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Estimation of the linear fractional stable motion

Stepan Mazur ∗ Dmitry Otryakhin † Mark Podolskij ‡

February 20, 2018

Abstract

In this paper we investigate the parametric inference for the linear fractional stable
motion in high and low frequency setting. The symmetric linear fractional stable
motion is a three-parameter family, which constitutes a natural non-Gaussian analogue
of the scaled fractional Brownian motion. It is fully characterised by the scaling
parameter σ > 0, the self-similarity parameter H ∈ (0, 1) and the stability index
α ∈ (0, 2) of the driving stable motion. The parametric estimation of the model is
inspired by the limit theory for stationary increments Lévy moving average processes
that has been recently studied in [5]. More specifically, we combine (negative) power
variation statistics and empirical characteristic functions to obtain consistent estimates
of (σ, α,H). We present the law of large numbers and some fully feasible weak limit
theorems.

Keywords: fractional processes, limit theorems, parametric estimation, stable mo-
tion.

AMS 2010 subject classifications. 62F12, 62E20, 62M09, 60F05, 60F18, 60G22
JEL-codes. C00, C13

1 Introduction

Since the pioneering work by Mandelbrot and van Ness [18] fractional Brownian motion
(fBm) became one of the most prominent Gaussian processes in the probabilistic and
statistical literature. As a building block in stochastic models it found various applications
in natural and social sciences such as physics, biology or economics. Mathematically
speaking, the scaled fBm is fully characterised by its scaling parameter σ > 0 and Hurst
parameter H ∈ (0, 1). More specifically, the scaled fBm Zt = σBH

t is a zero mean Gaussian
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process with covariance kernel determined by

E
[
BH
t B

H
s

]
=

1

2

(
t2H + s2H − |t− s|2H

)
, t, s ≥ 0.

We recall that the (scaled) fBm with Hurst parameter H ∈ (0, 1) is the unique Gaus-
sian process with stationary increments and self-similarity index H, i.e. it holds that
(aHZt)t≥0 = (Zat)t≥0 in distribution for any a > 0. Over the last forty years there has
been a lot of progress in limit theorems and statistical inference for fBm’s. The estima-
tion of the Hurst parameter H and/or the scaling parameter σ has been investigated in
numerous papers both in low and high frequency framework. We refer to [13] for efficient
estimation of the Hurst parameter H in the low frequency setting and to [9, 12, 16] for
the estimation of (σ,H) in the high frequency setting, among many others. In the low
frequency framework the spectral density methods are usually applied and the optimal
convergence rate for the estimation of (σ,H) is known to be

√
n. In the high frequency

setting the estimation of the pair (σ,H) typically relies upon power variations and re-
lated statistics, and the optimal convergence rate is known to be (

√
n/ log(n),

√
n). More

recently, the class of multifractional Brownian motions, which accounts for time varying
Hurst parameter, has been introduced in the literature (see e.g. [2, 19, 28]). We refer to
the work [4, 17] for estimation techniques for the regularity of a multifractional Brownian
motion.

If we drop the Gaussianity assumption the class of stationary increments self-similar
processes becomes much larger. This is a consequence of the work by Pipiras and Taqqu
[20], which in turn applies the decomposition results from the seminal paper by Rosiński
[25] (see also [26]). The crucial theorem proved in [25] shows that each stationary stable
process can be uniquely decomposed (in distribution) into three independent parts: the
mixed moving average process, the harmonizable process and the “third kind” process
described by a conservative nonsingular flow. The most prominent example of a non-
Gaussian stationary increments self-similar process is the linear fractional stable motion
(an element of the first class), which has been introduced in [11]. It is defined as follows:
On a filtered probability space (Ω,F , (Ft)t∈R,P), we introduce the process

Xt =

∫
R

{
(t− s)H−1/α+ − (−s)H−1/α+

}
dLs, x+ := max{x, 0}, (1.1)

where L is a symmetric α-stable Lévy motion, α ∈ (0, 2), with scale parameter σ > 0 and
H ∈ (0, 1) (here we use the convention xa+ = 0 for any x ≤ 0 and a ∈ R). In some sense the
linear fractional stable motion is a non-Gaussian analogue of fBm. The process (Xt)t∈R has
symmetric α-stable marginals, stationary increments and it is self-similar with parameter
H. Fractional stable motions are often used in natural sciences, e.g. in physics or internet
traffic, where the process under consideration exhibits stationarity and self-similarity along
with heavy tailed marginals (see e.g. [15] for the context of turbulence modelling). The
probabilistic properties of linear fractional stable motions, such as integration concepts,
path and variational properties, have been intensively studied in several papers, see for
example [6, 7, 8] among many others. However, from the statistical point of view, very
little is known about the inference for the parameter θ = (σ, α,H) ∈ R+× (0, 2)× (0, 1) in
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high or low frequency setting. The few existing papers mostly concentrate on estimation
of the self-similarity parameter H. The work [3, 22] investigates the asymptotic theory
for a wavelet-based estimator of H when α ∈ (1, 2). In [5, 27] the authors suggest to use
power variation statistics to obtain an estimator of H, but this method also requires the
a priori knowledge of the lower bound for the stability parameter α. Recently, the work
[14] suggested to use negative power variations to get a consistent estimator of H, which
applies for any α ∈ (0, 2), but this article does not contain a central limit theorem for
this method. Finally, in [5, 15] the authors propose to use an empirical scale function
to estimate the pair (α,H). However, this approach only provides a log(n)-consistent
estimator without any hope for a central limit theorem.

In this paper we will propose a new estimation procedure for the parameter θ =
(σ, α,H) in high and low frequency framework. Our methodology is based upon the use
of power variation statistics, with possibly negative powers, and the empirical character-
istic function. The probabilistic techniques originate from the recent article [5], which
has developed the asymptotic theory for power variations of higher order differences of
stationary increments Lévy moving averages (see also [21, 22] for related asymptotic the-
ory). However, we will need to derive much more complex asymptotic results to obtain a
complete distributional theory for the estimator of the parameter θ ∈ R+ × (0, 2)× (0, 1).
We will obtain a fully feasible asymptotic theory for our estimator with convergence rates
(
√
n,
√
n,
√
n) in the low frequency setting and (

√
n/ log(n),

√
n/ log(n),

√
n) in the high

frequency setting.

The paper is structured as follows. Section 2 presents the basic properties of the linear
fractional stable motion, the review of the probabilistic results from [5] and a multivariate
limit theorem, which plays a key role for the statistical estimation. Section 3 is devoted to
the statistical inference in the continuous case H−1/α > 0. The general case is treated in
Section 4. Finally, Section 5 demonstrates some simulation results. All proofs are collected
in Section 6.

2 First properties and some asymptotic results

2.1 Distributional and path properties

In this section we review some basic properties of the linear fractional stable motion. First
of all, we recall that the symmetric α-stable process (Lt)t∈R with scale parameter σ > 0
is uniquely determined by the characteristic function of L1, which is given by

E[exp(itL1)] = exp(−σα|t|α), t ∈ R. (2.1)

Following the theory of integration with respect to infinitely divisible processes investigated
in [23], we know that for any deterministic function g : R→ R

X =

∫
R
gsdLs <∞ almost surely ⇔ ‖g‖αα :=

∫
R
|gs|αds <∞.
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Furthermore, if ‖g‖α < ∞ then X has a symmetric α-stable distribution with scale pa-
rameter σ‖g‖α. In particular, setting

Xt =

∫
R
gt(s)dLs, gt(s) :=

{
(t− s)H−1/α+ − (−s)H−1/α+

}
, (2.2)

we see that gt ∈ Lα(R) for any t ∈ R, since |gt(s)| ≤ Ct|s|H−1−1/α when s → −∞ and
H ∈ (0, 1). Hence, Xt is well defined for any t ∈ R and all finite dimensional distributions
of the linear fractional stable motion (Xt)t∈R are symmetric α-stable. It is easily seen that
the linear fractional stable motion has stationary increments.

We recall that symmetric α-stable random variables with α ∈ (0, 2) do not exhibit
finite second moments, and hence their dependence structure can’t be measured via the
classical covariance kernel. Instead it is often useful to consider the following measure
of dependence. Let X =

∫
R gsdLs and Y =

∫
R hsdLs with ‖g‖α, ‖h‖α < ∞. Then we

introduce the measure of dependence Ug,h : R2 → R via

Ug,h(u, v) := E[exp(i(uX + vY ))]− E[exp(iuX)]E[exp(ivY )] (2.3)

= exp(−σα‖ug + vh‖αα)− exp(−σα(‖ug‖αα + ‖vh‖αα)).

The quantity Ug,h is extremely useful when computing covariances cov(K1(X),K2(Y )) for
functions K1,K2 ∈ L1(R); see for instance [22]. Let F denote the Fourier transform and
let F−1 be its inverse. Furthermore, let p(X,Y ), pX and pY denote the density of (X,Y ),
X and Y , respectively. We recall that these densities are not available in a closed form
except in some special cases. Using the duality relationship we obtain the identity

cov(K1(X),K2(Y )) =

∫
R2

K1(x)K2(y)
(
p(X,Y )(x, y)− pX(x)pY (y)

)
dxdy

=

∫
R2

K1(x)K2(y)F−1Ug,h(x, y)dxdy (2.4)

=

∫
R2

(
F−1K1(x)

) (
F−1K2(y)

)
Ug,h(x, y)dxdy.

We remark that the latter provides an explicit formula for computation of covariances
cov(K1(X),K2(Y )).

Finally, we recall that the path properties of a linear fractional stable motion strongly
depend on the interplay between the parameters H and α. When H−1/α > 0 the process
(Xt)t∈R is Hölder continuous on compact intervals of any order smaller than H − 1/α;
we refer to [6] for more details on this property. If H − 1/α < 0 the linear fractional
stable motion explodes at jump times of the driving Lévy process L; in particular, X has
unbounded paths on compact intervals. We demonstrate some sample paths of the linear
fractional stable motions in Figure 1. In the critical case H − 1/α = 0 we obviously have
the identity Xt = Lt. In this situation the parameter estimation has been investigated in
[1].
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Figure 1: Left (from bottom to top): The driving symmetric stable Lévy process with α = 1, linear
fractional stable motions with parameters α = 1, H = 0.8 and α = 1, H = 0.2. Right (from bottom
to top): The driving symmetric stable Lévy process with α = 1.8, linear fractional stable motions with
parameters α = 1.8, H = 0.8 and α = 1.8, H = 0.2.

2.2 Review of the limit theory

In this section we review some probabilistic results, which will be relevant for our esti-
mation method. Due to stationarity of the increments and self-similarity of the process
(Xt)t∈R, we can discuss the limit theory for the high and low frequency case simulta-
neously. We start by introducing higher order increments of X. We denote by ∆n,r

i,kX
(i, k, r, n ∈ N) the kth order increment of X at stage i/n and frequency r/n, i.e.

∆n,r
i,kX :=

k∑
j=0

(−1)j
(
k

j

)
X(i−rj)/n, i ≥ rk. (2.5)

Note that for r = k = 1 we obtain the usual increments ∆n,1
i,1 X = Xi/n − X(i−1)/n. For

the ease of notation we will often drop the index r (resp. k and n) in ∆n,r
i,kX and other

quantities when r = 1 (resp. k = 1 and n = 1). In particular, the low frequency kth order
increments of X are denoted by

∆r
i,kX :=

k∑
j=0

(−1)j
(
k

j

)
Xi−rj , i ≥ rk. (2.6)

According to the self-similarity of the process (Xt)t∈R we readily have that (nH∆n,r
i,kX)i≥rk

d
=

(∆r
i,kX)i≥rk. Our main probabilistic tools will be statistics of the form

Vhigh(f ; k, r)n :=
1

n

n∑
i=rk

f
(
nH∆n,r

i,kX
)
, Vlow(f ; k, r)n :=

1

n

n∑
i=rk

f
(
∆r
i,kX

)
, (2.7)
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where f : R → R is a measurable function. It is well known that the process (Xt)t∈R
is mixing, see e.g. [10]. Hence, Birkhoff’s ergodic theorem implies the convergence
Vlow(f ; k, r)n → E[f(∆r

rk,kX)] almost surely whenever E[|f(∆r
rk,kX)|] < ∞. The same

result holds in probability for the statistic Vhigh(f ; k, r)n due to self-similarity of the pro-
cess X. However, the weak limit theorems associated with the aforementioned law of large
numbers and the framework of functions f with E[|f(∆r

rk,kX)|] = ∞ are not completely
understood in the literature. To get an idea about possible limits that may appear we
briefly demonstrate some recent theoretical developments from the paper [5], where the
case fp(x) = |x|p (p > 0) has been investigated. We remark that their results are ob-
tained for a wider class of processes, namely stationary increments Lévy moving average
processes, and we adapt them to the setting of linear fractional stable motions.

We need to introduce some more notation to describe the various limits. For p ∈
(−1, 1) \ {0} we define the constant

ap :=


∫
R (1− cos(y)) |y|−1−pdy : p ∈ (0, 1)

√
2πΓ(−p/2)/2p+1/2Γ((p+ 1)/2) : p ∈ (−1, 0)

, (2.8)

where Γ denotes the Gamma function. It is easy to see that ap > 0 is indeed finite in all
relevant cases. For any functions g, h ∈ Lα(R), we introduce the notation

θ(g, h)p = a−2p

∫
R2

|xy|−1−pUg,h(x, y)dxdy, (2.9)

where Ug,h is defined in (2.3), whenever the above double integral is finite. Furthermore,
for k, r ∈ N, we define the function hk,r : R→ R by

hk,r(x) =
k∑
j=0

(−1)j
(
k

j

)
(x− rj)H−1/α+ , x ∈ R. (2.10)

Below (Um)m≥1 is an i.i.d. U(0, 1)-distributed sequence of random variables independent
of L, (Tm)m≥1 are jump times of L and ∆LTm := LTm − LTm− are jump sizes. The
following result summarises the limit theory for the statistic Vhigh(fp; k)n (i.e. r = 1) in
the power variation setting.

Theorem 2.1. ([5, Theorems 1.1 and 1.2]) We consider the function fp(x) = |x|p (p > 0)
and assume that H − 1/α > 0.
(i) (First order asymptotics) If p > α we obtain convergence in law

n1−p/αVhigh(fp; k)n
d−→

∑
m:Tm∈[0,1]

|∆LTm |p
( ∞∑
l=0

|hk(l + Um)|p
)
.

If p < α we deduce the law of large numbers

Vhigh(fp; k)n
P−→ mp,k := E[|∆k,kX|p].
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(ii) (Second order asymptotics) Assume that p < α/2. If H < k − 1/α we obtain the
central limit theorem

√
n (Vhigh(fp; k)n −mp,k)

d−→ N (0, η2), η2 = θ(hk, hk)p + 2

∞∑
j=1

θ(hk, hk(·+ j))p,

where the quantity θ(g, h) has been introduced at (2.9). If H > k − 1/α we deduce a
non-central limit theorem

n1−1/(1+α(k−H)) (Vhigh(fp; k)n −mp,k)
d−→ S,

where S is a totally right skewed (1 + α(k − H))-stable random variable with mean zero
and scale parameter σ̃, which is defined in [5, Theorem 1.2].

We remark that the results of Theorem 2.1 remain valid for the low frequency statistic
Vlow(fp; k)n due to self-similarity property of L. Apart from various critical cases Theo-
rem 2.1 gives a rather complete understanding of the asymptotic behaviour of the power
variation Vhigh(fp; k)n in the setting H − 1/α > 0. The strong law of large numbers in
Theorem 2.1(i) will be useful for estimation of the parameter H. However, without an
a priori knowledge about the stability parameter α, we can’t insure that the condition
p < α holds. Similarly, we would like to use the central limit theorem in Theorem 2.1(ii)
whose convergence rate

√
n is faster than the rate n1−1/(1+α(k−H)) in the non-central limit

theorem. But the conditions of Theorem 2.1(ii) rely again on an a priori knowledge about
α.

There are some few related results in the literature. In [21] the authors have shown
a central limit theorem a standardised version of the statistic

∑n
i=1 f(Yi), where f is a

bounded function and (Yt)t∈R is a stable moving average process. In a later work [22] the
result has been extended to a certain class of unbounded functions f under the additional
assumption that α ∈ (1, 2). Similarly to Theorem 2.1 the sufficient conditions for the
validity of the central limit theorems in [21, 22] depend on the interplay between the
kernel function of the stable moving average process and the stability index α. We remark
that extensions of these results in various directions will be necessary to obtain the full
asymptotic theory for estimators of the parameter θ = (σ, α,H).

2.3 A multivariate weak limit theorem

Although Theorem 2.1(ii) gives a rather complete picture of the weak limit theory in the
power variation case, we will require a much stronger result for our statistical applications.
We introduce the function ψt : R→ R with ψt(x) = cos(tx) and define the statistics

ϕhigh(t;H, k)n := Vhigh(ψt; k)n and ϕlow(t; k)n := Vlow(ψt; k)n, (2.11)

which correspond to r = 1. Notice that, in contrast to ϕlow(t; k)n, the high frequency
statistic ϕhigh(t;H, k)n depends on the unknown self-similarity parameter H. In fact, this
is the major difference between the high and low frequency settings, which will result in
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different rates of convergence later on. Applying again the strong law of large numbers we
readily obtain the strong consistency

ϕlow(t; k)n
a.s.−→ ϕ(t; k) := exp (−|σ‖hk‖αt|α) . (2.12)

Clearly, the same result holds in probability for the high frequency statistic ϕhigh(t;H, k)n.
Next, we introduce various types of statistics, which will play a major role in estimation
of the unknown parameter θ. More specifically, we will extend the definition of power
variation to certain negative powers and prove a multivariate limit theorem for power
variations and empirical characteristic functions. We fix d ∈ N and define the statistics
for any 1 ≤ j ≤ d, rj ∈ {1, 2}, p ∈ (−1/2, 1/2) \ {0} and tj > 0:

W (n)
(1)
j :=

√
n
(
Vlow(fp; kj , rj)− rHj mp,kj

)
W (n)

(2)
j :=

√
n
(
Vlow(ψtj ; kj)n − ϕ(tj ; kj)

)
 when kj > H + 1/α (2.13)

S(n)
(1)
j := n1−1/(1+α(k−H))

(
Vlow(fp; k, rj)− rHj mp,k

)
S(n)

(2)
j := n1−1/(1+α(k−H))

(
Vlow(ψtj ; k)n − ϕ(tj ; k)

)
 when k < H + 1/α

Note the identity E[|∆r
rk,kX|p] = rHmp,k, which explains the centring of the statistics

W (n)(1) and S(n)(1). We remark that the functionals W (n)(1) and W (n)(2) are in the
domain of attraction of the normal distribution (under appropriate assumption on the
powers p) while the functionals S(n)(1) and S(n)(2) are in the domain of attraction of the
(1 + α(k −H))-stable distribution. The latter fact is rather surprising since the statistic

S(n)
(2)
j exhibits finite moments of any order.

Before we proceed with the main result of this section we need to introduce some more
notation. In the first step, for any x ∈ R, we define the functions

Φ
(1)
j (x) = E[fp(∆

rj
rjk,k

X + x)]− E[fp(∆
rj
rjk,k

X)], (2.14)

Φ
(2)
j (x) = E[ψtj (∆k,kX + x)]− E[ψtj (∆k,kX)].

Since the functions fp and ψt are even we readily obtain that Φ
(l)
j (0) = ∇Φ

(l)
j (0) = 0 for

all l, j. Thus, using Lemma 6.5, we deduce the growth estimates

|Φ(1)
j (x)| ≤ C

(
x2 ∧ |x|max{p,0}

)
, |Φ(2)

j (x)| ≤ C
(
x2 ∧ 1

)
, (2.15)

for some positive constant C. Next, we introduce the functions

Φ
(1)
j (x) =

∞∑
i=1

Φ
(1)
j

(
hk,rj (i)x

)
, Φ

(2)
j (x) =

∞∑
i=1

Φ
(2)
j (hk(i)x) . (2.16)

Note that these functions are indeed finite due to (2.15) and the estimate |hk,r(x)| ≤
C|x|H−1/α−k for large x. Finally, we set Φ = (Φ

(1)
,Φ

(2)
) = (Φ

(1)
1 , . . . ,Φ

(1)
d ,Φ

(2)
1 , . . . ,Φ

(2)
d ).

The main probabilistic result of this paper is the following theorem.
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Theorem 2.2. Assume that either p ∈ (−1/2, 0) or p ∈ (0, 1/2) and p < α/2. Set

W (n)(i) = (W (n)
(i)
1 , . . . ,W (n)

(i)
d ) and S(n)(i) = (S(n)

(i)
1 , . . . , S(n)

(i)
d ) for i = 1, 2. Then

we obtain weak convergence in law on R4d:(
W (n)(1),W (n)(2), S(n)(1), S(n)(2)

)
d−→
(
W (1),W (2), S(1), S(2)

)
, (2.17)

where W = (W (1),W (2)) and S = (S(1), S(2)) are independent, W is a centred 2d-
dimensional normal distribution with covariance matrix determined by

cov
(
W

(i)
j ,W

(i′)
j′

)
= lim

n→∞
cov

(
W (n)

(i)
j ,W (n)

(i′)
j′

)
1 ≤ j, j′ ≤ d, i, i′ = 1, 2,

and S(1), S(2) are independent d-dimensional (1 + α(k − H))-stable random variables.
The law of S(1) (resp. S(2)) is determined by the Lévy measure ν1 (resp. ν2) whose
support is the cone (R+)d (resp. (R−)d). More specifically, for any Borel sets A1 ∈ (R+)d,
A2 ∈ (R−)d bounded away from 0 the quantities ν1(A1), ν2(A2) are determined by the
identity

νl(Al) = lim
n→∞

nP
(
n−1/(1+α(k−H))Φ

(l)
(L1) ∈ Al

)
, l = 1, 2. (2.18)

The probabilistic result of Theorem 2.2 is new in the literature; neither the negative
power variations nor the (real part of) empirical characteristic function have been studied
from the distributional perspective. We remark that the statistics W (n)(1) and S(n)(1) use
the same powers p while the quantities S(n)(1) and S(n)(2) are based on the same order of
increments k. The result of Theorem 2.2 does not really use these particular restrictions,
but its statement is sufficient for the statistical application under investigation.

There exists an explicit expression for the covariance matrix of the limit W . We obtain
the following representations:

cov
(
W

(1)
j ,W

(1)
j′

)
=
∑
l∈Z

θ(hkj ,rj , hkj′ ,rj′ (·+ l))p, (2.19)

cov
(
W

(2)
j ,W

(2)
j′

)
=

1

2

∑
l∈Z

(
Uhkj ,hkj′ (·+l)

(tj , tj′) + Uhkj ,−hkj′ (·+l)
(tj , tj′)

)
,

cov
(
W

(1)
j ,W

(2)
j′

)
=
∑
l∈Z

θ(l)jj′ ,

with

θ(l)jj′ = −a−1p
∫
R
|y|−1−pUhkj,rj ,hkj′ (·+l)(y, tj′)dy.

We will prove that cov(W ) <∞ in all relevant cases and the mapping (σ, α,H) 7→ cov(W )
is continuous (see Section 6.1). The latter allows us to estimate the covariance matrix
cov(W ) < ∞ and thus obtain a feasible version of the central limit theorem in Theorem
2.2.
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Similarly, the Lévy measures νl (l = 1, 2) can be determined explicitly. First of all, the
representation (6.2) from Section 6.1 implies the identities

Φ
(1)
j (x) = a−1p

∫
R

(1− cos(ux)) exp
(
−|σ‖hk,rj‖αu|

α
)
|u|−1−pdu,

Φ
(2)
j (x) = (cos(tjx)− 1) exp (−|σ‖hk‖αtj |α) .

In particular, it holds that Φ
(1)
j (x) ≥ 0 and Φ

(2)
j (x) ≤ 0. In the next step we need

to determine the asymptotic behaviour of Φ
(1)
j (x) (resp. Φ

(2)
j (x)) as x → ∞ (resp. as

x→ −∞). By the substitution u = (x/z)1/(k+1/α−H) we have that

x1/(H−k−1/α)Φ
(1)
j (x) = x1/(H−k−1/α)

∫ ∞
0

Φ
(1)
j

(
hk,rj (buc+ 1)x

)
du

= (k + 1/α−H)−1
∫ ∞
0

Φ
(1)
j

(
hk,rj (b(x/z)

1/(k+1/α−H)c+ 1)x
)
z−1+1/(H−k−1/α)dz

→ c
(1)
j := (k + 1/α−H)−1

∫ ∞
0

Φ
(1)
j

(
rkj

k−1∏
i=0

(H − 1/α− i) · z

)
z−1+1/(H−k−1/α)dz

(2.20)

as x → ∞. The convergence at (2.20) follows from the asymptotic behaviour hk,rj (x) ∼
rkj
∏k−1
i=0 (H− 1/α− i) ·xH−1/α−k as x→∞. Applying the same technique we deduce that

|x|1/(H−k−1/α)Φ(2)
j (x)→

c
(2)
j := (k + 1/α−H)−1

∫ ∞
0

Φ
(2)
j

(
k−1∏
i=0

(H − 1/α− i) · z

)
z−1+1/(H−k−1/α)dz (2.21)

as x→ −∞. Now, both measures ν1 and ν2 from Theorem 2.2 can be related to the Lévy
measure ν of L. We introduce the mappings τ1 : R+ → (R+)d and τ2 : R− → (R−)d via

τ1(x) = x1/(k+1/α−H)
(
c
(1)
1 , . . . , c

(1)
d

)
, τ2(x) = |x|1/(k+1/α−H)

(
c
(2)
1 , . . . , c

(2)
d

)
.

Then, for Borel sets A1, A2 as defined in Theorem 2.2, we deduce the identity

νl(Al) = lim
n→∞

nP
(
τl(n

−1/αL1) ∈ Al
)

= ν
(
τ−1l (Al)

)
, l = 1, 2. (2.22)

3 Statistical inference in the continuous case H − 1/α > 0

We start with the continuous case H − 1/α > 0, which turns out to be somewhat easier
to treat compared to the general setting. Since H ∈ (0, 1) and α ∈ (0, 2), condition
H − 1/α > 0 implies the restrictions

α ∈ (1, 2) and H ∈ (1/2, 1).
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It is the lower bound α > 1 that enables us to use the law of large numbers in Theorem
2.1(i) whenever p < 1, and the central limit theorem in Theorem 2.1(ii) whenever p < 1/2
and H < k − 1/α. The latter condition H < k − 1/α never holds for k = 1 since
0 < H − 1/α < 1− 2/α < 0 gives a contradiction, but it is always satisfied for any k ≥ 2
since

H < 1 < k − 1/α for any k ≥ 2,

because α > 1.

Now, we introduce an estimator for the parameter θ = (σ, α,H) in high and low
frequency setting. We start with the statistical inference for the self-similarity parameter
H, which is based upon a ratio statistic that compares power variations at two different
frequencies. More specifically, we define the quantities

Rhigh(p, k)n :=

∑n
i=2k

∣∣∣∆n,2
i,kX

∣∣∣p∑n
i=k

∣∣∣∆n,1
i,kX

∣∣∣p , Rlow(p, k)n :=

∑n
i=2k

∣∣∣∆2
i,kX

∣∣∣p∑n
i=k

∣∣∣∆1
i,kX

∣∣∣p , (3.1)

where the increments ∆r
i,kX have been defined at (2.6). We obtain the convergence

Rhigh(p, k)n
P−→ 2pH , Rlow(p, k)n

a.s.−→ 2pH

for any p ∈ (0, 1) as an immediate consequence of Theorem 2.1(i). Consequently, defining
the statistics

Ĥhigh(p, k)n :=
1

p
log2Rhigh(p, k)n, Ĥlow(p, k)n :=

1

p
log2Rlow(p, k)n, (3.2)

we deduce the consistency Ĥhigh(p, k)n
P−→ H, Ĥlow(p, k)n

a.s.−→ H as n→∞ for any k ≥ 1
and any p ∈ (0, 1). We remark that this type of ratio statistics is commonly used in the
framework of fBm’s when estimating the Hurst parameter H (see e.g. [16] among many
others). In the Gaussian setting, which corresponds to α = 2, the central limit theorem
for the quantity

√
n(Ĥhigh(p, k)n − H) holds for all k ≥ 2 and also for k = 1 if further

H ∈ (0, 3/4). As we indicated above, in the framework of pure jump α-stable driving
motion L the central limit theorem never holds if k = 1. Hence, there is no smooth
transition between the non-Gaussian and Gaussian setting when α→ 2.

The estimation strategy for the parameter θ = (σ, α,H) based on high frequency
observations is now straightforward: Infer the self-similarity parameter H by (3.2) and
use the plug-in estimator ϕhigh(t; Ĥhigh(p, k), k)n for two different values of t to infer the
scale parameter σ and the stability index α. For the latter step we consider t2 > t1 > 0
and observe the identities

σ = (− logϕ(t1; k))1/α /t1‖hk‖α, α =
log | logϕ(t2; k)| − log | logϕ(t1; k)|

log t2 − log t1
.

Recalling that the function hk depends on α and H, we readily obtain a function G such
that

(σ, α) = G (ϕ(t1; k), ϕ(t2; k), H) (3.3)
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where we applied the above identities. Next, we present the estimator of the pair (σ, α)
in high and low frequency setting, recalling that the estimators of the self-similarity pa-
rameter H have been defined at (3.2). We introduce the following estimators:

(σ̂high(k, t1, t2)n, α̂high(k, t1, t2)n)

= G
(
ϕhigh(t1; Ĥhigh(p, k)n, k)n, ϕhigh(t2; Ĥhigh(p, k)n, k)n, Ĥhigh(p, k)n

)
,

(σ̂low(k, t1, t2)n, α̂low(k, t1, t2)n) = G
(
ϕlow(t1; k)n, ϕlow(t2; k)n, Ĥlow(p, k)n

)
. (3.4)

Before we present the main result of this section we need to introduce more notation. We
define the functions vp : R2

+ → R and F : R2
+ × R2 → R3 by

vp(x, y) = p−1(log2 y − log2 x), F (x, y, u, w) = (G(u,w, vp(x, y)), vp(x, y)) , (3.5)

and let JF denotes the Jacobian of F . For any matrix A we write A? for its transpose.
The asymptotic normality in the low and high frequency setting is summarised in the
following theorem.

Theorem 3.1. Consider the linear fractional stable motion (Xt)t∈R introduced at (1.1).
Let k ≥ 2 and t2 > t1 > 0.
(i) (Low frequency case) Let W = (W (1),W (2)) be the 4-dimensional normal limit defined
in Theorem 2.2 associated with d = 2, p ∈ (0, 1/2), k1 = k2 = k and rj = j. Then we
obtain the central limit theorem

√
n

 σ̂low(k, t1, t2)n − σ
α̂low(k, t1, t2)n − α
Ĥlow(p, k)n −H

 d−→ Bnor
low(p, k) = JF

(
mp,k, 2

Hmp,k, ϕ(t1; k), ϕ(t2; k)
)
W ?.

(ii) (High frequency case) We obtain the central limit theorem
√
n(log n)−1 (σ̂high(k, t1, t2)n − σ)√
n(log n)−1 (α̂high(k, t1, t2)n − α)
√
n
(
Ĥhigh(p, k)n −H

)
 d−→ Bnor

high(p, k) =

∇v(mp,k, 2
Hmp,k)(W

(1))? ×

 ∇G1(ϕ(t1; k), ϕ(t2; k), H) (t1ϕ
′(t1; k), t2ϕ

′(t2; k), 0)?

∇G2(ϕ(t1; k), ϕ(t2; k), H) (t1ϕ
′(t1; k), t2ϕ

′(t2; k), 0)?

1

 .

We remark that the central limit theorem of Theorem 3.1(i) is a simple consequence of
Theorem 2.2 and the delta method. In contrast to the low frequency case Theorem 3.1(ii)
is degenerate in the sense that the limit distribution is solely driven by the asymptotics of
the term

√
n(Ĥhigh(p, k)n−H). Since the parameter H enters the quantity ϕhigh(t;H, k)n

via nH the additional term (log n)−1 appears in the convergence rate.

For a later use we need to extend the definition of the random variables Bnor
high(p, k)

and Bnor
low(p, k) to various directions. First of all, we will allow for negative powers −p with

p ∈ (0, 1/2). Secondly, we would like to define the same limiting variables but associated
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with the stable limit S = (S(1), S(2)) from Theorem 2.2 rather than W . Thus, for d = 2,
p ∈ (−1/2, 1/2) \ {0}, k1 = k2 = k and rj = j, we set

Bsta
low(p, k) = JF

(
mp,k, 2

Hmp,k, ϕ(t1; k), ϕ(t2; k)
)
S?,

Bsta
high(p, k) =

∇v(mp,k, 2
Hmp,k)(S

(1))? ×

 ∇G1(ϕ(t1; k), ϕ(t2; k), H) (t1ϕ
′(t1; k), t2ϕ

′(t2; k), 0)?

∇G2(ϕ(t1; k), ϕ(t2; k), H) (t1ϕ
′(t1; k), t2ϕ

′(t2; k), 0)?

1

 .

Remark 3.2. In the low frequency setting there is of course no need to rely on the
ratio statistic Rlow(p, k) to obtain an asymptotically normal estimator of the parameter
θ = (σ, α,H). The empirical characteristic function (or, more precisely, its real part)
ϕlow(t; k)n is a more natural probabilistic tool for the statistical inference for θ. We
observe that a multivariate central limit theorem for the triple (ϕlow(tj ; k)n)1≤j≤3 suffices

to obtain an asymptotically normal
√
n-estimator θ̂n of θ. To increase the efficiency we

may consider l points tl > . . . > t1 > 0 with l ≥ 3 and minimise the asymptotic variance
over (t1, . . . , tl). Since the mathematical derivation is very similar to Theorem 2.2, we
leave the details to the reader.

Another intuitive method in the low frequency framework is to estimate θ via a minimal
contrast approach. Given a positive weight function w ∈ L1(R+) we may obtain an
estimator θ̃n of θ by

θ̃n ∈ argminθ∈R+×(0,2)×(0,1)

∫ ∞
0

(ϕlow(t; k)n − ϕ(t; k))2w(t)dt.

In this setting we are likely to require tightness or a similar property of the stochastic
process ϕlow(·; k)n to prove asymptotic normality of θ̃n. However, this seems to be a non-
trivial problem, at least when using standard tightness criteria for the space (C(R+), ‖·‖∞).
We leave it for future research.

Remark 3.3. The described statistical methodology can be applied to more general pro-
cesses than the mere linear fractional stable motion. In the paper [5] the authors investi-
gated limit theorems for stochastic processes of the form

Yt =

∫
R
{g(t− s)− g0(−s)}dLs,

where g, g0 are deterministic functions vanishing on R− with g(x) = xH−1/αf(x) and
f(0) 6= 0, and L is a symmetric α-stable Lévy motion. In the high frequency setting the
process Y exhibits the tangent process f(0)X, i.e. we have that

∆n,r
i,k Y ≈ f(0)∆n,r

i,kX.

In particular, under certain assumption on f (cf. [5]), the central limit theorem part of
Theorem 2.2 holds for the more general class of processes Y . Hence, in this semi-parametric
model it is possible to estimate the parameter (|f(0)|σ, α,H) via the same approach as
presented in Theorem 3.1(ii). We remark that the function f can’t be inferred from high
frequency observations on a fixed time interval.
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4 Statistical inference in the general case

In this section we treat the case of a general linear fractional stable motion as it has been
introduced at (1.1). We recall that in the continuous setting the restriction H − 1/α > 0
has led to the lower bound α > 1, which is essential for obtaining the asymptotic results
of Theorem 3.1. Without having an explicit lower bound for the stability parameter α
statistical inference turns out to be more complex. As a consequence we will require a
different estimation method for the self-similarity parameter H and a two-step procedure
to choose the right order of increments k. Furthermore, in order to obtain fast rates of
convergence we need different treatments for the low and high frequency frameworks.

4.1 Low frequency setting

We note that the basic idea behind the ratio statistic Rlow(p, k)n introduced in (3.1) is the
homogeneity of the function fp(x) = |x|p and the fact that mp,k < ∞ which is a conse-
quence of p < α (for the associated central limit theorem we need the stronger condition
p < α/2). In order to keep both properties we may instead consider the negative power
variation, which corresponds to the function f−p(x) = |x|−p, and we assume throughout
this section that p ∈ (0, 1/2). This approach has been originally proposed in [14], although
central limit theorems have not been investigated in this setting. Note that the function
f−p is still homogenous and m−2p,k < ∞, which is due to the fact that for any random
variable Y with bounded density near 0 it holds that E[|Y |a] <∞ for all a ∈ (−1, 0). Thus,
Ĥlow(−p, k)n is a strongly consistent estimator of the parameter H for any p ∈ (0, 1/2).

In the next step we need to ensure that we end up in the domain of attraction of the
central limit theorem in Theorem 2.1(ii), which requires that k > H + 1/α. To guarantee
this we need a preliminary estimator of the parameter α. They are obtained as in (3.4)
using the function f−p and k = 1:

α̂0
low(t1, t2)n = G2

(
ϕlow(t1)n, ϕlow(t2)n, Ĥlow(−p)n

)
, (4.1)

where G = (G1, G2). Notice that this estimator is consistent, but we do not know if it is
in the domain of attraction of a normal distribution or not. Now, we define

k̂low(t1, t2)n = 2 + bα̂0
low(t1, t2)

−1
n c. (4.2)

For the sake of brevity we write k̂low = k̂low(t1, t2)n. In the second step we estimate the
parameter θ = (σ, α,H) using k̂low. The self-similarity parameter H is thus estimated by
Ĥlow(−p, k̂low)n. Next, similarly to definitions at (3.4), we introduce the estimators(

σ̃low(k̂low, t1, t2)n, α̃low(k̂low, t1, t2)n

)
(4.3)

= G
(
ϕlow(t1; k̂low)n, ϕlow(t2; k̂low)n, Ĥlow(−p, k̂low)n

)
.

In order to determine the asymptotic distribution of the proposed estimators we will need
the full force of Theorem 2.2. Due to definition (4.2) we also require a separate treatment
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of the cases α−1 6∈ N and α−1 ∈ N. In the first case k̂low
a.s.−→ 2 + bα−1c while in the second

case we will have

P
(
k̂low = 2 + α−1

)
→ λ and P

(
k̂low = 1 + α−1

)
→ 1− λ

for a certain constant λ ∈ (0, 1). In the first setting, which is easier to treat, we obtain
the following result.

Theorem 4.1. Let X be the linear fractional stable motion defined at (1.1). Assume that
p ∈ (0, 1/2) and α−1 6∈ N. We obtain the central limit theorem

√
n

 σ̃low(k̂low, t1, t2)n − σ
α̃low(k̂low, t1, t2)n − α
Ĥlow(−p, k̂low)n −H

 d−→ Bnor
low

(
−p, 2 + bα−1c

)
.

In the framework α−1 ∈ N we distinguish two further cases, that determine the asymp-
totic behaviour the preliminary estimate α̂0

low, which is constructed using k = 1. Accord-
ing to Theorem 2.2 we are in the domain of the validity of a central limit theorem when
H < 1− 1/α while a non-central limit theorem holds if H > 1− 1/α.

Proposition 4.2. Let X be the linear fractional stable motion defined at (1.1). Assume
that p ∈ (0, 1/2).
(i) (Normal case) Assume that H < 1− 1/α. Then we obtain the central limit theorem

√
n
(
α̂0
low(t1, t2)n − α

) d−→ Bnor
low (−p, 1)2 .

(ii) (Stable case) Assume that H > 1− 1/α. Then we obtain the weak limit theorem

n1−1/(1+α(1−H))
(
α̂0
low(t1, t2)n − α

) d−→ Bsta
low (−p, 1)2 .

We note that the result of Proposition 4.2(ii) is essentially the same as in the asymp-
totically normal regime except that the convergence rate is now n1−1/(1+α(1−H)) and the
normal limit W is replaced by S.

The next theorem presents the statistical behaviour of the estimator (σ̃low, α̃low, Ĥlow(−p, k̂low)n)
in the case α−1 ∈ N.

Theorem 4.3. Let X be the linear fractional stable motion defined at (1.1). Assume that
p ∈ (0, 1/2) and α−1 ∈ N.
(i) (Case H < 1− 1/α) Assume that H < 1− 1/α. Then we obtain

√
n

 σ̃low(k̂low, t1, t2)n − σ
α̃low(k̂low, t1, t2)n − α
Ĥlow(−p, k̂low)n −H

 d−→ Dnor
low,

where the probability distribution Dnor
low on R3 is given by

Dnor
low(·) = P({Bnor

low(−p, 2 + α−1) ∈ ·} ∩ {Bnor
low (−p, 1)2 < 0})

+ P({Bnor
low(−p, 1 + α−1) ∈ ·} ∩ {Bnor

low (−p, 1)2 > 0}).
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(ii) (Case H > 1− 1/α) Assume that H > 1− 1/α. Then we obtain

√
n

 σ̃low(k̂low, t1, t2)n − σ
α̃low(k̂low, t1, t2)n − α
Ĥlow(−p, k̂low)n −H

 d−→ Dsta
low,

where the probability distribution Dsta
low on R3 is given by

Dsta
low(·) = P(Bsta

low (−p, 1)2 < 0)P(Bnor
low(−p, 2 + α−1) ∈ ·)

+ P(Bsta
low (−p, 1)2 > 0)P(Bnor

low(−p, 1 + α−1) ∈ ·).

According to Theorem 2.2 the statistic (Bnor
low(−p, k), Bnor

low(−p, 1)) is jointly normal for
k ∈ {1 + α−1, 2 + α−1}. Thus, the probability distribution Dnor

low can be easily computed
using conditioning rules for normal distribution.

Note however that it is problematic to use Theorem 4.3 for constructing confidence
regions since we do not know a priori whether part (i) or part (ii) applies. We now
introduce a decision rule that helps us to solve this problem. Let t4 > t3 > t2 > t1 > 0
be given real numbers and let α̂0

low(t1, t2)n, α̂0
low(t3, t4)n be two estimators of parameter

α ∈ (0, 2) defined at (4.1). Then, similarly to Proposition 4.2, we deduce that

an
(
α̂0
low(t3, t4)n − α̂0

low(t1, t2)n
)

converges in law,

where an =
√
n if H < 1 − 1/α and an = n1−1/(1+α(1−H)) if H > 1 − 1/α. Hence, we

immediately conclude the convergence

dn := −
log
∣∣α̂0

low(t3, t4)n − α̂0
low(t1, t2)n

∣∣
log(n)

P−→

{
1/2 : if H < 1− 1/α

1− 1/(1 + α(1−H)) : if H > 1− 1/α

In other word, the statistic dn helps us to identify the rate of convergence, but it has a
bias of order 1/ log(n). Our decision rule is now as follows: Use Theorem 4.3(i) to perform
statistical inference if

dn > 1/2− (log(n))−1+ε

for some small chosen ε > 0; otherwise use Theorem 4.3(ii).

Remark 4.4. While we can obtain fully feasible asymptotic theory if we know whether
α−1 ∈ N or not, we are not yet able to deduce a complete statistical method without
this a priori knowledge. Possibly subsampling procedures are required to obtain empirical
confidence regions that automatically adapt to a given setting.

4.2 High frequency setting

In the framework of high frequency observations the application of the empirical charac-
teristic function might lead to suboptimal convergence rates for the estimator of (σ, α).
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This comes from the following observation. Assume that α < 1. Using the inequality
| cos(x)− cos(y)| ≤ |x− y|α′ for any α′ < α we obtain the upper bound

|ϕhigh(t; Ĥhigh(p, k)n, k)n − ϕhigh(t;H, k)n|

≤ tα
′
(nĤhigh(p,k)n−H − 1)α

′

n

n∑
i=k

|nH∆n
i,kX|α

′
= OP

(
(n−1/2 log n)−α

′/2
)
,

where the last statement follows from E[|∆k,kX|α
′
] < ∞ and the ergodic theorem. Since

the above expression is predominant in the asymptotic theory and it seems hard to improve
it, we obtain slow rates of convergence for the parameters σ and α if we apply the same
estimation procedure as in the previous section. For this reason we require a different
approach in the high frequency setting.

First of all, we give an explicit formula for the constant m−p,k = E[|∆k,kX|−p], p ∈
(0, 1/2), which has been introduced in Theorem 2.1. We recall that the random variable
∆k,kX is symmetric α-stable with scale parameter σ‖hk‖α. Consequently, applying the
identity [14, Eq. (18)] we conclude that

m−p,k =
(σ‖hk‖α)−p

a−p

∫
R

exp(−|y|α)|y|−1+pdy =
2(σ‖hk‖α)−p

αa−p
Γ(p/α),

where the last equality follows by substitution z = yα for y > 0. Now, we use the idea
that has been originally proposed in [14] to identify the parameter α via power variation
statistics. We consider p, p′ ∈ (0, 1/2), p 6= p′, and observe that

mp
−p′,k

mp′

−p,k
=

(2/α)p−p
′
ap
′

−pΓ(p′/α)p

ap−p′Γ(p/α)p′
=: φp,p′(α). (4.4)

It has been shown in [14] that the mapping α 7→ φp,p′(α) is invertible for any p 6= p′.

Hence, we have α = φ−1p,p′(m
p
−p′,k/m

p′

−p,k). Now, assuming that we know α and H (recall
that the norm ‖hk‖α depends on these parameters), we can recover the scale parameter σ
via

σ =

(
αa−pm−p,k

2Γ(p/α)

)− 1
p

/‖hk‖α.

Summarising the above identities we obtain the function G : (R+)2 × (0, 1) → R2 such
that

(σ, α) = G
(
m−p,k,m−p′,k, H

)
. (4.5)

Next, we follow the same two-stage routine as in the previous section. We first compute
Ĥhigh(−p)n = Ĥhigh(−p, 1)n with p ∈ (0, 1/2) and define the preliminary estimator of α
by

α̂0
high(−p,−p′)n = G2

(
Vhigh(f−p, Ĥhigh(−p)n)n, Vhigh(f−p′ , Ĥhigh(−p)n)n, Ĥhigh(−p)n

)
,

(4.6)
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where the statistic Vhigh(f−p, Ĥhigh(−p)n)n refers to power variation introduced in (2.7)

with k = 1 and with H replaced by Ĥhigh(−p)n. Now, we define

k̂high = k̂high(−p,−p′)n = 2 + bα̂0
high(−p,−p′)−1n c (4.7)

and introduce the estimator(
σ̃high(k̂high,−p,−p′)n, α̃high(k̂high,−p,−p′)n

)
= G

(
Vhigh(f−p, Ĥhigh(−p, k̂high)n; k̂high)n,

Vhigh(f−p′ , Ĥhigh(−p, k̂high)n; k̂high)n, Ĥhigh(−p, k̂high)n

)
.

We again require a separate treatment of the cases α−1 6∈ N and α−1 ∈ N. We start with

the first setting. WhenH < k−1/α we consider the statisticW (n)(1) = (W (n)
(1)
1 ,W (n)

(1)
2 )

associated with the power −p and

k1 = k̂high, r1 = 1 and k2 = k̂high, r2 = 2.

Recall that W (n)(1)
d−→ W (1) according to Theorem 2.1. Now, similarly to Theorem 3.1,

we define

B
nor
high(−p,−p′, k) := ∇vp(m−p,k, 2Hm−p,k)(W (1))? (4.8)

×

 ∇G1(m−p,k,m−p′,k, H)
(
−pm−p,k,−p′m−p′,k, H

)?
∇G1(m−p,k,m−p′,k, H)

(
−pm−p,k,−p′m−p′,k, H

)?
1

 ,

where the function vp has been introduced at (3.5). Our first result is the following
theorem.

Theorem 4.5. Let X be the linear fractional stable motion defined at (1.1). Assume that
p, p′ ∈ (0, 1/2) and α−1 6∈ N. Then we obtain the central limit theorem

√
n(log n)−1

(
σ̃high(k̂high,−p,−p′)n − σ

)
√
n(log n)−1

(
α̃high(k̂high,−p,−p′)n − α

)
√
n
(
Ĥhigh(−p, k̂high)n −H

)
 d−→ B

nor
high

(
−p,−p′, 2 + bα−1c

)
.

Next, we treat the case α−1 ∈ N. For this purpose, whenever H > k − 1/α, we

introduce the notation B
sta
high(−p,−p′, k) to denote the random variable at (4.8) where W (1)

is replaced by S(1). We deduce the following result, which is the analogue of Theorem 4.3.

Theorem 4.6. Let X be the linear fractional stable motion defined at (1.1). Assume that
p, p′ ∈ (0, 1/2) and α−1 ∈ N.
(i) (Case H < 1− 1/α) Assume that H < 1− 1/α. Then we obtain

√
n(log n)−1

(
σ̃high(k̂high,−p,−p′)n − σ

)
√
n(log n)−1

(
α̃high(k̂high,−p,−p′)n − α

)
√
n
(
Ĥhigh(−p, k̂high)n −H

)
 d−→ Dnor

high,
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where the probability distribution Dnor
high on R3 is given by

Dnor
high(·) = P({Bnor

high(−p,−p′, 2 + α−1) ∈ ·} ∩ {Bnor
high

(
−p,−p′, 1

)
2
< 0})

+ P({Bnor
high(−p,−p′, 1 + α−1) ∈ ·} ∩ {Bnor

high

(
−p,−p′, 1

)
2
> 0}).

(ii) (Case H > 1− 1/α) Assume that H > 1− 1/α. Then we obtain
√
n(log n)−1

(
σ̃high(k̂high,−p,−p′)n − σ

)
√
n(log n)−1

(
α̃high(k̂high,−p,−p′)n − α

)
√
n
(
Ĥhigh(−p, k̂high)n −H

)
 d−→ Dsta

high,

where the probability distribution Dsta
high on R3 is given by

Dsta
high(·) = P(B

sta
high

(
−p,−p′, 1

)
2
< 0)P(B

nor
high(−p,−p′, 2 + α−1) ∈ ·)

+ P(B
sta
high

(
−p,−p′, 1

)
2
> 0)P(B

nor
high(−p,−p′, 1 + α−1) ∈ ·).

Remark 4.7. We may use a similar decision rule as proposed in Section 4.1 to figure out
whether part (i) or (ii) of Theorem 4.6 is applicable. Let p1, . . . , p4 ∈ (0, 1/2) be distinct
real numbers. As in the previous subsection we have that

dn := −
log
∣∣∣α̂0

high(−p1,−p2)n − α̂0
high(−p3,−p4)n

∣∣∣
log(n)

P−→

{
1/2 : if H < 1− 1/α

1− 1/(1 + α(1−H)) : if H > 1− 1/α

We thus use Theorem 4.6(i) to perform statistical inference when

dn > 1/2− (log(n))−1+ε.

5 A simulation study

In this section we demonstrate the finite sample performance of our estimators based upon
the theoretical results of Theorems 3.1, 4.1 and 4.5, where the latter two correspond to the
setting α−1 6∈ N (we dispense with the numerical analysis associated with Theorems 4.3
and 4.6). We simulate high and low frequency observations of the linear fractional stable
motion defined at (1.1) for n = 100, 1.000 and 10.000. Whenever we use the statistics
Vhigh(f ; k, r)n and Vlow(f ; k, r)n introduced in (2.7), we multiply them by (n− rk + 1)/n
to account for the actual number of summands. Throughout the section we set t1 = 1 and
t2 = 2. We use 5000 repetitions to uncover the finite sample properties of our estimators.
The asymptotic variances appearing in central limit theorems are rather hard to compute
numerically, so we perform Monte Carlo simulations to estimate them. We generate the
number of sample paths mentioned above and compute (σ̂, α̂, Ĥ) for each of them. Basing
on the estimator values, we calculate sample mean and standard deviation, which are



Estimation of the linear fractional stable motion 20

Table 1: Bias/standard deviation of the estimators (σ̂low, α̂low, Ĥlow) and (σ̂high, α̂high, Ĥhigh). We use
p = 0.4 and k = 2, and the true parameter is (σ, α,H) = (0.3, 1.8, 0.8).

n σ̂low α̂low Ĥlow σ̂high α̂high Ĥhigh

100 -0.024/0.06 -0.038/0.18 -0.05/0.12 0.06/0.18 -0.07/0.2 0.02/0.10
1000 -0.0008/0.02 0.012/0.068 -0.012/0.05 -0.001/0.12 0.015/0.07 -0.009/0.05
10000 0.00014/0.006 0.0005/0.022 -0.005/0.016 -0.010/0.05 0.001/0.022 -0.005/0.016
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Figure 2: Empirical pdfs of (σ̂, α̂, Ĥ) in high and low frequency settings. The right column corresponds
to the high frequency case and the left one to the low frequency case. The true parameter is (σ, α,H) =
(0.3, 1.8, 0.8), k = 2, p = 0.4.

also used to construct empirical distribution functions, analogs of the functions on the
right-hand side of the corresponding limit theorems.

We begin with the discussion of Theorem 3.1. Table 1 reports the bias and the standard
deviation of the estimator of (σ, α,H) = (0.3, 1.8, 0.8) in high and low frequency settings,
where we use the power p = 0.4 and the order k = 2. We observe that our estimators
exhibit a rather convincing finite sample performance in both settings. As expected from
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the theoretical statements of Theorem 3.1, the estimators of the self-similarity parameter
H exhibit similar finite sample properties in high and low frequency settings, while the
performance of the low frequency estimators for the parameters σ and α is better than
in the high frequency case. This is obviously a consequence of a slightly slower conver-
gence rate in the high frequency setting. Figure 2 plots the empirical densities of the
standardised estimators from Theorem 3.1 in comparison to the density of the standard
normal distribution. As mentioned earlier we use Monte Carlo simulations to estimate
the theoretical variances. We again observe a very good performance of estimators of the
parameter H, while the numerical results for the estimators of σ and α are better in the
low frequency case.

Now, we turn our attention to the low frequency estimation discussed in Theorem 4.1.
We use the power p = −0.4 and consider the true parameter (σ, α,H) = (0.3, 1.8, 0.8) and
(σ, α,H) = (0.3, 0.8, 0.8). Observe that the first case corresponds to the setting of Theorem
3.1 and the second parameter corresponds to the discontinuous setting. The estimated
order k̂low is computed via (4.2). Table 2 displays the bias and standard deviation in the
case (σ, α,H) = (0.3, 1.8, 0.8), while Table 3 demonstrates the numerical results in the
case (σ, α,H) = (0.3, 0.8, 0.8).

Table 2: Bias/standard deviation of the estimator (σ̃low, α̃low, H̃low). Here p = −0.4, k̂low is computed
from (4.2) and (σ, α,H) = (0.3, 1.8, 0.8).

n σ̃low α̃low H̃low

100 -0.05/0.09 -0.031/0.18 -0.12/0.23
1000 -0.004/0.04 0.01/0.068 -0.018/0.12
10000 0.0003/0.015 0.001/0.022 -0.003/0.05

Table 3: Bias/standard deviation of the estimator (σ̃low, α̃low, H̃low). Here p = −0.4, k̂low is computed
from (4.2) and (σ, α,H) = (0.3, 0.8, 0.8).

n σ̃low α̃low H̃low

100 -0.06/0.31 -0.003/0.41 -0.15/0.24
1000 -0.05/0.27 -0.08/0.31 0.003/0.13
10000 0.03/0.26 0.008/0.27 0.04/0.05

Comparing the simulation results of Theorems 3.1 and 4.1, we see that the finite sample
performance of estimators σ and H in Theorem 4.1 is inferior. This is not really surprising,
since the methodology of Theorem 4.1 requires preliminary estimation of α and k, and
hence leads to an accumulation of errors. In turn, alpha estimator is not as sensitive
to errors because of the double logarithm. Furthermore, in the setting of a fractional
Brownian motion it is well known that low values of the parameter k give more efficient
estimators. We conjecture that a similar effect appears for linear fractional stable motions.
This would explain the superiority of the results in Table 2 compared to those in Table
3, since bα−1c + 2 = 2 in the first setting while bα−1c + 2 = 3 in the second setting.
Figures 3 and 4 show the empirical density functions, where the theoretical variances have
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been estimated via a Monte Carlo simulations. They confirm the better performance of
the estimators in the continuous setting (σ, α,H) = (0.3, 1.8, 0.8). We also observe that
the estimator of the parameter σ exhibits the worst finite sample properties in the setting
(σ, α,H) = (0.3, 0.8, 0.8).
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Figure 3: Empirical pdfs of (σ̃low, α̃low, H̃low). Here (σ, α,H) = (0.3, 1.8, 0.8) and p = −0.4.
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Figure 4: Empirical pdfs of (σ̃low, α̃low, H̃low). Here (σ, α,H) = (0.3, 0.8, 0.8) and p = −0.4.

Finally, let us discuss the finite sample performance of the high frequency estimators
from Theorem 4.5. We again consider two parameter settings (σ, α,H) = (0.3, 1.8, 0.8) and
(σ, α,H) = (0.3, 0.8, 0.8), and we use p = −0.4 and p′ = −0.2. The estimated order k̂high
is computed via (4.7). Tables 4 and 5 display the biases and standard deviations in both
parameter settings. We observe that the estimators of the parameter σ have the worst
performance and we only obtain reasonable results for n = 10.000. Similar conclusions
can be drawn from Figures 5 and 6 that plot the empirical density functions. The bad
performance of the estimator of σ in Theorem 4.5 is explained by the fact that we not only
require a preliminary estimation step for our procedure, but we also need to estimate the
parameters H and α first to obtain an estimator of σ. This leads to accumulation of finite
sample errors, which results in large bias and variance for small n. To further highlight
this issue, we have plotted the empirical densities for the estimators of σ from Theorems
4.1 and 4.5 in Figure 7 in the setting (σ, α,H) = (0.3, 0.8, 0.8) where the parameter (α,H)
is assumed to be known. We observe a much better finite sample performance, which
confirms that the bad finite sample properties of the estimator of σ are largely due to
preliminary estimation of (α,H).
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Table 4: Bias/standard deviation of the estimator (σ̃high, α̃high, H̃high). Here p = −0.4, p′ = −0.2 and
(σ, α,H) = (0.3, 1.8, 0.8).

n σ̃high α̃high H̃high

100 60/1443 -0.02/0.77 0.23/0.33
1000 0.18/0.82 0.19/0.67 0.02/0.13
10000 -0.003/0.17 0.052/0.26 -0.003/0.05

Table 5: Bias/standard deviation of the estimator (σ̃high, α̃high, H̃high). Here p = −0.4, p′ = −0.2 and
(σ, α,H) = (0.3, 0.8, 0.8).

n σ̃low α̃low H̃low

100 16/341 0.19/0.37 0.13/0.4
1000 0.103/1 0.02/0.09 0.06/0.16
10000 -0.11/0.12 0.003/0.04 0.04/0.06
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Figure 5: Empirical pdfs of (σ̃high, α̃high, H̃high). Here p = −0.4, p′ = −0.2 and (σ, α,H) = (0.3, 1.8, 0.8).
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Figure 6: Empirical pdfs of (σ̃high, α̃high, H̃high). Here p = −0.4, p′ = −0.2 and (σ, α,H) = (0.3, 0.8, 0.8).
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6 Proofs

In this section we denote all positive constants by C although they may change from line
to line.

6.1 Preliminaries

Here we will show some technical results, which are necessary to prove the main theo-
rems. We start with the following lemma that is a straightforward consequence of Taylor
expansion.

Lemma 6.1. Let hk,r be defined as in (2.10). Then it holds that

|hk,r(x)| ≤ C
(
xH−1/α1(0,rk+1](x) + xH−k−1/α1(rk+1,∞)(x)

)
.

Furthermore, the function |hk,r| is strictly decreasing on (rk + 1,∞).

An important quantity when considering various asymptotic covariances is the follow-
ing object:

ρl :=

∫ ∞
0
|hk,r(x)hk,r(x+ l)|α/2dx. (6.1)

The next lemma determines the asymptotic behaviour of ρl when l→∞.

Lemma 6.2. For l > rk it holds that

ρl ≤ C

{
l(α(H−k)−1)/2 : when k > H + 1/α

lα(H−k) : when k < H + 1/α

Proof. Assume that l > rk. Applying Lemma 6.1 we obtain the inequality∫ l

0
|hk,r(x)hk,r(x+ l)|α/2dx ≤ Cl(α(H−k)−1)/2

∫ l

0
|hk,r(x)|α/2dx

≤ C

{
l(α(H−k)−1)/2

∫∞
0 |hk,r(x)|α/2dx : k > H + 1/α

lα(H−k) : k < H + 1/α
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When k > H + 1/α we have
∫∞
0 |hk,r(x)|α/2dx < ∞, which is due to Lemma 6.1; on

the other hand, for k < H + 1/α we deduce that
∫ l
0 |hk,r(x)|α/2dx ≤ Cl1+(α(H−k)−1)/2.

Applying Lemma 6.1 once again and using the substitution x = ly we deduce the inequality∫ ∞
l
|hk,r(x)hk,r(x+ l)|α/2dx ≤ C

∫ ∞
l
|x(x+ l)|(α(H−k)−1)/2dx

= Clα(H−k)
∫ ∞
1
|y(y + 1)|(α(H−k)−1)/2dy.

Indeed, the last integral is finite since H < 1 ≤ k. Hence, the statement of Lemma 6.2 is
proved.

In the next step we will determine the behaviour of the function Ug,h defined at (2.3).
The following result is the statement of inequalities (3.4)-(3.6) from [22].

Lemma 6.3. For any u, v ∈ R it holds that

|Ug,h(u, v)| ≤ 2|uv|α/2
∫ ∞
0
|g(x)h(x)|α/2dx

× exp

(
−2|uv|α/2

(
‖g‖α/2α ‖h‖α/2α −

∫ ∞
0
|g(x)h(x)|α/2dx

))
,

|Ug,h(u, v)| ≤ 2|uv|α/2
∫ ∞
0
|g(x)h(x)|α/2dx

× exp

(
−
(
‖ug‖α/2α − ‖vh‖α/2α

)2)
.

In particular, we have that |Ug,h(u, v)| ≤ 2|uv|α/2
∫∞
0 |g(x)h(x)|α/2dx.

Now we turn our attention to formula (2.19), which presents an explicit expression for
the asymptotic covariance matrix cov(W ). In the following we will prove this identity. For
the sake of brevity we will only show formula (2.19) for d = 1 and only for the component

var(W
(1)
1 ) with k1 = k and r1 = r. All other identities are in fact easier to prove and we

leave them to the reader.

The expression for var(W
(1)
1 ) for p ∈ (−1/2, 0) and its finiteness have been shown

in [14, Corollary 3.3 and Theorem 4.2] using methods from distribution theory, so we
concentrate on the case p ∈ (0, 1/2). For p ∈ (0, 1), we have the relationship

|x|p = a−1p

∫
R

(1− exp(ixy)) |y|−1−pdy. (6.2)

which can be shown by substitution xy = z (recall the definition of ap at (2.8)). Note
that similarly to (2.4) the latter connects power functions with characteristic functions,
which are explicit in the α-stable case. Applying this formula and using stationarity of
the increments ∆r

i,kX we conclude that

cov
(
fp
(
∆r
i,kX

)
, fp
(
∆r
i+l,kX

))
= θ(hk,r, hk,r(·+ l))p,
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where the quantity θ(g, h)p has been introduced at (2.9). Since W (n)
(1)
1 is a sum of

stationary random variables it remains to prove that θ(hk,r, hk,r(· + l))p is absolutely
summable in l to show the identity (2.19). This is the statement of the next lemma.

Lemma 6.4. For p ∈ (0, 1/2) with p < α/2 it holds that

|θ(hk,r, hk,r(·+ l))p| ≤ Cρl.

In particular, if k > H + 1/α we obtain
∑∞

l=1 |θ(hk,r, hk,r(·+ l))p| <∞.

Proof. The second part of the statement follows directly from Lemma 6.2 and the fact
that (α(H − k)− 1)/2 < −1 when k > H + 1/α. To show the first part of the statement
we will use the inequalities of Lemma 6.3. Recalling the definition of θ(hk,r, hk,r(· + l))p
it is sufficient to compute the double integral over the set (0,∞)2 (instead of R2), which
is due to symmetry. The domain (0,∞)2 is further decomposed into the regions (0, 1)2,
(0, 1) × [1,∞), [1,∞) × (0, 1) and [1,∞)2, and we denote the corresponding integrals by
I1, I2, I3 and I4, respectively.

For the integral I1 we use the inequality |Ug,h(u, v)| ≤ 2|uv|α/2
∫∞
0 |g(x)h(x)|α/2dx of

Lemma 6.3 to deduce that

|I1| ≤ a−2p
∫
(0,1)2

(xy)−1−p|Uhk,r,hk,r(·+l)(x, y)|dxdy ≤ Cρl
∫
(0,1)2

(xy)−1−p+α/2dxdy,

where the last integral is finite because p < α/2. Applying the main statement of Lemma
6.3 we also conclude the inequality

|I4| ≤ Cρl
∫
[1,∞)2

(xy)−1−p+α/2 exp
(
−2(xy)α/2 (‖hk,r‖αα − ρl)

)
dxdy,

By Cauchy-Schwarz inequality we have that ρl < ‖hk,r‖αα. Furthermore, liml→∞ ρl = 0 by
Lemma 6.2 and thus, for a given ε ∈ (0, 1), ρl < ε for almost all l ∈ N. Hence, there exists
a constant C > 0 such that

|I4| ≤ Cρl
∫
[1,∞)2

(xy)−1−p+α/2 exp
(
−2C(xy)α/2

)
dxdy,

where the latter integral is obviously finite. For the integral I2 we apply Lemma 6.3 once
more to obtain

|I2| ≤ Cρl
∫
(0,1)×[1,∞)

(xy)−1−p+α/2 exp
(
−‖hk,r‖α/2α (yα/2 − xα/2)2

)
dxdy

≤ Cρl
∫
(0,1)×[1,∞)

(xy)−1−p+α/2 exp
(
−‖hk,r‖α/2α (yα/2 − 1)2

)
dxdy

and the last integral is again finite since p < α/2. The term I3 is treated exactly the same
way as I2 and we are done.

At the end of this subsection we remark that the covariance matrix cov(W ) is a con-
tinuous function in (σ, α,H) ∈ R+ × (0, 2) × (0, 1), which follows by Lemma 6.4 and a
dominated convergence theorem.
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6.2 Proof of Theorem 2.2

The proof of Theorem 2.2 will be divided into several steps. Some parts of the proof will
rely upon asymptotic expansions investigated in [5, 21].

6.2.1 Asymptotic decomposition of the statistic
(
W (n)(1),W (n)(2)

)
In this section we introduce several approximations of the statistic appearing in Theorem
2.2. We start with the asymptotically normal part

(
W (n)(1),W (n)(2)

)
. Recalling the

notation (2.10) we observe the identity

∆r
i,kX =

∫
R
hk,r(i− s)dLs. (6.3)

In the first step we introduce the short memory approximation of ∆r
i,kX by truncating

the integration region:

∆r
i,kX(m) :=

∫ i+m

i−m
hk,r(i− s)dLs. (6.4)

Note that the random variables (∆r
i,kX(m))i≥rk are stationary and 2m-dependent, i.e.

∆r
i,kX(m) and ∆r

j,kX(m) are independent if |i−j| ≥ 2m. For f(x) = |x|p with p ∈ (0, 1/2)
and p < α/2, or f(x) = cos(tx) we introduce the notation

W (n,m)
(1)
j :=

1√
n

n∑
i=rjkj

{
fp

(
∆
rj
i,kj
X(m)

)
− E

[
fp

(
∆
rj
i,kj
X(m)

)]}
(6.5)

W (n,m)
(2)
j :=

1√
n

n∑
i=k

{
ψtj
(
∆i,kjX(m)

)
− E

[
ψtj
(
∆i,kjX(m)

)]}
For the function f−p(x) = |x|−p with p ∈ (0, 1/2) we set f ε−p(x) = |x|−p1{|x|>ε} and note
that the latter is a bounded function. In this setting we define

W (n,m, ε)
(1)
j :=

1√
n

n∑
i=rk

{
f ε−p

(
∆r
i,kX(m)

)
− E

[
f ε−p

(
∆r
i,kX(m)

)]}
. (6.6)

In [5, Section 5.4] it has been shown that the convergence

lim
m→∞

lim sup
n→∞

E
[(
W (n,m)

(1)
j −W (n)

(1)
j

)2]
= 0 (6.7)

holds. On the other hand, since the functions ψtj and f ε−p are bounded, we obtain the
convergence

lim
m→∞

lim sup
n→∞

E
[(
W (n,m)

(2)
j −W (n)

(2)
j

)2]
= 0, (6.8)

lim
m→∞

lim sup
n→∞

E
[(
W (n,m, ε)

(1)
j −W (n, ε)

(1)
j

)2]
= 0

from [21]. Here W (n, ε)
(1)
j is the original statistic defined at (2.13) associated with the

function f ε−p.
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6.2.2 Asymptotic decomposition of the statistic
(
S(n)(1), S(n)(2)

)
In this subsection we derive an asymptotic expansion for the statistic

(
S(n)(1), S(n)(2)

)
.

The main ideas originate from the work [5] and we will adapt their principles to our
setting. The following estimates and decomposition have been treated in the case of
power variation with p ∈ (0, 1/2), p < α/2, in [5], so we will rather concentrate on the
functions f−p, p ∈ (0, 1/2), and ψt.

All expansions are valid componentwise, so we may assume that d = 1. We recall the
notation introduced at (2.14). For a symmetric α-stable random variable Y with scaling
parameter ρ > 0 and a measurable function f : R→ R, we introduce the function

Φρ(f)(x) := E[f(Y + x)]− E[f(Y )], x ∈ R, (6.9)

whenever the latter is finite. In the following we will derive various estimates for Φρ(f−p)(x)
with p ∈ (0, 1/2). First of all, using the identity [14, Eq. (18)] we obtain the representation

Φρ(f−p)(x) = a−1p

∫
R

(1− cos(xy)) exp(−|ρy|α)|y|−1+pdy. (6.10)

This identity implies the following result.

Lemma 6.5. Assume that ρ, ρ1, ρ2 > ε > 0. Then there exists a constant Cε > 0 such
that the following inequalities hold:

|Φρ(f−p)(x)| ≤ Cε(1 ∧ x2), |Φρ(f−p)
(v)(x)| ≤ Cε for v = 1, 2,

|Φρ(f−p)(x)− Φρ(f−p)(y)| ≤ Cε
(
(1 ∧ |x|+ 1 ∧ |y|)|x− y|1{|x−y|≤1} + 1{|x−y|>1}

)
,

|Φρ1(f−p)(x)− Φρ2(f−p)(x)| ≤ Cε|ρα2 − ρα1 |,∫ x

0

∫ y

0
Φρ(f−p)(a+ z + w)|dzdw ≤ Cε(1 ∧ x)(1 ∧ y) for any x, y > 0, a ∈ R,

where Φρ(f−p)
(v) denotes the vth derivative of Φρ(f−p).

Proof. Note that the function f−p is even and hence Φρ(f−p)(0) = Φρ(f−p)
(1)(0) = 0.

Using the identity (6.10) we immediately see that |Φρ(f−p)
(v)(x)| ≤ Cε for v = 0, 1, 2.

Thus, we obtain the first two inequalities. By the same arguments we get |Φρ(f−p)
(1)(x)| ≤

Cε(1 ∧ |x|). Observing the identity

|Φρ(f−p)(x)− Φρ(f−p)(y)| =
∣∣∣∣∫ x

y
Φρ(f−p)

(1)(u)du

∣∣∣∣
we readily deduce the third inequality. The fourth inequality follows immediately from
(6.10) and the mean value theorem. The last statement is a straightforward consequence
of the first three inequalities of Lemma 6.5.
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It is important to note that the result of Lemma 6.5 remains valid for the function
Φρ(ψt). In this case it is a consequence of the fact the ψt is a bounded and even function.

In the next step we present some decompositions, which have been investigated in [5].
For any fixed r and k, and the function f = fp, f−p, p ∈ (0, 1/2), or ψt, we define the
random variable

S(f)n = n−1/(1+α(k−H))
n∑

i=rk

{
f
(
∆r
i,kX

)
− E

[
f
(
∆r
i,kX

)]}
=:

n∑
i=rk

V n
i .

We also introduce the σ-algebras

Gs := σ (Lv − Lu : v, u ≤ s) , G1s := σ (Lv − Lu : s ≤ v, u ≤ s+ 1) ,

and note that (G1s )s∈R is not a filtration. Now, we introduce the notation

Rni :=

n∑
j=1

ζni,j , Qni :=

n∑
j=1

E[V n
i |G1i−j ],

where ζni,j := E[V n
i |Gi−j+1]− E[V n

i |Gi−j ]− E[V n
i |G1i−j ].

Finally, we observe the decomposition

S(f)n =
n∑

i=rk

Rni +

(
−S(f)n +

n∑
i=rk

Qni

)
+ S(f)n, (6.11)

S(f)n := n−1/(1+α(k−H))
n∑

i=rk

{
Φ(f)(Li − Li−1)− E[Φ(f)(Li − Li−1)]

}
,

where Φ(f)(x) :=
∑∞

j=1 Φρ(f) (hk,r(j)x) with ρ = σ‖hk,r‖α. Note that S(f)n is a sum of
i.i.d random variables. For f = fp with p ∈ (0, 1/2), p < α/2 and under assumptions of
Theorem 2.2, the convergence

n∑
i=rk

Rni
P−→ 0 and − S(f)n +

n∑
i=rk

Qni
P−→ 0 as n→∞ (6.12)

has been shown in [5] (cf. eqs. (5.30), (5.31) and (5.38) therein). The proof of these
convergence results follows from a number of estimates on the function Φρ(fp), p ∈ (0, 1/2),
which are stated in [5, eqs. (5.14)-(5.18) and Lemma 5.8]. But according to Lemma 6.5
the same estimates hold also for Φρ(f−p), p ∈ (0, 1/2), and Φρ(ψt) (in fact, the latter
estimates are stronger). Consequently, the convergence at (6.12) also holds for the cases
f = f−p and f = ψt and we deduce that

S(f)n − S(f)n
P−→ 0 for f = fp, f−p or ψt. (6.13)
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6.2.3 A limit theorem for the approximations

Recalling the notation introduced in (2.14) and (2.16) we obtain the identities

S(n)
(1)
j := S(fp)n,j = n−1/(1+α(k−H))

n∑
i=rjk

{
Φ
(1)
j (Li − Li−1)− E[Φ

(1)
j (Li − Li−1)]

}
,

S(n)
(2)
j := S(ψtj )n = n−1/(1+α(k−H))

n∑
i=rjk

{
Φ
(2)
j (Li − Li−1)− E[Φ

(2)
j (Li − Li−1)]

}
,

(6.14)

where p ∈ (−1/2, 1/2) \ {0} and the statistic S(fp)n,j is defined as in (6.11) using the
parameters rj and k. As a consequence of (6.7), (6.8) and (6.13) it is now sufficient to
show a weak limit theorem for the statistic

(W (n,m)(1),W (n,m)(2), S(n)(1), S(n)(2))

(resp. (W (n,m, ε)(1),W (n,m)(2), S(n)(1), S(n)(2))) when p ∈ (0, 1/2) and p < α/2 (resp.
−p ∈ (0, 1/2)) as n→∞ and then m→∞.

In order to prove this convergence we recall the results of [24] adapted to our setting.

Let (Y
(1)
i )i≥1 and (Y

(2)
i )i≥1 be i.i.d sequences of centred random variables of dimensions

d1 and d2 respectively, which are not necessarily independent. Define the statistics

Z(1)
n =

1√
n

n∑
i=1

Y
(1)
i , Z(2)

n = n−1/β
n∑
i=1

Y
(2)
i with β ∈ (1, 2).

Assume now that Z
(1)
n

d−→ Z(1) where Z(1) is a d1-dimensional centred normal distribution
and assume that each coordinate Y

(2)
1,j , 1 ≤ j ≤ d2, is in the domain of attraction of a

β-stable random variables, i.e.

lim
x→+∞

xβP(Y
(2)
1,j > x) = b+j and lim

x→−∞
|x|βP(Y

(2)
1,j < x) = b−j .

Assume moreover that there exists a measure ν such that for all sets A ∈ B(Rd2) bounded
away from 0 with ν(∂A) = 0 it holds:

lim
n→∞

nP(n−1/βY
(2)
i ∈ A) = ν(A).

Then we obtain the joint convergence(
Z(1)
n , Z(2)

n

)
d−→
(
Z(1), Z(2)

)
, (6.15)

where Z(1) and Z(2) are necessarily independent, and the law of Z(2) is determined by the
Lévy measure ν. Indeed this result is a direct consequence of [24, Theorems 3 and 4] and
their direct extension from bivariate to (d1 + d2)-dimensional setting.
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Next, we apply the weak convergence at (6.15) to our framework. Notice first that
the statistics W (n,m)(1), W (n,m)(2) and W (n,m, ε)(1) are sums of 2m-dependent random
variables, but this setting can be reduced to sums of i.i.d random variables by the classical
Bernstein’s blocking technique. Hence, the theory of [24] also applies in this case.

For the sake of brevity we apply the convergence at (6.15) only for the statistic
(W (n,m)(1),W (n,m)(2), S(n)(1), S(n)(2)). We set

Z(1)
n,m =

(
W (n,m)(1),W (n,m)(2)

)
and Z(2)

n =
(
S(n)(1), S(n)(2)

)
,

and define β = (1+α(k−H)). By the standard central limit theorem for sums of stationary
2m-dependent random variables we deduce the convergence

Z(1)
n,m

d−→ Z(1)
m ∼ N2d(0,Σm) as n→∞,

where the asymptotic covariance matrix Σm is defined by

Σij
m =

2m−1∑
l=−2m+1

cov
(
fp

(
∆ri
riki,ki

X(m)
)
, fp

(
∆
rj
riki+l,kj

X(m)
))

, 1 ≤ i, j ≤ d,

Σij
m =

2m−1∑
l=−2m+1

cov
(
fp

(
∆ri
riki,ki

X(m)
)
, ψtj

(
∆riki+l,kjX(m)

))
, d+ 1 ≤ i+ d, j ≤ 2d,

Σij
m =

2m−1∑
l=−2m+1

cov
(
ψti (∆ki,kiX(m)) , ψtj

(
∆ki+l,kjX(m)

))
, d+ 1 ≤ i, j ≤ 2d.

In the next step we treat the statistic Z
(2)
n . Recalling the definition at (6.14), and the tail

convergence of (2.20) and (2.21), we conclude that the limits of S(n)(1) and S(n)(2) must
be independent since b−j = 0 for 1 ≤ j ≤ d and b+j = 0 for d + 1 ≤ j ≤ 2d. Furthermore,
(2.22) readily implies the convergence

Z(2)
n

d−→
(
S(1), S(2)

)
as n→∞,

where the vector
(
S(1), S(2)

)
has been introduced in Theorem 2.2.

Finally, we will prove that the covariance matrix Σm converges as m → ∞. In the
following we write ‖Y ‖L2 for E[Y 2]1/2 for any square integrable random variable Y . For
m1,m2 ∈ N and 1 ≤ j ≤ d observe the decomposition

|(Σjj
m1

)1/2 − (Σjj
m2

)1/2| = lim
n→∞

|‖W (n,m1)
(1)
j ‖L2 − ‖W (n,m2)

(1)
j ‖L2 | (6.16)

≤ lim sup
n→∞

(
‖W (n,m1)

(1)
j −W (n)

(1)
j ‖L2 + ‖W (n,m2)

(1)
j −W (n)

(1)
j ‖L2

)
and the latter converges to 0 as m1,m2 → ∞ due to (6.7). Hence, (Σjj

m)m≥1 is a Cauchy

sequence and thus it converges. Since var(W (n)
(1)
j )→ var(W

(1)
j ) we must have that

lim
m→∞

Σjj
m = var(W

(1)
j ).
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The same argument applies to Σjj
m for d+ 1 ≤ j ≤ 2d and also to covariances Σij

m due to
polarisation identity.

Summarising the results of Sections 6.2.1-6.2.3 we obtain the weak limit theorem(
W (n)(1),W (n)(2), S(n)(1), S(n)(2)

)
d−→
(
W (1),W (2), S(1), S(2)

)
,

for p ∈ (0, 1/2) and p < α/2, as claimed in (2.17). Similarly, for −p ∈ (0, 1/2) we have
also obtained the convergence(

W (n, ε)(1),W (n)(2), S(n)(1), S(n)(2)
)

d−→
(
W (ε)(1),W (2), S(1), S(2)

)
,

for any ε > 0. Here the limit (W (ε)(1),W (2), S(1), S(2)) is defined as in Theorem 2.2,
where the function f−p is replaced by f ε−p. In order to prove the original theorem for
−p ∈ (0, 1/2) we need to let ε→ 0, which is the subject of the next subsection.

6.2.4 Letting ε→ 0

For simplicity we may assume that d = 1 and r1 = r, k1 = k. In the first step we will
show that

lim
ε→0

lim sup
n→∞

E
[(
W (n, ε)(1) −W (n)(1)

)2]
= 0.

We define the function f̄ ε−p = f−p− f ε−p, p ∈ (0, 1/2). Notice that supp(f̄ ε−p) = [−ε, ε] and
|F−1(f̄ ε−p)| ≤ Cε for all x ∈ R. Applying the formula (2.4) we conclude that

∣∣cov
(
f̄ ε−p

(
∆r
i,kX

)
, f̄ ε−p

(
∆r
i+l,kX

))∣∣ ≤ Cε2 ∫
R2

|Uhk,r,hk,r(·+l)(x, y)|dxdy.

In [22, Lemma 3.4] it has been proved that the inequality
∫
R2 |Uhk,r,hk,r(·+l)(x, y)|dxdy ≤

Cρl holds (in fact, the proof is the same as for Lemma 6.4). Hence, we conclude by Lemma
6.2 and the condition k > H + 1/α∣∣cov

(
f̄ ε−p

(
∆r
i,kX

)
, f̄ ε−p

(
∆r
i+l,kX

))∣∣ ≤ Cε2l(α(H−k)−1)/2 (6.17)

Since (α(H − k)− 1)/2 < −1 when k > H + 1/α we readily deduce the estimate

lim sup
n→∞

E
[(
W (n, ε)(1) −W (n)(1)

)2]
≤ Cε2

and the first statement follows.

Now, we are left to proving weak convergence for the vector (W (ε)(1),W (2)) as ε→ 0.
This random variable is bivariate normal with mean 0. Hence, it suffices to show that the
covariance matrix converges. But this follows by setting ε = 1/N and applying a Cauchy
sequence argument as presented in (6.16). Thus, the proof of Theorem 2.2 is complete.
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6.3 Proof of Theorem 3.1

Part (i) of Theorem 3.1 follows from Theorem 2.2 applied to the setting d = 2, p ∈ (0, 1/2),
kj = k ≥ 2 (and hence k > H + 1/α), and the classical delta method. In fact, we only use
the central limit theorem part of Theorem 2.2.

Part (ii) of Theorem 3.1 is slightly more involved. We start with the identity (t > 0)

ϕhigh(t; Ĥ, k)n − ϕhigh(t;H, k)n =
1

n

n∑
i=k

{
cos(tnĤ∆n

i,kX)− cos(tnH∆n
i,kX)

}
,

where we use the short notation Ĥ = Ĥhigh(p, k)n. Setting Mn = nĤ−H and using the
inequality | cos(y)− cos(x) + (y− x) sin(x)| ≤ C|y− x|α′ for some α′ ∈ (1, α), we conclude
that

ϕhigh(t; Ĥ, k)n − ϕhigh(t;H, k)n = − t(Mn − 1)

n

n∑
i=k

(nH∆n
i,kX) sin(tnH∆n

i,kX) +Rn,

where |Rn| ≤ C
|Mn − 1|α′

n

n∑
i=k

|nH∆n
i,kX|α

′
.

We observe that
√
n(Ĥ −H) is asymptotically normal, which follows by a delta method

from Theorem 2.2 (take d = 2 and use the convergence in distribution W (n)(1)
d−→W (1)).

By the mean value theorem we obtain that

√
n(log n)−1(Mn − 1) =

√
n(Ĥ −H) + oP(1).

Hence, recalling that α′ ∈ (1, α), we deduce by Birkhoff’s ergodic theorem

√
n(log n)−1

(
ϕhigh(t; Ĥ, k)n − ϕhigh(t;H, k)n

)
=
√
n(Ĥ −H)tϕ′(t; k) + oP(1), (6.18)

where we used the identity tϕ′(t; k) = −E[nH∆n
i,kX sin(tnH∆n

i,kX)]. Finally, we note that

ϕhigh(t;H, k)n − ϕ(t; k) = OP(n−1/2),

which follows from Theorem 2.2. Hence, observing the identities (3.3) and (3.4), we obtain
the statement of Theorem 3.1(ii) by applying the delta method to Theorem 2.2.

6.4 Proof of Theorem 4.1

First of all, we note that δ := α−1 − bα−1c ∈ (0, 1) since α−1 6∈ N. Setting δ′ :=
min{δ, 1− δ}/2 > 0 we conclude that

P
(
k̂low 6= 2 + bα−1c

)
≤ P

(
|α̂0

low(t1, t2)
−1
n − α−1| > δ′

)
→ 0,
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because α̂0
low(t1, t2)n

P−→ α and α > 0. This implies the convergence k̂low
a.s.−→ 2 + bα−1c.

Thus, it suffices to prove the asymptotic results of Theorem 4.1 when k̂low is replaced by
2+bα−1c. Now, notice that k = 2+bα−1c automatically satisfies the condition k > H+1/α
since H ∈ (0, 1). This guarantees that the statistic (W (n)(1),W (n)(2)) defined at (2.13)
is in the domain of attraction of the central limit theorem. Hence, Theorem 4.1(i) follows
directly by the delta method from Theorem 2.2 (cf. proof of Theorem 3.1(i)).

6.5 Proof of Proposition 4.2

Proposition 4.2 is shown by exactly the same arguments as Theorem 3.1.

6.6 Proof of Theorem 4.3

Recall that α−1 ∈ N. Hence, we have

P
(
k̂low 6∈ {1 + α−1, 2 + α−1}

)
≤ P

(
|α̂0

low(t1, t2)
−1
n − α−1| > 1

)
→ 0,

because α̂0
low(t1, t2)n

P−→ α and α > 0. Note that k ∈ {1 + α−1, 2 + α−1} satisfies the
condition k > H + α−1, which guarantees the validity of a central limit theorem for the
statistic (W (n)(1),W (n)(2)) defined at (2.13).

We introduce the notation

Tlow(k̂low, n) :=
√
n

 σ̃low(k̂low, t1, t2)n − σ
α̃low(k̂low, t1, t2)n − α
Ĥlow(−p, k̂low)n −H


and

an :=

{√
n : if H < 1− α−1

n1−1/(1+α(1−H)) : if H > 1− α−1

We set Un = an(α̂0
low(t1, t2)n − α), A = (a1, b1) × (a2, b2) × (a3, b3) and observe the

decomposition

P(Tlow(k̂low, n) ∈ A) = P
(
Tlow(1 + α−1, n) ∈ A, α̂0

low(t1, t2)
−1
n − α−1 < 0

)
+ P

(
Tlow(2 + α−1, n) ∈ A, α̂0

low(t1, t2)
−1
n − α−1 ≥ 0

)
+ o(1)

= P
(
Tlow(1 + α−1, n) ∈ A, Un > 0

)
+ P

(
Tlow(2 + α−1, n) ∈ A, Un ≤ 0

)
+ o(1).

Applying Theorem 2.2 and Proposition 4.2, and using the same arguments as in the proof
of Theorem 3.1, we thus conclude the convergence

lim
n→∞

P(Tlow(k̂low, n) ∈ A) = P
(
Bnor

low(−p, 1 + α−1) ∈ A, Blow (−p, 1)2 > 0
)

+ P
(
Bnor

low(−p, 2 + α−1) ∈ A, Blow (−p, 1)2 < 0
)
,
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where Blow(−p, 1) = Bnor
low(−p, 1) if H < 1 − α−1, and Blow(−p, 1) = Bsta

low(−p, 1) if H >
1− α−1. Hence, we immediately obtain the assertion of Theorem 4.3.

6.7 Proof of Theorem 4.5

As in the proof of Theorem 4.1 we conclude that k̂high
a.s.−→ 2 + bα−1c. On the other hand,

similarly to (6.18), we obtain the asymptotic expansion

√
n(log n)−1

(
Vhigh(f−p, Ĥhigh(−p)n)n − Vhigh(f−p)n

)
= −
√
n(Ĥ −H)pmp,k + oP(1),

for any p ∈ (0, 1/2). Hence, the assertion of Theorem 4.5 follows the delta method and
Theorem 2.2 (cf. the proof of Theorem 3.1).

6.8 Proof of Theorem 4.6

The results of Theorem 4.6 follow by the same methods as presented in the proof of
Theorem 4.3.


