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Abstract 

In this study we analyse data from world cup cross-country skiing sprint elimination 
tournaments for men and women in 2015-2020. Instead of being assigned a 
quarterfinal according to a seeding scheme, prequalified athletes choose themselves 
in sequential order in which of five quarterfinals to compete. Due to a time constraint 
on the day the competition is held, the recovery time between the knockout heats 
varies. This implies a clear advantage for the athlete to race in an early rather than in 
a late quarterfinal to maximize her probability of reaching the podium. The purpose 
of the paper is to analyse the athletes’ choices facing the trade-off between recovery 
time and expected degree of competition when choosing in which quarterfinal to 
compete. We find empirical support for the prediction that higher ranked athletes 
from the qualification round prefer to compete in early quarterfinals, despite facing 
expected harder competition. Nevertheless, our results also suggest that athletes 
underestimate the value of choosing an early quarterfinal. In addition, we propose a 
seeding scheme capturing the fundamental disparity across quarterfinals using the 
estimates from a logistic regression model.  
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1. Introduction 
Many sports contests take the form of an elimination tournament, in which the matching of contestants 

in pairs or in groups often is based on their performance in a preceding qualification tournament.1 The 

designer’s goal when determining the order of the knockout games is often to avoid that higher ranked 

contestants meet each other in early rounds in the tournament, but instead face lower ranked opponents 

until it is time for the last thrilling knockout rounds in the tournament. Very seldom, the higher ranked 

contestants from the qualification stage can choose their opponents during the subsequent (first) phase 

of the knockout stage. However, this unusual design has been used by the Swedish national hockey 

league when entering its playoff during the seasons 2006-2014 and the method is still applied in the 

country’s lower hockey leagues.  There has also been proposals to apply a similar scheme in the Major 

League Baseball (MLB) in the US, where the top team in each league would pick its playoff opponent.2 

Guyon (2019) presents how a “choose your opponent” format would work for the UEFA Champions 

League. The argument is that this method would induce stronger incentives for the teams to improve 

their performance in the preceding qualification tournament (the group stage), thereby making these 

games more exciting. Also, the occasion at which the teams publicly announce their choice of opponent 

would attract a lot of media attention and bring a new dimension to the knockout stage.    

In this paper we analyse the outcome in cross country skiing sprint contests, a knockout tournament 

organised by the International Ski Federation (FIS). The organisation previously applied a conventional 

method to seed qualified athletes. However, the last five years it has adopted an approach based on 

athletes partly are choosing their opponents in the knockout stage after the preceding qualification round. 

These cross-country skiing contests, each stretching out only for one day, are held about twelve times 

per season at various places in Europe, Russia, and Canada. Each contest starts with a qualification 

round before the elimination stage which includes two rounds besides the final; the quarterfinals and the 

semifinals. Within the old design, an athlete was assigned one of the five quarterfinals based on his 

ranking in the qualification round. At the end of the season 2014/2015, the FIS decided to change the 

design and the qualified athletes were free to choose one of the five quarterfinals themselves, according 

to a certain order based on their ranking in the qualification round. The main motive behind the change 

of design was to internalize the positive effect athletes potentially obtained from having a longer 

recovery time before a future final if they competed in one of two early quarterfinals rather than in one 

of the two late quarterfinals.  As the new design was introduced, the chairman of the FIS cross country 

committee, Vegard Ulvang, 1992 Olympic champion and one of the creators behind this novelty, 

articulated the conjecture that the higher ranked athletes, due to the expected longer recovery duration 

prior to a final, would foremost choose to compete in one of the first two quarterfinals rather than in any 

 
1 See Groth et al. 2012 for a listing of examples of sports events organised in such a way 
2 https://www.nbcsports.com/philadelphia/phillies/mlb-playoff-format-pick-opponent-14-teams-phillies 

 

https://www.nbcsports.com/philadelphia/phillies/mlb-playoff-format-pick-opponent-14-teams-phillies
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of the late quarterfinals although this likely would result in tougher competition already in the 

quarterfinal. 

Our study sets out to test this behavioural presumption, labelled Ulvang’s conjecture. Are the two first 

quarterfinals overrepresented by higher ranked athletes from the qualification round?  If this conjecture 

turns out to be correct, the inevitable follow-up question would be if the proportions of higher ranked 

athletes in different quarterfinals are balanced in such a way that the probability of reaching the podium 

(top three in the final) is equalized across quarterfinals. If the proportions are not balanced, is it possible, 

by using data on the athletes’ choices of quarterfinals and their performances, to come up with a seeding 

scheme capturing the asymmetry in recovery duration that follows from the assignment of quarterfinals?  

In order to gain an understanding as to the optimal choice of quarterfinal in the current design, we 

consider a simple knockout tournament model with two rounds – semifinals and final. The aim of the 

model is to capture an athlete’s (henceforth denoted player) trade-off between recovery time and 

expected degree of competition when choosing in which of two semifinals to compete. In our model 

four players of two types in sequential order choose semifinal. The winning probabilities are in our 

model exogenous, that is, players’ exerted effort is not strategically allocated across the two rounds. Our 

model predicts that higher ranked players are more likely to compete against each other in the first 

semifinal rather than in the second semifinal.  

Also, we develop a test statistic suitable for the purpose of testing Ulvang’s conjecture, that is, we test 

whether high ranked athletes from the qualification round to a larger extent choose early quarterfinals 

rather than late quarterfinals.3 We also develop a method in order to test whether athletes make choices 

consistent with the objective of maximizing the probability of reaching the podium, facing the trade-off 

between expected competition in different quarterfinals and variation in recovery time. Finally, we 

suggest a seeding scheme capturing the athlete’s advantage of being assigned one of the two early 

quarterfinals. To our best knowledge, no study has yet been conducted on modelling this type of 

tournament design, or on using contestants’ observed choices to propose a seeding scheme.  

 

2. The Skiing Sprint Competition 
An individual skiing sprint competition in the cross-country World Cup begins with a prologue, a 

qualification round, where the 60 to 80 athletes ski a course which has a length of about 1.5 km, each 

athlete starting at about 15 second intervals. The 30 fastest athletes qualify for the five quarterfinals, 

with six athletes in each quarterfinal.  The athletes who come first and second place in the first two 

quarterfinals, are placed in the first semifinal, and the athletes coming first and second place in the last 

 
3 It should be pointed out, that the ranking assigned to an athlete in the qualification round - an order number that 
we make use of in the empirical analysis - marks out her place in the qualification round. That is, the lower the 
athlete’s ranking number from the qualification round, the higher the athlete’s ranking.      
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two quarterfinals, are placed in the second semifinal. The winner of the third quarterfinal, is placed in 

semifinal one while the athlete at second place goes to semifinal two. In addition to these top-ten athletes 

from the five quarterfinals, the two athletes with the best times of the athletes ending up at place 3-6 in 

the quarterfinals (the lucky losers) are also qualified for the semifinals. The faster of these two is placed 

in semifinal one while the other athlete is placed in semifinal two. Finally, the top two athletes in each 

semifinal together with the two lucky losers from the semifinals are qualified for the final. All finals are 

run on the same course as the qualification round and mass start is applied in all knockout races. The 

format of the competition is identical for men and women who run the races alternately.  The 30 athletes 

that qualify for the quarterfinals are awarded world cup ranking points, conditioned on their performance 

in subsequent knockout rounds. The timing of the competition during a day is illustrated in Figure 1. 

 
Figure 1. The timing of skiing sprint competition 
 
The sequential ordering of the quarterfinals and semifinals means that the recovery time for those 

athletes advancing from one stage to the next stage will differ. However, the recovery time between the 

different races is considered to be long enough not to affect the performance in subsequent heats. An 

exception is the relative short duration between the semifinal two and the final, where the athletes 

advancing from semifinal two are disadvantaged relative those athletes coming from semifinal one. 

Consequently, the assignment of quarterfinal may be crucial for the chances to succeed in a final.  

  
2.1 Seeding in the Old Design 
 
The seeding of the athletes in the quarterfinals, from the start of the skiing sprint competition until the 

late season 2014/2015, was determined by their ranking from the qualification round, in which the 

fastest skier was assigned the rank number one, the second fastest skier was assigned rank number two, 

and so on.   

Table 1. Seeding scheme in the quarterfinals, old design 
  Quarterfinal (Q) 
  Q1 Q2 Q3 Q4 Q5 
Ranking of athlete  1 4 5 2 3 

 10 7 6 9 8 
 11 14 15 12 13 
 20 17 16 19 18 
 21 24 25 22 23 
 30 27 26 29 28 
      

Rank sum 93 93 93 93 93 
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The seeding method applied can best be described as a standard seeding. The sum of ranks from the six 

qualified athletes in each of the five quarterfinals was 93, where the five best ranked athletes as well as 

the five worst ranked athletes among the top 30 athletes from the qualification round were placed in 

separate quarterfinals. The seeding scheme is shown in Table 1. 

In 2014 the FIS decided to change the seeding method as it turned out that athletes assigned the first two 

quarterfinals were overrepresented among the medallists (top three in the final) in the competitions. The 

effect of a shorter recovery time before the final, when advancing from semifinal two rather than from 

semifinal one, became evident in the result lists.  

Tables 2a and 2b show how medallists were distributed across the five quarterfinals for men and women 

for the seasons 2009/2010 – 2014/2015.  

Table 2a. Share of medallists –men - from the quarterfinals within the old design 

  Season  
Quarterfinal 09/10 10/11 11/12 12/13 13/14 14/15 Total 

q.1 0.33 0.21 0.31 0.27 0.21 0.25 0.27 
q.2 0.28 0.27 0.38 0.20 0.33 0.25 0.29 
q.3 0.11 0.15 0.15 0.27 0.33 0.25 0.21 
q.4 0.19 0.27 0.0 0.13 0.03 0.08 0.12 
q.5 0.08 0.09 0.15 0.13 0.09 0.17 0.12 

Source: FIS 

 

Table 2b. Share of medallists –women - from the quarterfinals within the old design 

  Season  

Quarterfinal 09/10 10/11 11/12 12/13 13/14 14/15 Total 
q.1 0.31 0.33 0.36 0.23 0.30 0.33 0.31 
q.2 0.08 0.18 0.10 0.27 0.12 0.21 0.15 
q.3 0.19 0.12 0.13 0.10 0.18 0.17 0.15 
q.4 0.17 0.12 0.28 0.17 0.21 0.12 0.18 
q.5 0.25 0.24 0.13 0.23 0.18 0.17 0.20 

 Source: FIS 

 

From Table 2a, it is clear that the athletes assigned to one of the two early quarterfinals had an advantage 

over those athletes placed in a late quarterfinal. The percentages of medallists coming from the two first 

quarterfinals are more than twice as large as the corresponding share coming from quarterfinals four and 

five. As can be seen from Table 2b, the pattern for women is not as clear as for men. Yet, the share of 

medallists coming from the first quarterfinal dominates. 
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2.2 The Current Design  
   
To eliminate the advantage of being assigned one of the two first quarterfinals more or less by pure luck, 

a new approach to distribute the qualified athletes across the five quarterfinals was adopted at the end 

of the season 2014/2015. Instead of letting a predetermined seeding scheme decide which ranked athlete 

that is assigned a certain quarterfinal, the athletes now choose the quarterfinal themselves, according to 

a predetermined order. The ordering of choices is based on the ranking from the qualification round, 

where the eleven highest ranked athletes first make their choices in descending ranking order, starting 

with the 11th ranked athlete, { }11,10...2,1 . The remaining 19 athletes then make their choices in 

ascending ranking order, starting with the 12th  ranked athlete, { }12,13...29,30 . The choices are revealed 

immediately, that is, an athlete who is about to choose her quarterfinal knows about the previous choices.  

In an interview for the Norwegian television channel NRK (2014), the chairman of the FIS cross country 

committee, Vegard Ulvang, addressed the new tactical dimension now entering the skiing sprint 

competitions:  

“Then you are rewarded for a good performance in the prologue. The fastest athletes 
have the possibility of choosing whether they wish to meet the toughest competitors 
in an early heat or if they prefer shorter recovery time and weaker competitors in a 
later heat. This might be a way of making things a bit fairer. It will be a tactic 
assessment the performer has to make, thereby increasing the pressure on the 
athlete”.   

Ulvang conjectured that a larger fraction of the high ranked athletes from the qualification round would 

choose to compete in the first quarterfinals rather than in the late quarterfinals. The disadvantage of 

expected tougher competition in an early quarterfinal, relative a late quarterfinal, would be outweighed 

by the advantage of facing longer recovery time before the final.  

 

3. Literature 
This study is related to the body of literature in physiology on the effects of recovery duration in cross 

country skiing sprint. To bring down the accumulation of fatigue, that is, to reduce the concentration of 

blood lactate, the recovery time between the heats is essential. A comprehensive survey on factors 

influencing the performance of skiing sprint is provided by Hébert-Losier et al. (2017). The outcome 

from experimental tests, reflecting the format of skiing sprint competitions - e.g., type of participants, 

duration of exercises, equipment, number of heats- indicates that the recovery time should be about 20 

minutes to fully ensure that a break does not impact the athlete’s performance  in subsequent heat. Zory 

et al. (2006) carried out an experiment with seven male skiers from the Italian national sprint team. Each 

individual skied in three heats a distance of 1380 m on a double-poling ergometer (~2:50 min/heat). 

Between the heats the skiers had a recovery period of 12 minutes. Their results show a significant 

decrease in upper-body power output as well as in force, suggesting a presence of fatigue. Vesterinen et 
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al. (2009) conducted a similar experiment in which sixteen male cross-country skiers, on roller skis, 

skied four 850-m heats (~2:20 min/heat) separated by 20 minutes of recovery. The authors find no 

differences in performance between the heats, that is, no evidence of accumulation of fatigue. Moxnes 

and Moxnes (2014) develop a mathematical model showing how anaerobic portion of total energy 

depends on time. Using the relationship between blood lactate levels and oxygen consumption, they 

derive the time it takes for a given level of blood lactate concentration to come down to a concentration 

level that equals the level at the start of the race. Given a racing time around 3 minutes and 20 seconds, 

they find that if the recovery time is below 20 minutes, then performance in a subsequent heat will 

deteriorate. 

A common approach when modelling the effects of fatigue and recovery upon performance in 

tournaments is to assume dependence across matches or heats. Players or teams are constrained how 

much effort they can exert during a tournament. Hence, the predicted outcome of a tournament is 

considered to be the result of how players, often assumed to have asymmetric abilities, strategically 

choose to allocate their effort across matches (see Ryvkin (2011) for a survey). Theoretical and empirical 

support can be found both for the “burnout hypothesis” - players do not withhold effort but instead 

perform at their best at any stage of the tournament (e.g  Amegashie et al (2007) – and for the hypothesis 

that players strategically exert different effort at various stages of the tournament (e.g. Groh et al. 

(2012)). Harbaugh and Klumpp (2005) find that the introduction of a rest day between matches in the 

NCAA men’s basketball tournament increased the probability of winning for the superior team relative 

the inferior team. The reason is that the need to allocate effort across the matches disappeared, implying 

that both teams could exert their full strength in each match.  

In our model we assume effort independence across matches or heats, that is, a player does not choose 

her effort level, but instead performs her maximum in each round. The duration between each round is 

assumed long enough for complete recovery, with one important exception. In our model, a player’s 

choice in which of two semifinals she wants to compete, will be dependent on that particular exception. 

In other words, in maximizing her probability of winning the tournament, a player is assumed to act 

strategically when choosing between matches.  

The last part of our study deals with seeding in elimination tournaments. As noted above, the seeding 

method applied by FIS until the change of design in the late season 2014/2015, resembles a standard 

seeding, albeit the presence of more than two participants in each quarterfinal. The standard seeding, 

where top ranked athletes are matched head-to-head against lower ranked athletes in the first round, 

often serves as a reference point when analysing the properties of various design of elimination 

tournaments (e.g Hwang 1982, Marchand 2011, Groth et al. 2012, Karpov 2016). The standard seeding 

is widely used because the draw seeks to delay the confrontation between the tournament’s best athletes 

until the very last rounds, increasing the quality of the matches as the tournament progresses. If 

spectators’ preferences for the overall strength of the athletes are stronger than their preferences for 

competitive intensity (balance in strength) in a match, then Dagaev and Suzdaltsev (2018) show that 
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standard seeding is optimal. In other words, the probability of winning the tournament should be 

increasing in athletes’ ranking. However, a number of studies provides evidence that this property of 

monotonicity does not hold in general in the standard seeding method. Theoretical contributions by 

Hwang (1982) and Horen and Riezman (1985) show that if the number of participants in the elimination 

tournament is more than four, then there exists no unique draw that satisfies monotonicity. The optimal 

draw depends on the probability strength matrix , that is the matrix capturing the probability that athlete 

i wins against athlete j. Empirical analyses of elimination tournaments indicate that the probability of 

winning is positively related to the difference in ranking, but the probability does not increase 

monotonically (e.g  Boulier and Stekler (1999), Khatibi et al. (2015)). An alternative to the standard 

seeding, the equal gap seeding, is proposed by Karpov (2016). In contrast to the standard seeding, where 

the sum of players’ ranking in any of the matches in the first round is the same, the equal gap seeding 

sets out that the difference in players’ ranking in any of the matches in the first round is the same. Given 

the assumption of the domain of winning probabilities, Karpov shows that the equal gap seeding satisfies 

a number of tournament ideals.  

Besides the criteria of finding a seeding that delays the confrontation between the two highest ranked 

athletes, Groh et al. (2012) consider other goals that the designer may want to meet with the seeding. In 

their model, four players are seeded according to their ranks and simultaneously play pairwise in two 

semifinals, where the winners compete in the final. The winning probabilities are endogenous, that is, 

the outcome of the tournament depends on the players’ strategic choice of effort exerted in each match. 

Their theoretical point of departure, when analysing which of the three possible seedings {A:1-4, 2-3; 

B:1-3, 2-4; C:1-2, 3-4} that optimizes a specific goal, is the behaviour in an all-pay auction. They show 

that seeding A and B maximize different goals and both seedings are superior to seeding C in all goals 

considered.  

Our contribution to the existing literature on seeding is a result of our empirical analysis of observed 

behaviour in an elimination tournament, where players to some extent may choose their opponents in 

the first knockout round. Making use of our estimated regression parameters, given our sample of 

athletes, we propose a seeding scheme where the goal is to internalize the inherent disadvantage of being 

assigned one of the two last quarterfinals in skiing sprint competitions. However, our seeding does not 

indicate in which of the quarterfinals a ranked athlete is assigned. Instead, it stipulates what the athletes’ 

ranking from the qualification round should sum up to in each of the five quarterfinals.   

 

4. Modelling the Choice 
In this section we set up a simple knockout tournament model where (some) players can choose their 

opponents. To make the model computational tractable, we consider a tournament with two rounds – 

semifinals and final - and head-to-head competition in each round, that is, the number of players is 
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limited to four players. The purpose with the model is to analyse how a player’s choice between two 

alternatives is affected when varying two parameters capturing the degree of players’ competitiveness 

and recovery duration.   

The four players, , , ,i A B C D=  compete head-to-head in two semifinals, the first semifinal (s.1) and the 

second semifinal (s.2). The winner of each semifinal advances to the final.  The objective of each player 

is to win the final. The players are of two types: high ranked players (H) and low ranked players (L). 

Players A and B are assumed to be of type H whereas players C and D are of type L. The players choose, 

in sequential order, which one of the two semifinals to compete in. The ordering of the choices is: B, A, 

C, D.4 A player’s choice of semifinal becomes public prior to the next player’s choice. Hence, there are 

six possible settings ( )1...6j = of semifinals, including the mirroring of identical plays, albeit in 

different order. Figure 2 illustrates the decision tree of our model. We denote the player’s probability of 

winning the whole tournament as ,i jp . For example, ,4Cp  denotes the probability that player C will win 

the tournament given that she faces player A in semifinal 1. A player of type H will beat a player of type 

L with probability p > 0.5, and if two players of the same type compete, the probability is 0.5 to win 

against the other. 

 

Figure 2. The sequential order of choices and possible settings of semifinals 

 

To capture the effect of having a shorter recovery time when the player advances into the final from the 

second semifinal, we multiply that player’s probability of winning the final with a constant c, where 

0 1c< < . The lower value of c, the larger is the negative effect - henceforth the recovery effect -  of 

having advanced into the final from the second semifinal rather than from the first semifinal. Thus, even 

 
4 Player D never makes a choice and player C can only choose her opponent when player B chooses the opposite 
semifinal as player A does.   
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though semifinal settings j=1 and j=6 imply identical plays, we have ,1 ,1 ,6 ,6A B A Bp p p p= > =  and 

,1 ,1 ,6 ,6C D C Dp p p p= < =  due to the recovery effect c. The players are assumed to have full information 

on the values of the probabilities defined above, as well as the value of 𝑐𝑐.  

Proposition 1 Player B will always choose the first semifinal and play against player A if and only if    

                                         ( ) 3 2
0.5 .

1.5 0.5 0.5
c f p

p p p
−

< =
− + −

                   

Otherwise, player B will play against player C in the first semifinal. 

Proof  See appendix. 

In Figure 3 we illustrate the result graphically. Points below the convex graph indicate combinations of 

levels of the recovery effect and the probability p for which player A chooses to compete in the first 

semifinal. For values of c up to about 0.91, the degree of competition from low ranked players has no 

effect upon player A’s choice. Player A might choose to avoid player B in the first semifinal for higher 

values of c. For example, for 𝑐𝑐 = 0.95, shown as a horizontal line in the figure, A will choose semifinal 

2 for values of 𝑝𝑝 in between 0.61 and 0.94, rounded to two decimal places.  

 

Figure 3. Player A’s choice of semifinal for various combinations of p and c 

 

To understand the mechanism behind A’s choice for high values of c, once B has chosen semifinal 1, 

we initially assume that 𝑐𝑐 = 1 and 𝑝𝑝 = 0.5. Thus, no recovery effect is assumed, and competition is 

equalized across all players. This combination of 𝑐𝑐 and 𝑝𝑝 obviously makes player A indifferent between 

the two semifinals. Now, letting 𝑝𝑝 increase, still assuming no recovery effect, A will choose semifinal 

2 in order to have a positive probability of avoiding player B in the tournament, now the single most 

competitive opponent. Thus, as 𝑝𝑝 increases, for A to be indifferent, a compensation in terms of a 

decrease in c is necessary, and we are moving downwards along the graph of the convex function in the 

figure. As 𝑝𝑝 further increases, holding c fixed, there is a positive effect on the incentive for A to choose 
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semifinal two in that the importance of avoiding B in the tournament increases due to a decrease of the 

relative competitiveness of type L players. However, there is also a negative effect, since the probability 

increases for A of ending up weakened in the final with type H player B. For 𝑝𝑝 about 0.79 these opposite 

effects cancel each other out. This negative effect outweighs the positive effect for larger values of 𝑝𝑝, 

meaning that we are moving upwards along the graph for indifference. For a further increase in 𝑝𝑝, A 

needs to be compensated by an increase in c, i.e., a lower recovery effect, to still be indifferent and not 

choosing semifinal 1. For values of 𝑝𝑝 close to 1, player A expects to face player B in the final with 

almost certainty, both advancing from different semifinals. Player A is then better off playing against 

player B already in the first semifinal, unless the recovery effect is negligible, i.e., 𝑐𝑐 is close to 1, making 

A indifferent. 

 

5. Empirical Methods 
In this chapter we outline the methodology to answer the questions raised in the introductory section. 

We propose a test statistic for testing Ulvang’s conjecture that high ranked athletes to a larger extent 

choose early quarterfinals. Furthermore, a logistic regression model is specified, where certain 

parameter restrictions correspond to rational choices of quarterfinals are to be tested with a Wald test. 

Finally, using the information from the observed choices of quarterfinal and the outcome from the 

competitions, we also identify a method how to create a quarterfinal seeding scheme that internalizes 

the athlete’s advantage of being assigned one of the two early quarterfinals vis-a-vis . 

5.1 A Test for Ulvang’s Conjecture  

In this section we propose a test statistic for testing the null hypothesis that the athletes choose 

quarterfinals in a pure random way against the alternative that higher ranked athletes from the 

qualification round to a larger extent choose early quarterfinals rather than late quarterfinals. Define kU

and kV  as the rank sum from the qualification round for the early quarterfinals, one and two, and late 

quarterfinals, four and five, respectively, for competition 𝑘𝑘, 𝑘𝑘 = 1, 2, … , 56.  

The null hypothesis and the alternative hypothesis can be formulated as 

( ) ( )0 : 0k kH E U E V− =   against  ( ) ( ): 0A k kH E U E V− < . 

An appropriate test statistic is given by  

                                             ,
465 14
E LR RZ −

=                     
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where 
56

1

56
kk

E

U
R == ∑ and

56

1

56
kk

L

V
R == ∑ . The test statistic follows approximately a standard normal 

distribution under the null hypothesis. Moreover, since we reject 0H  in favour of AH  for large negative 

values of z, the rejection region is { }RR z zα= < − where zα  is such that ( )P Z zα α> = . 

 

Proposition 2 

The test statistic ( )0,1
465 14

appr
E LR RZ N−

=   under ( ) ( )0 : 0.k kH E U E V− =    

Proof  See appendix.  

Alternative test statistics could be used. The sign test and Wilcoxon’s matched-pairs signed rank test are 

two non-parametric alternatives, while a paired t-test is another option where the population standard 

deviation of difference is estimated. However, since the assumptions under the null hypothesis are 

fulfilled to apply a parametric test, where the population variance can be derived, the test statistic given 

in Proposition 2 is preferred in terms of power.   

5.2 A Test for Rational Choice  

In the previous section a test was suggested to investigate whether high ranked athletes choose early 

quarterfinals to a larger extent than late quarterfinals. If so, a natural follow-up question would be 

whether the proportions in different quarterfinals of high ranked athletes from the qualification round, 

are balanced in a way, such that the chance of reaching the podium is irrespective of choice of 

quarterfinal, controlling for the capacity of the athlete. 

For this question to be answered, we adopt a logistic regression approach, where a rational behaviour 

among the athletes as a group, in terms of balanced proportions of high ranked athletes in different 

quarterfinals, corresponds to certain parameter restrictions within a model to be presented below. 

The athlete’s probability of reaching the podium is modelled as a function of her choice of quarterfinal, 

her individual capacity relative other athletes (short-term, middle-term and long-term capacity) and 

individual specific effects. 

The dependent variable to be used is Podium, a binary variable taking the value one if podium is reached, 

zero otherwise. The first type of explanatory variables considers quarterfinals, where a dummy variable 

is used to indicate the choice of one of four quarterfinals ( )1 2 4 5, , , .Q Q Q Q Quarterfinal three ( )3Q serves 

as reference.  
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The second type of explanatory variables captures the athlete’s capacity relative other athletes for 

different time perspectives. These variables are:  

• Rankqual: The athlete’s ranking number from the qualification round (short-term capacity). 

• Rankqualsq: Rankqual squared.  

• Podium_1: A dummy variable indicating if the athlete reached the podium in the latest 

competition (middle-term capacity).  

• Rankwcp: The athlete’s ranking number among the 30 quarterfinalists based on the current 

world cup sprint points achieved in previous world cup sprint competitions the current season 

(long-term capacity). 

• Rankwcpsq: Rankwcp squared. 

In addition, we also include individual specific dummy variables (I1, I2,..,Im) for 𝑚𝑚 out of those 𝑚𝑚 + 1  

athletes having variation in the dependent variable (𝑚𝑚 = 29 for men and 𝑚𝑚 = 30 for women). 

Thus, the linear predictor can be written as  

1 2 4 50 1 2 4 5Q Q Q QQ Q Q Qη β β β β β= + + + +  

Rankqual Rankqualsq RankwcpRankqual Rankqualsq+ Rankwcpβ β β+ +                       

1_1 1 I.... .Rankwcpsq Podium I m mRankwcpsq Podium_1 I Iβ β β β+ + + + +  

The parameters are to be estimated using the method of maximum likelihood based on a total of 1680 

observations for both men and women (56 competitions with 30 qualified athletes in each 

competition).  

We expect the ranking number from the qualification round, as well as ranking number based on current 

world cup sprint points, to have a negative declining effect on the probability of reaching the podium.5 

Thus, Rankqualβ and Rankwcpβ are both expected to be negative, while Rankqualsqβ and Rankwcpsqβ  are expected 

to be positive. Furthermore, a good performance in the previous competition is expected to have a 

positive effect, implying Podium_1β should have a positive sign. 

Now, assume that higher ranked athletes to a larger extent choose early quarterfinals instead of late 

quarterfinals. Then, there is a possibility that those relatively few high ranked athletes, choosing a late 

quarterfinal, will be fully compensated for the shorter recovery time prior to a final thanks to weaker 

competition in the late quarterfinal. Such a behaviour - the athletes’ choice of quarterfinal as a group, 

making the probability of reaching the podium irrespective of quarterfinal conditioning on the athlete’s 

 
5 Again, note that the athlete’s historical performance in terms of her world cup points is inversely related to her 
assigned ranking number.  
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capacity - corresponds to four parameter restrictions in the specified model,  formulated in the null 

hypothesis below       

1 2 4 50 : 0Q Q Q QH β β β β= = = =  

HA: At least one of 
1 2 4 5
, , andQ Q Q Qβ β β β is not equal to zero. 

The alternative hypothesis corresponds to a behaviour of choice where the probability of reaching the 

podium, conditioned on the capacity of the athlete, differs for at least one of the five quarterfinals. The 

null hypothesis is to be tested with a Wald test, which approximately follows a chi-squared distribution 

with 4 degrees of freedom under 𝐻𝐻0. 

5.3 Seeding instead of Choosing Quarterfinal 

The old design as well as the current design have both been subject to critique. The old design did not 

take the unfair difference of recovery time into account, while the current design, by some athletes, is 

considered requiring a tactical skill not belonging to the sport (Östersunds-Posten 2014). 

Therefore, we look into the possibility of coming up with a new design that might solve the problem of 

the former design, as well as the problem of the current design. The idea of the new design is to apply 

the old design of assigning quarterfinals in a somewhat modified way. Instead of assigning quarterfinals 

to make the quarterfinals equal in terms of competition, i.e. equal rank sums, we propose a seeding 

scheme where the sum of ranks differs across quarterfinals, with low rank sums attached to early 

quarterfinals and high rank sums attached to late quarterfinals. Hence, the sum of ranks will reveal the 

degree of competition in each quarterfinal. The implication is that higher ranked athletes from the 

qualification,  who are likely to be placed  in the first two quarterfinals, will face relatively strong 

competition already in the first knockout round but then, in case of advancement, be compensated by a 

longer recovery time before the final. Likewise, lower ranked athletes, placed in the late quarterfinals, 

pay the weaker competition in their first round with a shorter recovery time prior to a final.  

To implement the seeding scheme discussed above, we include the variable Rankqualsum in the model 

set out in the previous section. This variable is defined as the sum of the individual ranks in specific 

athlete’s quarterfinal. The aim of including this variable is to capture and control for the competition in 

the quarterfinal, following the idea used in the old design to define competition for seeding purposes.  

The linear predictor in the logistic regression model is now extended to: 

1 2 4 50 1 2 4 5Q Q Q QQ Q Q Qη β β β β β= + + + +  

  Rankqual Rankqualsq Rankwcp RankwcpsqRankqual Rankqualsq+ Rankwcp Rankwcpsqβ β β β+ + +     

1_1 1 I.... .Podium I m m RankqualsumPodium_1 I I Rankqualsumβ β β β+ + + + +  
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The sign of Rankqualsum is expected to be positive. A larger rank sum indicates weaker competition in 

the quarterfinal which should be associated with a high probability of reaching the podium when 

controlling for the type of quarterfinal and the athlete’s capacity. Given the control for competition, we 

expect
1Qβ and 

2Qβ to be positive, and 
4Qβ and 

5Qβ to be negative, due to the differences in recovery time.  

Before we get into details of how to assign the rank sums across different quarterfinals, an assumption 

underlying the new proposal will be discussed. 

The way athletes progress during the final rounds in combination with the presumed recovery effect 

forms a physiological basis for the claim that athletes should prefer early quarterfinals to late 

quarterfinals when we control for the competition. Likewise, an early quarterfinal is expected to be 

better than quarterfinal three, while quarterfinal three is to be preferred to late quarterfinals. However, 

when it comes to a comparison between quarterfinal one and quarterfinal two, no quarterfinal should be 

preferred to the other. The reason for that is that the assignment of semifinals is the same for both 

quarterfinals. The top two athletes in each of these quarterfinals qualify for the first semifinal, thereby 

getting long recovery between the semifinal and the final, provided the final is reached. Certainly, the 

recovery time between the quarterfinal and the semifinal is longer for those athletes going in the first 

quarterfinal compared with the second one, which might be an argument for the first quarterfinal to be 

more favourable. However, the time is long enough for athletes in both quarterfinals to fully recover. A 

similar argument holds for not separating quarterfinals four and five.  

Thus, differences in the probability of reaching the podium from different quarterfinals when we control 

for the capacity of the athlete and the competition in the quarterfinal are not expected, neither between 

the two early quarterfinals nor between the two late quarterfinals. A difference is expected between early 

quarterfinals, quarterfinal 3 and late quarterfinals, only. Henceforth we denote these three types of 

quarterfinals by 1, 2 and 3, respectively. 

The claim, that an athlete should be indifferent between the two early quarterfinals as well as being 

indifferent between the two late quarterfinals, corresponds to the parameter restrictions:  

1 2 4 50 : ,Q Q Q QH β β β β= =  

:AH  At least one of the restrictions under 0H does not hold. 

The null hypothesis is to be tested with a Wald test, which approximately follows a chi-square 

distribution with 2 degrees of freedom under 0H . 

Provided the null hypothesis above is true, we may look upon the five quarterfinals as three types of 

quarterfinals: early quarterfinals ( )EQ , quarterfinal 3 ( )3Q , and late quarterfinals ( )LQ , where EQ and 

LQ are defined as dummy variables, 3Q being the reference. 
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 The linear predictor from the previous section can now be written as 

1

0

_1 1 I.... .
E LQ E Q L Rankqual Rankqualsq Rankwcp

Rankwcpsq Podium I m m Rankqualsum

Q Q Rankqual Rankqualsq+ Rankwcp

Rankwcpsq Podium_1 I I Rankqualsum

η β β β β β β

β β β β β

= + + + +

+ + + + + +
 

Now, let jx  define the rank sum for the chosen quarterfinal of type j, 1,2,3.j =  Conditioning on the 

three types of quarterfinals, the linear predictor can be written as 

( )
( )
( )

0 1

0 2

0 3

...

...

...

E

L

Q Rankqualsum

Rankqualsum

Q Rankqualsum

quarterfinal of type 1 x

quarterfinal of type 2 x

quarterfinal of type 3 x    .

η β β β

η β β

η β β β

= + + +

= + +

= + + +

 

The probability of reaching the podium will be the same, irrespective of type of quarterfinal and 

conditioning on a certain capacity, if  

( ) ( )quarterfinal of type 1 quarterfinal of type 2η η=  

and 

( ) ( ) ,quarterfinal of type 3 quarterfinal of type 2η η=  

which can be written as 

1 2EQ Rankqualsum Rankqualsumx xβ β β+ =  and   3 2.
LQ Rankqualsum Rankqualsumx xβ β β+ =  

Solving for 1x  and 3x , we obtain   

1 2
EQ

Rankqualsum
x x

β
β

= −  and  3 2 .LQ

Rankqualsum
x x

β
β

= −  

The first relation gives us combinations of 1x  and 2x , i.e., combinations of competition in terms of rank 

sums in a quarterfinal of type 1 and type 2, such that an athlete should be indifferent between the two 

types of quarterfinals provided the goal is to maximize the probability of reaching the podium. The 

second relation is interpreted analogously. 

By adding the restriction  

1 2 32 2 1 2 ... 30 465x x x+ + = + + + =  

we obtain an equation system with three equations and three unknowns, 1x , 2x  and 3x , which can be 
solved for in terms of  the parameters ,

E LQ Qβ β and Ranksumqualβ .  

Solving the system yields  

( )
1 2 3

22 3 2 3
93 , 93 , 93

5 5 5
E LL E E LQ QQ Q Q Q

Rankqualsum Rankqualsum Rankqualsum
x x x

β ββ β β β
β β β

+− −
= + = + = + . 
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Expecting 0, 0
L EQ Qβ β< > and 0Rankqualsumβ >  it follows that we should expect 1 2 3.x x x< < Thus, in 

order to make the athletes indifferent between the three types of quarterfinals, the rank sums should 

increase with type of quarterfinal. Moreover, from the expected signs it follows that the rank sum for 

early quarterfinals should be smaller than 93, while the rank sum for late quarterfinals should be larger 

than 93, which is the value assigned to all quarterfinals in the former system.  

Once maximum likelihood estimates of 𝑥𝑥1,𝑥𝑥2 and 𝑥𝑥3 are obtained, rounded to integer values, the new 

design is implemented as follows: For a certain value of 𝑥𝑥𝑗𝑗,  𝑗𝑗 = 1, 2, 3, one out of all possible samples 

of six unique qualification ranks summing up to 𝑥𝑥𝑗𝑗 , is randomly drawn. These six numbers are assigned 

to the specific type of quarterfinal.  

 

6. Data 
Official results for all world cup skiing sprint competitions as well as data on individual athletes are 

collected from the International Ski Federation’s website (FIS Ski, 2020).  

The data includes the results from 121 competitions – for men as well as for women -  during eleven 

seasons, 2009/2010 - 2019/2020, separated into two periods. The first period, 09/10-14/15, contains the 

results under the old design, whereas the second period, 15/16 – 19/20, consists of the results under the 

current design.6 The data from the first period – 65 competitions - is mainly used for presenting the 

skewed distribution of medallists across the five quarterfinals in Table 2, whereas the data from the 

second period – 56 competitions -  is the source for our empirical analysis of the athletes’ choices.  

Table 3. Average rank sums for different quarterfinals by season and sex for the second period  

 Season 
Quarterfinal 14/15 15/16 16/17 17/18 18/19 19/20 Total 

Women 
1 

 
61 

 
86 

 
91 

 
85 

 
93 

 
89 

 
88 

2 83 87 89 88 87 90 88 
3 102 95 95 92 96 92 94 
4 102 95 92 96 91 97 94 
5 117 102 98 104 98 97 100 

Men        
1 86 89 87 89 83 96 89 
2 88 90 87 84 86 91 87 
3 92 86 92 101 94 93 93 
4 92 97 93 93 95 91 94 
5 108 103 106 98 107 94 102 

 

For each of these competitions, we have data on the 30 athletes competing in the quarterfinals. We 

observe their choice of quarterfinals, their achieved results, and their official ranking. The entire data 

 
6 The current design was implemented under the last two competitions during the season 2014/2015.  
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set contains 7260 observations, of which 3360 observations, divided into men and women equally, are 

from the second period.  

Table 3 shows the average rank sums, rounded to integer values, for different quarterfinals divided by 

season. The rank sums for early quarterfinals are low compared to late quarterfinals, indicating stronger 

competitions in the first two quarterfinals. The pattern is quite stable over time, except for the latest 

season where the rank sum for the first quarterfinal is high for men. 

In Table 4 we show the share of medallists coming from each of the five quarterfinals during the seasons 

in which the current design has been applied.  

Table 4. Share of medallists from the quarterfinals by season and sex for the second period  

 Season 
Quarterfinal 14/15 15/16 16/17 17/18 18/19 19/20 Total 

Women 
1 

 
0.17 

 
0.31 

 
0.37 

 
0.40 

 
0.28 

 
0.30 

 
0.32 

2 0.33 0.31 0.27 0.33 0.25 0.33 0.30 
3 0.33 0.06 0.13 0.20 0.25 0.07 0.15 
4 0.17 0.22 0.10 0.03 0.14 0.10 0.12 
5 0.00 0.11 0.13 0.03 0.08 0.20 0.11 

Men        
1 0.17 0.33 0.30 0.53 0.58 0.50 0.44 
2 0.50 0.36 0.13 0.23 0.19 0.17 0.27 
3 0.17 0.17 0.20 0.13 0.06 0.13 0.14 
4 0.17 0.03 0.13 0.03 0.14 0.17 0.10 
5 0.00 0.11 0.03 0.07 0.03 0.03 0.05 

 

The figures exhibit that athletes from early quarterfinals are overrepresented among medallists. The 

share of medallists coming from the two first quarterfinals is even higher under the current design than 

we observe under the old design.7 

 
7. Results 
In this section we apply the methods described in section 5 on our data. The results from testing Ulvang’s 

conjecture and testing for rational choice are presented. We also present estimated rank sums to be 

assigned to the various quarterfinals, used in the revision of the old seeding scheme, intending to capture 

the recovery effect.  

 

 

 
7 The figures from the season 2014/2015 are based on two competitions only.  
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7.1 Test of Ulvang’s Conjecture  

The two rows in Table 5, also shown as the last column in Table 3, show the average qualification 

rank sum for each of the five quarterfinals based on 56 competitions. As expected, the rank sum 

increases in the ordering of quarterfinals.     

Table 5. Average qualification rank sum for different quarterfinals under the current design, n=56 

 Quarterfinal 
 1 2 3 4 5 
Women 88.04 87.93 94.30 94.32 100.41 
Men 88.68 87.48 92.93 93.84 102.07 

 

We apply the test statistic outlined in section 5.1 to test Ulvang’s conjecture, that is, to test the null 

hypothesis that the choices of quarterfinal are made randomly against the alternative hypothesis that 

the expected rank sum from early quarterfinals is smaller than for late quarterfinals. 

 Women:              ER = 88.04+87.93 = 175.96 and LR = 94.32+100.41=194.73 

                             ( )175.96 194.73 3.26 0.01
465 14 465 14
E LR Rz p− −

= = = − <   

Men:                      ER = 88.68+87.48 = 176.16 and LR = 93.84+102.07=195.91 

                               ( )176.16 195.91 3.43 0.01
465 14 465 14
E LR Rz p− −

= = = − <  

Our tests reject the null hypothesis, indicating that data supports Ulvang’s conjecture for both women 

and men. Facing the trade-off between expected weaker competition in late quarterfinals or longer 

recovery time of choosing early quarterfinals, our test suggests that higher ranked athletes to a larger 

extent prefer the later alternative to the former.  

7.2 Testing for Rational Choice  

We make use of the regression model specified in Section 5.2 to find the partial effect from the choice 

of quarterfinal upon the probability of reaching the podium. In Table 6 the results from estimation of 

three logistic regression models for both women and men are presented with the variable Podium as 

dependent variable. In the first model only the quarterfinal dummy variables are included. Model 2 also 

includes those variables aiming to capture the capacity of the athlete, except for individual specific 

dummy variables. In the third model individual specific dummy variables are included as well.8 Looking 

at the first model, the parameter estimates corresponding to the early quarterfinals attain large 

significantly positive values for both men and women. The parameter estimates corresponding to late 

 
8 Estimates on individual dummy coefficients are available on request. 
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quarterfinals are negative, although not significantly negative. These results imply that the probability 

of reaching the podium is larger for early quarterfinalists than for those athletes going in the third and 

late quarterfinals.  

Table 6. Results for logistic regression models, podium as response variable 

Sex  Men   Women  
Model 
Variable 

(1) (2) (3) (1) (2) (3) 

Intercept -2.61*** 
(0.216) 

 

0.359 (0.397) -4.44*** 
(1.08) 

-2.52*** 
(0.208) 

 

1.18*** 
(0.412) 

-2.85*** 
(1.14) 

Q1 1.35*** 
(0.253) 

 

0.976*** 
(0.287) 

0.800*** 
(0.344) 

0.846*** 
(0.256) 

 

0.583** 
(0.305) 

0.657** 
(0.351) 

Q2 0.744*** 
(0.269) 

 

0.429* 
(0.303) 

0.322 
(0.338) 

0.846*** 
(0.256) 

 

0.601** 
(0.304) 

0.661** 
(0.348) 

Q4 -0.321 
(0.330) 

 

0.0123 
(0.370) 

-0.111 
(0.403) 

-0.239 
(0.310) 

 

0.00630 
(0.357) 

-0.104 
(0.406) 

Q5 -0.982** 
(0.401) 

-0.285  
(0.465) 

-0.0770 
(0.497) 

-0.411 
(0.323) 

0.107 
(0.366) 

-0.116 
(0.442)  

 
Rankqual  -0.295*** 

(0.0510) 
 

-0.251*** 
(.0631) 

 -0.198*** 
(0.0467) 

-0.244*** 
(0.0541) 

Rankqualsq  0.00502*** 
(0.00192)     

0.00383* 
(0.00244) 

 0.00290*** 
(0.00180) 

0.00430** 
(0.00200) 

 
Rankwcp  -0.0638* 

(0.0472) 
-0.0136 
(0.0556) 

 -0.303*** 
(0.0517) 

-0.162*** 
(0.0624) 

 
Rankwcpsq 

 
 

Podium_1 

 0.000197 
(0.00175) 

 
0.475** 
(0.274) 

0.000643 
(0.00204) 

 
-0.00190 
(0.289) 

 0.00692*** 
(0.00191) 

 
0.521** 
(0.275) 

0.00331* 
(0.00233) 

 
-0.0508 
(0.301) 

 
No quarter final 
effect (p-value)                               0.0005              0.0521  
 
No individual 
effect (p-value)                                                           0.0013                             

 
 

 
0.100 

 
0.0706 

 
 

< 0.0005 
Standard error in parenthesis. *Significant at 10%; significant at 5%; *** significant at 1%   

 

The most likely explanation for these results is the fact that high ranked athletes in the qualification 

round are overrepresented in early quarterfinals, amplified by the positive effect on performance of 

longer recovery time between semifinal and final for those athletes going in the early quarterfinals.  
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Consider the results from estimation of the second model, where variables to control for the individual’s 

capacity are included. The signs of the parameter estimates for these variables are as expected, although 

the estimates corresponding to variables concerning world cup points are not significant for men. As 

can be seen from Table 6, an overall test of no quarterfinal effect, described in Section 5.2, is rejected 

at the 10 % level of significance. The pattern of large positive parameter estimates for early quarterfinals 

is still observed, albeit not as clearly as before. To summarize, the probability of reaching the podium, 

when controlling for the capacity of the athlete, seems to be higher for early quarterfinals. 

Turning to the results from estimation of the third model, to which individual specific dummy variables 

are added as well, there is no dramatic change of the parameter estimates. For both men and women, a 

Wald test supports the inclusion of the individual dummy variables as a group. The support for rejecting 

the null hypothesis of no quarterfinal effect is decreasing a bit for men. However, the result is still 

significant at the 10 % level for both men and women. Thus, the results indicate that the way athletes 

choose quarterfinals, an individual athlete has a better chance of reaching the podium going in an early 

quarterfinal.  

7.3 A Revised Seeding Scheme 

In this section we present estimation results of rank sums for the three types of quarterfinals 

( )3, ,E LQ Q Q  that would make an athlete indifferent between different types of quarterfinals, using the 

regression models specified in Section 5.3.  

Consider Table 7. In both models the variable Rankqualsum is included to measure the effect of 

competition on the performance, controlling for types of quarterfinals. As expected, the sign associated 

with this variable is positive. This means that a large rank sum, i.e., a weak competition, is associated 

with a high probability of reaching the podium, conditioning on a certain athlete going in a specific 

quarterfinal. For the women this effect is not as strong as for the men, although the effect is significantly 

positive at the 10 percent level. 

Controlling for the competition, in terms of the qualification rank sum, the parameter estimates 

corresponding to the quarterfinal dummies are not interpreted in the same way as for the model without 

the rank sum variable. Now, irrespective of the athletes’ choice, if there truly is an effect of recovery 

time on performance, this effect should be reflected in these estimates. Therefore, contrary to the model 

where the variable Rankqualsum is not included, the parameter estimates corresponding to early 

quarterfinals are expected to be positive. The parameter estimates for late quarterfinals are expected to 

be negative. This is also consistent with our findings, although the estimates for late quarterfinals are 

not significantly negative.  
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Table 7. Results for logistic regression models including degree of competition, podium as response 
variable 

Sex Men Women 
Model 
Variable 

(1) (2) (1) (2) 

Intercept -6.98*** 
(1.44) 

-6.27*** 
(1.40) 

-4.21*** 
(1.49) 

-4.19*** 
   (1.47) 

 
Q1 0.966*** 

(0.354) 
 0.750** 

(0.358) 
 

 

Q2 0.449* 
(0.340) 

 0.750** 
(0.354) 

 

     
Q4 -0.171 

(0.416) 
 -0.126 

(0.407) 
 

 

Q5 -0.343 
(0.507) 

 -0.244 
(0.452) 

 

 

QE 
 

 0.680** 
(0.306) 

 0.751*** 
(0.320) 

 
QL  -0.230    

(0.366) 
 

 -0.173  
(0.366) 

Rankqual -0.282*** 
(0.0635) 

-0.282*** 
(0.0627) 

-0.258*** 
(0.0550) 

 

-0.259*** 
(0.0550) 

Rankqualsq 0.00450** 
(0.00240) 

0.00456** 
(0.00237) 

0.00466*** 
(0.00200) 

0.00467*** 
(0.00200) 

 
Rankwcp -0.0144 

(0.0564) 
-0.0216 
(0.0549) 

-0.163*** 
(0.0625) 

-0.160***  
(.0590) 

 
Rankwcpsq 0.000943 

(0.00206) 
0.00111 

 (0.00204) 
0.00341* 
(0.00234) 

0.00334* 
(0.00227) 

 
Podium_1 -0.0158 

(0.301) 
 -0.0597  

(0.302) 
 

 
 

Ranksumqual 0.0291*** 
(0.00915) 

 

0.0282*** 
(0.00923) 

0.0156* 
(0.0112) 

0.0150* 
(0.0110) 

 
Equal recovery effect             
within types of                       0.231 
quarterfinal (p-value) 
 
No quarter final                  0.0013***                       0.0047*** 
effect (p-value)    
 
No individual                      0.0076***                    0.0009***                                                          
effect (p-value) 

      
         0.965 
 
 
     0.0330***              
 
 

 <0.0005*** 

 
 
 
 
        0.0051*** 
 
 

<0.0005*** 

Standard error in parenthesis; *Significant at 10%; significant at 5%; *** significant at 1%  
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The result from the chi square test set out in section 5.3 reveals no support for the recovery effect to 

differ between the first two quarterfinals or between the last two quarterfinals. This is true for men as 

well as for women. Thus, only three types of quarterfinals will be considered; early quarterfinals, 

quarterfinal three, and late quarterfinals. 

Following the approach described in section 5.3 and using estimates from the second model specification 

in Table 7, it is possible to calculate estimates of those rank sums making a certain athlete indifferent 

between quarterfinals.9 These estimates are provided in Table 8. 

Table 8. Estimated rank sums for indifference between quarterfinals for men and women* 

Quarterfinal 
 1 2 3 4 5 
Men 75 75 99 108 108 
Woman 58 58 109 120 120 

*Rounded to nearest integer 

 

Comparing with the actual average rank sum for different quarterfinals based on 56 competitions in 

Table 3 the estimates in Table 8 suggest high ranked athletes should pick early quarterfinals to an even 

greater extent than they do. On the margins, the positive recovery effect from such a behaviour 

outweighs the negative effect of tougher competition. 

There is a difference in the estimated rank sums between men and women. For women the competition 

in terms of a low rank sum should be as low as 58 for early quarterfinals compared to 75 for men. The 

reason for this difference is the difference in the estimated effect of the variable Rankqualsum. For men, 

a change in the value of this variable by a certain amount has a larger effect on the performance than a 

corresponding change for women. A wider spread between rank sums for early and late quarterfinals is 

needed for the women to compensate for differences in recovery time. 

 

8. Conclusions and Discussion  
The old seeding design in skiing sprint elimination tournaments was regarded unfair because the chances 

of reaching the podium were higher if the athlete more or less by pure luck was seeded in an early rather 

than in a late quarterfinal. Athletes competing in an early quarterfinal can later in the tournament, prior 

to a final, benefit from a longer recovery time than those competing in a late quarterfinal. This advantage 

was revealed in the result lists, where the athletes assigned the first two quarterfinals were 

overrepresented as medallists in the competitions.  The motive to adopt the design used today, where 

 
9 In this specification the variable Podium_1 has been dropped due to an unexpected sign. 
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each prequalified athlete chooses her quarterfinal instead of being assigned a quarterfinal through a 

seeding scheme, was to internalize this recovery effect.  

Our empirical analysis of the current design, shows that higher ranked athletes tend to choose an early 

quarterfínal rather than a late one, and that the probability of reaching the podium still is higher when 

choosing an early quarterfinal, conditioning on capacity, despite the impact of an increased competition 

in the early quarterfinals. Hence, our findings indicate that athletes would benefit further from choosing 

an early instead of a late quarterfinal, suggesting they are making irrational choices. The optimal choice 

of quarterfinal, given the set of information, is a complex problem. Two athletes with the same set of 

information and identical ranking, may make different choices due to their differences in tackling the 

computational burden and handling the tactical dimension inherent in the design. 

Holding on to seeding, we present a revision of the old seeding scheme. Instead of letting the sum of 

athletes’ ranking from the qualification round be equal, i.e., the sum 93, across quarterfinals, this sum 

should differ across quarterfinals to adjust for the variation in recovery time prior to a final. The earlier 

the quarterfinal, the lower is the sum of raking. Compared to the current design, this revised seeding 

would thus lift a tricky strategic element out of the competition but still capture the fundamental disparity 

across quarterfinals. Our proposal does not point out in which of the quarterfinals a competitor with a 

certain ranking from the qualification round should compete. For each quarterfinal, our seeding only 

specifies a total sum of ranking, arising from a number of possible combinations of six numbers, adding 

up to the specified sum.  

Clearly, an assertion that irrationality could be behind the result is not without objection. First and 

foremost, it is reasonable to assume that for some of the athletes, the objective function behind the choice 

of quarterfinal may not be to maximize the probability of ending up on the podium, but instead to 

maximize the expected award of world cup ranking points. The expected number of ranking points 

awarded may be maximized by choosing a late quarterfinal with expected lower competition, even if it 

leads to a shorter recovery time in case of advancement to the final, thus lowering the chances of ending 

up on the podium. Secondly, the athlete’s choice of quarterfinal surely to a large extent depends on her 

private perception of her own capacity and on her subjective perception of the competitors' capacity on 

the current competition day. In other words, the basis for the athlete’s decision, may deviate from our 

data on the athletes’ official ranking when assessing their capacity. Thirdly, an athlete’s relative 

performance in the qualification round, which takes the form of an individual race against the clock, 

may not always reflect the individual's tactical ability to perform in a race with a mass start where the 

goal is to be the first or the second to cross the finish line. Fourth, we do not consider whether a skiing 

sprint competition has been run as a classic style competition or as a skate style competition, a factor 

that likely has an impact on some athletes’ competitiveness on the ski course. This may give rise to 

misleading information in the variables supposed to capture the athlete’s capacity.  
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One natural step in this research would be to adopt another objective function behind the athletes’ 

choices of quarterfinals. As suggested above, a plausible point of departure for the analysis would be to 

assume that the athletes seek to maximize the expected world cup points rather than maximizing the 

probability of ending up on the podium.  

Another step would be to use comparable data from the same skiing sprint competitions held the years 

before the season 2014/2015 to investigate whether an athlete’s probability of reaching the podium has 

been affected by the FIS’s decision to switch design. Given that an athlete’s performance is observed 

under both regimes, it may be possible to assess - conditioning on the athlete’s various rankings - to 

what extent the athlete’s choice of quarterfinal has improved her outcome in the competitions under the 

current design vs. the old design. 
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Appendix 

Proof of Proposition 1 

Given that player B initially chooses the first semifinal (s.1), we write the probability of player A 

winning the tournament when choosing s.1 as  

( )( ) ( )( ),1 0.5 0.5 1 1 0.5 0.5 1 1Ap p c p c= × − − + × − −     

The first part is the probability that player A beats player B, player C beats player D in s.2, and in the 

final player A beats player C. Note that player C’s probability of beating player A in the final is reduced 

by the factor c, that is ( )1 p c− . The second part identifies the same probabilities as the first part, but 

now it is player D who advances to the final. 

If player A instead chooses s.2, then player C is better off choosing s.1 than s.2. To see this, we have   

( ) ( ) ( )( )( ),2 1 1 1 1 1 0.5Cp p p pc p p c= − − + − − −      

and  

( ) ( ) ( )( ),3 1 1 1 1 0.5Cp p p p c p p c= − − + − − ,    

where  

( )( ),2 ,3 1 1 0.C Cp p p c− = − − >      

Thus, the probability that player A will win the tournament given that player B chooses s.1 and player 

A chooses s.2 can be written as  

( ),2 0.5 1 .Ap p p c p p pc= × + −      

Player A will choose to compete against player B in s.1 if ,1 ,2 0A Ap p− > . Using the expressions for 

,1Ap and ,2Ap , we obtain the condition for player A choosing to compete against player B in s.1 as   

3 2
0,5 .

1.5 0.5 0.5
c

p p p
−

<
− + −

     

Now, given this condition, the probability of player B winning the tournament if he chooses s.1 is    

( )( ) ( )( ),1 0.5 0.5 1 1 0.5 1 1Bp p c p c = − − + − −  .    

Otherwise, player B will meet player C in s.1, generating the corresponding probability  

( ) ( ) ( )( ),2 1 0,5 1 1 1 .Bp p p c p p p c= × − + − − −     
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Turning to the case where player B initially chooses the second semi-final (s.2), and player A chooses 

s.1, it can easily be verified that player C prefers to compete against player A in s.1 rather than facing 

player B in s.2. The price player C has to pay, in case of winning against player B in s.2, is a reduced 

probability ( )( )1  or 0.5  p c c− of winning the final either against player A or against player D. We have  

( )( ),4 ,5 1 1 0.C Cp p p c− = − − >      

Player A’s probability of winning the tournament when choosing s.1 is then  

( ) ( ) ( )( ),4 1 0.5 1 1 1Ap pp c p p p c= − + − − −     

Making use of the inequalities ( ) ( )1 0.5 0.5 and 1 1 0.5c p c− > − − > , we get s  

( ) ( ) ( )( ) ( ),4 1 0.5 1 1 1 0.5 1 0.5 0.5 .Ap p p c p p p c p p p p p= × − + − − − > × + − =   

Since player A’s probability of winning the tournament when choosing s.2 is ,6 0.5Ap pc= , we have 

established that ,4 .6 0A Ap p− > . To summarize, if player B initially chooses s.2 then he will face player 

D in this semifinal. Player B’s probability of winning the tournament when choosing s.2 is then  

( ),4 0.5 1Bp p p c p p pc= × + − .     

However, player B will never choose s.2. For the case 
3 2

0.5
1.5 0.5 0.5

c
p p p

−
<

− + −
, it is relevant 

for player B to compare ,1Bp with ,4Bp . For this case, we have earlier found that ,1 ,2.A Ap p> By 

definition of the plays we also have ,1 ,1A Bp p= and ,2 ,4A Bp p= . Hence, ,1 ,4B Bp p> .  

For the case 
3 2

0.5
1.5 0.5 0.5

c
p p p

−
>

− + −
we compare ,2Bp with ,4Bp . It is easily verified that  

( ),2 ,4 1 0B Bp p p c− = − > .  
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Proof of Proposition 2 

To show that the test statistic follows a standard normal distribution under the null hypothesis we need 

to prove that 

4650,
14

appr

E LR R N  −  
 


 under 0H . 

First, from the way the null hypothesis is formulated we have 

( ) ( ) ( ) 0E L E LE R R E R E R− = − = . 

Second, to prove that ( ) 465 14E LV R R− = , we define i kX and , 1,2,...12,i kY i =  for the kth  competition, 

as the rank for the ith athlete in an early quarterfinal and in a late quarterfinal, respectively. Thus, 

12

1k i ki
U X

=
=∑  and 

12

1k i ki
V Y

=
=∑ . 

From the way a competition is designed, under the assumption of the null hypothesis that the athletes 

choose quarterfinals at random, it follows that i kX  and i kY  are discrete uniformly distributed from 1 to 

30, implying that ( ) ( ) 15.5i k i kE X E X= = and ( ) ( ) 1174
12i k i kV X V Y= =  using well-known results for 

the discrete uniform distribution (see for example Casella and Berger (2002)).   

Referring to the same assumption of random choice, it also follows that i kX  and j mX  are independent 

for all combinations of (𝑖𝑖, 𝑗𝑗) and (𝑘𝑘,𝑚𝑚), except for combinations where 𝑘𝑘 =  𝑚𝑚. This result holds true 

for i kY  and j mY , as well as for i kX  and j mY . For combinations where 𝑘𝑘 =  𝑚𝑚 and 𝑖𝑖 ≠ 𝑗𝑗 we get 

( ) ( )( ) ( )( ) ( ) ( ) ( )
( ) ( )

( )

30 30 2

1 1

2

,

, 15.5

1 715.5 2 ,
870 12

i k j k

i k j k

i k j k ik ik j k j k ik j k ik j k

ik j k ik ik j k j kx x

ik j kx x

Cov X X E X E X X E X E X X E X E X

x x P X x X x

x x

= =

≠

 = − − = −
 

= = = −

= − = −

∑ ∑

∑∑

 

where the second to last step follows from the fact that i kX and j kX  cannot take on the same value and 

there are 870 possible outcomes ( ),i k j kx x , all equally likely to occur. The same result holds for 

( ),i k j kCov Y Y . The result is also valid for ( ),i k j kCov X Y , here for the case 𝑖𝑖 = 𝑗𝑗 as well. 

Now, making use of the results for ( )i kV X and ( ),i k j kCov X X , we get 
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( ) ( ) ( ) ( )
( ) ( )

12 12

1 1 1 12
2 ,

12 132 , 558.

k ik ik ik j ki i i j

i k i k j k

V U V X V X Cov X X

V X Cov X X

= = ≤ ≤ ≤
= = +

= + =

∑ ∑ ∑∑
 

Likewise, we obtain ( ) 558kV V = . 

We also get 

( ) ( ) ( )
( )

12 12 12 12

1 1 1 1
, , ,

144 , 372.

k k ik j k ik j ki j i j

i k j k

Cov U V Cov X Y Cov X Y

Cov X Y

= = = =
= =

= = −

∑ ∑ ∑ ∑
 

In order to find ( )E LV R R− , we also need ( ) ( ),E LV R V R and ( ),E LCov R R .  

Since 1 2 56, ,...,U U U  are i.i.d, we have  

( ) ( )
56

561
2 21

1 1 27956
56 2856 56

kk
E k kk

U
V R V U V U=

=

 
 = = = × =
 
 

∑ ∑ using the result  ( ) 558.kV U =  

Likewise, we obtain ( ) 279 .
28LV R =  

Using that ( ), 372k kCov U V =  and ( ), 0k mCov U V = for k m≠ , we have  

( ) ( )

( ) ( )

56 56
56 561 1

2 1 1

56
2 21

1, , ,
56 56 56

1 1 93, 56 , .
1456 56

k mk m
E L k mk m

k k k kk

U V
Cov R R Cov Cov U V

Cov U V Cov U V

= =
= =

=

 
 = =
 
 

= = × = −

∑ ∑ ∑ ∑

∑
 

Thus, combining the results above, we obtain the variance ( )E LV R R− as 

( ) ( ) ( ) ( ) 4652 ,
14E L E L E LV R R V R V R Cov R R− = + − = . 

Third, to prove that E LR R− follows an approximate normal distribution, we note that 1 2 56, ,...,U U U  as 

well as 1 2 56, ,...,V V V are i.i.d , meaning that ER and LR  are approximately normal distributed by the 

Central Limit Theorem. Therefore, the difference between ER and LR - a linear combination - is also 

normal distributed. 
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