
Mazur, Stepan; Otryakhin, Dmitry

Working Paper

Linear Fractional Stable Motion with the RLFSM R Package

Working Paper, No. 9/2019

Provided in Cooperation with:
Örebro University School of Business

Suggested Citation: Mazur, Stepan; Otryakhin, Dmitry (2019) : Linear Fractional Stable Motion with
the RLFSM R Package, Working Paper, No. 9/2019, Örebro University School of Business, Örebro

This Version is available at:
https://hdl.handle.net/10419/244555

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/244555
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

http://www.oru.se/Institutioner/Handelshogskolan-vid-Orebro-universitet/Forskning/Publikationer/Working-papers/
Örebro University School of Business
701 82 Örebro
SWEDEN

WORKING PAPER

 9/2019

ISSN 1403-0586

Linear Fractional Stable Motion with the RLFSM
R Package

Stepan Mazur and Dmitry Otryakhin

Statistics

Linear Fractional Stable Motion with the
RLFSM R Package

Stepan Mazur∗
School of Business, Örebro University,

Fakultetsgatan 1, SE-701 82 Örebro, Sweden
and

Dmitry Otryakhin†
Department of Mathematics, Aarhus University,

Ny Munkegade 118, DK-8000 Aarhus C, Denmark

November 13, 2019

Abstract

Linear fractional stable motion is a type of a stochastic integral driven by sym-
metric alpha-stable Lévy motion. The integral could be considered as a non-Gaussian
analogue of the fractional Brownian motion. The present paper discusses R package
rlfsm created for numerical procedures with the linear fractional stable motion. It is a
set of tools for simulation of these processes as well as performing statistical inference
and simulation studies on them. We introduce: tools that we developed to work with
that type of motions as well as methods and ideas underlying them. Also we perform
numerical experiments to show finite-sample behavior of certain estimators of the
integral, and give an idea of how to envelope workflow related to the linear fractional
stable motion in S4 classes and methods. Supplementary materials, including codes
for numerical experiments, are available online. rlfsm could be found on CRAN and
gitlab.

Keywords: Fractional processes, limit theorems, parametric estimation, stochastic simula-
tion, stable motion

JEL Classification: C00, C13, C15, C88

∗stepan.mazur@oru.se; https://orcid.org/0000-0002-1395-9427
†d.otryakhin.acad@protonmail.ch; https://orcid.org/0000-0002-4700-7221; currently with Department

of Mathematics, Stockholm University

1

1 Introduction

The linear fractional stable motion (shortly, lfsm) (Xt)t∈R on a filtered space (Ω,F , (Ft)t∈R,P)

is defined via

Xt =
∫
R

{
(t− s)H−1/α

+ − (−s)H−1/α
+

}
dLs, x+ := max{x, 0}, (1)

where Ls is a symmetric α-stable Lévy motion, α ∈ (0, 2), with the scaling parameter

σ > 0 and the self-similarity parameter H ∈ (0, 1). The lfsm is heavy-tailed process with

infinite variance and long-range dependence. A good overview on the role which this process

plays in natural sciences is done by Watkins et al. [2008]. One could also find a review of

stochastic properties of lfsm in Mazur et al. [2019+].

We proceed with introduction to existing software, with interest towards study of nu-

merical properties of statistical estimators for lfsm as the main motivation. So far, there is

no standard approach for software development to operating the general class of stochas-

tic processes driven by Lévy processes. Moreover, there was no systematic indexed and

pier-reviewed software for simulating sample paths of lfsm and related estimators prior to

rlfsm. There is a particularly simple and useful numerical algorithm for simulating lfsms

developed by Stoev and Taqqu [2004]. The paper contains a minimalistic implementation

of lfsm generator as a MATLAB function. However, some useful packages, that could be

used in numerical routines with Lévy-driven processes (e.g. to create lfsm generator and

perform unit testing), exist and have been implemented in R. For instance, R package

somebm [Huang, 2013] contains functions for generation of fractional Brownian motion

(fBM). dvfBm [Coeurjolly, 2009] has routines for generation of fBm and estimator of the

Hurst parameter of the latter. stabledist [Wuertz et al., 2016] and stable [Swihart et al.,

2017] contain different functions for stable distributions and random variables. A generator

of random variables of the kind has been also implemented in MATLAB (see the code in

Chapter 1.7 in [Samorodnitsky and Taqqu, 1994]).
The paper is organized as follows. In Section 2 we present the simulation method for

sample paths of lfsm and its implementation in our path function. Then, we present functions

for finite sample studies of statistical estimators, and some other functions. Section 3 describes

implementations of the high- and the low-frequency parameter estimators and discusses reasons

2

behind their numerical behavior. Finally, in Section 4 we suggest an object oriented system that

simplifies software programming of Lévy-driven integrals.

2 Basic R functions

2.1 Types of data we use

This version of the package suggests that we work with two types of sample paths. In the low-

frequency setting we only use points spaced 1 temporal index apart from each other, X1, X2, . . . , Xn.

In the case of high-frequency, we use points with discretization equal to the length of the path

vector, X1/n, X2/n, . . . , X1. This division is dictated by two issues: 1) the same division in the set-

ting of limit theorems obtained by Mazur et al. [2019+], and 2) the fact that there is no inference

technique for an arbitrary mixture of the two frequencies. Consequently, temporal coordinates

of low-frequency lfsm coincide with point index (compare coordinates and point_num in the

example in Section 2.2) which varies from 0 to N . Analogously, in case of high-frequency scheme,

temporal coordinates equal to point indexes divided by the total number of sampled points. When

after sampling the index set is different from either (1, 2, . . . , N) or (1/n, 2/n, . . . , 1), rescaling in

time should be performed using the equality (aHXt)t≥0
d= (Xat)t≥0 with a > 0 provided that H

is known or obtained via preliminary estimation.

2.2 Simulation method for the linear fractional stable motion

In this section, we start with a discussion on the simulation method of the lfsm proposed by Stoev

and Taqqu [2004] which is implemented in R by us. In particular, simulation of sample paths is

done via Riemann-sum approximations of its symmetric α-stable stochastic integral representation

while Riemann-sums are computed efficiently by using the Fast Fourier Transform algorithm. In

R, we introduce path function that creates sample paths of the lfsm. The idea underlying this

sample path generator is that it should be always possible not only to obtain lfsm path, but also

the underlying Lévy motion, generated during the procedure, and since the core function of lfsm

is deterministic it should allow for lfsm path generation based on a given Lévy motion, and, in

theory, otherwise (not always). For this reason generators of both processes were separated into

independent parts (see Figure 1).

3

Figure 1: Scheme of generating Lévy motion and lfsm by path. Black arrows: when the

algorithm initially is given the parameters, it generates Lévy motion, and then lfsm. Green

arrows: when Lévy motion is needed without lfsm in order to save processing time, the algorithm

bypasses computing of the later. Blue arrows: given a Lévy motion and some parameters, the

generator computes the corresponding lfsm.

The function path can be used by

path(N,m,M,alpha,H,sigma,freq=’L’,disable_X=FALSE,

levy_increments=NULL,seed=NULL)

Parameters N, m, M regard to the index of the process, or time, if applicable. m and M are the

only means to control precision of the integral computation. N is a number of points of the lfsm

to generate. m is a discretization parameter that corresponds to the number of points where

Lévy motion is sampled between two nearby indexes (e.g. N and N − 1). M is the truncation

parameter, i.e. number of points after which the integrated function is set to zero; freq stands

for the frequency of the motion which can take two values: “H” for high-frequency and “L” for

the low-frequency setting. This is the switch between the two data types. disable_X is needed

to disable computation of X, the default value is FALSE, when it is TRUE, only a Lévy motion is

4

returned, which in turn reduces the computation time. seed is a parameter that performs seeding

of the lfsm generator. Technically, in the path the seed is set just before Lévy increments are

generated. The path function returns a list containing the lfsm, the underlying Lévy motion, the

point number of the motions from 0 to N (point_num) and the corresponding coordinate which

depends on the frequency, the parameters (σ, α,H) that were used to generate the lfsm, and the

predefined frequency.

Generation of symmetric α-stable (sαs) random variables is powered by function rstable

from package stabledist [Wuertz et al., 2016] with S0 parametrization based on the Zolotarev’s

representation for an α-stable distribution with some modifications. S0 is used in order to make

sigma a scale parameter of the motion and to get exempt from computing the normalization

constant CH,α presented in Stoev and Taqqu [2004] and is given by

CH,α :=
(∫

R

∣∣∣(1− s)H−1/α
+ − (−s)H−1/α

+

∣∣∣α ds)1/α
.

2.2.1 The discrete convolution based algorithm and particularities of indexing

As it was mentioned in the beginning of Section 2.2, one of the features of path is the ability

to operate on a pair lfsm - Lévy motion and to switch between them. We recall that direct

computation of the sum approximating the integral in the definition of lfsm (1) would involve

number of operations proportional to NMm, which makes the method slow. Instead, the original

algorithm by Stoev and Taqqu [2004] suggests computing increments of lfsm with the help of

W (n) :=
mM∑
j=1

aH,m(j)Zα(n− j), (2)

where W (mk) is a discretized and truncated version of the increments of the lfsm, and in the

limit has the same distribution as them

{W (mk), k = 1, . . . , N} d−−−−−−−−→
m→∞;M→∞

{X(k)−X(k − 1), k = 1, . . . , N};

Zα(k) are i.i.d. sαs random variables that have indexes −mM, . . . ,mN − 1 and scaling pa-

rameter equal to 1, and

aH,m(j) := C−1
H,α(m,M)

(
(j/m)H−1/α − (j/m− 1)H−1/α

+

)
m−1/α, j ∈ N

with

CH,α(m,M) := m−1

mM∑
j=1

∣∣∣(j/m)H−1/α − (j/m− 1)H−1/α
+

∣∣∣α
1/α

.

5

Figure 2: Example of direct computation of sum of the form (2) for 2 vectors. a corresponds

to the kernel and Z- to the Lévy motion.

Let us consider an example which will recur and evolve throughout this section. Consider

computing sum (2) where m = 1, M = 3, and N = 6 (see Figure 2). The two rightmost cells for

W (n) are left empty because there is no sense in computing them without truncation of a.

A method based on the discrete convolution theorem is used to obtain W (mk). The theorem

relies on Discrete Fourier Transform (DFT), which needs to perform a number of operations

proportional to (mN +mM) log(mN +mM) instead of NMm. In order to understand how this

method works, we review several definitions and theorems.

Definition 2.1 For any sequence xn, n ∈ N, Discrete-Time Fourier Transform (DTFT) is de-

fined as

X = DTFT{xn}(ω) =
∞∑

n=−∞
xn exp(−inω).

The reverse transform, IDTFT, is defined as

xn = IDTFT{X} = 1
2π

∫ 2π

0
X(ω)eiωndω.

Definition 2.2 Discrete convolution of two infinite sequences {An}n∈N and {Bn}n∈N is

(A ∗B)[n] :=
∞∑

m=−∞
A[m]B[n−m].

There is a convolution theorem for discrete sequences which says that the discrete convolution

of two sequences is equal to the Inverse Discrete Fourier Transform (IDFT) of the multiplication

of the direct transforms of the sequences:

Theorem 2.3 For any discrete sequences xn and yn, n ∈ N, it holds that

(x ∗ y)[n] = IDTFT[DTFT{xn}(·)×DTFT{yn}(·)].

Definition 2.4 Let xn, n ∈ N be a sequence. Then {xN}[n], n ∈ N is called N -periodic summa-

tion of the sequence:

6

{xN}[n] :=
∑
k∈N

x[n+ kN].

It is straightforward that the periodic summation in the definition above has period N . In

our case, the latter theorem is applicable even though we will be interested in a finite sequence of

length Ñ . The sequence is padded with zeros to form an infinite one, and a periodic summation

of a the length Ñ is just a periodic extension of it.

Figure 3: Example of periodic summation of a zero-padded finite sequence where the period

equals to the sequence length (N = Ñ).

DTFT is not directly useful for simulation purpose, that is why we need a special case of

Theorem 2.3, Circular Convolution Theorem which reduces DTFT to DFT.

Definition 2.5 The DFT of a finite sequence xn of length N is defined as

Xk = DFTk(xn) :=
N−1∑
n=0

xn exp(−2πikn/N).

The IDFT is

xn := 1
N

N−1∑
k=0

Xk exp(2πikn/N).

Theorem 2.6

(xN ∗ y)[n] = IDFT{DFT(xN)DFT(yN)}

Returning to the task of computing the sum in (2), we consider two vectors: a of length mM

and Z of length m(M+N). Here, we again index vectors starting with zero, not one. If we extend

Z periodically, pad a with zeros to make an infinite sequence, and compute (a ∗ Zm(N+M))[n],

values with indexes [mM ; m(N+M)−1] would coincide with the result of a convolution of a and

Z. The first mM values would be meaningless. This gives an idea how to use Circular Convolution

Theorem for computation of (2): instead of a ∗ Z we compute one period of (a ∗ Zm(N+M))[n]

through the left part of 2.6 and leave only meaningful values. Figure 4 illustrates the use of

Circular Convolution Theorem with periodic extensions of Z and padded a to compute (2). In

this case results with indexes -1 and -2 are meaningless and should be discarded.

7

Figure 4: Example of transformation of vectors a and Z into sequences before computing

their convolution.

Although the setup of the example as is on Figure 4 is fastest, it is impossible to use it directly,

because in some situations truncation parameter M is larger than N , the number of points of

lfsm sample path that is needed to be simulated. In this case path function performs an index

shift using the following property:

(a ∗ xc)[n] :=
+∞∑

k=−∞
a[k]·x[n− k − c]

=
+∞∑

k=−∞
a[k]·x[ñ− k] = (a ∗ x)[ñ− c]

(3)

This property is illustrated by Figure 5, wherein sequence x[n] is shifted by 2 to the right, so

c = 2. Accordingly, the resulting convolution also gets shifted 2 notches to the right (compare

Figures 5 and 2). In general, according to (3), when x[n] is shifted to assign index zero to the

first value, the resulting convolution sequence also starts from the first meaningful value. Thus,

path always keeps the first Nm as the result of convolution operation and discards the rest.

Figure 5: Example of index shift in path function.

2.2.2 Examples

In the next example, we show how one can use the above function to generate a sample path and

to provide its visualization. Compare the procedure with the similar one from Section 4.1.1.

R> # Path generation

R> List<-path(N=2ˆ10-600,m=256,M=600,alpha=1.8,H=0.8,

sigma=1,freq=’L’,disable_X=FALSE,seed=3)

R> str(List)

8

List of 7

$ point_num : int [1:425] 0 1 2 3 4 5 6 7 8 9 ...

$ coordinates : int [1:425] 0 1 2 3 4 5 6 7 8 9 ...

$ lfsm : num [1:425] 0 -1.3969 0.0159 1.6487 1.87 ...

$ levy_motion : num [1:425] 0 -21.8 28.3 42.1 38.1 ...

$ levy_increments: num [1:262144] -0.292 -0.708 -1.49 0.517 0.803 ...

$ pars : Named num [1:3] 1.8 0.8 1

..- attr(*, "names")= chr [1:3] "alpha" "H" "sigma"

$ frequency : chr "L"

R> # Normalized paths

R> Norm_lfsm<-List[[’lfsm’]]/max(abs(List[[’lfsm’]]))

R> Norm_oLm<-List[[’levy_motion’]]/max(abs(List[[’levy_motion’]]))

R> # Visualization of the paths

R> plot(Norm_lfsm, col=2, type="l", ylab="coordinate")

R> lines(Norm_oLm, col=3)

R> leg.txt <- c("lfsm", "oLm")

R> legend("topright", legend = leg.txt, col =c(2,3), pch=1)

The result of the chart rendering is shown on Figure 6. The following example shows how

to switch path function in order to alter between simulation of lfsm from scratch and computing

based on an existing sample path of the Lévy motion.

9

0 100 200 300 400

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Index

co
or

di
na

te

lfsm
oLm

Figure 6: Plot of sample path and Lévy motion with seed=2

R> m<-256; M<-600; N<-2ˆ12-M

R> alpha<-1.8; H<-0.8; sigma<-1.8

R> seed<-2

R> # Creating Levy motion

R> levyIncrems<-path(N=N, m=m, M=M, alpha, H, sigma, freq=’L’,

disable_X=T, levy_increments=NULL, seed=seed)

R> # Creating lfsm based on the levy motion

R> lfsm_full<-path(m=m, M=M, alpha=alpha,

H=H, sigma=sigma, freq=’L’,

disable_X=F,

levy_increments=levyIncrems$levy_increments,

seed=seed)

R> sum(levyIncrems$levy_increments==

lfsm_full$levy_increments)==length(lfsm_full$levy_increments)

10

[1] TRUE

In the example the Lévy motion is generated without computing the lfsm, which was done

by setting disable_X=T, and saved to variable levyIncrems. After that, path was given the

obtained Lévy increments and, basing on them, generated an lfsm path. As one can observe, the

Lévy increments from the both objects produced by path are identical. The same holds when

we obtain an lfsm path from the above procedure and one-step simulation of lfsm with seeding.

These two facts are used in automated tests provided for rlfsm package.

2.3 MCestimLFSM and numerical properties of statistical esti-

mators

In order to study numerical properties of the estimation procedures developed in Mazur et al.

[2019+], we created a technique, that could be used in solving this problem for any pair stochastic

process and an estimator. The approach was implemented in MCestimLFSM function (Figure 9).

The main motivation here is that for some estimators we have limit theorems, but we do not

have theory which describes estimator behavior when the length of a path is relatively small,

and thus, for instance, we cannot use closed-form expressions to obtain confidential intervals. In

the following examples we show how to use functions MCestimLFSM, PLot_vb, and Plot_dens for

studying empirical variance, bias and a density function of an estimator. In the first example,

we study GenLowEstim estimator, and its bias and variance dependencies on the length of the

sample paths. In particular, one would be able to determine starting from which path length the

estimator loses significant bias influence.

R> library(rlfsm)

R> library(gridExtra)

R> registerDoParallel()

R> m<-25; M<-55

R> p<-.4; p_prime<-.2

11

R> t1<-1; t2<-2

R> k<-2

R> NmonteC<-5e2

R> alpha<-1.8; H<-0.8; sigma<-0.3

R> S<-seq(from = 100, to = 2e3, by =50)

R> tilda_ests<-MCestimLFSM(s=S, fr=’L’, Nmc=NmonteC, m=m, M=M,

alpha=alpha,H=H,sigma=sigma,

GenLowEstim,t1=t1,t2=t2,p=p)

Structure of tilda_ests

R> str(tilda_ests)

Structure of BSdM is as follows

R> head(round(tilda_ests$means,2))

alpha H sigma s

1 1.76 0.67 0.25 100

2 1.81 0.70 0.27 150

3 1.81 0.71 0.27 200

4 1.82 0.73 0.28 250

5 1.83 0.74 0.28 300

6 1.83 0.75 0.29 350

R> head(round(tilda_ests$biases,2))

alpha H sigma s

1 -0.04 -0.13 -0.05 100

2 0.01 -0.10 -0.03 150

3 0.01 -0.09 -0.03 200

4 0.02 -0.07 -0.02 250

12

5 0.03 -0.06 -0.02 300

6 0.03 -0.05 -0.01 350

R> head(round(tilda_ests$sds,2))

alpha H sigma s

1 0.19 0.23 0.09 100

2 0.14 0.20 0.08 150

3 0.13 0.19 0.08 200

4 0.13 0.19 0.07 250

5 0.10 0.17 0.06 300

6 0.11 0.17 0.06 350

R> Plot_vb(tilda_ests)

Figure 7 shows that when (σ, α,H) = (0.3, 1.8, 0.8), estimator GenLowEstim could be consid-

ered unbiased starting approximately from 1000 points.

The second example compares empirical standardized densities of estimates, obtained by

GenLowEstim with the limiting standard normal ones, Figure 8.

R> S<-c(1e2,1e3,1e4)

R> tilda_ests<-MCestimLFSM(s=S, fr=’L’, Nmc=NmonteC ,m=m, M=M,

alpha=alpha, H=H, sigma=sigma,

GenLowEstim,t1=t1,t2=t2,p=p)

R> l_plot<-Plot_dens(par_vec=c(’sigma’,’alpha’,’H’), MC_data=tilda_ests,

Nnorm=1e7)

R> ggg<-grid.arrange(l_plot[[1]],l_plot[[2]],l_plot[[3]],nrow=1,ncol=3)

In short, in these examples for different path lengths s, NmonteC lfsm paths are simulated.

To each path we apply tilde-statistic (see Section 3.2), therefore obtaining NmonteC estimates

(σ̃low, α̃low, H̃low) for every s, which in turn, are used to calculate biases, standard deviations, and

density functions (also, for each s separately).

13

variable: sigma

type: bias

variable: sigma

type: mean

variable: sigma

type: sd

variable: H

type: bias

variable: H

type: mean

variable: H

type: sd

variable: alpha

type: bias

variable: alpha

type: mean

variable: alpha

type: sd

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.20

0.000

0.025

0.050

0.075

0.0

0.5

1.0

1.5

0.0

0.2

0.4

0.6

0.8

0.0

0.1

0.2

0.3

−0.04

−0.02

0.00

0.02

−0.10

−0.05

0.00

−0.04

−0.02

0.00

s

va
lu

e

Figure 7: Variance and bias dependence on path length of tilde- estimators, described in

Section 3.2.

2.3.1 MCestimLFSM architecture and optimization

It is important to notice that generation of lfsm is numerically heavy routine and also a large

number of estimates is needed to compare their empirical distributions with the limiting ones. The

latter task gave MCestimLFSM its name. Thus, in order to make computations feasible in terms

of time and memory use, the architecture of MCestimLFSM must be well-optimized. Apparently,

a multi-core setup is crucial for dealing with the task.

Having fixed a path length, the whole procedure behind MCestimLFSM could be split in two

parts. First, we need to obtain samples for each estimator. Second, we obtain statistics of these

samples (see Figure 9). Once finished, MCestimLFSM proceeds to the next length value until

reaches the end of the vector of lengths.

In the first part, we generateNMonte Carlo lfsm paths of the length s[i] via path_fast function.

To each of the paths we apply all the estimators to obtain H, α, and σ estimates. During this

14

0.0

0.2

0.4

0.6

−2 0 2

sigma

de
ns

ity

n 100 1000 10000 true_normal

0.0

0.2

0.4

0.6

−2 0 2

alpha

de
ns

ity

n 100 1000 10000 true_normal

0.0

0.2

0.4

0.6

−2 0 2

H

de
ns

ity

n 100 1000 10000 true_normal

Figure 8: Empirical distributions of tilde- estimates, described in Section 3.2.

stage, we use a foreach-based parallel loop, where each node simulates a path, computes and

returns the statistics removing the path from memory. path_fast is an unavailable for users

version of path with significantly reduced functionality for the sake of saving execution time.

The further desired enlargement of the node task by adding generation of the whole set of paths

instead of just one, making the loop over s[i] parallel, leads to extreme memory consumption

as well as unequal distribution of load among nodes. The number of numeric values in the set of

paths equals to NMonte Carlo × s[i]. Simulations, performed in Mazur et al. [2019+] showed that

normal distribution is attained by estimators at s = 103. Given the fact that we need at least 105

Monte Carlo trials for a neat histogram of a distribution, one can obtain the amount of memory

required to store a matrix of size NMonte Carlo × s[i], which makes 763Mb, while some estimators

require 80Gb per node. That is the reason why in the current version of MCestimLFSM the loop

over s is sequential, and the one over NmonteC is parallel.

During the second part, averages and standard deviations of the samples are computed, and

subsequently used to compute the standardized empirical distributions. So that, the three charac-

teristics naturally come together within the same numerical procedure. So far there is no empirical

evidence that parallel execution in this section makes MCestimLFSM more efficient.

Such architecture is of great use when the number of nodes available for computations exceeds

15

N
Monte Carlo

σ
est

α
est

H
est

Averages,
variances,
biases

N
Monte Carlo

σ
est_norm

α
est_norm

H
est_norm

N
Monte Carlo

Path
vector
length,
s[i]

Inference
procedure
applied

lfsms

Empirical
pdfs

Figure 9: Scheme of extracting estimator statistics by function MCestimLFSM for a chosen

path length.

the number of path length, and the length s[i] differs significantly from s[j] when i 6= j.

2.4 On some of the other basic functions

In this part, we will describe aspects of some of the other R functions implemented in the package.

2.4.1 Higher-order increments

These increments are the main building block for all statistics we use (see Section 3). They are

defined as k-th iterated increments of step r of a sample path. In particular, ∆n,1
i,1 X := X i

n
−X i−1

n
,

and ∆n,1
i,2 X := X i

n
− 2X i−1

n
+ X i−2

n
. In rlfsm, we built two functions for computation of objects

of this class- increment() and increments(). The former accepts a vector of points at which a

16

user wants to evaluate higher-order increments, and computes them using formula

∆n,r
i,kX :=

k∑
j=0

(−1)j
(
k

j

)
X(i−rj)/n. (4)

Before evaluation of (4), the function checks the condition i < kr. Evaluation of the increments

on a sample path of length N takes (k + 1)(N − kr) operations- k + 1 sums for N − kr points.

increments() computes increments iteratively on the whole set of path points. The first iteration

gives N − r increments, the second- N − 2r and so on. Thus, the total number of performed

operations is
k∑
j=1

(N − jr) = kN − r(k + 1)k/2.

It is clear that increments() is faster on sample paths with large number of points, but slower

when the increment order is high. As we will show later, orders greater than ∼ 10 are not usable

for statistical inference. That is the reason why in all statistics we use either increments() or

its hidden “relatives”.

2.4.2 A visualization method for sample paths

We introduce a pair of functions which makes a panel plot of sample paths produced by processes

with different parameters. Path_array takes a set of α-H values, generates a path for each

combination, and stacks the paths together in a data frame. In the produced data frame all

the paths are tagged with α and H values. Plot_list_paths() takes the data frame as an

argument and plots the sample paths on different panels based on their (α,H) values. This

functionality is powered by facet_wrap() from ggplot2 [Wickham, 2016]. For discontinuous

paths Plot_list_paths() draws an overlapping semitransparent line joining neighbouring points

in order to highlight jumps.

R> l=list(H=c(0.2,0.5,0.8), alpha=c(0.5,1,1.5), freq="H")

R> arr<-Path_array(N=300, m=30, M=100, l=l, sigma=0.3)

R> head(arr)

n X alpha H freq

1 1 0.0000000 0.5 0.2 H

2 2 0.2329891 0.5 0.2 H

3 3 1.1218238 0.5 0.2 H

17

4 4 -6.1284620 0.5 0.2 H

5 5 -2.2450357 0.5 0.2 H

6 6 3.4979978 0.5 0.2 H

R> str(arr)

’data.frame’: 2709 obs. of 5 variables:

$ n : num 1 2 3 4 5 6 7 8 9 10 ...

$ X : num 0 0.233 1.122 -6.128 -2.245 ...

$ alpha: Factor w/ 3 levels "0.5","1","1.5": 1 1 1 1 1 1 1 1 1 1 ...

$ H : Factor w/ 3 levels "0.2","0.5","0.8": 1 1 1 1 1 1 1 1 1 1 ...

$ freq : Factor w/ 1 level "H": 1 1 1 1 1 1 1 1 1 1 ...

R> Plot_list_paths(arr)

H: 0.8

alpha: 0.5

H: 0.8

alpha: 1

H: 0.8

alpha: 1.5

H: 0.5

alpha: 0.5

H: 0.5

alpha: 1

H: 0.5

alpha: 1.5

H: 0.2

alpha: 0.5

H: 0.2

alpha: 1

H: 0.2

alpha: 1.5

0 100 200 300 0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300 0 100 200 300
−2

0

2

4

−0.6

−0.4

−0.2

0.0

−0.1

0.0

0.1

0.2

0.3

0.4

−200

−100

0

0.0

0.5

1.0

1.5

2.0

2.5

−1.0

−0.5

0.0

0.5

−5e+05

−4e+05

−3e+05

−2e+05

−1e+05

0e+00

0

30000

60000

90000

0

1000

2000

n

X

Figure 10: Graph rendered by Plot list paths

18

3 Parameter Estimation of the linear fractional stable

motion

In this section, we describe estimators for the parameters H, α, and σ that are obtained in the

recent paper by Mazur et al. [2019+], and their implementation in R.

3.1 Parameter estimation in the continuous case

First, we consider the case H − 1/α > 0 which leads us to the important property that the lfsm

(Xt)t∈R is locally Hölder continuous of any order up to H−1/α. Moreover, this condition implies

the following restrictions

α ∈ (1, 2) and H ∈ (1/2, 1)

that allow us to use the law of large numbers in Theorem 1.1 of [Basse-O’Connor et al., 2017]

when p < 1, and the central limit theorem in Theorem 1.2 of [Basse-O’Connor et al., 2017] when

p < 1/2, k ≥ 2 and H < k − 1/α.

Now, we consider consistent estimators for the self-similarity parameter H in high- and low-

frequency setting, defined by

Ĥhigh(p, k)n := 1
p

log2

∑n
i=2k

∣∣∣∆n,2
i,kX

∣∣∣p∑n
i=2k

∣∣∣∆n,1
i,kX

∣∣∣p
 ,

Ĥlow(p, k)n := 1
p

log2

∑n
i=2k

∣∣∣∆2
i,kX

∣∣∣p∑n
i=2k

∣∣∣∆1
i,kX

∣∣∣p
 .

Both estimators for H are based upon a ratio statistic that compares power variations at two

different frequencies.

Let us define the following two statistics

Vhigh(f ; k, r)n := 1
n

n∑
i=rk

f
(
nH∆n,r

i,kX
)
, Vlow(f ; k, r)n := 1

n

n∑
i=rk

f
(
nH∆r

i,kX
)
, (5)

where f : R → R is a measurable function. Estimators for the stability index α of the driving

stable motion in high and low frequency setting are based on the empirical characteristic functions

given by

ϕhigh(t;H, k)n := Vhigh(ψt; k)n and ϕlow(t; k)n := Vlow(ψt; k)n

19

with ψt(x) := cos(tx), for two different values t1 and t2 such that t2 > t1 > 0. Let us note that

the empirical characteristic function ϕhigh(t;H, k)n depends on the parameter H while ϕlow(t; k)n
does not. Thus, we should infer the self-similarity parameter H by Ĥhigh(p, k)n and then we should

use the plug-in estimator ϕhigh(t; Ĥhigh(p, k)n, k)n to infer the stability index α in high-frequency

setting. Estimators for the parameter α are given by

α̂high := log | logϕhigh(t2; Ĥhigh(p, k)n, k)n| − log | logϕhigh(t1; Ĥhigh(p, k)n, k)n|
log t2 − log t1

,

α̂low := log | logϕlow(t2; k)n| − log | logϕlow(t1; k)n|
log t2 − log t1

.

Estimators for the scale parameter σ in high- and low-frequency are also based on the empirical

characteristic functions which are defined for one value of t > 0. Further, we define a function

hk,r : R→ R as follows:

hk,r(x) =
k∑
j=0

(−1)j
(
k

j

)
(x− rj)H−1/α

+ , x ∈ R,

where k, r ∈ N , and let ‖hk,r‖αα :=
∫
R |hk,r(s)|αds. Let us note that the function hk,r depends on

two parameters α and H which need to be pre-estimated. Estimators for the parameter σ are

expressed as

σ̂high :=
(
− logϕhigh(t1; Ĥhigh(p, k)n, k)

)1/α̂high
/t1‖hk,1‖α̂high

,

σ̂low := (− logϕlow(t1; k))1/α̂low /t1‖hk,1‖α̂low
.

3.2 Parameter estimation in the general case

Here, we consider general case when an explicit lower bound for α is unknown. First, we consider

estimators which are obtained in low frequency setting. Consistent estimator for parameter H

for any p ∈ (1, 1/2) is obtained by

Ĥlow(−p, k)n := 1
p

log2

∑n
i=2k

∣∣∣∆2
i,kX

∣∣∣−p∑n
i=2k

∣∣∣∆1
i,kX

∣∣∣−p
 .

Next, we consider two-step procedure to choose the order of increments k, since we should be in the

domain of attraction of Theorem 1.2 of [Basse-O’Connor et al., 2017] that requires k > H + 1/α.

That’s why we consider the preliminary estimator of α with k = 1 that is consistent given by

α̂0
low(t1, t2)n = log | logϕlow(t2; 1)n| − log | logϕlow(t1; 1)n|

log t2 − log t1
.

20

Since we do not know if α̂0
low(t1, t2)n is in the domain of attraction, we define the estimator of the

parameter k as

k̂low(t1, t2)n := 2 + bα̂0
low(t1, t2)−1

n c.

In the second step we use estimator k̂low := k̂low(t1, t2)n for the estimation of parameters H, α

and σ. In particular, we get the following consistent estimators

Ĥlow(−p, k̂low)n = 1
p

log2

∑n
i=2k̂low

∣∣∣∆2
i,k̂low

X
∣∣∣−p∑n

i=2k̂low

∣∣∣∆1
i,k̂low

X
∣∣∣−p

 ,
α̃low(k̂low; t1, t2)n = log | logϕlow(t2; k̂low)n| − log | logϕlow(t1; k̂low)n|

log t2 − log t1
,

σ̃low(k̂low; t1, t2)n =
(
− logϕlow(t1; k̂low)

)1/α̃low
/t1‖hk̂low,1‖α̃low

.

Next, we consider two-stage estimation procedure in the general case in high-frequency setting

which is the same as in the low-frequency setting. For p ∈ (0, 1/2) we compute Ĥhigh(−p)n =

Ĥhigh(−p, 1)n and, therefore, we can define the preliminary estimator of α by

α̂0
high(p, p′)n = φ−1

(
Vhigh(f−p′ , Ĥhigh(−p)n)pn
Vhigh(f−p, Ĥhigh(−p)n)p

′
n

)
with

φ(α̂0
high(p, p′)n) :=

(
2/α̂0

high(p, p′)n
)p−p′

ap
′

−pΓ(p′/α̂0
high(p, p′)n)p

ap−p′Γ(p/α̂0
high(p, p′)n)p′

where p, p′ ∈ (0, 1/2) such that p 6= p′, and Vhigh(f−p, Ĥhigh(−p)n)n is given in formula (5) with

k = 1, f−p(x) = |x|−p and preliminary estimator Ĥhigh(−p)n for the parameterH. It is remarkable

that φ(·) is always invertible for all p 6= p′ (see Dang and Istas [2017]). Consequentially, we can

define the estimator of k in high-frequency setting by

k̂high := k̂high(p, p′)n = 2 + bα̂0
high(p, p′)−1

n c.

Thus, consistent estimators of H, α and σ, in high-frequency setting are given by

Ĥhigh(−p, k̂high)n = 1
p

log2

∑n
i=2k̂high

∣∣∣∣∆n,2
i,k̂high

X

∣∣∣∣−p∑n
i=2k̂high

∣∣∣∣∆n,1
i,k̂high

X

∣∣∣∣−p
 ,

α̃high(k̂high; t1, t2)n = φ−1
(
Vhigh(f−p′ , Ĥhigh(−p, k̂high)n; k̂high)pn
Vhigh(f−p, Ĥhigh(−p, k̂high)n; k̂high)p

′
n

)
,

σ̃high(k̂high; p, p′)n =
(
α̃higha−pVhigh(f−p, Ĥhigh(−p)n)n

2Γ(p/α̃high)

)− 1
p

/‖hk̂high,1‖α̃high
.

21

3.3 Implementation in R

We introduce function ContinEstim for performing statistical inference according to Section 3.1

when H − 1/α > 0.

ContinEstim(t1, t2, p, k, path, freq)

The function is basically comprised by simpler functions alpha_hat, H_hat and sigma_hat re-

sponsible for retrieving the corresponding parameters. sigma_hat is called using tryCatch as the

former may return an error due to numerical integration in Norm_alpha.

General low-frequency estimation technique, described in Section 3.2 is implemented in GenLowEstim.

GenLowEstim(t1, t2, p, path, freq = "L")

This estimator first sets a preliminary k to be equal to 1, and uses it to compute preliminary pa-

rametersH0 and α0. Using theseH0 and α0, a new k is obtained through 2+floor(alpha_0ˆ(-1)),

and then the new k is used for the same estimation procedure as in ContinEstim. This approach

induces an effect, which does not exist in the case when ContinEstim is applied. When α is

smaller than, or close to 2/N , where N is the observed lfsm path length, the computational errors

are more frequent. These extra errors occur when the preliminary estimation of k appears to

exceed N/2, making it impossible to compute ∆2
i,k̂low

X in statistic Ĥlow(−p, k̂low)N . In case of

other sample path realizations k < H + 1/α, and it is still possible to obtain the estimates which

happen to converge to the true value (Ĥ, α̂, σ̂), because in this case one would be in the domain

of attraction of Theorem 2.2 of [Mazur et al., 2019+]. Though, the limiting distribution is not

stable anymore, and the rate of convergence depends on α and H. Real distributions of estimates

in this case are left unexplored.

High-frequency estimator from the same section was implemented in GenHighEstim.

GenHighEstim(p, p_prime, path, freq, low_bound = 0.01, up_bound = 4)

3.4 Estimate deterioration

Although the general high- and low-frequency estimators presented in Section 3.2 have important

advantages, namely closed form expressions for distribution functions and non-suboptimal conver-

gence rates, they also reveal two drawbacks in performance. Due to condition and error handling,

22

the time performances of the general estimators are much worse than those of the continuous

ones. On top of that, the plug-in estimators (because of their nature) have much less probability

of obtaining an estimate at all. The main idea is as follows: the more statistics are used in a

plug-in estimator, the higher the probability to stumble upon a numerical error during the esti-

mation procedure. We illustrate this effect by the following experiment, wherein the general high-

and low-frequency estimators are compared to the corresponding continuous ones. For each pair

from a set of parameters (H,α), NmonteC sample paths of the both frequencies were generated,

and to each of them the relevant procedures ContinEstim, GenLowEstim and GenHighEstim were

applied (see “Estimate deterioration experiment.R” in the supplementary materials). Then, the

rates of successful computation results were computed. The result of estimation was considered

“successful” if during the procedure all three parameters were obtained, no error occurred, and

the estimates are meaningful, namely (Ĥ, α̂) ∈ (0, 1)× (0, 2).

This experiment shows (Figures 11a and 11b) that in both high- and low-frequency cases

ContinEstim gives much better precision than the corresponding general estimator. The outcome

is rigorous in low-frequency technique since ContinEstim and GenLowEstim have the same set

of tuning parameters. On the other hand, the high-frequency estimators have non-coinciding

parameter sets, and thus, without fine tuning, the result is merely intuitive. One could observe

that in general estimation near the boundaries of the interval (Ĥ, α̂) ∈ (0, 1)×(0, 2) produces more

errors, which is partly due to the fact that near the boundaries it is easier to obtain an estimate

outside the interval. Such an estimate is removed by Errfilter function in the experiment.

3.5 Zones with different convergence regimes in the low-frequency

case

In order to show how the general low-frequency estimation works in practice, we peform a

numerical experiment whose code could be found in “zones with different convergence.R”. We

set a constant σ and choose two sets of parameters- one for α and one for H. Then, for

each combination of them a number Nmc = 500 of sample paths is created. All path lengths

are set to a constant N = 1000. To each path we apply several statistics. One of them is

k_new<-2+floor(alpha_0ˆ(-1)) where alpha_0 is obtained via alpha_hat with parameters

k=1,freq=’L’ plugged-in. This provides us simulated distribution of k̂low (Figure 12). Also,

we fix a set k_ind = seq(1,8,by=1) and, given a path, for each of these k’s extract statistics

23

(a) Comparison of success rates for ContinEstim and GenLowEstim. Low frequency

case. Path length N=200, number of sample paths NmonteC=300.

(b) Comparison of success rates for ContinEstim and GenHighEstim. High frequency

case. Path length N=200, number of sample paths NmonteC=300.

Figure 11: Comparison of success rates of estimators

24

ϕlow(t, k = kind)n and α̂low(t1, t2; k = kind)n, see Figures 13 and 14.

Three regimes of performance of GenLowEstim (read, the general low-frequency estimator

α̂low(k, t1, t2)n) are observed. To a large extend, only parameter α determines which regime is in

presence.

Due to small variance of α̂0
low(t1, t2)n (Figure 14), when α ∈ (1, 2) the estimation k̂low(t1 =

1, t2 = 2)n returns 2 except from the boundaries, where edge effects are observed. This results in

the fact that in cases when statistics k̂low(1, 2)n can be computed without stumbling on numerical

errors performances of GenLowEstim and low frequency ContinEstim are the same. At the same

time, statistic α̂low(k, t1, t2)n is not far from its limit value for k < 3, that’s why the parameter

estimation of the LFSM is technically possible by ContinEstim and GenLowEstim at such length

of the sample path.

0.3 0.5 0.7 0.9

0.2
0.6

1
1.4

1.8

1 2 3 4 5 6 7 8 9 13 1 2 3 4 5 6 7 8 9 13 1 2 3 4 5 6 7 8 9 13 1 2 3 4 5 6 7 8 9 13

0
100
200
300
400
500

0
100
200
300
400
500

0
100
200
300
400
500

0
100
200
300
400
500

0
100
200
300
400
500

k_new

co
un

t

Figure 12: Histograms of preliminary estimations of k, k̂low(1, 2)n. α’s are on vertical labels,

H’s- on horizontal.

When α is near 1 there is a transition between the regime with values of k̂low(1, 2)n con-

25

centrated at point k = 2, and the regime where k̂low(1, 2)n is highly dispersed. This shift is

characterized by only two values of k̂low(1, 2)n: 2 and 3. Such behavior of the estimated order of

increments is due to the fact that when α−1 ∈ N

P
(
k̂low = 2 + α−1

)
→ λ and P

(
k̂low = 1 + α−1

)
→ 1− λ

for some constant λ ∈ (0, 1), see Mazur et al. [2019+], Section 4.1. Surprisingly, λ is close to 0.5

throughout the whole set of H’s (Figure 12). There are no k̂low(1, 2)n higher than 3 observed

because the preliminary estimation of α is still quite precise as one can see from the middle row on

Figure 14. After obtaining k̂low(1, 2)n equal to either 2 or 3, α̂low(k̂low(1, 2)n, t1, t2)n is computed

again quite precisely, but worse than in the continuous case.

At α < 1 α̂low(k, t1, t2)n has high variance regardless of what k is chosen, therefore differ-

ent values are obtained when computing k̂low(1, 2)n. These values plugged-in to α̂low(k, t1, t2)n
produce again very dispersed estimates of parameter α. This mechanism explains why α̃low has

higher variance in discontinuous case (H − 1/α < 0) than in continuous (see the numerical study

in Section 5 in Mazur et al. [2019+]).

The way α̃low behaves could be explained using pic.(13), where ϕn and Vlow(ψt, k)n are plot-

ted. Cases wherein α̂low performs poorly coinside with ones wherein ϕn and Vlow(ψt, k)n are

significantly distant from each other, so convergence Vlow(ψt, k)n
a.s.−−→ ϕn(t; k) isn’t observed at

the given length of sample paths, which ruins the whole idea of (σ, α) estimation. Of course, this

effect doesn’t affect H-estimation because it is based on ratio statistic, which has a different form.

4 S4 classes for Lèvy-driven motions

Here we describe a simple S4 system (a short introduction to S4 classes is given in Wickham

[2014], Chapter OO field guide) that could be used to simplify manipulations with the two types

of observations of the linear fractional stable motion. Additionally, we present a possible way to

extend the system so that it encompasses more general stochastic processes. The system aims to

be helpful in

• passing “attributes” (frequency, σ, α,H) from objects to functions automatically (without

additional developer’s efforts).

• hiding complicated details of interfaces from users.

26

●●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●● ●●●●●● ●●●●●●●●

●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●

●●●●●●● ●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

●●● ●●● ●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●

●●●●●●●●● ●●●●●●●●● ●●●●●●●●● ●●●●●● ●●●●●● ●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●

●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●

●●●●●●●●● ● ●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●●● ●●●●●●●●●

●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●●●●● ●●●●● ●●●●●●●● ●●●●●●●●●●●●

●●●●●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●●

●●●● ●● ●●● ●●●●●●●●● ●●●●●● ●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●● ●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●

●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●

●●●●●●●●●●● ●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●●●●●●●●

0.3 0.5 0.7 0.9

0.2
0.6

1
1.4

1.8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

−200

−150

−100

−50

0

−200

−150

−100

−50

0

−200

−150

−100

−50

0

−200

−150

−100

−50

0

−200

−150

−100

−50

0

k

Figure 13: Comparison of the real ϕn(t = 1; k) and the one estimated via Vlow(ψt=1, k)n on

the logarithmic scale. α’s are on vertical labels, H’s- on horizontal. The lower and upper

box sides correspond to the 25th and 75th percentiles.

• using generics to protract functions on different objects by means of inheritance. For in-

stance, plotting function written for lfsm could be used for other types of stochastic integral.

4.1 Classes for simulated lfsm

Here we describe the least general classes- SimulatedLfsmLow and SimulatedLfsmHigh, objects

of which are obtained by simulating low- and high-frequency linear fractional stable motions. Fig-

ure 15 shows their internal structure. Roughly speaking, these classes were designed to contain

minimum information that could fully describe a simulated LFSM path. Indicators of frequency

and a process type are included in the name of a class, which is supposed to make a method dis-

patch more straightforward, without additional condition blocks. Moreover, all generic functions

distinct high- and low-frequency schemes of all types with the help of class names. The same

27

●

●
●●
●●● ●●

●

●●

●

●●

●

●

●●●

●

● ●
● ●●

●

●

●●
●

●

●

●●●

●

●●● ●●●●

●●●
●
●●

●

●

●

●

●

●●●
●●●

●●
●

●

●

●
●

●●

●●●

●

●●●

●●●●

●●

●

●

●
●●

●

●

●

●
●

●
●●

●

●

●

●
●●●●●●
●●●

●
●

●●
●

●●

●●

●
●●●●
●●
●

●

●

●

●●● ●●
●●●●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●●●●

●

●

●●

●

●

●

●

●
●
●●●●●●
●
●●●●●
●●

●●●●

●

●●

●●●

●

●

●

●

●●

●●

●

●

●
●●

●

●
●

● ●
●

●

●●

●

●
●

●

●

●●●●●

●

●
●●
●
●●●
● ●

●●
●●

●

●

●

●●●

●
●

●

●

●

●

●●

●
●
●●

●●

●
●

●

●

●●

●

●

●

●

●
●

●●●●

●
●

●

●●

●

●

●

●●
●

●●●●

●

●●
●

● ●

●●

●

●

●

●

●
●●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●
●

●

●

●

●●

●

●

●

●
●●

●

● ●

●

●●

●
●

●
●

●

●

●

●

● ●●

●
●

●

●

●

●

●●

●
●
●
●

●

●
●

●

●●
●

●
●
●

●●

●

●

●

●●

●●

●

●

●●●

●●●●●
●●●●●

●

●

●●●

●●●

●

●

●

●

●●●

●

●
●

●

●●

●●●●

●●

●●

●
●

●

●

● ●●

●●●

●
●

●

●

●●

●●●●

● ●

●

●●
●
●●
●●●●●●
●

●
●●●●●●●●

●

●● ●●●

●

●

●
●

●

● ●
●

●
●
●

●●

●

●● ●
●
●●●
●

●

●

●●

● ●

●●●●●●●●
●
● ●●●●

●

●●

●
●

●

●

●

●

●

●●

●●●

●●

●
●●●

●

● ●●

●

●

●

●

●
●●

●●

●●

●
●●

● ●

●

●
●●●

●

● ●

●

●

●
●

●

●●

●

●●

●●●

●

●
●

●

●

●

●●
●

●
●
●●

●●

●
●●

●

●

●●

●●

●

●
●

●
●
●●●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●●
●

●

●●

●

●

●●

●●●

●●

●
●

●●
●

●●●●

●

●

●●

●●

●●●

●

●●

●

●

●
●
●

●●●

●

●

●

●

●●●●●

●

●

●●●●●●●●

●

●●

●

●
●

●

●

●

●●

●●

●

●

●●

●●●

●

●●
●

●

●●●

●

●

●●
●
●●
●

●
●
●●
●

●

●●●●●●
●

●

●●●●●
●
●
●●●

●●

●

●●
●

●●●●
●

●

●

●●
●
●

●
●

●
●●●●

●

●
●●●

●

●●

●

●●● ●●●● ●●●●

●●
●
●
●
●●

●●

●●

●

●●●

●

●●●●

●

●
●

●●
●

●

●●

●

●

●

●
●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●
● ●

●

●

●

●

●

●

●

●

●

● ●●
●

●●●

●●
●

●

●

●

●●
●
●●

●
●●

●

●

●
●

●

●
●

●

●

●

●
●●●

●

●

●

●●●●●●●●

●

●

●●●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●
●●●

●

●

●

●●

●
●

●
●

●

●●●
●●●
●●●

●●●●●●

●

●

●●●
●
●●●●●●

●●●●

●

●●●

●

●●

●

●

●●●

●●

●

●

●

●

●●

●

●●

●
●

●●●
●

●

●

●
●

●
●

●●●●●●●
●●●●
●●●●●●●
●●●●
●●
●
●●
●
●●●●●

●

●

●
●
●● ●●●●

●

●

●
●
●

●●
●

●
●●
●
●
●●

●

●●

●

●
●

●●

●

●

●●●
●

●

●●

●●
●
●

●

●●●

●●●

●

●

●●
●●
●●●●●●
●●

●

●●
●
●●●●
● ●●●● ●●●

●
●●
●
●●●
●
●●●●●●
●

●●
●

●

●

●
●

●

●●●●

●

●

● ●

●

●●

●

●
●
●

●●

0.3 0.5 0.7 0.9

0.2
0.6

1
1.4

1.8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

−2

−1

0

1

−2

−1

0

1

2

−1

0

1

2

−2
−1

0
1
2
3

−1
0
1
2
3

k

Figure 14: Convergence of α̂low(k, t1, t2)n to the real α (red line) for different k. α’s are on

vertical labels, H’s- on horizontal. The lower and upper box sides correspond to the 25th

and 75th percentiles.

motion

High/Low
Frequency
indicator

Indicator of
motion class

(lfsm)

coordinates True
H, α, σ

Levy_motion

Figure 15: Structure of the classes of simulated lfsm. Frequency indicator and indicator

of process type are included in the class name, whilst motion, coordinates, parameters for

which the path was simulated and the Lévy motion are written in the slots.

holds for motion types. Parameters H,α, σ, as well as Lévy motion, coordinates and the lfsm

itself are written in corresponding slots.

28

4.1.1 Examples

In the following example we see how an instance of class SimulatedLfsmLow is created and then

plotting and inference is performed using generic functions plot and ContinInfer.

N<-3000; m<-65; M<-300

sigma<-0.3; alpha<-1.8; H<-0.8

p<-.4; t1<-1; t2<-2; k<-2

Make an object of S4 class SimulatedLfsmLow

R> List <- path(N,m,M,alpha,H,sigma,freq=’L’,disable_X=FALSE,seed=3)

Make an object of parameters

R> prmts<-new("AlpaHSigma",alpha=List$pars[[’alpha’]],

R> H=List$pars[[’H’]],sigma=List$pars[[’sigma’]])

R> X_sim <- new("SimulatedLfsmLow", Process = List$lfsm,

coordinates = List$coordinates, pars = prmts,

levy_motion = List$levy_motion)

structure of the instance

R> str(X_sim)

Formal class ’SimulatedLfsmLow’ [package ".GlobalEnv"] with 4 slots

..@ pars :Formal class ’AlpaHSigma’ [package ".GlobalEnv"] with 3 slots

..@ alpha: num 1.8

..@ H : num 1.8

..@ sigma: num 1.8

..@ levy_motion: num [1:3497] 0 -15 -19.8 -21.2 -24.1 ...

..@ Process : num [1:3497] 0 -0.542 -0.912 -1.12 -1.276 ...

..@ coordinates: int [1:3497] 0 1 2 3 4 5 6 7 8 9 ...

plot the motion

R> plot(X_sim)

29

−150

−100

−50

0

0 1000 2000 3000

lfs
m

H = 0.8 alpha = 1.8 sigma = 0.3

−1500

−1000

−500

0

500

0 1000 2000 3000

coordinates

le
vy

_m
ot

io
n

Figure 16: Output of plot method for simulated lfsm

R> ContinInfer(x=X_sim,t1=t1,t2=t2,k=k,p=p)

$alpha

[1] 1.870217

$H

[1] 0.8314528

$sigma

[1] 0.3227219

In this example, the plot function takes almost no effort, compared to the similar one from

Section 2.2, which is due to the fact, that there has been a method defined for generic plot and

object SimulatedLfsmLow. The last function, ContinInfer, is a generic which has a registered

method for class StochasicProcLow, general stochastic processes in low-frequency setting. Since

30

SimulatedLfsmLow inherits from StochasicProcLow, the generic dispatched this method and

performed statistical inference. ContinInfer was designed to perform inference according to

Theorem 3.1 from [Mazur et al., 2019+] and is based on R function ContinInfer. One can see

that plot (and, less obviously, ContinInfer) used “Low” from the name of the class to perform

computations.

Acknowledgments

The authors acknowledge financial support from the project “Ambit fields: probabilistic properties

and statistical inference” funded by Villum Fonden. Stepan Mazur acknowledges financial support

from the internal research grants at Örebro University, and from the project “Models for macro

and financial economics after the financial crisis” (Dnr: P18-0201) funded by Jan Wallander and

Tom Hedelius Foundation. The authors would like to thank Prof. Mark Podolskij for valuable

discussions. Dmitry Otryakhin thanks Dr. Firuza Mamedova for significant discussion on the

draft of this paper.

References

A. Basse-O’Connor, R. Lachièze-Rey, and M. Podolskij. Power variation for a class of stationary

increments Lévy driven moving averages. The Annals of Probability, 45(6B):4477–4528, 2017.

J.-F. Coeurjolly. dvfBm: Discrete variations of a fractional Brownian motion, 2009. URL

https://CRAN.R-project.org/package=dvfBm. R package version 1.0.

T. Dang and J. Istas. Estimation of the Hurst and the stability indices of a H-self-similar stable

process. Electronic Journal of Statistics, 11(2):4103–4150, 2017.

J. Huang. somebm: some Brownian motions simulation functions, 2013. URL

https://CRAN.R-project.org/package=somebm. R package version 0.1.

S. Mazur, D. Otryakhin, and M. Podolskij. Estimation of the linear fractional stable motion.

Bernoulli, 2019+.

G. Samorodnitsky and M. S. Taqqu. Stable non-Gaussian random processes: stochastic models

with infinite variance, volume 1. CRC Press, 1994.

31

S. Stoev and M. Taqqu. Simulation methods for linear fractional stable motion and FARIMA

using the fast Fourier transform. Fractals, 95(1):95–121, 2004.

B. Swihart, J. Lindsey, and P. Lambert. stable: Probability Functions and Generalized Regression

Models for Stable Distributions, 2017. URL https://CRAN.R-project.org/package=stable.

R package version 1.1.2.

N. W. Watkins, D. Credgington, R. Sanchez, and S. C. Chapman. A kinetic equation for linear

fractional stable motion with applications to space plasma physics. ArXiv e-prints, Mar. 2008.

H. Wickham. Advanced R. CRC Press, 2014.

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.

ISBN 978-3-319-24277-4. URL https://ggplot2.tidyverse.org.

D. Wuertz, M. Maechler, and Rmetrics core team members. stabledist: Stable Distribution Func-

tions, 2016. URL https://CRAN.R-project.org/package=stabledist. R package version

0.7-1.

32

