics for belief revision and provided a characterization of filtered belief
revision in terms of properties of generalized choice structures. Finally, we
revisited, in this more general context, the notion of rationalizability of a choice
structure in terms of a plausibility order and established a correspondence
between rationalizability and AGM consistency in terms of full set of AGM
postulates (that is, the six basic postulates together with the supplementary
ones).

As noted in the introduction, this paper can be seen as an extension of
the AGM-based literature on “credibility-limited" belief revision. The notion
of filtered belief revision proposed here provides a hybrid approach to belief
revision, based on the use of both revision and contraction. For future research
it might be interesting to investigate alternative hybrid approaches to belief
change.
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A Proof of Proposition 1
(A) implies (B). Given a filtered belief revision function B◦K : Φ→ 2Φ, define the function
B∗K : Φ→ 2Φ as follows:

B∗K(φ) =

Φ if φ is a contradiction
[B◦K(φ) ∪ {φ}]PL if φ is consistent.

(13)

First we show that B∗K : Φ→ 2Φ is a basic AGM belief revision function. Fix an arbitrary
φ ∈ Φ.

1. Suppose first that φ is a contradiction, so that, by (13), B∗K(φ) = Φ. Then

• (AGM1) is satisfied since Φ = [Φ]PL.

• (AGM2) is satisfied since φ ∈ Φ.

• (AGM3) is satisfied since [K ∪ {φ}]PL = Φ (because, by hypothesis, φ is a
contradiction).

• (AGM4) is satisfied trivially, since, by hypothesis, ¬φ is a tautology and thus
¬φ ∈ K because K is deductively closed.

• The ‘if’ part of (AGM5) is satisfied by construction.

• (AGM6) is satisfied because if φ↔ ψ is a tautology then ψ is also a contra-
diction and thus B∗K(ψ) = B∗K(φ) = Φ.

2. Suppose now that φ is consistent, so that, by (13), B∗K(φ) = [B◦K(φ) ∪ {φ}]PL. Then

• (AGM1) is satisfied because [B◦K(φ) ∪ {φ}]PL =
[
[B◦K(φ) ∪ {φ}]PL

]PL
.

• (AGM2) is satisfied because φ ∈ [B◦K(φ) ∪ {φ}]PL.

• (AGM3) is satisfied because,
(1) if ¬φ ∈ K then [K ∪ {φ}]PL = Φ and,
(2) by Definition 2.2,

- if ¬φ < K and φ ∈ ΦC then B◦K(φ) = [K ∪ {φ}]PL and thus B∗K(φ) =[
[K ∪ {φ}]PL

∪ {φ}
]PL

= [K ∪ {φ}]PL,

- if ¬φ < K and φ ∈ ΦA ∪ ΦR then B◦K(φ) = K and thus [B◦K(φ) ∪ {φ}]PL =
[K ∪ {φ}]PL.

• (AGM4) is satisfied, because - as shown above - if ¬φ < K then [B◦K(φ) ∪
{φ}]PL = [K ∪ {φ}]PL.

• The ‘only if’ part of (AGM5) is satisfied because

- if ¬φ ∈ K then, by Definition 2.2, B◦K(φ) is consistent and thus not equal
to Φ,
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- if ¬φ < K then B◦K(φ) =

[K ∪ {φ}]PL if φ ∈ ΦC

K if φ ∈ ΦA ∪ΦR
and thus, since K

is consistent and φ is consistent, B◦K(φ) is consistent so that B◦K(φ) , Φ.

• (AGM6) is satisfied because ifφ↔ ψ is a tautology then, by (F4) of Definition
2.2, B◦K(φ) = B◦K(ψ) and thus [B◦K(φ) ∪ {φ}]PL = [B◦K(ψ) ∪ {ψ}]PL.

Next we need to show that

(a) if φ ∈ ΦC then B◦K(φ) = B∗K(φ), and

(b) if φ ∈ ΦA then B◦K(φ) = K ∩ B∗K(φ).

(a) Fix an arbitrary φ ∈ ΦC.

- If ¬φ < K then B◦K(φ) = [K ∪ {φ}]PL =
[
[K ∪ {φ}]PL

∪ φ
]PL

= B∗K(φ).

- If¬φ ∈ K then, by (F3a) of Definition 2.2,φ ∈ B◦K(φ) and thus [B◦K(φ)∪{φ}]PL =
[B◦K(φ)]PL = B◦K(φ) (the last equality holds because, by (F3) of Definition 2.2,
B◦K(φ) is deductively closed); thus B∗K(φ) = B◦K(φ).

(b) Fix an arbitrary φ ∈ ΦA. We need to show that B◦K(φ) = K ∩ B∗K(φ). First of all,
note that, by (F2) and (F3) of Definition 2.2, B◦K(φ) is deductively closed, that is,
B◦K(φ) = [B◦K(φ)]PL.

- If ¬φ < K then, by (F2) of Definition 2.2, B◦K(φ) = K; furthermore, B◦K(φ) ⊆
[B◦K(φ) ∪ {φ}]PL = B∗K(φ); hence B◦K(φ) = K ∩ B∗K(φ).

- If ¬φ ∈ K then, by (F3) of Definition 2.2,

B◦K(φ) ⊆ (K \ {¬φ}) and (14)

[B◦K(φ) ∪ {¬φ}]PL = K (15)

Since B◦K(φ) ⊆ [B◦K(φ) ∪ {φ}]PL = B∗K(φ) it follows from (14) that
B◦K(φ) ⊆ K ∩ B∗K(φ).
It remains to prove that K ∩ B∗K(φ) ⊆ B◦K(φ). By (15), ∀ψ ∈ Φ,

ψ ∈ K if and only if (¬φ→ ψ) ∈ B◦K(φ). (16)

Fix an arbitrary ψ ∈ K ∩ B∗K(φ). Since ψ ∈ K, by (16), (¬φ → ψ) ∈
B◦K(φ). Since ψ ∈ B∗K(φ) = [B◦K(φ) ∪ {φ}]PL, (φ → ψ) ∈ B◦K(φ). Thus, since
B◦K(φ) is deductively closed (¬φ → ψ) ∧ (φ → ψ) ∈ B◦K(φ); hence, since
(¬φ → ψ) ∧ (φ → ψ) → ψ is a tautology and B◦K(φ) is deductively closed,
ψ ∈ B◦K(φ).
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(B) implies (A). Let B∗K : Φ → 2Φ be a belief revision function that satisfies the six basic
AGM postulates and let B◦K : Φ→ 2Φ be such that, ∀φ ∈ Φ,

B◦K(φ) =


K if φ ∈ ΦR

B∗K(φ) if φ ∈ ΦC

K ∩ B∗K(φ) if φ ∈ ΦA.

(17)

We need to show that B◦K is a filtered belief revision function, that is, that, ∀φ,ψ ∈ Φ,

(F1) if φ ∈ ΦR then B◦K(φ) = K,
(F2) if ¬φ < K then

(a) if φ ∈ ΦC then B◦K(φ) = [K ∪ {φ}]PL

(b) if φ ∈ ΦA then B◦K(φ) = K,
(F3) if ¬φ ∈ K then B◦K(φ) is consistent and deductively closed and

(a) if φ ∈ ΦC then φ ∈ B◦K(φ)
(b) if φ ∈ ΦA then B◦K(φ) ⊆ (K \ {¬φ})

and [B◦K(φ) ∪ {¬φ}]PL = K,
(F4) if ` φ↔ ψ then B◦K(φ) = B◦K(ψ).

(18)

(F1) is the first line in (17). Fix an arbitrary φ ∈ ΦC ∪ ΦA; then, by Definition 2.1, φ is
consistent.
Suppose first that ¬φ < K. Then, by AGM3 and AGM4, B∗K(φ) = [K ∪ {φ}]PL so that, if
φ ∈ ΦC, Part (a) of (F2) follows from the second line of (17) and, if φ ∈ ΦA, then also Part
(b) of (F2) is satisfied because K ⊆ [K ∪ {φ}]PL = B∗K(φ) so that K ∩ B∗K(φ) = K.
Suppose now that ¬φ ∈ K. Since φ is consistent, by AGM1 and AGM5, B∗K(φ) is
deductively closed and consistent; since, by hypothesis, K is deductively closed and
consistent it follows that K∩B∗K(φ) is also deductively closed and consistent, so that B◦K(φ)
is deductively closed and consistent. If φ ∈ ΦC then Part (a) of (F3) is satisfied because,
by AGM2, φ ∈ B∗K(φ). Suppose that φ ∈ ΦA. Since B∗K(φ) is consistent and φ ∈ B∗K(φ) it
follows that ¬φ < B∗K(φ) and thus ¬φ < K∩B∗K(φ) = B◦K(φ), so that B◦K(φ) ⊆ K \ {¬φ}. Next
we show that [B◦K(φ) ∪ {¬φ}]PL = K. Since, by hypothesis, ¬φ ∈ K, and, by construction,
B◦K(φ) ⊆ K, it follows that (B◦K(φ) ∪ {¬φ}) ⊆ K and thus [B◦K(φ) ∪ {¬φ}]PL

⊆ [K]PL = K. It
remains to prove that K ⊆ [B◦K(φ)∪ {¬φ}]PL. Fix an arbitrary ψ ∈ K. Since, by hypothesis,
K = [K]PL and (ψ → (¬φ → ψ) is a tautology, (¬φ → ψ) ∈ K. Since φ ∈ B∗K(φ) and
B∗K(φ) is deductively closed, (φ ∨ ψ) ∈ B∗K(φ) and since (φ ∨ ψ) is logically equivalent
to (¬φ → ψ), it follows that (¬φ → ψ) ∈ B∗K(φ). Thus (¬φ → ψ) ∈ K ∩ B∗K(φ) and thus
ψ ∈ [(K ∩ B∗K(φ)) ∪ {¬φ}]PL = [B◦K(φ) ∪ {¬φ}]PL.
Finally, if ψ is logically equivalent to φ then ψ ∈ ΦC ∪ ΦA because both sets are closed
under logical equivalence and, by hypothesis, φ ∈ ΦC ∪ ΦA. Since, by AGM4, B∗K(φ) =
B∗K(ψ) it follows that (F4) is satisfied. �
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B Proof of Proposition 2
(A) implies (B). Fix a basic-AGM-consistent GCS C =

〈
Ω, {EC,EA,ER}, f

〉
and an ar-

bitrary E ∈ EC ∪ EA. Let p, q and r be atomic propositions and consider a model
({ΦC,ΦA,ΦR} ,V) where ||p|| = E, ||q|| = f (E) and ||r|| = f (Ω). Let K =

{
φ ∈ Φ : f (Ω) ⊆ ||φ||

}
,

Ψ =
{
φ ∈ Φ : ||φ|| ∈ E

}
and BK,Ψ(φ) =

{
χ ∈ Φ : f

(
||φ||

)
⊆ ||χ||

}
. Thus r ∈ K, p ∈ Ψ and

q ∈ BK,Ψ(p). Let BK : Φ → 2Φ be a full-domain extension of BK,Ψ : Ψ → 2Φ and
B∗K : Φ→ 2Φ a basic AGM revision function such that, for every φ ∈ Φ,

BK(φ) =


K if φ ∈ ΦR

B∗K(φ) if φ ∈ ΦC

K ∩ B∗K(φ) if φ ∈ ΦA.

(19)

• Suppose first that
E ∩ f (Ω) , ∅. (20)

We need to show that
if E ∈ EC then f (E) = E ∩ f (Ω). (21)

and
if E ∈ EA then f (E) = f (Ω). (22)

By (20), f (Ω) * Ω \ E = Ω \ ||p|| = ||¬p||, that is,

¬p < K (23)

so that, by AGM3 and AGM4,

B∗K(p) = [K ∪ {p}]PL. (24)

− Consider first the case where E ∈ EC, so that p ∈ ΦC. Since BK,Ψ(p) = B∗K(p) and
q ∈ BK,Ψ(p), q ∈ B∗K(p), so that, by (24), q ∈ [K ∪ {p}]PL; hence (p→ q) ∈ K (recall that
K is deductively closed), that is, f (Ω) ⊆ ||¬p∨ q|| = (Ω \ E)∪ f (E); thus, intersecting
both sides with E, E ∩ f (Ω) ⊆ f (E) ∩ E = f (E) (recall that, by Definition 3.1, since
E ∈ EC, f (E) ⊆ E).
Next we show that f (E) ⊆ E ∩ f (Ω). Since f (Ω) = ||r||, r ∈ K and thus, since K is
deductively closed, (p → r) ∈ K, from which it follows that r ∈ [K ∪ {p}]PL = B∗K(p)
(by (24)); thus, since B∗K(p) = BK,Ψ(p), r ∈ BK,Ψ(p), that is, f (E) ⊆ ||r|| = f (Ω). Hence,
since f (E) ⊆ E, f (E) ⊆ E ∩ f (Ω). This completes the proof of (21).

− Consider next the case where E ∈ EA, so that p ∈ ΦA. By (19), since q ∈ BK,Ψ(p),
q ∈ BK(p) = K ∩ B∗K(p). From q ∈ K it follows that f (Ω) ⊆ ||q|| = f (E). It re-
mains to prove that the converse is also true, namely that f (E) ⊆ f (Ω). Since
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f (Ω) = ||r||, r ∈ K. Thus, since K is deductively closed, (p → r) ∈ K, from which
it follows that r ∈ [K ∪ {p}]PL = B∗K(p) (by (24)). Thus r ∈ K ∩ B∗K(p), so that, since
BK,Ψ(p) = BK(p) = K ∩ B∗K(p) (by (19)), r ∈ BK,Ψ(p), that is, f (E) ⊆ ||r|| = f (Ω). This
completes the proof of (22).

• Suppose now that E ∈ EA (thus, by Point 2 of Definition 3.1, E , ∅) and

E ∩ f (Ω) = ∅. (25)

We need to show that f (E) = f (Ω) ∪ E′ for some ∅ , E′ ⊆ E. Since E ∈ EA and ||p|| = E,
p ∈ ΦA. Thus, by (19),

BK,Ψ(p) = BK(p) = K ∩ B∗K(p). (26)

Since E = ||p|| and f (E) = ||q||, q ∈ BK,Ψ(p) and thus, by (26), q ∈ K, that is, f (Ω) ⊆ ||q|| =
f (E). It follows from this and the fact that f (E) ∩ E ⊆ f (E), that

f (Ω) ∪
(

f (E) ∩ E
)
⊆ f (E). (27)

Next we show that f (E) ⊆ f (Ω) ∪
(

f (E) ∩ E
)
. Since f (Ω) = ||r||, r ∈ K and thus, since

K is deductively closed, (r ∨ p) ∈ K. Since p ∈ B∗K(p) and B∗K(p) is deductively closed,
(r∨p) ∈ B∗K(p). Thus, by (26), (r∨p) ∈ BK,Ψ(p), that is, f (E) ⊆ ||r∨p|| = ||r||∪||p|| = f (Ω)∪E;
hence (intersecting both sides with Ω \ E),

f (E) ∩ (Ω \ E) ⊆
(

f (Ω) ∪ E
)
∩ (Ω \ E)

=
(

f (Ω) ∩ (Ω \ E)
)
∪ (E ∩ (Ω \ E))

= f (Ω) ∩ (Ω \ E) =(by (25)) f (Ω).
(28)

Thus,
f (E) =

(
f (E) ∩ (Ω \ E)

)
∪

(
f (E) ∩ E

)
⊆(by (28)) f (Ω) ∪

(
f (E) ∩ E

)
. (29)

If follows from (27) and (29) that f (E) = f (Ω) ∪ E′ with E′ = f (E) ∩ E. Finally, by (d) of
definition of GCS (Definition 3.1), f (E) ∩ E , ∅.

(B) implies (A). Fix a GCS that satisfies the properties of part (B) of Proposition 2 and
an arbitrary model ({ΦC,ΦA,ΦR} ,V) of it. As usual, let

K =
{
φ ∈ Φ : f (Ω) ⊆ ||φ||

}
, (30)

Ψ =
{
φ ∈ Φ : ||φ|| ∈ E

}
, (31)

BK,Ψ : Ψ→ 2Φ given by: BK,Ψ(φ) =
{
χ ∈ Φ : f

(
||φ||

)
⊆ ||χ||

}
. (32)
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Let B∗K : Φ→ 2Φ be the following (full domain) belief revision function: ∀φ ∈ Φ,

B∗K(φ) =



1. Φ if and only if φ is a contradiction

2. [φ]PL if ||φ|| < EC ∪ EA

3. [K ∪ {φ}]PL if ||φ|| ∈ EC ∪ EA and ¬φ < K

4.
[
{ψ ∈ Φ : f (||φ||) ⊆ ||ψ||}

]PL
if ||φ|| ∈ EC and ¬φ ∈ K

5.
[
{ψ ∈ Φ : ( f (||φ||) ∩ ||φ||) ⊆ ||ψ||}

]PL
if ||φ|| ∈ EA and ¬φ ∈ K

(33)

First we show that B∗K is a basic AGM belief revision function.

• AGM1 is satisfied by construction.

• AGM2 is clearly satisfied in cases 1-3 and 5 of (33). As for case 4, since ||φ|| ∈ EC,
by definition of GCS f (||φ||) ⊆ ||φ||.

• AGM3 is clearly satisfied in cases 1-3 of (33). In cases 4 and 5, since ¬φ ∈ K,
[K ∪ {φ}]PL = Φ and the property holds trivially.

• AGM4 is clearly satisfied in cases 1-3 of (33) since [B∗K(φ)∪{φ}]PL = B∗K(φ). In cases
4 and 5 the property holds trivially since ¬φ ∈ K.

• AGM5 is satisfied by construction.

• AGM6 is satisfied because if φ↔ ψ is a tautology then

1. ifφ is a contradiction then so isψ and thus, by construction, B∗K(φ) = B∗K(ψ) =
Φ.

2. [φ]PL = [ψ]PL.

3. [K ∪ {φ}]PL = [K ∪ {ψ}]PL.

4. and 5. ||φ|| = ||ψ||.

Next define the following (full-domain) belief revision function: ∀φ ∈ Φ,

B◦K(φ) =


K if φ ∈ ΦR

B∗K(φ) if φ ∈ ΦC

K ∩ B∗K(φ) if φ ∈ ΦA

(34)

where B∗K(φ) is given by (33). Then, by definition of basic-AGM consistent GCS (Defini-
tion 3.3), it only remains to prove that B◦K is an extension of BK,Ψ (given by (30)), that is,
that, for every φ ∈ Ψ, χ ∈ BK,Ψ(φ) if and only if χ ∈ B◦K(φ). Fix an arbitrary φ ∈ Ψ, that
is, a formula φ such that ||φ|| ∈ E.

• If ||φ|| ∈ ER (so that φ ∈ ΦR) then (by definition of GCS: Definition 3.1) f (||φ||) =
f (Ω) and thus, ∀χ ∈ Φ, χ ∈ BK,Ψ(φ) if and only if f (Ω) ⊆ ||χ|| if and only if χ ∈ K
and, by (34), B◦K(φ) = K.
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• If ||φ|| ∈ EC (so that φ ∈ ΦC) then, ∀χ ∈ Φ, χ ∈ BK,Ψ(φ) if and only if f (||φ||) ⊆ ||χ||;
thus

– if ¬φ ∈ K then, by 4 of (33), f (||φ||) ⊆ ||χ|| if and only if χ ∈ B∗K(φ) = B◦K(φ),

– if ¬φ < K then f (Ω) ∩ ||φ|| , ∅ and thus, by hypothesis (1(a) of Part (B)
of Proposition 2), f (||φ||) = f (Ω) ∩ ||φ|| so that χ ∈ BK,Ψ(φ) if and only if
f (Ω)∩ ||φ|| ⊆ ||χ|| if and only if f (Ω) ⊆

(
Ω \ ||φ||

)
∪ ||χ|| = ||φ→ χ|| if and only

if (φ→ χ) ∈ K, if and only if χ ∈ [K ∪ {φ}]PL = B∗K(φ) = B◦K(φ).

• If ||φ|| ∈ EA (so that φ ∈ ΦA) then,

– if ¬φ ∈ K, that is, f (Ω)∩ ||φ|| = ∅ then, by hypothesis, f (||φ||) = f (Ω)∪ E′ for
some ∅ , E′ ⊆ ||φ|| so that E′ = f (||φ||)∩ ||φ||; hence χ ∈ BK,Ψ(φ) if and only if
f (||φ||) ⊆ ||χ|| if and only if f (Ω) ⊆ ||χ|| and f (||φ||) ∩ ||φ|| ⊆ ||χ||, if and only if
χ ∈ K and, by 5 of (33), χ ∈ B∗K(φ), that is, χ ∈ K ∩ B∗K(φ) = B◦K(φ),

– if ¬φ < K then f (Ω)∩ ||φ|| , ∅ and thus, by hypothesis, f (||φ||) = f (Ω) so that
χ ∈ BK,Ψ(φ) if and only if f (Ω) ⊆ ||χ|| if and only if χ ∈ K = K ∩ [K ∪ {φ}]PL =
K ∩ B∗K(φ) = B◦K(φ). �

C Proof of Proposition 3
The proof of Proposition 3 makes repeated use of the following proposition due to
Hansson (Hansson (1968), Theorem 7, p. 455). We begin with a definition.

Definition C.1. A simple choice structure is a triple 〈W,F , h〉where W is a non-empty set,
F ⊆ 2W , with ∅ < F and W ∈ F , and h : F → 2W satisfies ∅ , h(F) ⊆ F, for all F ∈ F .

Proposition 5 (Hansson (1968)). Let 〈W,F , h〉 be a simple choice structure. Then the following
conditions are equivalent:

1. there exists a total pre-order &⊆W ×W such that, for all F ∈ F ,

h(F) = best& F
de f
= {ω ∈ F : ω & ω′,∀ω′ ∈ F},

2. for every sequence 〈F1, ...,Fn,Fn+1〉 inF with Fn+1 = F1, if Fk∩h(Fk+1) , ∅, ∀k = 1, ...,n,
then Fk ∩ h(Fk+1) = h(Fk) ∩ Fk+1, ∀k = 1, ...,n.

First we show that if% rationalizes the partitioned BGCS
〈
{ΩC,ΩA,ΩR} , {EC,EA,ER} , f

〉
then (A) of Proposition 3 is satisfied. Construct the following simple choice frame
〈W,F , h〉: 

W = ΩC

F = {E ∩ΩC : E ∈ EC}

h : F → 2W is the restriction of f to F .

(35)
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By Definition 4.2, ΩC , ∅. By 2 of Definition 4.2, if E ∈ EC then E ∩ΩC ∈ EC and by 2
of Definition 4.1, ∅ < F and ΩC ∈ F . By 3(c) of Definition 4.1, h(F) , ∅,∀F ∈ F . By
hypothesis, since the BGCS is rationalized by the total pre-order %⊆ Ω × Ω, if E ∈ EC

then f (E) = f (E ∩ΩC) = best% (E ∩ΩC) ⊆ E ∩ΩC and thus, letting F = E ∩ΩC, h(F) ⊆ F.
Hence we have indeed defined a simple choice structure.
Let %C be the restriction of % to ΩC (that is, %C =% ∩ (ΩC ×ΩC)). By construction, since
% rationalizes the given GCS, we have that

∀F ∈ F , h(F) = best%C F
de f
= {ω ∈ F : ω %C ω

′,∀ω′ ∈ F}. (36)

Now fix an arbitrary sequence 〈E1, ...,En,En+1〉 inEC with En+1 = E1 such that,∀k = 1, ...,n,
(Ek ∩ΩC) ∩ f (Ek+1 ∩ΩC) , ∅. Let 〈F1, ...,Fn,Fn+1〉 be the corresponding sequence in F ,
that is, for every k = 1, ...,n, Fk = Ek ∩ ΩC (thus Fn+1 = F1). Then, for every k = 1, ...,n,
Fk ∩ h(Fk+1) , ∅. Thus, by (36) and Proposition 5, Fk ∩ h(Fk+1) = h(Fk)∩ Fk+1, ∀k = 1, ...,n,
that is, (Ek ∩ΩC) ∩ f (Ek+1 ∩ΩC) = f (Ek ∩ΩC) ∩ (Ek+1 ∩ΩC) , ∀k = 1, ...,n; that is, (A) of
Proposition 3 holds.

Next we show that Part (B) of Proposition 3 is satisfied. If ΩA = ∅ there is nothing
to prove. Assume, therefore, that ΩA , ∅ (so that, by 3 of Definition 4.2, ΩA ∈ E).
Construct the following choice frame

〈
W,G, g

〉
:

W = ΩA

G = {E ∩ΩA : E ∈ EA}

g : G → 2W is the restriction of f to G.

(37)

By 3(d) of Definition 4.1, for every G ∈ G, g(G) , ∅; furthermore, by hypothesis, since the
BGCS is rationalized by the total pre-order %⊆ Ω×Ω, if E ∈ EA then f (E) = f (E ∩ΩA) =
best% (E ∩ΩA) ⊆ E ∩ΩA and thus, letting G = E ∩ΩA, g(G) ⊆ G. Hence we have indeed
defined a simple choice structure.
Let %A be the restriction of % to ΩA (that is, %A =% ∩ (ΩA ×ΩA)). By construction, since
% rationalizes the given GCS, we have that

∀G ∈ G, g(G) = best%A G
de f
= {ω ∈ G : ω %A ω

′,∀ω′ ∈ G}. (38)

Now fix an arbitrary sequence 〈E1, ...,En,En+1〉 in EA with En+1 = E1 (thus, by 3(a)
of Definition 4.2 Ek ∩ ΩC = ∅, ∀k = 1, ...,n) such that (Ek ∩ΩA) ∩ f (Ek+1 ∩ΩA) , ∅,
∀k = 1, ...,n. Let 〈G1, ...,Gn,Gn+1〉 be the corresponding sequence in G, that is, for every
k = 1, ...,n, Gk = Ek ∩ ΩA (thus Gn+1 = G1). Then, for every k = 1, ...,n, Gk ∩ g(Gk+1) ,
∅. Thus, by (38) and Proposition 5, Gk ∩ g(Gk+1) = g(Gk) ∩ Gk+1, ∀k = 1, ...,n, that
is, (Ek ∩ΩA) ∩ f (Ek+1 ∩ΩA) = f (Ek ∩ΩA) ∩ (Ek+1 ∩ΩA) , ∀k = 1, ...,n, that is, (B) of
Proposition 3 holds.
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Next we show that if the partitioned BGSC
〈
{ΩC,ΩA,ΩR} , {EC,EA,ER} , f

〉
satisfies

Properties (A) and (B) of Proposition 3 then it can be rationalized by a plausibility order
% Ω ×Ω.

Let 〈W,F , h〉 be the simple choice frame defined in (35). Fix an arbitrary sequence
〈E1, ...,En,En+1〉 inEC with En+1 = E1 such that (Ek ∩ΩC)∩ f (Ek+1 ∩ΩC) , ∅, , ∀k = 1, ...,n,
and let 〈F1, ...,Fn,Fn+1〉 be the corresponding sequence in F (that is, Fk = Ek ∩ ΩC,
for all k = 1, ...,n). By the Property (A) of Proposition 3, (Ek ∩ΩC) ∩ f (Ek+1 ∩ΩC) =
f (Ek ∩ΩC) ∩ (Ek+1 ∩ΩC) , ∀k = 1, ...,n, that is, Fk ∩ h (Fk+1) = h (Fk) ∩ Fk+1, ∀k = 1, ...,n.
Hence, since the sequence was chosen arbitrarily, it follows from Proposition 5 that there
exists a total pre-order %C on W ×W = ΩC ×ΩC such that

∀F ∈ F , h(F) = best%C F
de f
= {ω ∈ F : ω %C ω

′,∀ω′ ∈ F}. (39)

Two cases are possible.

Case 1: ΩA = ∅. In this case, define %⊆ Ω ×Ω as follows:

% = %C ∪ {(ω,ω′) : ω ∈ ΩC and ω′ ∈ ΩR} ∪ {(ω,ω′) : ω,ω′ ∈ ΩR} . (40)

Then % satisfies the properties that define a plausibility order (Definition 4.3). Fix an

arbitrary E ∈ E. If E∩ΩC , ∅ then, by 2(c) of Definition 4.2, f (E) = f (E∩ΩC)
de f
= h(E∩ΩC)

and by (39) h(E ∩ ΩC) = best%C (E ∩ ΩC). By (40), if ω ∈ E ∩ ΩC and ω′ ∈ E \ ΩC then
ω � ω′ so that best%E = best%(E∩ΩC) = best%C (E∩ΩC); thus f (E) = best%E. If E∩ΩC = ∅
then E ⊆ ΩR and, by 3(b) Definition 3.1, f (E) = f (Ω). Since Ω ∩ ΩC = ΩC , ∅,

f (Ω) = f (Ω ∩ΩC)
de f
= h(ΩC) and by (39) h(ΩC) = best%C (ΩC); by (40), best%Ω = best%C ΩC,

so that f (Ω) = best%Ω.

Case 2: ΩA , ∅. In this case let
〈
W,G, g

〉
be the choice frame defined in (37). Fix

an arbitrary sequence 〈E1, ...,En,En+1〉 in E with En+1 = E1 such that Ek ∩ ΩC = ∅,
∀k = 1, ...,n, and (Ek ∩ΩA) ∩ g (Ek+1 ∩ΩA) , ∅, ∀k = 1, ...,n and let 〈G1, ...,Gn,Gn+1〉 be
the corresponding sequence in G (that is, Gk = Ek ∩ΩA, for all k = 1, ...,n). By Property
(B) of Proposition 3, (Ek ∩ΩA) ∩ g (Ek+1 ∩ΩA) = g (Ek ∩ΩA) ∩ (Ek+1 ∩ΩA) , ∀k = 1, ...,n,
that is, Gk ∩ g (Gk+1) = g (Gk) ∩ Gk+1, ∀k = 1, ...,n. Hence, since the sequence was
chosen arbitrarily, it follows from Proposition 5 that there exists a total pre-order %A on
W ×W = ΩA ×ΩA such that

∀G ∈ G, g(G) = best%A G
de f
= {ω ∈ G : ω %A ω

′,∀ω′ ∈ G}. (41)

Define %⊆ Ω × Ω as follows (where %C is the total pre-order on ΩC × ΩC that satisfies
(39)):

% = %C ∪ %A

∪ {(ω,ω′) : ω ∈ ΩC and ω′ ∈ ΩA ∪ΩR}

∪ {(ω,ω′) : ω ∈ ΩA and ω′ ∈ ΩR}

∪ {(ω,ω′) : ω,ω′ ∈ ΩR}.

(42)
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Then % satisfies the properties that define a plausibility order (Definition 4.3). Fix
an arbitrary E ∈ E. If E ∩ ΩC , ∅ or E ⊆ ΩR, then f (E) = best%E by the argument
developed in Case 1. If E ∩ ΩC = ∅ and E ∩ ΩA , ∅, then, by 3(d) of Definition 4.2,

f (E) = f (E ∩ ΩA)
de f
= g(E ∩ ΩA) and by (41) g(E ∩ ΩA) = best%A (E ∩ ΩA). By (42), if

ω ∈ E ∩ ΩA and ω′ ∈ ΩR then ω � ω′ so that best%E = best%(E ∩ ΩA) = best%A (E ∩ ΩA);
thus f (E) = best%E. �

D Proof of Proposition 4

(A) implies (B). Let C =
〈
{ΩC,ΩA,ΩR}, {EC,EA,ER}, f

〉
, with Ω

de f
= ΩC ∪ΩA ∪ΩR finite,

be a partitioned BGCS which is supplemented AGM consistent, that is, there exist
supplemented AGM belief revision functions B∗CK : Φ → 2Φ and B∗AK : Φ → 2Φ such that
the function BK : Φ→ 2Φ defined by

BK(φ) =


K if φ ∈ ΦR

B∗CK (φ) if φ ∈ ΦC

K ∩ B∗AK (φ) if φ ∈ ΦA

(43)

is an extension of BK,Ψ, where, as usual, K =
{
φ ∈ Φ : f (Ω) ⊆ ||φ||

}
, Ψ =

{
φ ∈ Φ : ||φ|| ∈ E

}
and BK,Ψ(φ) =

{
χ ∈ Φ : f (||φ||) ⊆ ||χ||

}
. We need to show that C is rationalizable by a

plausibility order%on Ω (Definition 4.3), in the sense that, for every E ∈ E
de f
= EC∪EA∪ER,

f (E) =


best% E if E ∩ΩC , ∅

best%Ω ∪ best% E if E ∩ΩC = ∅ and E ∩ΩA , ∅

best%Ω if E ⊆ ΩR

(44)

(where, for every F ⊆ Ω, best% F
de f
= {ω ∈ F : ω % ω′}).

Extract from C the simple choice frame 〈ΩC,F , h〉 where F = {E ∩ΩC : E ∈ EC} and h is
the restriction of f to F . By 2(c) of Definition 4.2, (1) f (Ω) = f (Ω∩ΩC) = f (ΩC) = h(ΩC),

so that
{
φ ∈ Φ : h(ΩC) ⊆ ||φ||

}
= K and (2) ΨF

de f
=

{
φ ∈ Φ : ||φ|| ∈ F

}
⊆ Ψ. For every φ ∈ Φ

let BK,ΨF (φ) =
{
χ ∈ Φ : h(||φ||) ⊆ ||χ||

}
. Then, by (43), the supplemented AGM function

B∗CK is an extension of BK,ΨF and thus the simple frame 〈ΩC,F , h〉 is AGM consistent in
the sense of Definition 3 in Bonanno (2009) so that, by Proposition 8 in Bonanno (2009),
there exists a total preorder %C on ΩC such that, for every F ∈ F ,

h(F) = best%C F
de f
= {ω ∈ F : ω %C ω

′,∀ω′ ∈ F}. (45)

Two cases are possible.
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Case 1: ΩA = ∅. In this case, define %⊆ Ω × Ω as in (39) and the argument to show
that, ∀E ∈ E, f (E) = best%E is a repetition of the argument used in Case 1 of the proof of
Proposition 3.

Case 2: ΩA , ∅. In this case extract from C the simple choice frame
〈
Ω,G, g

〉
where

G = {E ∩ΩA : E ∈ EA} ∪ {Ω} and g is the restriction of f to G. By 3(d) of Definition 4.2,

ΨG
de f
=

{
φ ∈ Φ : ||φ|| ∈ G

}
⊆ Ψ. By construction, since g(Ω) = f (Ω), {φ ∈ Φ : g(Ω) ⊆ ||φ||} =

K. Then, by (43), the supplemented AGM function B∗AK is an extension of BK,ΨG and thus
the simple frame

〈
Ω,G, g

〉
is AGM consistent in the sense of Definition 3 in Bonanno

(2009) so that, by Proposition 8 in Bonanno (2009), there exists a total preorder %′A on ΩC

such that, for every G ∈ G,

g(G) = best%′A G
de f
= {ω ∈ G : ω %′A ω̄,∀ω̄ ∈ G}. (46)

Let %A=%′A ∩ (ΩA ×ΩA) and define %⊆ Ω × Ω as in (42). Then the argument to show
that, ∀E ∈ E, f (E) = best%E is a repetition of the argument used in Case 2 of the proof of
Proposition 3.

(B) implies (A). Let C =
〈
{ΩC,ΩA,ΩR}, {EC,EA,ER}, f

〉
, with Ω finite, be a partitioned

BGCS which is rationalized by a plausibility order % on Ω (Definition 4.3), in the sense
that, for every E ∈ E,

f (E) =


best% E if E ∩ΩC , ∅

best%Ω ∪ best% E if E ∩ΩC = ∅ and E ∩ΩA , ∅

best%Ω if E ⊆ ΩR.

(47)

We want to show thatC is supplemented AGM consistent (Definition 4.5). Let 〈ΩC,F , h〉
be the simple choice frame described above (F = {E ∩ ΩC : E ∈ EC} and h is the
restriction of f to F ). Then, by (47), 〈ΩC,F , h〉 is rationalized by the total preorder

%C
de f
=% ∩ (ΩC ×ΩC), so that, by Proposition 7 in Bonanno (2009), there exists a supple-

mented AGM function B∗CK that extends the function BK,ΨF defined above (BK,ΨF (φ) ={
χ ∈ Φ : h(||φ||) ⊆ ||χ||

}
). Similarly, let

〈
Ω,G, g

〉
be the other simple choice frame de-

scribed above (G = {E ∩ ΩA : E ∈ EA} ∪ {Ω} and g is the restriction of f to G). Then,

by (47),
〈
Ω,G, g

〉
is rationalized by the total preorder %A

de f
=% ∩ (ΩA ×ΩA), so that, by

Proposition 7 in Bonanno (2009), there exists a supplemented AGM function B∗AK that ex-
tends the function BK,ΨG defined above (BK,ΨG (φ) =

{
χ ∈ Φ : g(||φ||) ⊆ ||χ||

}
). Now define

BK : Φ→ 2Φ by

BK(φ) =


K if φ ∈ ΦR

B∗CK (φ) if φ ∈ ΦC

K ∩ B∗AK (φ) if φ ∈ ΦA.

(48)
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We need to show that BK is an extension of BK,Ψ. This is a consequence of the following
facts:

1. by Definitions 3.1 and 3.2, if ||φ|| ∈ ER, then φ ∈ ΦR and BK,Ψ(φ) = {χ ∈ Φ : f (Ω) ⊆
||χ||} = K,

2. B∗C is an extension of BK,ΨF (recall that, by Definition 3.2, if ||φ| ∈ EC then φ ∈ ΦC),

3. B∗A is an extension of BK,ΨG (recall that, by Definition 3.2, if ||φ| ∈ EA then φ ∈ ΦA),

4. by Definition 4.2, if E ∈ EA then ∅ , E ∩ΩA ∈ EA and E ∩ΩC = ∅, so that by (47)
f (E) = best%Ω ∪ best% E = f (Ω)∪ best% E; thus if ||φ|| ∈ EA then f (||φ||) ⊆ ||χ|| if and
only if f (Ω) ⊆ ||χ|| (that is, χ ∈ K) and best% E ⊆ ||χ|| (so that χ ∈ B∗AK (φ)) and thus
BK,Ψ(φ) ⊆ K ∩ B∗AK (φ). �
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