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Abstract

Stock and bond are the two most crucial assets for portfolio allocation and risk management.

This study proposes generalized autoregressive score mixed frequency data sampling (GAS MI-

DAS) copula models to analyze the dynamic dependence between stock returns and bond re-

turns. A GAS MIDAS copula decomposes their relationship into a short-term dependence and

a long-term dependence. While the long-term dependence is driven by related macro-finance

factors using a MIDAS regression, the short-term effect follows a GAS process. Asymmetric

dependence at different quantiles is also taken into account. We find that the proposed GAS

MIDAS copula models are more effective in optimal portfolio allocation and improve the accu-

racy in risk management compared to other alternatives.

JEL-codes: C32, C52, C58, G11, G12
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1 Introduction

Stock and bond are the two most crucial assets for portfolio allocation and risk management and

their dependence is one of the integral parts of asset allocation and investment strategies. For that

reason, their joint relationship has been investigated intensively by Guidolin and Timmermann

(2007), Christiansen and Ranaldo (2007), Yang et al. (2009), Baele et al. (2010), David and Veronesi

(2013), among others. While a stock is considered as a risky asset, a treasury bond is often used as

a hedge during the recession and crisis periods (Campbell et al., 2017). Previous research highlights

the predictive power of various macro-finance variables for stock–bond comovement. For example,

Campbell and Ammer (1993) consider that the stock-bond correlation has been driven by the

changes in the economic conditions and monetary policy. More recently, Bekaert et al. (2020) show

that macroeconomic uncertainty and risk aversion are important determinants of stock and bond

prices. Such comovements are also found to be asymmetric when exposing to market information

with equities responding stronger than bonds to joint bad news (see, for example, Cappiello et al.

(2006)). Therefore, understanding this dependence not only helps investors to derive their optimal

portfolio but also serves as an early warning signal for the changes in the macroeconomic conditions.

This study proposes a generalized autoregressive score mixed frequency data sampling (GAS

MIDAS) copula approach to analyze the dynamic relationship between stock returns and bond

returns. Following Conrad and Kleen (2020), we first use a multiplicative GARCH MIDAS model

for the return distributions. Then, the standardized innovations of stock and bond returns are

assumed to relate to each other through a copula model. Our proposed GAS MIDAS copula

decomposes the stock-bond relation into a short-term dependence and a long-term dependence.

While the long-term effect is updated at a lower frequency using a MIDAS regression, the short-

term effect follows a GAS process. This approach allows us to combine daily stock and bond returns

with macro-finance variables recorded at different frequencies. The macroeconomic explanatory

variables are divided into four main groups, such as inflation and interest rates (II), state of the

economy (SE), market uncertainty (UC), and illiquidity (IL). Asymmetric dependence at different

quantiles is also taken into account using measures of asymmetric association. These factors, and in

particular their forecasts, are found to be good at forecasting both in and out of sample stock–bond

dependence.
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Based on the standard rational pricing model, stock and bond are valued based on the future

cash flows and the discount rate. It follows that there are fundamental economic factors that can

affect the stock-bond comovements. Ilmanen (2003) considers that discount rates would be more

stable when the inflation is low which pushes down the stock-bond correlation. And at a high

inflation rate, the discount rate changes rule out the volatility and result in a positive correlation.

On the other hand, economic growth and uncertainty affect the correlation reversely. Connolly

et al. (2005) found that the uncertainty in the stock market decreases the correlation due to the

flight-to-quality phenomenon. Furthermore, Baele et al. (2010) consider not only state variables

but also uncertainty measures from survey data. The changes in the dependence can also be

explained by the state of fundamental factors based on the theoretical macroeconomic models. For

example, Song (2017) uses a consumption-based equilibrium model to identify the driving forces

of the monetary policy to the changes in the stock-bond relation. Alternatively, Campbell et al.

(2020) utilize a consumption-based habit formation model to explain the switch sign correlation in

the 2000s while Li et al. (2020) consider both monetary policy and fiscal policy for the explanation.

However, one difficulty of using the macroeconomic conditions to explain the stock-bond rela-

tion is that the macroeconomic variables are often released at lower frequencies (say, monthly or

quarterly). Fortunately, the mixed-data sampling (MIDAS) introduced by Ghysels et al. (2004)

and Ghysels et al. (2006) can solve the frequency mismatch issue. MIDAS offers a framework

to incorporate macroeconomic variables sampled at different frequencies along with the financial

series, where macroeconomic variables enter directly into the specification of the long-term com-

ponent. To model dependence between stock and bond returns via involving MIDAS structure,

the Dynamic Conditional Correlation approach coupled with MIDAS structure has been popular

in the existing literature. This approach allows the decomposition of dynamic correlation into long

and short term components in addition to incorporating macroeconomic factors into the model.

Asgharian et al. (2016) apply a DCC MIDAS model and suggest four main driven factors for the

stock-bond correlation, which includes, the inflation and interest rate, the state of the economy,

the illiquidity, and the uncertainty. In another study and through international evidence, Conrad

and Stürmer (2017) shows that the stock-bond correlation is mainly driven by inflation and interest

rate expectations as well as a flight-to-safety during times of stress in financial markets.
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As the returns of financial series are characterized by fat tails and asymmetry (Christoffersen

et al., 2012). Restricted multivariate Gaussian model, such as the original DCC-MIDAS approach,

can ignore or misinterpret the effect of extreme observations to the stock-bond dependence. Al-

ternatively, copulas have been successfully utilized in the literature as multivariate probability

distributions for non-linear dependence structures, see Joe (2014) and Czado (2019), Nguyen et al.

(2020), among others. Copulas help to separate the marginal distributions and model the depen-

dence by switching from the domain of the data to the unit hypercube (Smith, 2011). Noticing

that the copulas allow more parameters to capture the tail dependence, they are preferred over the

classical multivariate distributions. Besides, there are a large number of bivariate copula functions

(Joe, 1997), which are suitable for various dependence behaviors of data.

To the extent, several dynamic copula models have been proposed for financial returns. Since

the introduction of MIDAS framework and noticing it’s importance in finance research, several

attempts have been made to couple copula structure with it. Most recently, Jiang et al. (2020)

propose a time varying Copula MIDAS GARCH with exogenous explanatory variables to model the

joint distribution of returns, where the short-term component is updated based on the restricted

ARMA(1,10) process. Close to our proposal, Gong et al. (2020) suggest a Copula-MIDAS-X model

that incorporates low-frequency explanatory variables into a high-frequency dynamic copula model

to investigate the impacts of economic factors on the relationship between oil and stocks. Deviating

from existing literature, we propose a Copula model where the GAS process is used to capture short-

term dependence within the MIDAS framework, and further extend it to account for the asymmetric

effect as well. Different from the DCC model where the updated term is based on the first or second

moment of the most recent observations, the GAS process utilizes the complete density of the copula

function. The defining feature of GAS models is that the time-varying parameters are driven by the

score of the predictive log-likelihood function, which can be viewed as a Newton–Raphson update

that delivers a better fit for the next period conditional on past and current information (Gorgi

et al. (2019)). By relying on the density structure to update the time-varying parameters, GAS

models take into account all information in the data distribution. Through empirical evidence,

Koopman et al. (2016) supports that the GAS updated process outperforms other observation

driven processes in terms of predictive accuracy.
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Our proposed GAS MIDAS copula model are compared with the Exponential Weight Moving

Average (EWMA), the Dynamic Conditional Correlation (DCC) model (Engle, 2002), and the

GAS copula model (Creal et al., 2013) in different stress test scenarios. We find that the GAS

MIDAS model can effectively integrate the information of the long-term dependence and give a

better in-sample correlation fit. We illustrate our proposed asymmetric GAS MIDAS copula model

for the dynamic stock-bond dependence using several macroeconomic explanatory variables. We

find that the inflation and interest rate, the state of the economy, and the illiquidity contribute

to the long-term dependence. We also find evidence of different regimes where the effects in the

contraction and expansion are asymmetric. Other sources of soft information from the Survey of

Professional Forecasters also help to incorporate a forward-looking of the business cycle and growth

outlook to explain the long-term dependence. In general, the principal component of inflation and

interest rate combined with the principal component of illiquidity can serve as a good predictor for

the long-term change in the stock-bond dependence. The investor who utilizes the GAS MIDAS

copula models can improve the accuracy in risk management and optimize the portfolio allocation.

The rest of the paper is organized as follows. Section 2 introduces the econometric framework

of the GAS MIDAS copula model. We present the performance of GAS MIDAS copula models with

simulated stress tests in Section 3. In Section 4, we analyze the fundamental factors that affect the

dependence of stock returns and bond returns. Section 5 compares the optimal portfolio allocation

and risk management based on the GAS MIDAS copula models. Finally, conclusions are drawn in

Section 6.

2 GAS MIDAS Copula models

In this section, we present the GAS MIDAS copula models for the dynamic dependence of stock

returns and bond returns. Following Conrad and Kleen (2020), we first employ the multiplicative

GARCH model to estimate the marginal distribution of individual returns then explain the stock-

bond dependence through a bivariate copula function. We allow for explanatory variables to justify

the long-term changes in the dependence through a MIDAS regression whereas the short-term

dependence follows a GAS process.
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2.1 Model Specification

To model the returns series for stock (or bond), we use a class of component GARCH model based

on the MIDAS regression (Engle et al. (2013)), for which the importance has been highlighted

in several research studies. For example, Asgharian et al. (2013) show that the addition of a

business cycle proxy in the GARCH-MIDAS specification improves the model’s forecasting ability

compared to the conventional GARCH modifications. Engle et al. (2013) report that the inclusion

of a business cycle latent variable affects both the volatility components, i.e. long-term and the

short-term variance components. Taken together, the inclusion of macroeconomic variables can

depict the underlying dependence dynamics more accurately.

Let rit be daily time series returns of stock (or bond) at time t, for i = 1, 2. Following Conrad

and Kleen (2020) we utilize the multiplicative GARCH model to explain the long-term changes

(κiτ ) in the volatility using explanatory variables. The short-term component (git) is intended to

explain (say, daily) clustering of volatility and is assumed to follow a mean-reverting unit-variance

GJR-GARCH(1,1) process.

rit = µi +
√
κiτgitεit,

git = (1− αi − 0.5γi − βi) + (αi + γiI{εi,t−1<0})gi,t−1ε
2
i,t−1 + βigi,t−1,

κiτ = exp

mi +

Ni∑
j=1

δi,j

 Kj∑
k=1

φk(ωi,j,1, ωi,j,2)Xi,j,τ−k

 ,

(1)

where τ is a time indicator of the explanatory variables (usually in low-frequency); κiτ is the long-

term component of volatility and is constant across all days within the period τ . The low-frequency

τ is related to the daily time points through τ = bt/Lc with L is the number of days during a release

period of the explanatory variable. Let (αi, βi, γi) be the set of parameters that governs the short-

term volatility component git such that 0 < αi + 0.5γi + βi < 1 and αi, βi > 0 for a stationary

condition. In each period t, short-term volatility is updated through the past innovation εi,t−1 that

follows a distribution Fi with zero mean and unit variance. The leverage effect of “bad news” is

controlled by the parameter γi > 0 in which a negative shock has a higher impact to the volatility

than a positive shock. Secondly, a set of explanatory variables Xi,j , for j = 1, . . . , Ni, help to
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refine the long-term volatility component κiτ in the spirit of MIDAS regression and filtering, see

Engle et al. (2013). The weighting function φk(·) creates a weighting scheme and regularizes for the

effect of the last Kj observations of the explanatory variable Xi,j . In the Appendix A, we provide

several commonly used weighting functions that allow for different pattern effects, for example the

beta-polynomial function is written as,

φk(ωi,j,1, ωi,j,2) =

(
k/(Kj + 1)

)ωi,j,1−1(
1− k/(Kj + 1)

)ωi,j,2−1

Kj∑
l=1

(
l/(Kj + 1)

)ωi,j,1−1(
1− l/(Kj + 1)

)ωi,j,2−1

. (2)

where ωi,j,1 and ωi,j,2 are the weights to be estimated for each j variable. Using the flexi-

ble/unrestricted beta smoothing function, the long-term volatility of daily returns in the above

equation is expressed as a weighted average of lower-frequency financial and/or macroeconomic

variables. This beta-polynomial is independently estimated for each MIDAS regression and for

each explanatory variable therein. Following Engle et al. (2013) and Asgharian et al. (2013), we

use the restricted version of the beta weighting scheme by fixing ωi,j,1 = 1. The restricted beta

weighting scheme ensures a decaying pattern whereas the size of ωi,j,2 determines the speed of

decay: large (small) values of ωi,j,2 generate an accelerating (decelerating) decaying pattern for the

lagged values of explanatory variable(s) in the MIDAS filter.

2.2 A GAS Copula model

Assuming that we have specified an appropriate marginal model for stock returns and bond returns,

the next step is to model the joint dependence between them through a copula function. Let

u1t = F1(ε1t), and u2t = F2(ε2t) be sequences of independent random variables that follow a uniform

marginal distribution. Using Sklar (1959) theorem, there exists an unknown copula density function

ct(u1t, u2t) that satisfies f(ε1t, ε2t) = f1(ε1t)f2(ε2t)ct(u1t, u2t). As the copula density function can

be dynamic, the copula dependence parameters are allowed to be time-varying while the copula

function remains unchanged (Patton (2006), Hafner and Manner (2012), Nguyen et al. (2019)).

An important feature of any dynamic model is to specify how the parameters evolve through

time. Cox (1981) classifies such models into two classes: observation-driven and parameter-driven

specifications. The parameter-driven specifications, such as stochastic copula models (see Hafner
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and Manner (2012)) allow the varying parameters to evolve as a latent time series process (with

idiosyncratic innovations). The observation-driven specifications, such as ARCH-type models for

volatility (see Engle 1982) and related models for copulas (see, Patton (2006), Creal et al. (2013) and

references therein) model the varying parameters as some function of lagged dependent variables as

well as contemporaneous and lagged exogenous variables. In this approach, the parameters evolve

randomly over time, but they are perfectly predictable one step ahead given past information. The

likelihood function for such models is also available in closed form. Another advantage of the latter

approach over the former is that it avoids the need to “integrate out” the innovation terms driving

the latent time series processes.

However, within the class of observation-driven specifications, the choice of an appropriate

function of lagged dependent variables is to be made. For models of the conditional variance, the

lagged squared residual (the ARCH-family of models) comes as an obvious choice, but for models

with parameters that lack an obvious interpretation, the choice is less clear. To overcome this

problem, we follow Creal et al. (2013) and Harvey (2013), and allow the time-varying parameter θt

to follow the generalized autoregressive score (GAS) process. The process adopts the score vector

of the predictive model density to update the time-varying parameters. This choice is motivated by

the fact that the GAS model belongs to a class of observation-driven models with a similar degree of

generality as obtained for non-linear, non-Gaussian state-space models. By relying on the density

structure to update the time-varying parameters, GAS models take into account full information

in the data distribution. Koopman et al. (2016) provide empirical evidence that the GAS updated

process outperforms other observation-driven processes in terms of predictive accuracy. Following

Creal et al. (2013), the process can be written as,

(u1t, u2t) ∼ ct(u1t, u2t|θt), θt = Λ(λt),

λt+1 = λ0(1− β) + α
∂ log ct(u1t, u2t|λt)

∂λt
+ βλt,

(3)

where λt is an observation-driven process which is mapped from the real unrestricted domain

to the restricted domain of the copula parameter through a transformation function Λ, e.g., if

θt > 0, Λ(λt) = exp(λt). And (λ0, α, β) are the set of fixed parameters that control for the

dynamic behavior of the process such that |β| < 1 for stationarity. The process λt will vary around
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the mean λ0 and rely on its past value with a persistent parameter β and be updated with an

adjustment term calculated as a score function. This updating procedure is similar to the Newton-

Raphson algorithm that maximizes the predicted likelihood given the current and past information

(Gorgi et al., 2019). Blasques et al. (2015) show that the use of the score functions leads to

the minimization of the Kullback–Leibler divergence between the true conditional density and the

model-implied conditional density, hence becomes more robust to the model misspecification.

In the bivariate context, there are several copula functions that allow for a flexible dependence

(see, Joe (2014)). Among those, elliptical copula and Archimedean copula families are most com-

monly used in finance due to parsimonious specification and their ability to capture tail dependence.

In this study, we employ the bivariate Gaussian copula, the Student copula, the Clayton copula,

the Gumbel copula, the Frank copula, the Joe copula to model the dynamic dependence of stock

returns and bond returns. In order for the Archimedean copulas that can capture both positive

and negative dependence, we first create a symmetric Archimedean copula density function as an

equally weighted of the Archimedean copula and its 180-degrees rotated Archimedean copula, see

Appendix B. For λt > 0, this symmetric Archimedean copula is used to model the capture positive

dependence and for λt < 0 the 90-degrees rotated symmetric Archimedean copula is used for the

negative dependence. Also, the degrees of freedom ν is kept fixed in the Student copula model

and we let the correlation parameter vary instead. The appropriate bivariate copula function for

the stock-bond dependence is chosen by the Akaike information criterion (AIC) and the Bayesian

information criterion (BIC).

2.3 A GAS MIDAS Copula model

The GAS copula model assumes a fixed level of long-term dependence which might be very restricted

empirically. One straight extension to the GAS copulas, which is our second contribution to the

literature, is to allow for the long-term dependence parameter to be driven by other explanatory

variables. This makes sense in reality since new information in the market can create a permanent

shift in the level of expected cash flow hence affect the dependence. This proposal is also motivated

by the contributions made in Colacito et al. (2011) to model dynamic correlations with a short- and

long-term component specification, and Asgharian et al. (2016) where, in the latter, the authors
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investigate stock–bond correlation using a DCC-MIDAS model and documented the importance of

using macro-finance forecasts to predict future long-term stock–bond correlation. Together with

proposing the time-varying parameter θt to follow the GAS structure, we incorporate low-frequency

explanatory variables into the copula model to explain the evolution of the dynamic dependence

structure. Most particularly, we incorporate the changes in the long-term dependence through a

MIDAS regression equation, which would allow us to investigate the direct effect of macroeconomic

information on dependence obtained through copula as follows,

(u1t, u2t) ∼ ct(u1t, u2t|θt), θt = Λ(λt),

λt+1 = λτ (1− β) + α
∂ log ct(u1t, u2t|λt)

∂λt
+ βλt,

λτ = λ0 +

N∑
j=1

δj

 Kj∑
k=1

φk(ωj,1, ωj,2)Xj,τ−k

 ,
(4)

where the last part of Eq. 4 couples the MIDAS framework within copula. λt represents the

fundamental or secular causes of time variation in the dependence, and can evolve by a range of

low-frequency explanatory variables X = (X1, · · · , XN ), such as macroeconomic variables, φk(·) is

the weighting scheme of the variable j on its k lag, for k = 1, . . . ,K, as defined in Eq. 2. Similar

to the marginal model, this GAS MIDAS extension allows for the flexible changes in the long-term

dependence through a set of explanatory variables Xj . The significance of the contribution of

variable Xj can be seen through the significance of the regression coefficient δj and the weighting

parameters ωj,1 and ωj,2 regulates for how long the effect lasts for explanatory variables Xj . Here,

the GAS MIDAS copula model reduces to the GAS copula model when δj = 0, ∀j.

2.4 An asymmetric GAS MIDAS Copula model

It is well known to financial practitioners that the vast majority of financial data show various

systematic asymmetries (see, for example Perez-Quiros and Timmermann (2001) and Babsiri and

Zakoian (2001)). Among them two have been the subject of more thorough studies, namely asym-

metry in the distribution of returns and asymmetry in the way volatility responds to positive and

negative (relatively to the mean) returns. The second form of asymmetry stems from the fact that

the market is prone to react differently to positive as opposed to negative returns. The impact of
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negative news is different on the volatility and correlation than the positive news. The concept

of volatility asymmetry was initially pointed out by Black (1976) and Christie (1982). This phe-

nomenon is famously discussed in financial literature under the name of “leverage effect”, which

states that a drop in the price value of the stock leads to negative returns, which increases the

financial leverage (debt-to-equity ratio) and consequently makes the stock riskier and increases its

volatility.

Cappiello et al. (2006) extends this phenomenon to assess asymmetry in correlations and show that

the sign of innovation induces the stock-bond dependence differently. For example, when a system-

atic negative shock comes to the equity returns, the investors will allocate a higher weight to safety

assets, hence decreases the stock-bond dependence. Following the directions and motivated by the

findings reported in Cappiello et al. (2006), we extend further our proposed model to account for

asymmetric effect in the dependence structure at flexible quantiles 0 < q1, q2 6 1. We present an

asymmetric GAS MIDAS Copula model as follows,

(u1t, u2t) ∼ ct(u1t, u2t|θt),

θt = Λ(λt),

λt+1 = λτ (1− β) + α
∂ log ct(u1t, u2t|λt)

∂λt
+ βλt + γ (vt − v̄) ,

λτ = λ0 +
N∑
j=1

δj

 Kj∑
k=1

φk(ωj,1, ωj,2)Xj,τ−k

 ,
(5)

where γ is the parameter that controls for the asymmetry, vt is a measure of association related

to “bad news” at time t and v̄ = E(vt). Following Joe (2014), we propose several measures of

asymmetric association between u1t and u2t such as,

(a) Normal score:

vt =
[
Φ−1(u1t)I{u1t<q1}

] [
Φ−1(u2t)I{u2t<q2}

]
.

The expectation of the normal score is related to the Pearson correlation between two trans-

formed normal random variables at a lower quadrant. As the dependence can be positive or

negative, we also check with a different quadrant where vt =
[
Φ−1(u1t)I{u1t<q1}

] [
Φ−1(u2t)I{u2t>q2}

]
.
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(b) Spearman’s rank:

vt =
[
(u1t − 0.5)I{u1t<q1}

] [
(u2t − 0.5)I{u2t<q2}

]
.

In this case, v̄ is actually the Spearman’s rank correlation between stock and bond innovations

at a lower quadrant.

(c) Spearman’s footrule:

vt = |u1t − u2t| I{u1t<q1}I{u2t<q2}.

This measure of association is inversely related to the Spearman’s footrule as the concordance

ordering of copulas, see Patton (2006). However, the Spearman’s footrule is calculated based

on the Manhattan distance between two sets of ranks and suffers from asymmetry in the

sense that the Spearman’s footrule is equal 0, 1/3, 0.5 under perfect positive dependence,

independence, perfect negative dependence respectively.

(d) Gini’s gamma:

vt = (|1− u1t − u2t| − |u1t − u2t|)I{u1t<q1}I{u2t<q2}.

Salama and Quade (2001) and Genest et al. (2010) consider the Gini’s gamma is an extension of

the Spearman’s footrule whereas it is a symmetric measure. Hence, the parameter estimation can

be less sensitive to the quantile specification.

In any cases, note that the expectation of the asymmetric association v̄ = E(vt) is feasible and

can be calculated with the sample analogue v̄ = 1
T

T∑
t=1

vt, see Cappiello et al. (2006).

2.5 Estimation

The total log-likelihood function can be decomposed as a sum of the log likelihood of marginal

returns and the copula log-likelihood function,

L(Θ) =

T∑
t=1

log ft(r1t, r2t; Θ)

T∑
t=1

log f1t(r1t; Θ1) +

T∑
t=1

log f2t(r2t; Θ2) +

T∑
t=1

log ct(F1t(r1t), F2t(r1t); Θc)

12



where Θ = (Θ
′
1,Θ

′
2,Θ

′
c)
′

is a vector of the parameters of the marginal distributions of stock returns

Θ1 and bond returns Θ2 and parameters of the copula Θc. The estimation of a GAS MIDAS copula

model is implemented based on the two-stage estimation procedure, see Joe (2005). In the first

stage, we fit the multiplicative GARCH MIDAS for marginal return series and in the second stage,

we obtain the copula data using the empirical CDF function. Note that, the marginal distribution

can be substituted with any GARCH or stochastic volatility specifications, however the two-stage

estimation procedure is statistically efficient (Chen and Fan, 2006).

3 Simulation study

To provide strong empirical motivation to our proposed model, a simulation study is conducted

where we compare the proposed GAS MIDAS copula models with the EWMA (Appendix C), the

DCC (Engle, 2002), the GAS (Creal et al., 2013) when the true correlation structure is known, in

different stress scenarios based on the proposal of Engle (2002). We simulate T = 2000 observa-

tions from a bivariate Gaussian copula with time-varying correlation parameter ρt. Following five

scenarios are considered for the behavior of ρt such that,

1. Constant: ρt = 0.8.

2. Sine: ρt = 0.5cos(2πt/250).

3. Fast Sine: ρt = 0.5cos(2πt/25).

4. Step: ρt = 0.5− I(t > 1000).

5. Ramp: ρt = ((t mod 200)− 100)/101.

Figure 1 illustrates the ρt processes for different stress tests. Engle (2002) considers that these

stress tests mimic different realistic contexts that the correlation can be constant, gradual changes,

rapid changes, and abrupt changes. We generate 200 datasets for each stress test and obtain the

estimate of the correlation process ρ̂t. The 22-day realized correlation (RCor) is calculated as a low-

frequency explanatory variable for the long-term change in the correlation. The accuracy of each

model as assessed based on the mean absolute error (MAE) and the mean-squared error (MSE),

13



MAE =
1

T

T∑
t=1

|ρ̂t − ρt|,

MSE =
1

T

T∑
t=1

(ρ̂t − ρt)2.
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Figure 1: The ρt processes for different test scenarios

Table 1 compares the relative MAE and MSE of the estimation of the correlation using the

EWMA, the GAS, the GAS MIDAS over the benchmark DCC model. In most of the considered

cases, the GAS MIDAS model has the smallest MAE and MSE. For the constant correlation case

though, the GAS MIDAS model does not seem very helpful as there are redundant parameters in

the estimation. In general, the long-term changes in the correlation can be explained by the RCor
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in most of the occasions, which shows that the GAS MIDAS (highlighted in bold) can effectively

incorporate this source of information to give a better correlation fit.

Table 1: MAE and MSE results: a simulation study

Constant Sine Fast sine Step Ramp

(a) MAE

EWMA 5.067 1.184 1.180 1.003 1.357
DCC 1.000 1.000 1.000 1.000 1.000
GAS 0.798 1.002 0.988 0.875 0.940
GAS MIDAS 0.943 0.609 0.986 0.866 0.875

(b) MSE

EWMA 25.007 1.341 1.399 0.868 1.902
DCC 1.000 1.000 1.000 1.000 1.000
GAS 0.666 0.999 0.978 0.863 0.919
GAS MIDAS 0.980 0.387 0.978 0.850 0.828

The table shows the relative MAE and MSE of the estimation of the cor-

relation using the EWMA, the GAS, the GAS MIDAS over the benchmark

DCC model. We use the restricted beta weighting function and K = 9 lags

of monthly RCor as a low-frequency explanatory variable for the long-term

change in the correlation. We generate 200 pseudo datasets for each stress

test and calculate the average of MAE and MSE. The entries less than 1

indicate that the given model is better.

We also implemented other robust simulation studies on the choice of copula functions, the

lag number of the explanatory variables, weighting functions as well as the incorporation of the

asymmetry effect1.

4 Empirical illustration

4.1 Data description

In this section, we illustrate our proposal to model the dependence of stock returns and bond

returns during the period from 01/01/1990 to 31/03/2021. The dataset is obtained through Mac-

robond database. The stock returns are calculated as the first difference log of the S&P 500 index

multiplied by 100. The bond returns are calculated based on the yield-to-maturity of the 10 year

Treasury bonds, see Swinkels (2019). As can be seen, the chosen period has several recessions

and crises period such as the early 1990s recession, the Dot-com bubble, the subprime mortgage

1For brevity, the results are not reported here but are available upon request.
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crisis (2007–2009) and the recent Covid-19 pandemic (2020 - 2021). Figure 2 shows the evolution

of daily stock returns and bond returns. We can see that the most extreme return observations

are coincident with the periods of recessions and crises. Also, the realized correlation was positive

during the early 1990s recession but became mostly negative during the recent crises periods. The

Covid-19 pandemic also shares a similar pattern with the recent recessions, the realized correlation

was negative and then became positive in the first quarter of 2021.
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Figure 2: S&P 500 stock returns and 10Y Government bond returns.

The figures show the daily S&P 500 stock returns and the daily 10 year Government bond returns during the period from

01/01/1990 to 31/03/2021. The stock returns are calculated as the log difference of the S&P 500 index multiplied by 100. The

bond returns are calculated based on the yield-to-maturity of the 10 year Treasury bonds, see Swinkels (2019). The shaded

areas highlight the recession periods based on the NBER indicators.
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Table 2(a) describes the summary statistics of the S&P 500 returns and the 10Y Government

bond returns. Daily stock returns are higher than bond returns on average and more volatile with

a higher degree of fat tails and asymmetry. The other measures confirm the presence of serial

correlation and the ARCH effect in both the series. Table 2(b) reports the Pearson correlation of

stock returns and bond returns during the subperiods and the total period of chosen data. The cor-

relation was positive before 2000 and became negative after that. The 5% exceedance correlations

at four different quadrants are denoted by ρI0.05, ρ
II
0.05, ρ

III
0.05, ρ

IV
0.05. Before the 2000s, the exceedance

correlations in the first and the third quadrants were significant due to the positive correlation

while they both decreased after that. Also after the 2000s, the second and the fourth quadrants

observed a strong negative correlation which represents the flight to safety effect between stock and

bond. The test statistics for the symmetric exceedance correlation between (III-I) quadrants and

between (II-IV) quadrants are calculated following Hong et al. (2007). There is slight evidence for

the asymmetric exceedance correlation between stock returns and bond returns.

Table 2: Summary statistics

(a) Summary statistics of S&P 500 stock returns and 10Y Government bond returns (01/01/1990 - 31/03/2021)

Mean Standard deviation Skewness Kurtosis Minimum Maximum J-B test Ljung-Box(12) ARCH(12)

Stock returns 0.031 1.149 -0.410 11.311 -12.765 10.957 42.2*** 109.0*** 2248.1***

Bond returns 0.019 0.462 -0.027 3.146 -2.707 4.608 3.2*** 28.0*** 496.5***

(b) Tests for exceedance correlations symmetry

Period ρ̄ ρIII0.05 ρI0.05 Test (III-I) p.val (III-I) ρII0.05 ρIV0.05 Test (II-IV) p.val (II-IV)

1990 - 1999 0.267 0.428 0.468 0.013 0.909 0.244 -0.356 2.026 0.155

2000 - 2009 -0.328 -0.69 -0.005 2.31 0.129 -0.542 -0.073 3.672* 0.055

2010 - 2021 -0.421 - - - - -0.552 -0.41 0.693 0.405

1990 - 2021 -0.224 0.117 0.005 0.277 0.599 -0.539 -0.184 4.396** 0.036

Panel (a) reports the summary statistics of S&P 500 stock returns and 10Y Government bond returns (01/01/1990 - 31/03/2021). The stock returns are calculated as

the log difference of the S&P 500 index multiplied by 100. The bond returns are calculated based on the yield-to-maturity of the 10 year Treasury bonds, see Swinkels

(2019). We also report the test statistics of the Jarque-Bera test for normality, the Ljung-Box test for the serial correlation and ARCH test for the GARCH effect.

Panel (b) reports the Pearson correlation of stock returns and bond returns in subperiods. The 5% exceedance correlations at different quadrants are denoted by

ρI0.05, ρ
II
0.05, ρ

III
0.05, ρ

IV
0.05. The test statistics for the symmetric exceedence correlation between (III-I) quadrants and between (II-IV) quadrants are calculated following

Hong et al. (2007). ***,**,* denote significant at 1%, 5%, 10% level.

4.2 Marginal distribution

In this section, we model the marginal returns using the multiplicative GARCH model by Conrad

and Kleen (2020). The long-term changes in the volatility are driven by several explanatory vari-

ables such as the daily 22-day rolling Realized volatility (RV), the daily S&P 100 Volatility Index

(VXO), the daily S&P 500 Volatility Index (VIX), the weekly National Financial Conditions In-
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dex (NFCI), the monthly National Activity Index (NAI), the monthly Industrial Production (IP).

On the other hand, the short-term change is explained by a GJR GARCH model (Glosten et al.,

1993). Following the specifications for the lag length of the explanatory variables and the weight-

ing scheme by Conrad and Kleen (2020), we first estimate the marginal model using one measure

of volatility, then using one measure of volatility combined with another macroeconomic variable.

Table 3 reports the estimation results of the multiplicative component GARCH-MIDAS model for

the stock returns and bond returns. The parameters are quite stable across specifications for both

stocks and bonds. The estimate of ωi,j,2 i = 1, 2; j = 1, 2, indicates that the degree of smoothing

varies across the macro-finance factors, where a smaller value leads to a larger degree of smoothing

over the lagged observations. The asymmetric effect is found to be highly significant and higher for

stock returns than for the bond returns. The signs of the estimated regression parameters δs for

realized volatility, the VXO, the VIX, and the macroeconomic variables are in line with findings in

the previous literature, i.e., higher levels of financial volatility tend to increase long-term volatility.

We found that the VXO has a better explanation for long-term change in the volatility than the

VIX and the RV in terms of log-likelihood (LLH) or Bayesian information criterion (BIC).

Since the NFCI and the macroeconomic variables, in particular, capture the lower frequency move-

ments, it would be interesting to estimate GARCH-MIDAS models with the VXO jointly with

any of these components. This would allow us to formally check whether the NFCI, the NAI and

the IP contain information that is complementary to the VXO. When controlling for the VXO,

only the slope parameter associated with NFCI is significant for stock volatility. Even that the

two-factor GARCH MIDAS model results in better log-likelihood but based on the BIC, we choose

the GARCH MIDAS using VXO as the appropriate marginal model for stock returns and bond

returns. In the next stage, we obtain the copula data using the empirical CDF function of the

standardized innovations. Then, we compare the dynamic dependence of stock and bond using our

proposal GAS MIDAS models with different specifications.
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Table 3: GARCH-MIDAS models for the marginal distributions

(a) The multiplicative component GARCH-MIDAS for the marginal distribution of Stock returns (01/01/1990 - 31/03/2021)

µi αi βi γi mi δi,1 ωi,1,2 δi,2 ωi,2,2 K LLH BIC

RV Stock 0.029*** 0.000 0.828*** 0.215*** -1.243*** 1.171*** 2.840*** 264 -1.301 2.610

(0.009) (0.009) (0.016) (0.023) (0.119) (0.091) (0.665)

VXO 0.026*** 0.000 0.854*** 0.086*** -2.057*** 1.435*** 3.789*** 3 -1.286 2.580

(0.009) (0.014) (0.022) (0.018) (0.075) (0.052) (0.743)

VIX 0.025*** 0.000 0.849*** 0.098*** -2.158*** 1.547*** 3.417*** 3 -1.289 2.586

(0.009) (0.012) (0.023) (0.019) (0.085) (0.061) (0.627)

VXO+NFCI 0.025*** 0.000 0.851*** 0.091*** -1.898*** 1.355*** 3.768*** 0.151** 2.176 52 -1.286 2.582

(0.009) (0.014) (0.023) (0.018) (0.102) (0.063) (0.723) (0.064) (1.659)

VXO+NAI 0.024*** 0.000 0.858*** 0.091*** -1.936*** 1.323*** 3.766*** -0.197 7.039 36 -1.286 2.582

(0.009) (0.013) (0.022) (0.017) (0.088) (0.065) (0.71) (0.098) (5.07)

VXO+IP 0.026*** 0.000 0.847*** 0.087*** -2.085*** 1.463*** 3.787*** -0.008 33.645 36 -1.286 2.582

(0.009) (0.014) (0.024) (0.018) (0.089) (0.057) (0.753) (0.009) (45.377)

(b) The multiplicative component GARCH-MIDAS for the marginal distribution of bond returns (01/01/1990 - 31/03/2021)

µi αi βi γi mi δi,1 ωi,1,2 δi,2 ωi,2,2 K LLH BIC

RV Bond 0.021*** 0.050*** 0.941*** -0.013* -1.884*** 0.351* 1.000 264 -0.587 1.181

(0.005) (0.003) (0.001) (0.007) (0.167) (0.185) (0.633)

VXO 0.021*** 0.028*** 0.974*** -0.006 -1.142*** 0.570*** 4.947 3 -0.581 1.171

(0.005) (0.002) (0.000) (0.004) (0.190) (0.084) (24.412)

VIX 0.020*** 0.029*** 0.961*** -0.001 -2.345*** 0.619*** 2.790 3 -0.581 1.171

(0.005) (0.011) (0.002) (0.008) (0.294) (0.086) (3.506)

VXO+NFCI 0.019*** 0.028*** 0.961*** 0.000 -2.196*** 0.557*** 3.226 0.245 1.834 52 -0.581 1.171

(0.005) (0.005) (0.001) (0.006) (0.172) (0.066) (6.687) (0.204) (1.535)

VXO+NAI 0.019*** 0.027*** 0.958*** 0.002 -2.375*** 0.580*** 5.375 -0.429 1.000 36 -0.580 1.171

(0.005) (0.006) (0.000) (0.007) (0.160) (0.127) (50.156) (0.463) (1.644)

VXO+IP 0.019*** 0.028*** 0.961*** -0.000 -2.296*** 0.579*** 3.331 -0.017 3.851 36 -0.580 1.171

(0.005) (0.005) (0.001) (0.006) (0.150) (0.077) (11.096) (0.025) (10.599)

The tables report the estimation results of the multiplicative component GARCH-MIDAS model for the stock returns and bond returns proposed by Conrad

and Kleen (2020). There are 7 variables are chosen to explain the long-term component of the volatility such as the daily RV, the daily S&P 100 Volatility

Index (VXO), the daily S&P 500 Volatility Index (VIX), the weekly National Financial Conditions Index (NFCI), the monthly National Activity Index (NAI),

the monthly Industrial Production (IP). The lag length K of the explanatory variables are set based on Conrad and Kleen (2020) and the weighting scheme is the

restricted beta function. The lag length of VXO in the two-factor GARCH MIDAS is equal to 3. The values of the maximum likelihood (LLH) and the Bayesian

information criteria (BIC) are normalized for the number of observations which shows that the GARCH-MIDAS with VXO index is preferred for the marginal

distribution. ***,**,* denote significant at 1%, 5%, 10% level.
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4.3 Model comparisons

In this section, we aim to select an appropriate GAS MIDAS copula model for stock returns and

bond returns. Several specifications need to be determined, for example, the appropriate copula

function, the set of explanatory variables, the choice of lags and weighting functions for the MIDAS

regression, and a measure of asymmetric association. We first find out the suitable copula function

using a GAS MIDAS copula model with the monthly RCor as an explanatory variable. Then we

investigate the MIDAS effect by a sufficient lag observation with a weighting function. Furthermore,

we verify if the model can be improved when accounting for an asymmetric effect. And finally, we

include more other explanatory variables to see if they could explain the change in the long-term

dependence.

Table 4 reports the estimation results of the GAS MIDAS copula models for the dependence

of stock returns and bond returns in comparison to the DCC and DCC MIDAS Gaussian copula

models. We choose the RCor with the restricted beta weighting scheme function to explain the

long-term component of the stock-bond dependence. The lag length K is selected such that the

maximum likelihood becomes insensitive to the choice of the lag explanatory variable. The δs

measures the impact that the lagged X has on the long-term stock and bond dependence and

ω1,2 measures how long the impact would. In general, the copula functions that can capture tail

dependence are favored. Based on the model selection criteria, LLH and BIC, the GAS MIDAS

Student-t copula model is selected for the dynamic dependence of stock returns and bond returns.

In Appendix E, we compare the effect of different weighting scheme functions to the GAS MIDAS

copula models. We find that the restricted Beta weighting function is good enough to smooth the

effect of the explanatory variables. We keep the restricted Beta function as a weighting scheme of

the GAS MIDAS copula for further analysis.

Table 5 reports the maximum likelihood of the GAS MIDAS copula models for the dependence

of stock returns and bond returns using different association measures of asymmetry. We estimate

the asymmetric effect at quadrants along with different quantiles, for example Quadrant II (u1t <

0.5, u2t > 0.5) or Quadrant III (u1t < 0.5, u2t < 0.5) or both. In general, accounting for the

asymmetric effect of “bad news” improves the model’s goodness of fit over the symmetric model.

Among our proposal of association, none of the measures is preferred for the asymmetric effect in all
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Table 4: Comparison of DCC MIDAS Gaussian copulas and GAS MIDAS Copulas

α β λ0 δ1 ω1,2 ν K1 LLH AIC BIC

DCC 0.036*** 0.960*** 674.2 -1344.5 -1330.5
(0.004) (0.005)

DCC MIDAS 0.065*** 0.862*** 0.013 1.009*** 6.686*** 24 702.4 -1394.8 -1359.9
(0.007) (0.023) (0.019) (0.050) (1.806)

GAS MIDAS Gaussian 0.213*** 0.927*** 0.011 1.987*** 6.392*** 24 701.0 -1392.0 -1357.1
(0.023) (0.018) (0.039) (0.105) (1.705)

GAS MIDAS Student 0.253*** 0.934*** 0.006 2.016*** 6.410*** 8.649*** 24 759.8 -1507.6 -1465.8
(0.032) (0.020) (0.045) (0.122) (1.903) (0.937)

GAS MIDAS sClayton 0.183*** 0.961*** -0.032*** 1.489*** 2.933*** 24 717.8 -1425.6 -1390.7
(0.004) (0.001) (0.002) (0.021) (0.045)

GAS MIDAS sGumbel 0.045*** 0.958*** 0.014*** 0.881*** 3.122*** 24 735.5 -1461.0 -1426.2
(0.000) (0.000) (0.001) (0.005) (0.017)

GAS MIDAS Frank 1.624*** 0.986*** -0.257*** 4.852*** 1.006*** 24 653.2 -1296.3 -1261.5
(0.024) (0.000) (0.004) (0.027) (0.000)

GAS MIDAS sJoe 0.155*** 0.969*** -0.035*** 1.037*** 2.094*** 24 699.0 -1387.9 -1353.1
(0.001) (0.000) (0.001) (0.007) (0.008)

The table reports the estimation results of the DCC MIDAS and the GAS MIDAS copula model for the dependence of stock returns and bond returns in

comparison to the benchmark DCC model. We choose the RCor with the restricted beta weighting scheme function to explain the long-term component

of the dependence. The lag length is selected such that the maximum likelihood becomes insensitive to the choice of K. ***,**,* denote significant at

1%, 5%, 10% level.

Table 5: Comparison among different association measures of asymmetry for the GAS MIDAS
copula models

Gaussian Student sClayton sGumbel Frank sJoe

Symmetric 701.0 759.8 717.8 735.5 653.2 699.0

Quadrant II & III
(u1t < 0.5, u2t < 1)

Normal Score 729.8 783.8 752.7 768.8 680.6 736.2
Spearman’s rank 737.7 788.5 751.6 762.4 682.9 738.2
Spearman’s footrule 732.2 783.3 749.0 761.8 666.1 733.7
Gini’s gamma 737.0 785.8 752.6 764.3 687.2 734.3

Quadrant III
(u1t < 0.5, u2t < 0.5)

Normal Score 705.0 762.7 710.9 738.6 611.7 695.6
Spearman’s rank 706.1 764.5 722.5 739.6 649.3 704.7
Spearman’s footrule 704.3 754.4 714.1 737.0 652.1 699.1
Gini’s gamma 708.3 762.4 720.3 739.7 652.6 708.9

Quadrant II
(u1t < 0.5, u2t > 0.5)

Normal Score 723.5 778.9 748.6 761.9 655.6 734.6
Spearman’s rank 729.7 778.3 749.0 763.5 683.4 730.5
Spearman’s footrule 738.8 787.9 752.1 767.1 674.7 733.1
Gini’s gamma 730.5 782.6 748.5 761.3 669.9 730.4

The table reports the maximum likelihood of the GAS MIDAS copula models for the dependence of stock returns and bond

returns using different association measures of asymmetry. We estimate the asymmetric effect at quadrants along with different

quantiles. We choose the RCor to explain the long-term component of the dependence. The lag length is selected such that the

maximum likelihood becomes insensitive to the choice of K = 24. ***,**,* denote significant at 1%, 5%, 10% level.
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cases even though we will not be mistreated with any of them. We choose the Spearman’s rank as an

asymmetric measure. As the dynamic dependence between stock returns and bond returns changes

the sign from positive to negative, concentrating on just one quadrant, like Cappiello et al. (2006),

may not be sufficient. Table 5 also shows that we should take into account the “bad news” effect

in both Quadrant II and III which results in a higher maximum likelihood as well as a higher BIC.

Generally, the negative shocks to stock returns carry a higher impact to the stock-bond dependence.

We select the asymmetric GAS MIDAS Student-t copula with a restricted Beta function weighting

scheme for further analysis.

4.4 Variable selections

As the fundamental factors affect the discount rate and the future cash flow of stock and bond,

the stock-bond dependence is driven by the changes in the macroeconomic conditions. Existing

literature highlights this fact and here we report a few as supportive evidence. Li (2002) considers

that expected inflation is the most important factor that moves stock and bond returns in the same

direction while the real interest rate is less important. However, the uncertainty of expected inflation

and the real interest rate also increases the correlation. Ilmanen (2003) mentions that stock and

bond market is sensible to the business cycle, inflation, volatility, and monetary policy conditions.

In theory, inflation shocks are negative for bonds and have no impact on stock if the rising cash

flow matches the discount rate. However, in practice, high inflation brings a detrimental effect on

real earnings growth. On the other hand, David and Veronesi (2013) reason that inflation news

carries information on the real economic growth that affects the stock-bond correlation. Guidolin

and Timmermann (2006) model the joint distribution of stock and bond using a regime switch

model where the regimes are linked to the economic conditions. Connolly et al. (2005) and Bansal

et al. (2010) find that the stock market uncertainty is strongly connected to the correlation because

of the flight-to-quality phenomenon. Since the stock and bond can be considered as investment

substitutes, Baele et al. (2010) emphasis the importance of the liquidity factor over macroeconomic

fundamentals.

Knowing the importance of changes in macroeconomic conditions on stock-bond dependence,

in this section, we consider to account for it in our analysis. Following Asgharian et al. (2016), we
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divide the macroeconomic explanatory variables into four main groups, such as inflation and inter-

est rates (II), state of the economy (SE), market uncertainty (UC), and illiquidity (IL). However

in contrast to Asgharian et al. (2016), we use monthly explanatory variables rather than quarterly

variables, therefore more information is included in our analysis. Additionally, we also take advan-

tage of the soft information from the Survey of Professional Forecasters (SPF) about the Inflation

and Interest rate (SPF II), GDP growth and Industrial production growth (SPF SE), and SPF

Uncertainty (SPF UC) in the K lead quarters. As these are quarterly variables, we restrict the

survey values to be the same in each month.

We use the first principal component (PC) to summarize the information of the variables in

each group. In the II group, we calculate the inflation rate as the yearly change of the consumer

price index; the term spread as the difference between 10Y government bond and 3-month treasury

bill; and the short-term interest rate as the 3-month treasury bill. In the SE group, we estimate the

industrial production growth as the yearly change of the industrial production index, the Aruoba-

Diebold-Scotti business conditions index as a proxy for the real business conditions, the yearly

change of the coincident economic activity index as a proxy for employment and salaries. In the

UC group, we include the VXO, and the realized volatility of stock and bond. In the IL group,

we calculate the illiquidity of stock and bond based on the daily close, high, and low prices of the

S&P 500 future and the 10Y government bond future, see Abdi and Ranaldo (2017). We measure

the PC SPF UC based on the interquartile ranges of SPF inflation and GDP growth forecasts as a

proxy for the future uncertainty.

Table 6 reports the correlation matrix of explanatory variables. In general, the PC II and

the PC SE are positively correlated with the RCor in which the stock-bond correlation is higher

when the economy is in good condition or the inflation and interest rate are high. On the other

hand, the PC UC and the PC IL are negatively related with the RCor that explains the flight to

quality phenomenon during recession and crisis periods. Among the PC of explanatory variables,

the PC II is strongly and positively correlated with the PC SPF II. The PC SE is relatively strong

but negatively correlated with PC SPF UC, while for the other variables, the magnitude of the

correlation is either mild or low. In the lower panel of the table and within groups, the short-term

interest contributes most to the PC II with Inflation joining and Term spread comes after that.
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The industrial production and the coincident index contributed heavily to the PC SE indicator.

The PC UC is mainly driven by VXO, RV Stock and RV Bond. The stock illiquidity and the bond

illiquidity seem to move in the opposite direction. The PC of the SPF variables are more related

to the explanatory variables in the same group than to the variables in other groups with few

exceptions. The future expectation in the SPF II is positively correlated with the state of economy

while the sign for which is negative for the PC SPF UC. As SPF provides soft information from

one to several quarters ahead, we put a higher weight to the recent lead quarter in the MIDAS

regression scheme following Asgharian et al. (2016).

Table 6: Correlation matrix of explanatory variables

RCor PC II PC SE PC UC PC IL PC SPF II PC SPF SE PC SPF UC

PC II 0.429 0.807 0.046 -0.119

PC SE 0.264 0.375 0.296 0.432 -0.636

PC UC -0.277 -0.175 -0.492 -0.086 -0.312 0.355

PC IL -0.437 -0.083 -0.368 0.435 -0.087 -0.106 0.231

Inflation 0.323 0.789 0.725 0.084 -0.014

Term spread 0.013 -0.607 -0.277 0.025 0.086

Short-term interest 0.595 0.900 0.793 0.034 -0.173

Industrial Production 0.246 0.935 0.319 0.465 -0.586

ADS Index 0.114 0.363 -0.009 0.131 -0.041

Coincident Index 0.228 0.892 0.270 0.332 -0.657

VXO -0.253 0.936 0.001 -0.320 0.380

RV Stock -0.308 0.947 -0.032 -0.292 0.333

RV Bond -0.176 0.805 -0.222 -0.221 0.232

Stock Illiquidity -0.267 0.640 -0.041 -0.271 0.309

Bond Illiquidity 0.307 -0.672 0.072 -0.125 -0.001

The table reports the correlation matrix of explanatory variables. We divide 11 variables into 4 main groups such as Inflation and

Interest rate (II), the State of Economy (SE), Uncertainty (UC) and Illiquidity (IL). We report the soft information from SPF on

the next quarter of II and SE. The PC SPF UC is calculated based on the interquartile ranges of SPF inflation and GDP growth

forecasts as a proxy for the future uncertainty. The first part of the panel shows the correlations among the principal components,

and the second part of each panel shows the correlations between the principal components and the macro-finance variables used to

construct them.

Table 7 reports the estimation results of the asymmetric GAS MIDAS Student-t copula model

for the dependence of stock returns and bond returns using one explanatory variable. To summarize,

the model selection criteria show that the RCor is the most preferred macro-finance factor for the full

sample data. However, other fundamental factors such as PC II, PC SE and PC IL also significantly

contributes to the long-term dependence. The signs of the δ coefficients also match with the previous

analysis of the correlation matrix. Even though, we do not find a significant contribution of the PC
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UC and the PC SPF UC to the long-term dependence, the effect of uncertainty is negative, which

means that the long-term stock–bond dependence is low when market uncertainty is high. On the

other hand, the PC SE and the PC SPF SE are both positively related to the long-term dependence,

which is in accordance with the flight-to-quality phenomenon. However among SPF variables, only

PC SPF II can significantly predict the stock-bond long-term dependence. The degrees of freedom

are very similar among the GAS copula models with and without the MIDAS effect which shows

that the dependence of stock and bond are heavy tails with an asymmetric effect of “bad news”

shock. The estimate of ω1,2 indicates that the degree of smoothing varies across the macro-finance

factors, where a smaller value leads to a larger degree of smoothing over the lagged observations.

For example, the effect of PC II fades out in a slower rate than that of PC IL. The results are

robust to the choice of weighting functions, the choice of lag numbers and the asymmetric measure

of association.

Table 7: The asymmetric GAS MIDAS Student-t Copula with one explanatory variable

α β λ0 γ δ1 ω1,2 ν K1 LLH AIC BIC

RCor 0.118*** 0.904*** -0.056* 1.576*** 1.514*** 5.285*** 9.2*** 24 788.5 -1563.1 -1514.3

(0.028) (0.020) (0.033) (0.243) (0.119) (1.623) (1.071)

PC II 0.105*** 0.980*** -0.209*** 0.735*** 0.152*** 2.815 8.5*** 12 763.0 -1511.9 -1463.1

(0.019) (0.004) (0.051) (0.136) (0.044) (3.250) (0.917)

PC SE 0.108*** 0.982*** -0.220*** 0.697*** 0.088* 2.605*** 8.5*** 12 759.2 -1504.4 -1455.7

(0.019) (0.003) (0.055) (0.131) (0.048) (0.008) (0.904)

PC UC 0.109*** 0.984*** -0.226*** 0.652*** -0.021 7.592*** 8.4*** 18 757.7 -1501.4 -1452.6

(0.019) (0.003) (0.059) (0.126) (0.053) (0.046) (0.890)

PC IL 0.111*** 0.976*** -0.214*** 0.802*** -0.358*** 5.075*** 8.9*** 18 764.2 -1514.4 -1465.6

(0.019) (0.005) (0.048) (0.158) (0.085) (0.079) (1.001)

PC SPF II 0.125*** 0.970*** -0.126** 0.867*** 0.282*** 2.960 8.3*** 6 765.7 -1517.5 -1468.7

(0.022) (0.007) (0.050) (0.167) (0.075) (2.723) (0.876)

PC SPF SE 0.111*** 0.984*** -0.231*** 0.645*** 0.037 6.541*** 8.3*** 5 757.6 -1501.2 -1452.4

(0.018) (0.003) (0.061) (0.132) (0.067) (0.023) (0.871)

PC SPF UC 0.110*** 0.984*** -0.231*** 0.649*** -0.102 5.422 8.5*** 4 758.1 -1502.2 -1453.5

(0.018) (0.003) (0.059) (0.125) (0.121) (6.115) (0.902)

The table reports the estimation results of the asymmetric GAS MIDAS Student-t copula model for the dependence of stock returns and bond returns.

We choose one explanatory variable with the restricted beta weighting scheme function to explain the long-term component of the dependence. The

lag length is selected such that the maximum likelihood becomes insensitive to the choice of K. The values of the LLH, the AIC, the BIC show that

RCor is the most preferred for the dynamic dependence of stock returns and bond returns. ***,**,* denote significant at 1%, 5%, 10% level.

For the easy of comparison, we report the dependence in terms of correlation for the GAS

MIDAS Student copula. Figure 3 plots the long-term dependence between stock returns and bond

returns using the GAS MIDAS copula model with one explanatory variable as well as the two-

year rolling correlation (RC2Y) as a proxy. The RC2Y is depicted in the blue dash line in each
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plot. It can be seen that the estimated long-term dependence using the GAS MIDAS copula with

RCor generally follows the same pattern, while the other models are not as good at capturing the

dynamics. The estimated long-term dependence series based on the different macro-finance factors

are generally smoother than those by the RCor, except for the PC II and the PC IL, which explain

better the long-term change of the dependence in comparison to others and fluctuate closely to

realized correlations.
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Figure 3: long-term dependence between stock and bond

The figure shows the long-term dependence between stock returns and bond returns using GAS MIDAS copula models with

one explanatory variable in comparison to the RC2Y. The PC factor is shown as a bar chart. The shaded areas highlight the

recession periods based on the NBER indicators.
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To proceed further, we extend the model and add another explanatory variable in order to

investigate if this can improve the performance any further. Table 8 reports the estimation results

of the asymmetric GAS MIDAS Student-t copula model using two explanatory variables. In Panel

(a), we choose the RCor with another explanatory variable to explain the long-term component

of the dependence. The parameter δs for the PC factors are not significant except for the PC IL,

which not only indicates the importance of these two variables in terms of long-term dependence

but also supports by model selection criteria. In Panel (b), we assess the model with PC II and

another variable. When combining economic and forecast factors together with PC II, we notice

that, only PC IL and PC SPF II are found to be significant, where the parameter δ for PC SPF

II is positive, which implies that when the forecasted inflation and interest rate factor raises, then

long-term stock–bond dependence also increases. The same goes for PC SPF SE though this factor

is not significantly influencing the relationship. The rest of the factors are not found significant

and rather influence the long-term stock-bond dependence differently. The combination of PC

II and PC IL is found to be significantly improving the relationship as suggested by the model

selection criteria. Here again, the estimate of weight ωj,2, j = 1, 2, indicates that the degree of

smoothing varies across different PC-based indicators, where a smaller value leads to a larger degree

of smoothing over the lagged observations. The tail parameter ν is found to be significant in all the

choices, thus, supporting our choice of Student copula models. Hence, our proposed GAS MIDAS

copula models lend a support that the inflation, interest rate and illiquidity are the main factors

that drive the long-term change in the stock-bond dependence.

Figure 4 plots the long-term dependence between stock returns and bond returns using the GAS

MIDAS copula model with two explanatory variables as well as the RC2Y as a proxy. For brevity,

we only report the situations for which the corresponding δ parameters are significant. The RC2Y

is depicted in the blue dash line in each plot. In panel (a), the GAS MIDAS copula model with

RCor and PC IL is compared with the proxy and it can be seen that the long-term dependence

obtained by this model follows the fluctuations very closely. In Panel (b), the PC II model extended

with external variables (IL and SPF II) is presented, which, though significant, do not add much

to the long-term stock-bond dependence compared to the model with RCor-PC IL.

Figure 5 shows that the total time varying dependence between stock and bond is quite identical
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Table 8: The GAS MIDAS Student-t Copula with two explanatory variables

α β λ0 γ δ1 ω1,2 δ2 ω2,2 ν K2 LLH AIC BIC

(a) RCor with another explanatory variable

PC II 0.124*** 0.908*** -0.068** 1.519*** 1.476*** 4.575** 0.022 1.330 9.2*** 12 788.7 -1559.4 -1496.6

(0.027) (0.021) (0.034) (0.242) (0.138) (1.869) (0.035) (4.174) (1.070)

PC SE 0.126*** 0.904*** -0.064* 1.516*** 1.497*** 5.725*** 0.025 1.740 8.9*** 12 788.9 -1559.7 -1497.0

(0.028) (0.020) (0.034) (0.238) (0.127) (1.783) (0.033) (4.084) (1.001)

PC UC 0.121*** 0.906*** -0.066* 1.594*** 1.496*** 4.437** -0.010 1.345 8.9*** 18 788.3 -1558.6 -1495.9

(0.027) (0.021) (0.035) (0.251) (0.140) (1.755) (0.069) (3.630) (0.997)

PC IL 0.112*** 0.904*** -0.103*** 1.594*** 1.270*** 6.756*** -0.198** 1.628* 9.4*** 18 791.4 -1564.7 -1502.0

(0.027) (0.020) (0.035) (0.250) (0.146) (2.320) (0.080) (0.912) (1.113)

PC SPF II 0.108*** 0.931*** -0.056* 1.342*** 1.495*** 2.139*** -0.017 3.909*** 9.3*** 6 785.1 -1552.2 -1489.5

(0.025) (0.012) (0.033) (0.210) (0.177) (0.095) (0.049) (0.022) (1.097)

PC SPF SE 0.116*** 0.928*** -0.093** 1.264*** 1.463*** 3.302 -0.006 2.921*** 8.4*** 5 786.5 -1555.0 -1492.3

(0.030) (0.023) (0.043) (0.221) (0.172) (2.136) (0.043) (0.267) (0.884)

PC SPF UC 0.118*** 0.902*** -0.067** 1.590*** 1.525*** 5.386*** -0.042 2.454*** 9.1*** 4 788.6 -1559.3 -1496.5

(0.028) (0.020) (0.033) (0.247) (0.118) (1.653) (0.072) (0.025) (1.050)

(b) PC II with another explanatory variable

PC SE 0.105*** 0.978*** -0.206*** 0.772*** 0.144*** 6.347*** 0.045 2.556*** 8.4*** 12 763.3 -1508.6 -1445.9

(0.019) (0.004) (0.049) (0.139) (0.045) (0.021) (0.045) (0.008) (0.897)

PC UC 0.105*** 0.979*** -0.208*** 0.741*** 0.145*** 6.373*** -0.016 2.549*** 8.5*** 18 763.0 -1508.0 -1445.3

(0.019) (0.004) (0.051) (0.137) (0.044) (0.039) (0.051) (0.009) (0.921)

PC IL 0.104*** 0.956*** -0.197*** 1.181*** 0.197*** 1.326 -0.405*** 7.399 9.1*** 18 778.0 -1538.1 -1475.4

(0.021) (0.009) (0.036) (0.199) (0.031) (0.986) (0.087) (6.484) (1.057)

PC SPF II 0.130*** 0.977*** -0.055 0.717*** 0.134*** 1.813 0.134*** 1.813 9.6*** 6 760.8 -1507.7 -1458.0

(0.021) (0.005) (0.067) (0.178) (0.028) (1.124) (0.028) (1.124) (1.182)

PC SPF SE 0.137*** 0.983*** 0.009 0.549** 0.198*** 3.025 0.109 2.601*** 8.6*** 5 756.1 -1494.2 -1431.5

(0.025) (0.007) (0.145) (0.242) (0.059) (3.481) (0.104) (0.051) (0.950)

PC SPF UC 0.107*** 0.977*** -0.192*** 0.874*** 0.137*** 8.411*** -0.104 2.445*** 8.2*** 4 762.4 -1506.8 -1444.1

(0.018) (0.005) (0.048) (0.162) (0.041) (0.031) (0.123) (0.016) (0.840)

The table reports the estimation results of the asymmetric GAS MIDAS Student-t copula model for the dependence of stock returns and bond returns. We choose the RCor

with another explanatory variable to explain the long-term component of the dependence. The lag length is selected such that the maximum likelihood becomes insensitive to

the choice of K and the restricted beta weighting scheme function is chosen based on previous analysis. We choose K1 = 24 for the RCor variable and K1 = 12 for the PC II

variable. ***,**,* denote significant at 1%, 5%, 10% level.
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Figure 4: long-term dependence between stock and bond

The figure shows the long-term dependence between stock returns and bond returns using GAS MIDAS copula models with

two explanatory variables in comparison to the two-year rolling correlation. The shaded areas highlight the recession periods

based on the NBER indicators.
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across the GAS MIDAS copula models. Since the total time varying dependence is driven mainly by

the short-term dependence due to the decomposition, it indicates that low-frequency macro-finance

factors are not important for estimation of the total time varying fluctuations in the stock-bond

dependence. However, for long-term strategies, the observation for long-term dependence is different

and worth noticing as discussed earlier. In the three last recent recessions and crises from the 2000s,

the dependence started at a negative value and remained mostly below zero, which shows bond

could be a hedge for stock in such a situation. The dependence then seemed to recover to the zero

level nearly to the of considered data, which actually covers the recent Covid 19 pandemic, where

the total dependence was below -0.7 during this period. In the next section, we show an application

of the GAS MIDAS copula models for the optimal portfolio allocation and risk management.

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1990 2000 2010 2020

C
or

re
la

tio
n

Total component GAS PC II−IL GAS PC II−SPF II GAS RCor

Figure 5: Total dependence between stock and bond

The figure shows the time varying dependence between stock returns and bond returns using the GAS MIDAS copula models

with RCor, PC II - PC SPF II, PC II - PC IL. The shaded areas highlight the recession periods based on the NBER indicators.

5 Portfolio allocation and Risk Management

In this section, we illustrate how the GAS MIDAS copula models can be utilized for the return

forecasts of the stock-bond portfolio. We split the full samples (01/1990 - 03/2021) into the in-
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sample period (01/1990 - 04/2017) for the parameter estimation and the last T = 1000 observation

for the out-of-sample period (04/2017 - 03/2021). The models have been reestimated for the in-

sample data. We quantify the associated risk measures of the portfolio such as the quantile loss

distribution for a given horizon (VaR), and the conditional expected loss above a quantile (ES).

Finally, based on the out-of-sample data, we evaluate the economic value of the GAS MIDAS copula

model on the optimal portfolio allocation.

5.1 Return prediction

In each period of the out-of-sample forecast, we fix the estimated parameters and simulate S

scenarios based on the assumed model data generating process. Let Θ̂i = (µ̂i, α̂i, β̂i, γ̂i, m̂i, δ̂i, ω̂i)

be the set of marginal parameters in the GARCH MIDAS models that have been estimated in the

previous analysis, we simulate the one step ahead prediction of the returns using Equation 1,

r
(s)
it = µ̂i +

√
κiτgitε

(s)
it ,

git = (1− α̂i − 0.5γ̂i − β̂i) + (α̂i + γ̂iI{εi,t−1<0})gi,t−1ε
2
i,t−1 + β̂gi,t−1,

κiτ = exp

m̂i +

Ni∑
j=1

δ̂ij

 Kj∑
k=1

φk(ω̂i,j,1, ω̂i,j,2)Xi,j,τ−k

 ,

where the simulated standardized innovation ε
(s)
it is obtained as the empirical inverse quantile

function of the GAS MIDAS Copula, ε
(s)
it = F−1

i (u
(s)
it ), for s = 1, . . . , S such that,

(u
(s)
1t , u

(s)
2t ) ∼ ct(u1t, u2t|θt),

θt = Λ(λt),

λt = λτ (1− β̂) + α̂
∂ log ct−1(u1t−1, u2t−1|λt−1)

∂λt−1
+ β̂λt−1 + γ̂ (vt−1 − v̄) ,

λτ = λ̂0 +
N∑
j=1

δ̂j

 Kj∑
k=1

φk(ω̂j,1, ω̂j,2)Xj,τ−k

 ,
where Θ̂c = (α̂, β̂, γ̂, λ̂0, δ̂, ω̂) are the maximum likelihood estimation of the parameters in the GAS

MIDAS copula model. We update the explanatory variables Xj when it is available. In the next

section, we use the simulated return to quantify the associated risk of the stock and bond portfolio.
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5.2 Value at Risk

Based on the simulated returns, we construct the simulated portfolio of stock and bond at time t

as,

r
(s)
t = w1tr

(s)
1t + (1− w1t)r

(s)
2t

where w1t is the weight of stock in the portfolio at time t. The q% VaR is the threshold loss at

the q quantile of the simulated portfolio and the ES is the associated expected loss above q% VaR

such that,

q = Pr (rt ≤ VaRq,t) ,

ESq,t = E (rt |rt ≤ VaRq,t ) .

We choose q = 1% and q = 0.5% and estimate the one-step-ahead VaRq,t and ESq,t for the portfolio

of equal weight. As we can simulate the returns of the portfolio, it is straightforward to obtain the

predictive VaRq,t and ESq,t for each out-out-of sample forecast t = 1, . . . , T . Next, we compare the

loss functions based on VaR forecasts following Caporin (2008) and Taylor (2019),

IF =
T∑
t=1

I (rt < VaRq,t) ,

ADt = ||rt| − |VaRq,t || I (rt < VaRq,t) ,

SDt = (|rt| − |VaRq,t |)2 I (rt < VaRq,t) ,

QSt = (rt −VaRq,t)(q − I (rt < VaRq,t)),

ALSt = − log

(
q

ESq,t

)
− (rt −VaRq,t)(q − I (rt < VaRq,t))

qESq,t
.

Note that the indicator loss function (IF) counts the number of exceptions where the portfolio

return goes below the VaR threshold. The absolute deviation loss function (AD) and the squared

deviation loss function (SD) measures the first order and the second order loss of the exceptions.

As the VaR and (VaR, ES) are elicitable risk measures (see, for example, Nolde et al. (2017)), the

quantile score (QS) loss function and the Asymmetric Laplace log score (ALS) loss function are

employed for backtesting. Both of these measures are strictly consistent in the sense that the QS

and the ALS are minima at the true quantile series (Gneiting, 2011).

Table 9 reports the average VaR and ES together with the aggregate of the loss functions using
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models: the DCC, the DCC MIDAS, the GAS MIDAS RCor, the GAS MIDAS RCor-PC IL, the

GAS MIDAS PC II, the GAS MIDAS PC II-IL, for the equally weighted portfolio. As we apply

the same marginal models for stock returns and bond returns, the differences in risk measures are

due to the use of the dynamic copula models. In general, the GAS MIDAS copula models yield a

lower level of VaR and ES than the DCC and DCC MIDAS models. Despite that the GAS MIDAS

RCor model has the same number of exceptions at the 0.5% and 1% quantiles to the DCC and

DCC MIDAS models, the AD, SD, QS and ALS loss function are smaller for the GAS MIDAS

RCor model. The GAS MIDAS RCor-PC IL does not provide much improvement over the GAS

MIDAS RCor. On the other hand, the numbers of exceptions for GAS MIDAS PC II and GAS

MIDAS PC II-IL are closer to the expected exceptions of 5 and 10 at the 0.5% and 1% quantiles

respectively. We also report the significant difference in loss functions between the DCC model and

others using the Diebold and Mariano (1995) test. The GAS MIDAS PC II and the GAS MIDAS

PC II-IL give significant improvements in risk management over the DCC model.

Table 9: Risk measures

VaR ES IF AD SD QS ALS

q = 1%

DCC -1.291 -1.644 14 6.149 4.212 19.383 1527.997

DCC MIDAS -1.286 -1.641 14 6.071 4.123* 19.256* 1519.746

GAS MIDAS RCor -1.302 -1.673 14 5.671 3.752 19.020 1503.488

GAS MIDAS RCor-PC IL -1.305 -1.673 14 5.869 3.761 19.241 1515.204

GAS MIDAS PC II -1.321 -1.689 12 5.461** 3.489** 18.991* 1495.735

GAS MIDAS PC II-IL -1.325 -1.696 12 5.187** 3.241** 18.762* 1470.668

q = 0.5 %

DCC -1.497 -1.905 10 4.023 2.366 11.670 1713.927

DCC MIDAS -1.492 -1.905 10 3.745 2.092 11.365 1684.572

GAS MIDAS RCor -1.519 -1.945 10 3.502 1.937 11.259 1669.379

GAS MIDAS RCor-PC IL -1.522 -1.945 10 3.394 1.752 11.165 1662.926

GAS MIDAS PC II -1.541 -1.959 8 3.043** 1.543* 10.910 1629.636

GAS MIDAS PC II-IL -1.543 -1.970 7 2.858** 1.504** 10.733 1600.582

The table reports the average VaR and ES together with the aggregate of the loss functions using the DCC,

the DCC MIDAS, the GAS MIDAS RCor, the GAS MIDAS PC II, the GAS MIDAS PC II-IL for the equally

weighted portfolio. The expected exceptions at the 0.5% and 1% quantiles are 5 and 10 respectively. We

report the significant difference in risk measures between the DCC model and alternatives using the Diebold

and Mariano (1995) test where the standard errors of the test statistics are computed with the Newey–West

estimator. ***,**,* denote that the corresponding model significantly outperforms the Gaussian VAR at 1%,

5%, 10% level.
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5.3 Portfolio allocation

Next, we consider an investor who allocates wealth between stock and bond by maximizing the

constant relative risk aversion (CRRA) utility function. Following Patton (2004), we assume the

CRRA utility function as,

U(rt, η) =


(1− η)−1 (P0(1 + rt))

1−η if η 6= 1,

log (P0(1 + rt)) if η = 1,

rt = w1tr1t + (1− w1t)r2t,

(6)

where P0 = 1 is the initial wealth and η is the degree of the risk aversion. The investor optimizes

the CRRA utility function based on the one step ahead forecast of the conditional density function,

w∗1t = arg maxEt(U(rt, η))

= arg max

∫ ∫
U(rt, η)ft(r1t, r2t)dr1tdr2t

= arg max

∫ ∫
U(rt, η)f1t(r1t)f2t(r2t)ct(F1t(r1t), F2t(r2t))dr1tdr2t.

(7)

We use a numerical method to calculate the double integral and optimize the objective function

using the BFGS algorithm. In order to compare among copula models, we measure the performance

fee (Fee) that the investor is willing to pay to switch from one strategy to another strategy, see

more discussion in Fleming et al. (2001) and Wu and Lin (2014). Mathematically, we write as,

T∑
t=1

U(rBt − Fee, η) =

T∑
t=1

U(rAt , η),

where rAt and rBt are the portfolio returns from two competing strategy A and B. We let the

benchmark model A be a passive model where the initial weight is distributed to maximize the

CRRA utility function using the historical in-sample data. We report different levels of risk aversion

parameter such as η = 1, η = 5, η = 10. We also calculate the break-even transaction cost (TC) per

trade that the investor is even between the passive strategy A and the dynamic optimal portfolio

strategy B. The break-even TC is proportional to the portfolio turn-over in each out-of-sample
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period, see Han (2006),

T∑
t=1

U

(
rBt − TC

∣∣∣∣∣wB1t − wB1,t−1

1 + r1t−1

1 + rBt−1

∣∣∣∣∣ , η
)

=
T∑
t=1

U
(
rAt , η

)
.

Table 10 reports the economic values of dynamic portfolios over a passive portfolio. The per-

formance fees are normalized to annual basis points (bps) and the break-even transaction costs are

expressed in basis points of the portfolio turn-over.

Table 10: Economic values of dynamic portfolios over a passive portfolio

η = 1 η = 5 η = 10

Fee TC Fee TC Fee TC

DCC 365.61 16.83 148.68 23.91 121.93 26.73

DCC MIDAS 381.18 17.54 157.37 25.54 134.12 30.13

GAS MIDAS RCor 393.09 17.62 161.45 26.15 137.43 30.91

GAS MIDAS RCor-PC IL 392.09 17.37 162.86 26.35 139.01 31.41

GAS MIDAS PC II 365.88 16.25 154.10 24.48 133.08 29.64

GAS MIDAS PC II-IL 370.62 15.99 161.97 25.57 140.58 31.31

The table reports the economic values of dynamic portfolios over a passive portfolio. The

initial weight of the passive portfolio is chosen to maximize the CRRA utility function using

the historical in-sample data. The performance fees are normalized to annual basis points

(bps) and the break-even transaction costs are expressed in basis points of the proportional

cost for reweighting.

We find that, under a low risk aversion, the performance fees based on the GAS MIDAS RCor

model is larger than those based on the DCC and DCC-MIDAS models, indicating that the use of

complete density of the copula function and the asymmetric effect of bad news on the dependence

economically informative. For instance, at the portfolio return of η = 1, an investor is willing to

pay roughly 30 annual basis points (bps) for switching from a DCC based models to GAS MIDAS

RCor copula model. In addition, an investor would be willing to pay more break-even costs to

utilize the GAS MIDAS RCor model instead of the DCC-based models to allocate his portfolio.

This finding is consistent across different choices. For a relatively higher risk aversion (η = 10),

the performance fees based on GAS MIDAS PC II-IL model is higher than the rest, indicating

economically significance of these macroeconomic factors. In these situations, the GAS MIDAS PC

II-IL model outperforms the GAS MIDAS RCor model which shows a potential improvement of

using macroeconomic factors in additional to RCor to forecast the stock-bond relation. In summary,

34



if the investor is less risk-averse, the GAS MIDAS RCor can improve over the DCC models and

the improvement is consistent among different risk-averse parameters. Consistent with previous

studies, a less risk-averse investor is documented to induce higher performance fees, such as, a

corresponding increase in the performance fees is noticed with a decrease in risk-aversion levels.

6 Conclusion

In this study, we have proposed GAS MIDAS copula models to analyze the dynamic relationship

between stock returns and bond returns. Our proposed copulas decompose the stock-bond relation

into a short-term dependence and a long-term dependence. While the long-term effect is updated

at a lower frequency using a MIDAS regression, the short-term effect follows a GAS process. We

also incorporate the asymmetric effect of “bad news” to the dynamic dependence. The models not

only perform well in-sample but also help the investors to optimize portfolio allocation and risk

management in the out-of-sample forecast.

According to the results of the GAS MIDAS copula model, long-term stock–bond dependence

has a positive relationship with the state of the economy factor and a negative relationship with the

uncertainty/illiquidity factors. Such observation is noticed for both the one explanatory variable

and two explanatory variables model (based on PC II and other macro economic factors). These

results support the flight-to-quality phenomenon and indicate that when the state of the economy

is poor and uncertainty in the financial markets is high, investors move their investments from

stocks to bonds, which results in a negative correlation between stock and bond returns. The

long-term dependence based on the two-explanatory variables model (RCor-PC IL and PC II-IL)

fit the realized correlation quite well.

We also examine the out-of-sample economic values of chosen2 GAS MIDAS copula models

by comparing them with the DCC counterpart. The proposed copula models yield a lower level

of VaR and ES than the DCC-based models, which is even supported by backtesting measures.

The maximum expected CRRA utility strategies also indicate that the proposed copula models

outperform the DCC-based model. In addition, investors can gain an extra benefit by taking into

2Model with significant δ parameter is used in this step.
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account the asymmetry effect in the dependence and a less risk-averse investor would be willing to

pay higher fees to adopt a trading strategy based on proposed copula models. In general, we find

that the inflation, the interest rate and the illiquidity factors are the main drivers of the long-term

stock-bond dependence. Copula models with macroeconomic explanatory variables are found to

favour the high risk-averse investors than using the RCor alone. Furthermore, the models with

macroeconomic explanatory variables also yield a more accurate forecast of risk measures. These

findings provide a robust inference that supports the GAS MIDAS-based copula models better

than the DCC-based models, and also lead us to better understand the dependence structure

under extreme market conditions.

Several research directions can be extended from our proposed models, where, such as, one can

analyse the dependence in high dimensional timeseries using vine copulas and factor copulas with

the bivariate GAS MIDAS copula model as a building block. Secondly, the dependence between

consumption and inflation is in the reverse direction with the stock-bond dependence (Li et al.,

2020) and it would be interesting to see how the high-frequency stock-bond dependence can give

a warning signal to the low-frequency change in the consumption-inflation dependence using the

MIDAS framework. Last but not least, Bayesian inference can be provided for the GAS MIDAS

copula models to obtain an efficient inference, and to counter situations when the explanatory

variables are multicollinear.
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Appendix

A Weighting functions

There are several weighting scheme functions as:

(a) Restricted Beta:

φk(1, ω2) =
[1− k/(K + 1)]ω2−1

K∑
l=1

[1− l/(K + 1)]ω2−1

.

(b) Beta:

φk(ω1, ω2) =
[k/(K + 1)]ω1−1 [1− k/(K + 1)]ω2−1

K∑
l=1

[l/(K + 1)]ω1−1 [1− l/(K + 1)]ω2−1

.

(c) Exponential Almon lag:

φk(ω1, ω2) =
exp(ω1k + ω2k

2)
K∑
l=1

exp(ω1l + ω2l
2)

.

(d) Step function: Step function assumes that all the regression coefficients in the same quarter

are the same, for example.

B Archimedean Copulas

The density of a symmetric Archimedean copula is written as an equally weighted combination of

an Archemedean copula and its 180-degrees rotated Archemedean copula,

csym(u1, u2) = 0.5c(u1, u2) + 0.5cR180(u1, u2).
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Figure 6: Contours of symmetric Archimedean copula distributions with the same marginal standard normal

C Exponentially Weighted Moving Average

The EWMA assumes a higher weight to the most recent observations, hence it is updated based

on the latest observation as

Qt = φQt−1 + (1− φ)rt−1r
′
t−1 where φ = 0.96,

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2.

D A DCC MIDAS Gaussian copula model

Colacito et al. (2011) and Conrad et al. (2014) extend the DCC model (Engle, 2002) such that

there are N variables that can explain the long-term dependence. A DCC MIDAS Gaussian copula

model can be presented as,

(u1t, u2t) ∼ c(Gauss)(u1t, u2t|Rt),

Rt = Q
∗−1/2
t QtQ

∗−1/2
t where Q∗t = diag(Qt)

q12,t+1 = q12,τ (1− α− β) + αΦ−1(u1t)Φ
−1(u2t) + βq12,t,

q12,τ = λ0 +

N∑
j=1

δj

 Kj∑
k=1

φk(ωj,1, ωj,2)Xj,τ−k

 ,
(8)

where (λ0, α, β, δj , ωj) are the fixed copula parameters and τ = bt/Lc. (X1τ , . . . , XNτ ) are N -

dimensional vector of low-frequency variables, and φk(ωj1, ωj2) is the weighting scheme of the

variable j on its k lag, for k = 1, . . . ,K. The weighting scheme of each variable j depends on the

regulated parameter ωj for j = 1, . . . , N . Note that 0 < α+ β < 1.
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E Robust checks

The table 11 reports the estimation results of the GAS MIDAS Student-t copula model for the

dependence of stock returns and bond returns using different weighting scheme functions such as

the restricted Beta, the Beta, the Exponential Almon and the Step function. Since the more current

values of RCor are more important to predict the long-term change dependence, the restricted Beta

functions provide a very similar result in comparison to the Beta function or the Exponential Almon

function. The Step function has 8 free parameters which allow for the changes in the weighting

scheme every three months, we report here two first free parameters. The BIC values show that the

restricted Beta weighting function is good enough to smooth the effect of the explanatory variables.

We choose the restricted Beta function as a weighting scheme of the GAS MIDAS copula for further

analysis.

Table 11: Comparison of different weighting scheme functions for the GAS MIDAS Student-t Copula

Weighting function α β λ0 δ1 ω
(1)
1 ω

(2)
1 ν K LLH AIC BIC

Restricted Beta 0.262*** 0.933*** -0.021 1.973*** 1.000 5.631*** 8.4*** 24 759.7 -1507.3 -1465.5
(0.033) (0.021) (0.046) (0.125) (1.781) (0.882)

Beta 0.259*** 0.930*** -0.006 2.001*** 1.004*** 6.754*** 8.6*** 24 759.8 -1505.5 -1456.7
(0.032) (0.021) (0.045) (0.121) (0.010) (2.118) (0.931)

Exponential Almon 0.259*** 0.931*** 0.009 1.992*** -0.142 -0.018 8.4*** 24 759.4 -1504.8 -1456.1
(0.033) (0.021) (0.045) (0.123) (0.202) (0.022) (0.885)

Step function 0.270*** 0.867*** 0.022 0.480*** 0.065 8.0*** 24 756.2 -1488.4 -1404.8
(0.034) (0.035) (0.035) (0.054) (0.061) (0.817)

The table reports the estimation results of the GAS MIDAS Student-t copula model for the dependence of stock returns and bond returns using different

weighting scheme functions. We choose the RCor to explain the long-term component of the dependence. The lag length is selected such that the

maximum likelihood becomes insensitive to the choice of K. The step function has 8 free parameters which allow for the changes in the weighting scheme

every three months, we report here two first free parameters. ***,**,* denote significant at 1%, 5%, 10% level.
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