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Abstract 

Weitzman (2012, 2013) has suggested a method for calculating social discount rates for long-

term investments when project returns are covariant with consumption or other macroeconomic 

variables, so called “tail-hedge discounting”. This method relies on a parameter called “real project 

gamma“ that measures the proportion of project returns that is covariant with the macroeconomic 

variable. We suggest two approaches for estimation of this gamma when the project returns and the 

macroeconomic variable are co-integrated. First we use Weitzman’s (2012) own approach, and 

second a simple data transformation that keeps gamma within the zero to one interval. In a Mont-

Carlo study we show that the method of using a standardized series is better and robust under 

different data-generating processes. Both approaches are demonstrated in a Monte-Carlo 

experiment and applied to Swedish time-series data from 1950-2011 for annual time-series data 

for rail freight (a measure of returns from rail investments) and GDP. 
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1.Introduction 

The usefulness of cost-benefit analysis as a tool for guiding decision making can be doubted 

when it comes to decisions that affect distant-future outcomes, since the weight given to such 

effects is extremely dependent on the choice of discount rate. This is a major concern to 

climate policy but is also important in several other policy fields. For instance, high-speed rail 

requires enormous upfront infrastructure investments that can only be economically justified, if 

at all, by benefits within a 60 years, or even longer, horizone.1 Likewise, a forest-owner in 

northern Sweden, where reforestation investments after clear-cut fellings are required by law, 

has to wait around 120 years until a plantation of Scots pine (Pinus Sylvestris) can be harvested.  

An unresolved question with substantial implications for the assessment of far-distant future 

benefits is whether they should be assessed with a discount rate that reflects the levels of the 

average return on (risky) investments or the, considerably lower, risk-free rate of return of a 

«safe» placement, for instance in government bonds. In a recent study, Weitzman (2012, 2013) 

has suggested a middleground solution that begins with the rate of return on risky investments 

in the short run and approaches the safe rate in the long run. The underlying idea is that the 

return of an investment can be (linearly) decomposed into one portion that is covariant with 

the nondiversifiable systematic risk of the macroeconomy and another portion that is 

independent of it. It seems then justified to require an average-risk rate of return on the first 

portion and  the risk-free return on the second. Calculating a weighed average of the two rates 

with the corresponding capital values as weights gives a term structure that in the long-run 

                                                           
1 The investment horizon used in appraisal of rail infrastructure investments in Sweden is 60 years. 
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limit reaches the low rate. Weitzman calls the proportion of the expected payoff that is 

correlated with the macroeconomy the real project gamma, henceforth gamma for short. As he 

shows, the weighted average formula has the same form as the conventional CAPM in a two 

period setting, with  gamma replacing the CAPM beta. 

Weitzman, however, gives no clues on how to estimate  gamma. He acknowledges that this is 

the «most difficult stumbling block» for application of his discount rate schedule (Weitzman 

2013, p. 878). This is the challenge that motivates the present study. It departures from the 

observation that GDP and many other economic time series follow a random walk process with 

drift. In the two examples of long-term investments just mentioned we may expect that returns 

on rail-investments have similar time-series properties, in contrast to returns on forest 

investments (Hultkrantz 1993, 1995; Hultkrantz, Andersson and Mantalos 2014).  In this paper 

we extend our previous research based on these polar cases (Hultkrantz, Krüger and Mantalos 

2014, Hultkrantz and Mantalos 2016) by suggesting a general approach for how to estimate 

gamma in the first case, i.e.,  when the project return and the macroeconomic variable are co-

integrated.  

 In Section 2 we describe Weitzman´s method to determine the risk-adjusted social discount rate 

(SDR) from gamma. In Sections 3-5 we focus on the case of two co-integrated unit root with drift 

variables, beginning with a theoretical analysis in Section 3, followed in Section 4 by a Monte-

Carlo simulation study that investigates the values that estimated coefficients of co-integrated 

coefficients get for different models, and finally with an application to real data on rail-freight 

volumes. Section 6 concludes on the methodological findings. 
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2. Economic Theory 

Weitzman´s model 

In the approach suggested by Weitzman (2012, 2013) the instantaneous net benefit of a 

single marginal investment project 𝐵𝐵𝑡𝑡is assumed to be a linear combination of contemporary 

consumption, 𝐶𝐶𝑡𝑡 , standardized with the expected value, and a project-specific random variable 

𝐼𝐼𝑡𝑡 that is uncorrelated with consumption (which therefore can be made deterministic by 

diversification over a pool of projects). More specific, the net benefit at time t is 

𝐵𝐵𝑡𝑡 = 𝑏𝑏𝑡𝑡 �(1 − 𝛾𝛾𝑡𝑡)𝐼𝐼𝑡𝑡 + 𝛾𝛾𝑡𝑡
𝐶𝐶𝑡𝑡

𝐸𝐸(𝐶𝐶𝑡𝑡)
�,     (2.1) 

where 𝛾𝛾𝑡𝑡is the proportion of the pay-offs at time t that is correlated with aggregate 

consumption, and therefore is non-diversifiable,  while (1- 𝛾𝛾𝑡𝑡) is stochastically independent of 

the aggregate economy. The latter component is normalized by setting E(It) = 1 for all t. That 

implies that expected net benefits at time t, are given by E(Bt) = bt.  

Weitzman (2013) defines the gamma, 𝛾𝛾𝑡𝑡, as “the fraction of expected payoff that 

on average is due to the non-diversifiable systematic risk of the uncertain macro-economy” 

(Weitzman 2013, p. 876, italics in original). Introducing the rate of return on a risk free asset fr

and risky equity er , respectively, Weitzman shows that the discount rate for a project with 

gamma 𝛾𝛾𝑡𝑡will be 

𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 = −1
𝑡𝑡

[ln(1 − 𝛾𝛾𝑡𝑡) 𝑒𝑒−𝑟𝑟
𝑓𝑓 + 𝛾𝛾𝑡𝑡𝑒𝑒−𝑟𝑟

𝑒𝑒𝑡𝑡] .    (2.2) 
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Gamma is used as weight in computing a weighted average of the riskless and 

risky discount factors.  Weitzman shows that in the limit as t -> 0, or more precisely when the 

number of periods is two, the risk adjusted rate of discount is  

𝑟𝑟0
𝛾𝛾0 = (1 − 𝛾𝛾0)𝑟𝑟𝑓𝑓  +  𝛾𝛾0 𝑟𝑟𝑒𝑒,        (2.3) 

which is similar to the CAPM equation, but with gamma instead of the CAPM beta. Thus, in this 

case the risk-adjusted rate of discount is a (gamma-weighted) weighted average of the riskless 

and risky rates.  However, as t increases, the risk-adjusted rate will approach the risk-free rate.  

Using this framework Weitzman shows that the term structure of a risk-adjusted 

social rate of discount will be falling, just as previously has been shown for social discount rates 

for discounting certainty equivalent net benefits. The basic economic intuition is related to 

insurance against uncertain future prospects of the overall economy.  The more the net 

benefits of a specific project are uncorrelated with the macroeconomic development, the larger 

will the precautionary motive be for making the investment. The reason for the declining term 

structure is, unlike in previous literature on precautionary motives, in this case not persistence 

of growth rate shocks, as these are assumed to be i.i.d. Instead, as in Weitzman (1998, 2001) it 

emerges  out of the computation of a weighted average of the two discount rates using their 

respective capital value (present value) as weights, which over time gives a stronger relative 

weight to the riskless rate. 

Weitzman notices that this analytical framework may be difficult to apply to the 

computation of the SDR for a specific public investment as there are no frequent market data 

for such projects. However, usually an equal level of the SDR is used for all public investments, 
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at least within a category. In Hultkrantz et al. (2014) we therefore estimated SDRs for public 

investments in transportation infrastructure, assuming that gamma is constant for all future 

periods. In the next section we will now develop the approach used there further for the case 

of two co-integrated random-walk with drift variables. 

3. Estimation of gamma with two co-integrated random-walk with drift variables 

3.1 Defining  gamma  

Consider two random variables, ty and tx , and that there is a linear relationship 

between these two variables, that is: 

0 1t t ty x uµ µ= + + , with 𝑢𝑢𝑡𝑡~𝑖𝑖. 𝑖𝑖.𝑑𝑑. (0,𝜎𝜎2)  (3.1) 

Note that Weitzman uses a different notation for these two variables, with t tB y≡ and t tC x≡ , 

see Weitzman (2013, eq. 1).  Moreover in his analysis (Weitzman 2012), he adjusts the model 

(3.1) by introduction of first a new random variable: 

0t tA uµ≡ + ,                    (3.2) 

and in the next step defining the  gamma as : 

( )
( ) ( )

1

1

t

t t

E x
E A E x

µ
γ

µ
=

+
,      (3.3) 

with 1
( , )

( )
t t

t

Cov y x
Var x

µ = . 
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Using this definition (3.3) in equation (3.1) we have what Weitzman (2012) calls the “weighted 

average decomposition of variation equation”: 

( )1
( ) ( )

t t
t

t t t

y xA
E y E x

γ γ= − +      (3.4) 

Further, using the definition (3.2) in equation (3.4) and for 𝑢𝑢𝑡𝑡~𝑖𝑖. 𝑖𝑖.𝑑𝑑. (0,𝜎𝜎2) it is easy to see 

that we can transform equation (3.1) to the following: 

( ) ( )
0

1
1

( ) ( )
t t

t
t t

y x u
E y E x

γ
γ γ

µ
−

= − + +     (3.5) 

With this equation (3.5) we could use the new mean standardized variables to directly estimate 

the gamma. 

3.2.  The effects of tA  to the estimated gamma 

Weitzman defines gamma as a ”fraction”, which seems to imply that the value is between 

zero and one. However, this is not necessarily so, as we now show. 

1.  Consider that the linear relationship between the two variables is positive, then based on 

equation (3.3) for 

a) ( ) 0tE A > , and, with 0 1µ µ> , we have 1γ <  

b) ( ) 0tE A = , and 0 0µ = , we have 1γ =  

c) ( ) 0tE A < , that means the 0 1µ µ< , we have 1γ >  

2.  If instead we still have the positive linear relationship between the two variables but 
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( ) 0tE A < , and 1 0µ µ> , we have 1γ <  

 

As a result of these simple observations and remembering that the two variables are 

assumed to have a positive linear relationship, gamma is positive but can exceed unity.  

Therefore, we need to modify the equation (3.5) to be restricted for 0 1γ< ≤ . 

But before that, let us have a look into the co-integration case. 

3.3 Model with Co-integration.  

Consider a bivariate co-integrated system for ( ),t t ty x ′=Y with co-integrating vector 

( )1φ δ ′= − . By using the Phillips (1991) triangular representation we have 

( ),  where ~ 0t t t ty x u u Iδ= +                                          (3.6) 

( )1 ,  where ~ 0t t t tx c x Iυ υ−= + +                  (3.7)  

Now the variables are ( ), ~ (1)t ty x I′ . If eq. (3.6) holds with a stationary error term, then the 

two variables are co-integrated. By using OLS to estimate the regression´s δ , we get an 

estimated coefficient that is consistent and converges to the true value at rate T, i.e. the OLS 

estimator is super consistent.  This result gives us the legitimation to use Weitzman´s mean 

standardized method to estimate gamma. 

           Now, consider that the two random variables ty and tx  follow a random walk with drift: 

1 1t y t ty y eα −= + +  ,  𝑒𝑒1𝑡𝑡~𝑖𝑖. 𝑖𝑖.𝑑𝑑. (0,𝜎𝜎2) 
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and            (3.8) 

1 2t x t tx x eα −= + + , 𝑒𝑒2𝑡𝑡~𝑖𝑖. 𝑖𝑖.𝑑𝑑. (0,𝜎𝜎2)        

For start values 0 0, 0y x ≠  we can write them as: 

0 1
1

T

t y ty t y eα= + +∑ and 0 2
1

T

t x tx t x eα= + +∑      (3.9) 

Suppose that the variables are co-integrated with the co-integrating vector ( )1φ δ ′= −  then 

based on equation (3.6) we get: 

0 2
1

T

t t t x t ty x u t x e uδ δ α = + = + + + 
 

∑  

By using the common stochastically trend, the co-integrated relationship becomes: 

0 0
1 1

T T

x xt t x xt tt x e u t x e uδ α δ α  ′ = + + + − + + =  
  

∑ ∑tβ Y     (3.10) 

It is not difficult to see that: 

( ) ( )t tE y E xδ= , and 0( )t xE x t xα= +       (3.11) 

Then based on (3.4) the Weitzman´s “mean-standardized” variables become:  

( ) ( )
t t

t t

y y
E y E xδ

=   

Moreover, from equation (3.6) by dividing both sides with ( )tE y we have: 
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1
( ) ( ) ( ) ( ) ( ) ( ) ( )

t t t t t t t

t t t t t t t

y x u x u x u
E y E y E y E x E x E x E x

δδ
δ δ δ

= + = + = +     (3.12) 

The last result tells that, whatever the co-integrating vector is, for the Weitzman´s “mean 

standardized” variables for these series we expect the regression coefficient to be equal to one. 

Note that this result is valid when we do not have a constant in the co-integration regression.  

If instead the co-integration regression has a constant, that is, 

( ),  where ~ 0t t t ty c x u u Iδ= + +                                           (3.13) 

( )1 ,  where ~ 0t x t t tx a x Iυ υ−= + +                   (3.14)  

we have the original model (3.1), i.e., without standardization with means. 

3.3  Empirical Estimates.  

 

Consider two random variables ty and tx  that follow a random walk with drift and general co-

integration vector: ( )t ty xδ−  

For a start value 0 0, 0y x ≠ we can write as before: 

0 1
1

T

t t yy y e tα= + +∑ and 0 2
1

T

t t xx x e tα= + +∑     (3.15) 

Now if , 0y xα α ≠ , the averages: 

0 y yy y S tα= + +  and 0 x xx x S tα= + +   , 
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   where  
(.)

1
(.)

T

te
S

T

 
 
 =

∑ ∑
, that is, the average of cumulative sum of error terms             (3.16)                                                                                         

diverge and do estimate the ( ), ( )t tE y E x , see Johansen (2007). 

3.5  A simple modification 

Consider again equation (3.5) with a modification of ,t ty x  so that we have the following 

equation: 

( )* *1t t ty x uγ γ= − + +        (3.17) 

It is well known that the OLS estimation of the constant term is: 

* *ˆ ˆ(1 ) y xγ γ− = −        (3.18) 

From this, is not difficult to see that the modified variables have to have “means” equal to one 

to meet the restriction (3.18), i.e., 

* * 1y x= =         (3.19) 

Now, let us look on another simple relationship in the regression between two variables: 

*

* *

*
,

ˆ y
x y

x

s
r

s
γ =         (3.20) 

Based on that relationship, for the gamma estimation to meet the restriction  0 1γ< ≤  it must 

be that ( ) ( )* *x y
s s=  . In that case the correlation coefficient is equal to gamma. 
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The simplest way to meet this restriction and equation (3.19), while maintaining the same 

relationship between the two variables, is to use the following simple transformation: 

( ) ( )* */ 1, / 1,
t tt t y t t xy y y s x x x s   = − + = − +        (3.21) 

In this way both variables have the same means and the same standard deviations equal to 

one. And in that case the correlation of these two variables should be a good estimate of 

gamma. But we do not need to make all these data transformations, as gamma is just the 

correlation coefficient in a static regression system. 

However, because below we have time series in regression (3.19) the results become more 

complicated. For that reason we study estimation methods with a Monte-Carlo experiment. 

4. Monte-Carlo simulation 

We performed a Monte-Carlo experiment by generating data according to the model defined 

by 

 2 ,t t ty c x eδ= + +                                      (4.1)       

1 1 ,t x t tx a x e−= + +      (4.2) 

Simulations were made for three main versions of this model: 

Model 1: 

The error components ( )1 2,t te e ′  in model 1 were generated as  

2
it~i.i.d.,  E( ) 0, E( ) 0.25it ite e e= =  and ( )1 2Cov  e  = 0t te . 
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Model 2: 

The error components ( )1 2,t te e ′   in model 2 were generated as  

2
1 1 1t~i.i.d.,  E( ) 0, E( ) 0.25t te e e= =   

2
2 2 1 1 t= 0.5 +    ~i.i.d.,  E( ) 0, E( ) 0.25t t t t te e u u u u− = =  

 and ( )1 2Cov  e  = 0t te . 

That is, there is autocorrelation in the co-integrated regression´s error terms. The drift term is 

0.23xa =  in both models. 

The variables yt  and xt  are integrated of order one, I(1), and are co-integrated. Without loss of 

generality, the co-integrating vector for ( yt , xt )´ is  (1, -8.43)´ . This setting is because this is the 

co-integration vector in the applied example that will be studied later. 

For each time series, 50 pre-sample values were generated with zero initial conditions, taking net 

sample sizes of T = 25, 50, 75 and 200.  

Three sub models were also estimated for each model: 

1) with c =0, that is, no constant in the co-integrated regression  

2) with c =17.25, that is, positive constant in the co-integrated regression 

3) with c =-17.25, that is, negative constant in the co-integrated regression 

Model 3: 

Finally to study the variance effect, the following model was simulated: 

The error components ( )1 2,t te e ′   in this model 3 are generated;  
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2
1 1 1t~i.i.d.,  E( ) 0, E( ) 0.0215t te e e= =   

2
2 2 1 1 t= 0.5 +    ~i.i.d.,  E( ) 0, E( ) 1.04t t t t te e u u u u− = =  

 and ( )1 2Cov  e  = 0t te . 

4) With drift term is 0.023xa = and net sample 62 observations. The cointegrating vector for   

( yt , xt )´ is also here  (1, -8.43)´ and with c =-17.25, that is, negative constant in the co-

integrated regression. 

Finally the number of Monte Carlo replications per model is 1,000. The calculations were 

performed using GAUSS 12.  

5. Results of the Monte Carlo simulations. 

In the simulation for model 1 as was shown in the previous section we expected that estimated 

coefficient should be near to one, both for  Weitzman´s “mean standardized” method and the 

suggested alternative, the standardized transformed method.  

Figure 1 shows the Weitzman´s method with white noise and with autocorrelation in the errors, 

model 1 and 2, case 1, that is, without a constant in the co-integrating regression. 

The estimates behave as we expected, close to one coefficient even for 25 observations 

between 0.988 and 1.01, (2 decimal accuracy).  Also, the autocorrelation effect is very small 

between 0.980 and 1.017. 

Figure 1: Model 1 and 2 case 1 Weitzman´s method for estimating the  gamma 

Figure 1a 25 Observations White noise Figure 1c 25 Observations AR(1) errors 
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Figure 1b 50 Observations White noise 

 

Figure 1d 50 Observations AR(1) errors 

 
Figure 1c 75 Observations White noise 

 

Figure 1e 75 Observations AR(1) errors 

 
Figure 1d 200 Observations White noise 

 

Figure 1f 200 Observations AR(1) errors 

 
Figure 2: Model 2 case 1 Standardized transformed series for estimating gamma 

Figure 2a 25 Observations 
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Figure 2b 50 Observations 

 
Figure 2c 75 Observations 

 
Figure 2d 200 Observations 
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 In the co-integration case, we have super-consistent estimations of the regressions coefficient, 

which here leads to accuracy at the third decimal, even for a sample of 75 observations, see 

figures 1c and 1e. 

The difference in estimation of gamma between model 1 with white noise and model 2 with 

autocorrelation in errors is very small, so we show only the “worst” case results from 

estimation of model 2. 

Figure 2 shows the results from estimating gamma on the mean standardized transformed series. It 

can be observed that as expected (after all, is equal to correlations coefficient) no estimates exceed 1. 

Moreover, even for 25 observations we have accuracy at the third decimal, between 0.9989 and 

0.99989. For 50 observations, we have accuracy of at the fourth decimal and for 200 

observations at the sixth decimal. 

Summarizing the results for models 1 and 2 in the case 1 both methods perform satisfactorily. 

However we prefer our method of standardized transformed series for estimating gamma 

because it´s always less than one and the same time very near to one, that is, more efficient 

than Weitzman´s method. 

Figure 3 shows the results for Model 2 and  case 2 for 75 observations. Here the results agree 

with the results presented in chapter 3.2 case (a).  Weitzman´s method shows estimates less 

than the expected one, between 0.847 and 0.92, while the method of standardized 

transformed series performs better again with results between 0.999945 and 0.999991, that is, 

our method is more robust than the Weitzman´s. 
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Figure 3: Model 2  case 2 Weitzman´s and Standardized transformed methods for estimating gamma 

Figure 3a 75 Observations Weitzman´s 

 

Figure 3b 75 Observations Standardized transformed 

 
 

Figure 4 shows the results for Model 2 and  case 3 for 75 observations. Weitzman´s method 

gives estimates that exceed the expected one, between 1.08 and 1.145. Once more our method 

of standardized transformed series performs better again and it seems not to be affected by 

the sign of the constant term.  

Figure 4 Model 2  case 3 Weitzman´s and standardized transformed methods for estimating gamma 

Figure 4a 75 Observations Weitzman´s 

 

Figure 4b 75 Observations Standardized transformed 

 
 



19 
 

Finally figure 5 shows the results of the variance effect for model 3. Here the variance of ty is 

quite larger than the variance of tx .  We can observe that Weitzman´s method gives estimates 

that not only exceed the expected one, but also estimate values less than one. As figure 5a 

shows that the greatly biased estimation, with a values as big as 400 and negative as -400, of 

the gamma with Weitzman´s method, while the standardized transformed method for 

estimating the gamma is still good and near to one with only 1 decimal accurate. 

Figure 5 Model 3   Weitzman´s and standardized transformed methods for estimating gamma 

Figure 5a 61 Observations Weitzman´s 

 

Figure 5b 61 Observations standardized transformed 

 
 

Note that we use 61 observations in figure 5 because this case is similarly to the follow applied 

example. 

Summarizing the results of our simulations is that we prefer the method of standardized 

transformed series for estimating gamma because it´s more efficient than Weitzman´s method 

and robust in all the studied cases with or without constant in co-integrating regression. 

Moreover, it is much more robust in the cases when the two variables have different variances.  
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6. An empirical example. 

The analysis here uses the same data that Hultkrantz et al. (2014) have studied. We use the 61 

observations of the logarithm of GDP in Sweden and the series “RailT” annual ton-kilometer 

data for railroads for the period 1950–2011. We follow the same notation as in Hultkrantz et al. 

(2014), so the two variables will be called LnGDP and RailT.  

Figure 6a shows the original series, while 6b shows the Weitzman´s transformation of the data, 

finally, 6 c shows the standardized transformed series. 

Figure 6a shows the two raw series that we use in our example it is difficult to say anything 

more that show a kind of trend, stochastic or deterministic. A unit root test showed that the 

series follow a random walk with drift, (see Hultkrantz et al. 2014). 

Table 1 shows the summary statistics and we observe the interesting thing that the standard 

deviation of the RailT is 10 times larger than the standard deviation of LnGDP.  Note also that 

we have adapted these statistics in our simulation model 3. 

Figure 6b shows Weitzman´s transformation while Figure 6c shows the standardized 

transformed series. The last figure reveals also the possible co-integration of these series. 

 

 

Figure 6. Original, Weitzman´s and standardized transformed, GDP and RailT series.  

Figure 6a 
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Figure 6b 

 
Figure 6c 
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Table 1: Summary Statistics for the variables RailT and LnGDP 

 
RailT (1950 – 2011) 

 
 Mean Median Minimum Maximum 

16.3560 17.3290 8.64000 23.4640 
 Std.Dev. C.V. Skewness Ex. Kurt. 
4.11692 0.251707 -0.332079 -0.933177 

 

 
LnGDP (1950 – 2011) 

 
 Mean Median Minimum Maximum 

3.98679 4.04743 3.06805 4.71313 
 Std. Dev. C.V. Skewness Ex. Kurt. 
0.472864 0.118608 -0.365175 -0.893852 

 

 

Table 2 shows that the unit-root hypothesis is rejected (t-statistic = -4.39952) for the residuals 

(u-hat) from the co-integrating regression. That is, there is evidence for a co-integrating 

relationship. Now based on that result we expect that the “gamma” should be near or equal to 

one. So we estimate “gamma” with Weitzman´s standarized data, Table 3 and with the 

standardized transformed series, Table 4. 

Table 2 Engle-Granger 2 steps co-integration test 

Step 1: Co-integrating regression 
 
Co-integrating regression - OLS, using observations 1950-2011 (T = 62)   Dependent variable: RailT 
 
                    coefficient   std. error   t-ratio    p-value  
  --------------------------------------------------------- 
  const        -17.2505      1.12884     -15.28    2.37e-022 *** 
  LnGDP         8.42946     0.281207     29.98    8.33e-038 *** 
 
 
Step 2: testing for a unit root in uhat 
 
Augmented Dickey-Fuller test for uhat including one lag of (1-L)uhat  sample size 60 
unit-root null hypothesis: a = 1 
 
   model: (1-L)y = (a-1)*y(-1) + ... + e 
   1st-order autocorrelation coeff. for e:    0.015000 
   estimated value of (a - 1):                         -0.558119 
   test statistic: tau_c(2) =                             -4.399520 
   asymptotic p-value                                      0.001732 
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As we expected based on our Monte Carlo results, table 3 shows that the estimated gamma 

with Weitzman´s method is long away from the expected “one” coefficient is more than 2,   

while table 4 shows an estimated gamma very near to “one” (0.968197) with the standardized 

transformed series.  

Note also by using Maximum likelihood and take in account the autocorrelation of the error 

term, with standardized transformed series we get gamma equal to 0.978543. 

Table 3 Weitzman´s method for estimating gamma 

 
OLS, using observations 1950-2011 (T = 62) 

Dependent variable: RailT_m 
 

  Coefficient Std. Error t-ratio p-value  
const -1.05469 0.069017 -15.2815 <0.00001 *** 
LnGDP_m 2.05469 0.0685443 29.9760 <0.00001 *** 

 
Mean dependent var  1.000000  S.D. dependent var  0.251707 
Sum squared resid  0.241908  S.E. of regression  0.063496 
R-squared  0.937406  Adjusted R-squared  0.936363 
F(1. 60)  898.5620  P-value(F)  8.33e-38 

 

 

Table 4 Standardized transformed method for estimating gamma 

 
OLS, using observations 1950-2011 (T = 62) 

Dependent variable: RailT_z 
 

  Coefficient Std. Error t-ratio p-value  
const 0.0318026 0.0454932 0.6991 0.48721  
LnGDP_z 0.968197 0.0322991 29.9760 <0.00001 *** 

 
Mean dependent var  1.000000  S.D. dependent var  1.000000 
Sum squared resid  3.818219  S.E. of regression  0.252264 
R-squared  0.937406  Adjusted R-squared  0.936363 
F(1. 60)  898.5620  P-value(F)  8.33e-38 
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7. Conclusion and Summary. 

In this paper we suggest approaches for how to estimate the Weitzman (2012) gamma in 

the polar cases when the project return and the macroeconomic variable are co-integrated. 

We use Weitzman (2012) approach, and our simple data transformation that keeps the “real 

project gamma” within the zero to one interval. 

With a Monte Carlo study we show that our method of Standardized transformed series 

for estimating gamma is better, because it´s always less than one and the same time very 

near to one, that is, more efficient than Weitzman´s method. 

Finally, we demonstrate the same findings in a Monte Carlo experiment and show the 

superiority of our method in an application based on Swedish time-series data from 1950-

2011 for annual time-series data for rail freight rents and GDP. 

Now we are comfortable that by using historical data and the method of standardized 

transformed series in the polar case when the project returns and the macroeconomic 

variable are co-integrated, we have a method for estimating gamma that is robust. Moreover, 

this inspires us to investigate in a new paper the case when the project returns and the 

macroeconomic variable are not co-integrated. 
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