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Abstract  
In the Cochrane Database of Systematic Reviews (CDSR) 75% of reported meta-analyses 

contain five or fewer studies. For a small dataset a reasonable goodness-of-fit test on a statistical model 
cannot be performed since either it requires a large sample size for the validity of asymptotic 
approximation or it might be not powerful enough to detect a deviation from the target model.  

Random effects model under the assumption of normality is commonly used in many fields of 
science. It also appears to be a classical approach for data reduction in interlaboratory studies in 
metrology and in meta-analysis in medicine. However, the assumption of normality might not be 
fulfilled in many practical applications. If a data set is small, then no statistical test on distribution will 
perform well.  

The intrinsic Bayes factor is used for selecting an appropriate probability model among several 
competitors, which not necessarily have to be nested. We apply the proposed methodology to the 
measurement results used to determine the Newtonian constant of gravitation and the Planck constant. 

 
Keywords: random effects model; t-distribution; Bayesian model selection; intrinsic 

Bayes factor; Newtonian constant of gravitation; Planck constant.  
 
JEL Classification: C11; C18; C02  
 

 
1. Introduction 

Random effects model is an established tool to perform the interlaboratory comparison 
study in metrology [1] and meta-analysis in medicine [2, 3]. It is also widely used to determine 
the values of the physical constants [4]. The assumption of normality is imposed in many 
applications of the random effects model without verifying its validity. While assuming 
normality might be appropriate for some datasets, it might deviate considerably from reality in 
other situations. The impact of the distributional assumption used in the random effects model 
was studied in two empirical illustrations in [5], which showed that the resulting values of the 
overall mean and of the between-study variance might be strongly influenced by the assumed 
distribution. 

Most of meta-analyses and interlaboratory comparison studies are based on data that 
consist of five or fewer observations [6]. As a result, a goodness-of-fit test cannot be carried out, 
since it is asymptotic in nature, or it is not powerful enough to detect deviations from the 
distributional model specified under the null hypothesis. For this reason, we opt for Bayesian 
approach. The parameters of the model are endowed with the Berger and Bernardo reference 
prior, which is a non-informative prior. Since a non-informative prior is usually improper, the 
conversional Bayes model selection based on the Bayes factor cannot be used. We employ the 
intrinsic Bayes factor to select the most suitable model among several competing models that do 
not necessarily have to be nested. 

The suggested approach is applied to data consisting of measurement results used in the 
determination of the Newtonian constant of gravitation and the Planck constant. While the 
assumption of normality is found to be appropriate in the case of the Newtonian constant, the 
data used in the calculation of the Planck constant appear to be heavy-tailed and the random 
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effects model based on t-distribution with three degrees of freedom provides a better fit to data 
than the one based on the assumption of normality. 

 
 

2. Bayesian model selection based on the intrinsic Bayes factor 
Let 𝐱 = (𝑥!, … , 𝑥") denote the measurement results and let 𝐔 = )𝑢#$+#,$∈!,…," be the 

covariance matrix provided together with the measurement results by participating laboratories. 
The generalized random effects model assumes that the density of 𝐱 is given by (see, [7]) 

𝑝((𝐱|μ, τ) =
!

)*+,-𝐔/τ𝟐𝐈1
𝑓()(𝒙 − 𝜇𝟏)2(𝐔 + τ3𝐈)4!(𝒙 − 𝜇𝟏)+,   

 (1) 
where 𝜇 is the common mean and 𝜏 is the between-study standard deviation, also known as the 
heterogeneity parameter “dark uncertainty”; 𝟏 denotes the vector of ones and 𝐈 is the identity 
matrix. The function 𝑓((. )	determines the specific class of the random effects model. If 𝑓((𝑢) =
(2𝜋)4"/3exp	(−𝑢/2), then (1) is the normal random effects model, while the 𝑡-distributed 
random effects model with 𝑑 degrees of freedom is obtained from (1) with 

𝑓((𝑢) = (𝜋𝑑)4"/3 Γ(("/7)/3)
Γ(7/3)

(1 + 𝑢/𝑑)4("/7)/3.    (2) 
Bayes factor is widely used for model selection in Bayesian statistics. It is defined by  
𝐵𝐹9((𝐱) =

:"(𝐱)

:#(𝐱)
  with  𝑚((𝐱) = ∫ ∫ 𝑝((𝐱|µ, τ)

/<
4<

/<
= 𝜋((𝜇, 𝜏)𝑑𝜇𝑑𝜏,   

 (3) 
where 𝜋((𝜇, 𝜏) stands for a prior assigned to the parameters of the model 𝑀(. If 𝐵𝐹9((𝐱) > 1, 
then one concludes that the model 𝑀9 is preferable to 𝑀(, otherwise one prefers the model 𝑀( to 
𝑀9. 

If 𝜋((𝜇, 𝜏) is improper as in the case of the Berger-Bernardo reference prior whose 
expressions derived for the normal random effects model and for the 𝑡-distributed random effects 
model are given in [7], then the Bayes factor in (3) cannot be computed since the marginal 
distribution of data is improper as well. As a solution to the problem, the intrinsic Bayes factor 
(IBF) is defined in [8]. The idea behind the approach is to use a part of observations, the so-
called training sample to transform the improper prior to the proper posterior, which is then used 
in the computation of the IBF. The recommendation is to use the smallest possible number of 
observations as a training sample, in order to have more observations to draw a decision about 
the preferable model. In the case of the random effects model, the size of the minimal training 
sample is two independently of 𝑓((. ) following [4].  

Let 𝐱> denote the minimal training sample and let 𝐱(>) = 𝐱 − 𝐱> denote the rest of the 
sample when the elements 𝐱> are excluded. Then the IBF for model 𝑀9 to 𝑀( is defined by 

𝐼𝐵𝐹9()𝐱(>)|𝐱>+ =
:"-𝐱(%)|𝐱%1

:#-𝐱(%)|𝐱%1
  with  𝑚()𝐱(>)|𝐱>+ = ∫ ∫ 𝑝()𝐱(>)|µ, τ, 𝐱>+

/<
4<

/<
= 𝜋((𝜇, 𝜏|𝐱>)𝑑𝜇𝑑𝜏, 

 (3) 
where 𝜋((𝜇, 𝜏|𝐱>) is the posterior for the parameters of  𝑀( given the observations in the minimal 
training sample 𝐱>.  

The training sample 𝐱> is not uniquely chosen. When the minimal training sample 
consists of two elements as in the case of the random effects model (1), then one has 𝐿 = 𝑛(𝑛 −
1)/2		possible choices of two elements out of 𝑛 measurement results. In such a situation one 
considers all possible sets of two measurement results as a training sample, while the rest of data 
is used for the model selection. As a result, one obtains 𝑛(𝑛 − 1)/2	 IBF values which are 
aggregated into a single value. Following [9] the following three aggregation approaches are 
used: 

1) Average logarithmic IBF: 𝑎𝐼𝐵𝐹9()𝐱(>)|𝐱>+ =
!
@
∑ log Q𝐼𝐵𝐹9()𝐱(>)|𝐱>+R> , 
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2) Median logarithmic IBF: 𝑚𝐼𝐵𝐹9()𝐱(>)|𝐱>+ = 𝑚𝑒𝑑𝑖𝑎𝑛 Ulog Q𝐼𝐵𝐹9()𝐱(>)|𝐱>+RV, 

3) Empirical probability IBF: 𝑒𝑝𝐼𝐵𝐹9()𝐱(>)|𝐱>+ =
!
@
∑ 1(=,/<) Ulog Q𝐼𝐵𝐹9()𝐱(>)|𝐱>+RV> , 

where 1(=,/<)(. ) denotes the indicator function of set (0, +∞). If 𝑎𝐼𝐵𝐹9()𝐱(>)|𝐱>+ > 0,  then the 
model 𝑀9 is preferable to 𝑀(. Similarly, the inequality 𝑎𝐼𝐵𝐹9()𝐱(>)|𝐱>+ > 0 indicates that the 
model 𝑀9 should be selected, while 𝑒𝑝𝐼𝐵𝐹9()𝐱(>)|𝐱>+ > 0.5 means that the model 𝑀9 is better. 

Using the IBF and three aggregation methods we compare the ability of the random 
effects model (1) based on the assumption of the 𝑡A-distribution, 𝑡B-distribution, 𝑡!=-distribution, 
and normal distribution to fit the data used in the determination of the Newtonian constant of 
gravitation (Section 3) and the Planck constant (Section 4). 
 
3. Model specification for measurement results in the case of the Newtonian constant  
 

In this section we apply the Bayes model selection approach based on the IBF to the 
measurement results used in the computation of the Newtonian constant of gravitation (see,  [9]).  
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Fig.1. Logarithm of intrinsic Bayes factors for the comparison between the random effects model based on 𝑡'-
distribution, 𝑡(-distribution, 𝑡)*-distribution, and normal distribution. Data: Measurement results used in the 

computation of the Newtonian constant for gravitation (see,[9]). 
 

Fig. 1 depicts the values of the logarithmic IBF computed for all possible subsets 
consisting of measurement results used in the computation of the Newtonian constant of 
gravitation. The plots show that the random effects model based on the normal distribution 
provides a better fit to the data than the one based on the assumption of a 𝑡 –distribution. Also, a 
𝑡 –distribution with a large number of degrees of freedom are preferable to the one with small 
degrees of freedom. 

In Table 1 the aggregated values of the logarithms of the IBF are presented for the 
pairwise model comparisons between the considered 𝑡 –distributions and the normal distribution. 
The results in the table are in line with the findings of Fig. 1 and they indicate that the normal 
random effects model should be chosen. 
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Table 1: Average logarithmic IBF, median logarithmic IBF, and empirical probability logarithmic IBF computed for 
the measurement results used in determination of the Newtonian constant for gravitation. 

Models 𝑡A to 𝑡B 𝑡A to 𝑡!= 𝑡A to 
normal 

𝑡B to 𝑡!= 𝑡B to 
normal 

𝑡!= to 
normal 

a𝐼𝐵𝐹9()𝐱(>)|𝐱>+ -0.0849 -0.1248 -0.1769 -0.0399 -0.092 -0.0521 
m𝐼𝐵𝐹9()𝐱(>)|𝐱>+ -0.0656 -0.0826 -0.0915 -0.0156 -0.031 -0.0174 
𝑒𝑝𝐼𝐵𝐹9()𝐱(>)|𝐱>+ 0.175 0.225 0.2083 0.25 0.275 0.275 
 
 
 
4. Model specification for measurement results in the case of the Planck constant  
 

The aggregated values of the logarithmic IBF are provided in Table 2. In the case of the 
comparison of any 𝑡 –distributed random effects model to the normal one, the computed values 
are considerably larger than one. These finding clearly indicate the presence of heavy tails in the 
measurement data that cannot be captured by the normal distribution. Moreover, we conclude 
that the random effects model based on the 𝑡A-distribution provides the best fit to the data used in 
the computation of the Planck constant. 

 
 
Table 2: Average logarithmic IBF, median logarithmic IBF, and empirical probability logarithmic IBF computed for 
the measurement results used in determination of the Newtonian constant for gravitation. 

Models 𝑡A to 𝑡B 𝑡A to 𝑡!= 𝑡A to 
normal 

𝑡B to 𝑡!= 𝑡B to 
normal 

𝑡!= to 
normal 

𝑎𝐼𝐵𝐹9()𝐱(>)|𝐱>+ 0.4269 0.8796 1.5418 0.4527 1.1148 0.6622 
𝑚𝐼𝐵𝐹9()𝐱(>)|𝐱>+ 0.4169 0.8591 1.5017 0.4397 1.0892 0.656 
𝑒𝑝𝐼𝐵𝐹9()𝐱(>)|𝐱>+ 1 1 1 1 1 1 

 
 
Fig.2 presents the values of the logarithmic IBF computed for the data used in the 

determination of the Planck constant (see, e.g. [10]). All values in the plots are considerably 
larger than zero showing that the assumption of normal distribution is not recommendable. 
Furthermore, we observe that the random effects model based on the 𝑡 –distribution with three 
degrees of freedom should be selected. 
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Fig. 2. Logarithm of intrinsic Bayes factors for the comparison between the random effects model based on 𝑡'-

distribution, 𝑡(-distribution, 𝑡)*-distribution, and normal distribution. Data: Measurement results used in the 
computation of the Planck constant (see, e.g., [10]). 

 
 

4. Conclusion 
The model choice is a very challenging task when the sample consists only of several 

values. It is remarkable that most of the interlaboratory comparison studies are performed by 
using a few measurement results. A similar situation is also present in medicine when a meta-
analysis is carried out as well as in the case of the determination of physical constants, like the 
Newtonian constant of gravitation and the Planck constant. 

In the paper we apply the Bayesian model selection approach based on the intrinsic Bayes 
factor to compare the ability of the normal distribution and the t-distribution to fit measurement 
data. While we find that the measurement data used in the computation of the Newtonian 
constant of gravitation can be modeled by the normal random effects model, it is not longer a 
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case with the data used in the determination of the Planck constant, the random effects model 
based on the 𝑡 –distribution with three degrees of freedom should be used instead. 

 
 

Баєсівський метод вибору моделі для малої кількості результатів 
вимірювань 
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Анотація  
У Кокранівській базі даних систематичних оглядів (CDSR) 75% наданих мета-

аналізів містять п’ять або менше досліджень. Для невеликого набору даних неможливо 
виконати прийнятний тест на придатність статистичної моделі, оскільки або він вимагає 
великого обсягу вибірки для обґрунтованості асимптотичного наближення, або він може 
бути недостатньо потужним для виявлення відхилення від цільової моделі.  

Модель випадкових ефектів за припущення розподілу Гауса зазвичай 
використовується в багатьох галузях науки. Ця модель являється також найбільш 
поширеною для аналізу даних у міжлабораторних звіреннях у метрології та для мета-
аналізу в медицині. Однак припущення нормального розподілу може не виконуватися у 
багатьох практичних застосуваннях. Якщо набір даних невеликий, жоден статистичний 
тест на розподіл не буде добре працювати.  

Ми застосовуємо внутрішній коефіцієнт Баєса, запропонований у випадку, коли 
класичний коефіцієнт Баєса не існує, для вибору найбільш придатної ймовірнісної моделі 
серед кількох моделей конкурентів, які не обов'язково повинні бути вкладеними. Ми 
застосовуємо запропоновану методологію до результатів вимірювань, що 
використовуються для визначення Гравітаційної сталої та сталої Планка. 

 
Ключові слова: Модель випадкових ефектів; t-розподіл; Баєсівський метод вибору 

моделей; внутрішній коефіцієнт Байєса; Гравітаційна стала; стала Планка. 
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