
Eklund, Jana; Karlsson, Sune

Working Paper

An Embarrassment of Riches: Forecasting Using
Large Panels

Working Paper, No. 1/2007

Provided in Cooperation with:
Örebro University School of Business

Suggested Citation: Eklund, Jana; Karlsson, Sune (2007) : An Embarrassment of Riches:
Forecasting Using Large Panels, Working Paper, No. 1/2007, Örebro University School of
Business, Örebro

This Version is available at:
https://hdl.handle.net/10419/244426

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/244426
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


ISSN 1403-0586  

 

 
 

WORKING PAPER SERIES 
 

WORKING PAPER NO 1, 2007 
 
 
 

 
 
 

ESI 
 

 
 

An Embarrassment of Riches:  
Forecasting Using Large Panels 

 
 

by 
 
 

Jana Eklund 
Bank of England 

 
 

Sune Karlsson 
Örebro University 

 

 
 
 
 

 
 
 
 

 
http://www.oru.se/esi/wps 
sune.karlsson@esi.oru.se 

jana.eklund@bankofengland.co.uk 
 

SE-701 82 Örebro 
SWEDEN 



An Embarrassment of Riches:

Forecasting Using Large Panels∗

Jana Eklund

Bank of England†
Sune Karlsson
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Abstract

The increasing availability of data and potential predictor variables poses
new challenges to forecasters. The task of formulating a single forecasting model
that can extract all the relevant information is becoming increasingly difficult in
the face of this abundance of data. The two leading approaches to addressing
this ”embarrassment of riches” are philosophically distinct. One approach builds
forecast models based on summaries of the predictor variables, such as principal
components, and the second approach is analogous to forecast combination,
where the forecasts from a multitude of possible models are averaged. Using
several data sets we compare the performance of the two approaches in the guise
of the diffusion index or factor models popularized by Stock and Watson and
forecast combination as an application of Bayesian model averaging. We find
that none of the methods is uniformly superior and that no method performs
better than, or is outperformed by, a simple AR(p) process.
Keywords: Bayesian model averaging, Diffusion indexes, GDP growth rate,
Inflation rate.
JEL-codes: C11, C51, C52, C53

∗The views expressed in this paper are those of the authors, and not necessarily those of the Bank
of England. The work on this paper was carried out while the first author was affiliated with the
Stockholm School of Economics. Earlier versions of the paper has been circulated under the title
”Forecasting With Many Predictors”.

†Jana.Eklund@bankofengland.co.uk
‡Corresponding author: Department of Economics, Statistics and Informatics, Örebro University,
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1 Introduction

The number of potential predictors for macroeconomic variables can easily count in

the hundreds, e.g. Stock and Watson (2002b) collect some 200 predictor variables for

the US economy. Paradoxically, having more information in the form of more predictor

variables makes forecasting more difficult. Simply put, the task of formulating a

forecasting model and extracting the relevant information from the predictors becomes

more complex as the number of possible predictors increases. The increasing availability

of data is thus creating new challenges for the forecaster. There are, essentially, two

different approaches to address this problem. The first approach builds forecast models

based on summaries of the predictor variables, such as principal components, and

the second approach is analogous to forecast combination, where the forecasts from a

multitude of possible models are averaged.

Each attempts to overcome the shortcomings of the traditional approach of selecting

a single forecasting model based on a few predictors. Clearly, using a single model,

which by necessity can only incorporate a small subset of the variables, will fail to

take account of all information in the data. In addition, by being based on a single

model the forecast does not take account of model uncertainty. Basing the forecast

model on data summaries in the form of principal components, as in Stock and Watson

(2002b), allows information from all the predictors to enter into the forecasts, but not

necessarily in an optimal fashion since the summaries of the predictors are created

without a reference to the predicted variable. Model averaging, on the other hand,

summarizes the different possible relationships between the predicted variable and

the predictor variables. With appropriately chosen weights, this should lead to more

efficient extraction of information. Model averaging also has the advantage of providing

robustness against misspecification, and model uncertainty can easily be accounted for

if the model averaging is conducted in a Bayesian setting, i.e. the weights are the

posterior probabilities of the models. In addition the models and their averages are

more easily interpreted than principal components and inference on the importance of

individual predictors is available.

The potential benefits of model averaging as a tool for extracting the relevant

information from a large set of predictor variables come at the cost of considerable

computational complexity. With 100 predictor variables one obtains more than 1030

different models just by considering the different possible combinations of the variables,

and it is clearly impossible to include all of them in a model averaging exercise.

Recent advances in Bayesian computing, utilized by e.g. Jacobson and Karlsson (2004),

provide one way forward by identifying the subset of important models as measured by

their posterior probability, i.e. the set of models which would receive a non-negligible

weight in the forecast combination.

Koop and Potter (2004) apply Bayesian model averaging (BMA) to dynamic

2



factor models by orthogonalizing the predictors, using a transformation to principal

components. Koop and Potter conclude that models containing factors do outperform

autoregressive models in forecasting, but only narrowly and at short horizons. Also

the gains provided by using BMA over forecasting methods based on a single model

are more appreciable relative to the small forecasting gains from factor-based models.

The purpose of this paper is to evaluate the forecasting performance of the factor

model approach of Stock and Watson (2002b), the Bayesian model averaging approach

of Jacobson and Karlsson (2004), and the combined approach of Koop and Potter

(2004). Any forecast evaluation is dependent on the choice of variable to forecast and

the dataset used. To protect against this, we use three different datasets with two

different frequencies, and forecast both inflation and GDP.

In all three cases the forecasts are based on a simple linear model,

yt+h = xtβh + εt+h, (1)

where xt, in the case of Stock and Watson, consists of the first few principal

components, possibly augmented with lags of these and lagged values of yt. In the

Bayesian model averaging approach of Jacobson and Karlsson, xt is a subset of the

regressor variables, possibly including lags of the predictors and yt, and the forecasts

are obtained by averaging over the forecasts from the different models. In the combined

approach of Koop and Potter, xt contains a selected subset of orthogonalized regressors.

There are two features worth noting about this setup, the forecast model depends on

the forecast horizon, h, and the forecasts are static, i.e. there is no need to forecast xt.

The remainder of the chapter is organized as follows. Section 2 presents the

forecasting approaches in large panels, Section 3 compares the different forecast

methods, and Section 4 concludes.

2 Forecasting methods

2.1 Factor models

The factor based approach to forecasting with large data sets is based on the assumption

that the relevant information is captured by a small number of factors common to the

predictor variables. The forecasts are constructed using a two-step procedure. First,

the method of principal components is used to extract factors from the predictors xt.

In the second step the factors are used to forecast the time series yt+h.

In particular, let yt+h be a scalar series that is being forecast h-periods ahead, and

let xt be a N -dimensional multiple time series of variables serving as predictors. Now

consider the forecasting equation

yt+h = β (L) ft + γyt + εt+h, t = 1, . . . , T, (2)
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where ft is a vector of q unobservable common factors and yt is a set of p + 1

variables, such as lags of yt. Furthermore β (L) is a vector lag polynomial and

γ = (γ0, γ1, . . . , γp)
′ . Suppose that the observed series xt and yt+h in (2) allow for

a dynamic factor model with q common dynamic factors ft

xit = λi (L) ft + eit, i = 1, . . . , N ; t = 1, . . . , T, (3)

where λi (L) is a lag polynomial vector, and eit is an idiosyncratic disturbance. In

addition, it is assumed that

E (εt+h| ft, yt,xt, ft−1, yt−1,xt−1, . . .) = 0. (4)

Assume that the lag polynomial vectors are of order s. The dynamic factor model

(2)− (3) can then be restated as

yt+h = B′Ft + γyt + εt+h, (5)

xt = ΛFt + et, (6)

where B = (β′
0, . . . ,β

′
s)
′ ,Ft =

(
f ′t, f

′
t−1, . . . , f

′
t−s

)′
is a ((s + 1) q × 1) vector, and the

i-th row of Λ is (λi0, . . . , λis) .

The (s + 1) q factors Ft in (6) are estimated using principal components, denoted

by F̃t. In the second step, after regressing yt+h on a constant, F̃t, r possible lags of F̃t,

p lags of yt, the general forecasting function becomes

ŷT+h|T = α̂h +
r∑

j=0

B̂′
hjF̃T−j +

p∑
j=0

γ̂hjyT−j, (7)

where ŷT+h|T is the h-step ahead forecast.

Stock and Watson (2002b) use factor models to forecast macroeconomic variables,

measuring both real economic activity and prices. The factor model forecast is

compared with other forecasting models, such as autoregressive forecast (AR), vector

autoregressive forecast and multivariate leading indicator forecast. Stock and Watson

(2002b) consider U.S. monthly series with the total number of possible predictors being

215. They find that for real variables factor models with two factors, or autoregressive

factor models with two factors improve forecasting performance the most. For price

indices the autoregressive factor models forecasts with one factor are preferred. In

a recent paper, Boivin and Ng (2005) point out that two researchers can arrive at

different forecasts using factor models, because the factors are estimated differently

and/or the forecasting equations are specified differently. Boivin and Ng concentrate

on the two leading methods in the literature, the dynamic method of Forni, Hallin,

Lippi, and Reichlin (2005) and the static method of Stock and Watson (2002a). Boivin

and Ng investigate the sensitivity of the estimates of the factors and the forecasts

based on factor models to the dynamics of the factors and the specification of the
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forecasting equation. Their main findings are that unconstrained modelling of the

series of interest tends to give more robust forecasts when the data generating process

is unknown, and that the methodology of Stock and Watson (2002a) apparently does

have these properties.

2.2 Bayesian model averaging

Bayesian model averaging can be used to combine forecasts from the set of models that

can be constructed using various combinations of the predictors. The averaging over

many different competing models incorporates model as well as parameter uncertainty

into conclusions about parameters and predictions. See Hoeting, Madigan, Raftery,

and Volinsky (1999) for references and an overview of Bayesian model averaging.

Given a set M = {M1, . . . ,MM} of possible models, prior probabilities of the

models, p (Mi), prior distribution of the parameter in each model, p (θi|Mi) and

likelihoods, L (y|θi,Mi) all quantities of interest for model averaging and selection

can be obtained by using Bayes rule. The posterior probabilities of the models are

given by

p (Mi|y) =
m (y|Mi) p (Mi)∑M

j=1 m (y|Mj) p (Mj)
=

[
M∑

j=1

m (y|Mj) p (Mj)

m (y|Mi) p (Mi)

]−1

, (8)

where m (y|Mi) is the marginal likelihood

m (y|Mi) =

∫
L (y|θi,Mi) p (θi|Mi) dθi, (9)

for model i = 1, . . . ,M. The posterior distribution of some quantity of interest, φ, when

taking account of model uncertainty, is

p (φ|y) =
M∑

j=1

p (φ|y,Mj) p (Mj|y) , (10)

which is an average of the posterior distribution under each of the models, weighted

by their posterior model probabilities. In particular, the minimum mean squared error

forecast is given by

ŷT+h|T = E (yT+h|y) =
M∑

j=1

E (yT+h|y,Mj) p (Mj|y) , (11)

where E (yT+h|y,Mj) is the forecast conditional on modelMj. This forecast is a special

case of forecast combination with weights wj

ŷT+h|T =
M∑

j=1

ŷT+h, j|T wj, (12)

where BMA provides optimal weights under the assumptions of the forecasting exercise.
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2.3 The parameter prior and the posterior distributions

Consider a linear model with k regressors

yt+h = ztγh + εt+h, (13)

where γh = (αh, β
′
h)
′, is a k + 1 parameter vector and zt = (ι,x′t) is a vector of

explanatory variables.

A challenging task in BMA and model selection is the specification of the prior

distribution for the parameters γ in the different models. The posterior model

probabilities (8) depend on the prior for the model parameters. Due to the large

number of models it is desirable to use priors in an automated fashion. The priors

should be relatively uninformative and also robust in the sense that conclusions are

qualitatively insensitive to reasonable changes in the priors. A common choice in BMA

for the class of the normal linear model is the g-prior of Zellner (1986) for the regression

parameters,

p
(
γ

∣∣σ2,M
)
∼ Nk+1

(
0, cσ2 (Z′Z)

−1
)

(14)

that is, the prior mean is set to zero indicating shrinkage of the posterior towards zero

and the prior variance is proportional to the data information. Improper priors can be

used on the parameters that have identical interpretation across all models. In the case

of a linear regression model we can use the usual uninformative prior for the variance,

p
(
σ2

)
∝ 1/σ2. (15)

These priors lead to a proper posterior on the regression parameters, which are t-

distributed with T degrees of freedom,

p (γ|y) ∼ tk+1 (γ1, S,M, T ) , (16)

where

γ1 =
c

c + 1
γ̂, (17)

is a scaled down version of the least squares estimate, and

S =
c

c + 1
(y − Zγ̂)′ (y − Zγ̂) +

1

c + 1
y′y, (18)

M =
c + 1

c
Z′Z. (19)

The marginal likelihood is a multivariate t-distribution

m (y|M) ∝ (c + 1)−(k+1)/2 S−T/2. (20)

The prior (14) requires only specification of the hyperparameter c. Our prior

is similar to the one advocated by Fernández, Ley, and Steel (2001), the essential
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difference being that they use an improper prior for both the constant term and the

variance. In a rather extensive study Fernández, Ley, and Steel (2001) investigate

various choices of c. Their recommendation is to set the hyperparameter to

c =

{
N2 if T ≤ N2,

T if T > N2.
(21)

2.3.1 The model prior and the model space

A second challenge arises with the size of the model space. All possible combinations

of N potential predictors result in 2N models. Traversing the complete model space,

calculating the posterior probabilities, BMA forecasts and the posterior inclusion

probabilities of the variables is thus impractical. A convenient method to identify

a set of models with non-negligible posterior model probabilities without examining

the full model space, is the reversible jump Markov chain Monte Carlo algorithm, see

Green (1995). The details of the algorithm are given as Algorithm 1.

This Markov chain converges to the posterior model probabilities under quite

general conditions and provides one way of estimating p (M|y). The estimated

posterior model probabilities (8) are (for obvious reasons) conditional on the set of

models visited by the chain. To verify that the Markov chain captures most of the total

posterior probability mass the method suggested by George and McCulloch (1997) can

be used. This method utilizes two separate Markov chains, each starting at a random

model. The secondary chain is run for a predetermined number of steps and is then

used to provide a capture-recapture type estimate of the total visited probability for

the primary chain.

The number of models that enter the model averaging can be further reduced by

imposing restrictions on the high-dimensional model space. Being uninformative about

the model space results in all models having equal probability and then unrealistically

large models are included in the average. Instead, a model prior that downweights

models containing a large number of predictors can be used

p (Mi) ∝ δki (1− δ)N−ki , (24)

where ki is number of predictors in a model Mi. Setting δ = 0.5 is equivalent to a

constant model prior

p (Mi) = pi =
1

M
, i = 1, 2, . . . ,M. (25)

2.4 Bayesian model averaging with factor models

Koop and Potter (2004) use Bayesian techniques to select factors in dynamic factor

models as well as BMA to average forecasts over model specifications. They consider
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Algorithm 1 Reversible jump Markov chain Monte Carlo

Suppose that the Markov chain is at model M, having parameters θM, where θM has

dimension dim (θM) .

1. Propose a jump from model M to a new model M′ with probability j(M′|M).

2. Generate vector u (which can have different dimension than θM′) from a specified

proposal density q (u|θM,M,M′) .

3. Set (θM′ ,u′) = gM,M′ (θM,u), where gM,M′ is a specified invertible function.

Hence dim (θM) + dim (u) = dim (θM′) + dim (u′). Note that gM,M′ = g−1
M′,M.

4. Accept the proposed move with probability

α = min

{
1,

L (y|θM′ ,M′) p (θM′|M′) p (M′) j (M|M′)

L (y|θM,M) p (θM|M) p (M) j (M′|M)

× q (u′|θM′ ,M′,M)

q (u|θM,M,M′)

∣∣∣∣∂gM,M′ (θM,u)

∂ (θM,u)

∣∣∣∣} . (22)

5. Set M = M′ if the move is accepted.

If all parameters of the proposed model are generated directly from a proposal

distribution, then (θM′ ,u′) = (u, θM) with dim (θM) = dim (u′) and dim (θM′) =

dim (u), and the Jacobian is unity. If, in addition, the proposal q (u|θM,M,M′) is

the posterior p (θM′|y,M′) then (22) simplifies to

α = min

{
1,

m (y|M′) p (M′) j (M|M′)

m (y|M) p (M) j (M′|M)

}
. (23)

This implies that we do not need to perform steps 2 and 3 of the algorithm. Two types

of model changing moves are considered:

1. Draw a variable at random and exclude it from the model if it is already in the

model, otherwise add it. This step is attempted with probability pA.

2. Swap a randomly selected variable in the model for a randomly selected variable

outside the model. This step is attempted with probability 1− pA.
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a number of different model priors and evaluate their forecasting performance, and

the in-sample and out-of-sample performance of model selection, model averaging and

factor models. A common set of variables, the constant term and lags of the dependent

variable, are included in each model. These are assigned flat priors and marginalized

out in the same way as the constant is treated by Fernández, Ley, and Steel (2001). The

basic model (13) still applies with suitably transformed dependent and explanatory

variables. The priors (14) and (15) are used for the reduced model. To apply the

BMA approach on the factor models, the regressors zt are transformed to principal

components using the orthogonal transformation W = ZE, where E is the matrix of

eigenvectors of Z′Z. The model with orthogonal regressors is then

yt+h = wtζh + εt+h, (26)

with ζh = E−1γh. The prior for the regression coefficients becomes

p
(
ζ

∣∣σ2,M
)
∼ Nk+1

(
0, cσ2 (E′Z′ZE)

−1
)

(27)

yielding the posterior

p (ζ|y) ∼ tk+1 (ζ1, S,M, T ) , (28)

with Z and γ replaced accordingly by W and ζ, respectively in the equation (17). The

use of orthogonalized regressor has the practical advantage that the computational

effort is reduced compared to BMA or Bayesian variable selection with non-orthogonal

regressors. Since W′W is diagonal the marginal likelihood ratio in (23) simplifies and

depends only on the model variables that are unique to either model. The ratios can

thus be easily precomputed for the case when the models only differ by one or two

variables.

Koop and Potter (2004) focus on forecasting the growth rates of US GDP and

inflation using a set of 162 predictors. They conclude that BMA forecasts improve on

an AR(2) benchmark forecasts at short, but not at longer horizons and only by a small

margin. These findings are attributed to the presence of structural instability and

the fact that lags of the dependent variable seem to contain most of the information

relevant for forecasting. Koop and Potter also investigate the forecasting performance

of several model priors. They found that priors, which focus on principal components

explaining 99.9% of the variance of the predictors, provide the best results, and that

the non-informative prior (25) performs very poorly.

2.5 Median probability model

In addition we take the opportunity to apply a method proposed by Barbieri and

Berger (2004). This method does not directly deal with the situation of having many

predictors, but it is of some interest and is easily implemented since the posterior model

probabilities are available from the BMA exercise.
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Barbieri and Berger show that for selection among linear models the optimal

predictive model is often the median probability model, which is defined as the model

consisting of variables that have overall posterior inclusion probability of at least 1/2.

The posterior inclusion probability for a variable i is given by

p (xi|y) =
M∑

j=1

1 (xi ∈Mj) p (Mj|y) , (29)

where 1 (xi ∈Mj) equals one if xi is included in model Mj and zero otherwise. It

is possible that no variable has a posterior inclusion probability exceeding 1/2. The

median probability model is, however, assured to exist in two important cases, one is

the problem of variable selection, when any variable can be included or excluded from

the model, and the other case is when the models under consideration follow a graphical

model structure, for example a sequence of nested models. Barbieri and Berger show

that the median probability model will frequently coincide with the highest posterior

probability model. One obvious situation is when there is a model with posterior

probability higher than 1/2. Other situations include the problem of variable selection

under an orthogonal design matrix, certain prior structures and known variance σ2.

In Barbieri and Berger’s (2004) experience the median probability model outperforms

the maximum probability model in terms of predictive performance. They suggest

that the median probability model should routinely be determined and reported as a

complement to the maximum probability model.

3 Forecast comparison

We explore the performance of the methods mentioned in the previous section on

three different datasets, and compare their performance through the root mean square

forecast error (RMSFE). The first dataset is the balanced U.S. monthly dataset of

Stock and Watson (2002b) consisting of 146 series from 1960:01 to 1998:12. The second

dataset consists of 161 quarterly U.S. time series from 1959Q1 until 2000Q1 and was

used in Stock and Watson (2003) and in Koop and Potter (2004). The last dataset is a

Swedish dataset comprising of 77 variables including a wide range of indicators of real

and monetary aspects of the Swedish economy ranging from 1983Q1 to 2003Q4.1 We

forecast the CPI or the inflation rate for all three datasets, and for the U.S. quarterly

data we forecast the GDP growth rate as well. The forecasting model is

yt+h = αh + xtβh + εt+h, (30)

which generalizes (7), (13) and (26) to arbitrary forecasting horizons. The choice of

dependent variable as yt+h, instead of yt, has the great advantage that it does away

1See the cited works for the list of the predictors for the US data and Appendix A for the list of
the Swedish series and their transformation.
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with the need of forecasting the predictors in xt when forecasting yt+h. The obvious

disadvantage of this choice of dependent variable is that it leads to a different model

for each forecast horizon.

Following Stock and Watson the dependent variable and the predictors in the U.S.

datasets are transformed into stationary series. In particular, GDP is modelled as

being I (1) in logarithms and CPI as I (2) in logarithms. This implies that yt+h for

GDP and CPI are transformed as

yt+h = a/h · ln (GDPt+h/GDPt) , (31)

yt+h = a/h · ln (CPIt+h/CPIt)− a ln (CPIt/CPIt−1) , (32)

where a = 400 for quarterly data and a = 1200 for monthly data.

The Swedish inflation rate is measured as the four-quarter percentage change in

the consumer price index and the remaining variables in the dataset are with few

exceptions 4 quarter growth rates or 4 quarter log differences. The current level of

inflation is included in the set of predictor variables for inflation h-periods ahead. A

dummy variable dt, for the Swedish low inflation regime dated to start in 1992Q1, is

always included in the model (30).

The forecasts are constructed for horizons h = 6 and h = 12 for the monthly data,

and for horizons h = 4 and h = 8 for the quarterly data, respectively. For the U.S.

monthly data we evaluate the forecast performance for the period 1989:01 until 1998:12.

To investigate the possibility that some forecasts work well in some periods but poor

during others, we also calculate the forecast for four 30 months sub-periods.

For the factor model forecasts we consider the following variants proposed by Stock

and Watson: the forecasts denoted by FM-AR,Lag, based on equation (7), include

v estimated factors, r lags of factors and p lags of yt, where all the lag lengths are

determined by the Bayesian information criterion (BIC). The FM-AR forecasts contain

no lags of F̂t, with v and p determined by BIC. Finally, FM forecasts contain only

contemporaneous F̂t, with v selected by BIC. Further, forecasts based on the estimated

factors holding the number of factors v fixed are also considered, first determining the

lag length of the dependent variable, p, by BIC, and then setting p = 0. These are

denoted as FM-AR,v, and FM,v, respectively.

Our implementation of BMA in dynamic factor models differs slightly from the

implementation in Koop and Potter (2004). We use only contemporaneous values

when forming the principal components, in particular we do not include lags of y. We

consider forecasts based on two different sets of predictors. The BMA-FM forecasts use

only the 20 first principal components as the potential predictors and the BMA-FM-

AR augments the set of predictors with p lags of yt. The use of the 20 first principal

components roughly corresponds to the 99.9% prior that Koop and Potter find to work

well.
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Table 1 Summary of datasets used and settings for forecasting

U.S. monthly U.S. quarterly Swedish quarterly
dataset dataset dataset

Total no. of variables, N 146 161 77
Forecast variable, yt CPI CPI, GDP Inflation
Data span 1960:01-1998:12 1961Q1-2000Q4 1983Q1-2003Q4
Forecast period 1989:01-1998:12 1981Q1-2000Q4 1999Q1-2003Q4
Forecast horizons, h 6,12 4,8 4,8
No. of sub-periods 4 4 2
No. of lags of yt, p [0, 5] [0, 3] [0, 3]
No. of factors, FM, v [1, 4] [1, 4] [1, 4]
No. of factors, FM-AR, v [1, 12] [1, 4] [1, 4]
No. of factor lags, r [0, 2] [0, 2] [0, 5]
δ in prior (24) in BMA 0.075 0.05 0.1
No. of factors, BMA-FM 20 20 20
δ in prior (24) in BMA-FM 0.5 0.5 0.5
MCMC replicates 5 000 000 5 000 000 5 000 000
Burn-in 50 000 50 000 50 000

The forecasts calculated using the Bayesian approach include forecasts based on

the forecast combination from all visited models, forecasts from the 3 models with

the highest posterior probabilities, denoted Top1 to Top3, and forecasts based on the

median model. For the U.S. monthly data we set the model hyperparameter δ to 0.075

in the usual BMA approach. This corresponds to a prior expected model size of 11

variables. For the BMA-FM approach, δ = 0.5, giving expected size of 10 variables.

The value of c is chosen as in (21), i.e. c = N2. The Markov chain is run for 5 000 000

steps with 50 000 steps as burn-in. The parameters defining the forecast experiments

are summarized in Table 1.

The results from the different approaches are compared to a benchmark, an AR

process with the lag length determined by BIC. In addition we calculate forecasts

based on the random walk, i.e. when the forecast of yt+h equals the current value of

the dependent variable.

3.1 Results

The results for the transformed U.S. CPI series are reported in Tables 2 and 3, Tables 4

- 7 show the results for the U.S. quarterly data, and the results for the Swedish inflation

rate can be found in Tables 8 - 9. The first data column in the tables represents results

based on the whole forecasting period and the remaining columns contain results for
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the sub-periods. The values reported in the tables are the relative RMSFEs

RMSFE
(
ŷT+h|T

)
RMSFE

(
ŷAR

T+h|T

) . (33)

In general, there is no method that consistently outperforms other methods across

all periods, datasets or forecasting horizons. There are, however, some patterns in the

results that merit further investigation.

It is important to include lags of the dependent variable when forecasting inflation.

Only then is it possible to outperform an AR(p) process. This conclusion is supported

in as much as 2/3 of the different periods. Koop and Potter (2004) find that an AR(2)

process outperforms factor-based models for longer forecasting horizons. The better

predictive performance of an AR(2) can, according to Koop and Potter, probably be

explained by the fact that the relevant predictive information is included in the lags of

the dependent variable.

One possible exception to this is the US GDP forecasts, where the predictive

performance of the FM forecasts is unaffected by allowing for lags of the dependent

variable. The GDP forecasts from the sub-periods and the whole period also indicate

that it is not clear what the number of included factors should be. The best performing

model contains different number of factors across the subperiods. Also, chosing the

number of factors included in a model in advance often performs better than using

BIC for their determination.

Forecast combination using BMA regularly outperforms the forecasts from models

selected by the posterior model probabilities.

The results differ substantially between the Swedish dataset, where the BMA-based

methods perform poorly, and the two US datasets. Overall BMA-FM does better than

the FM forecasts for the US datasets. Allowing for lags of the dependent variable

in BMA-FM-AR improves the forecasts somewhat, but the FM-AR forecasts show a

larger improvement.

On the issue of selecting predictors from the original variables, or data summaries

such as principal components, the evidence is mixed. The BMA forecasts do better for

the monthly data and the BMA-FM forecasts better for the quarterly data.

Comparing the median model with the highest posterior probability model fails to

prove its superiority for forecasting. The median model produces smaller RMSFE than

Top1 model only in 47% of all cases.

4 Conclusions

This paper compares methods for extracting information relevant for forecasting from

a large number of predictors. Factor based models, the Bayesian model averaging

13



approach and the combination of the two are evaluated on US and Swedish data at

both monthly and quarterly frequencies. We find that none of the methods is uniformly

superior and that no method performs better than, or is outperformed by, a simple

AR(p) process.

A possible disadvantage of all the methods considered here is that they are based on

linear models that forecast h-steps ahead directly. It is quite possible that these simple

models fail to capture all the information contained in the data. In future research,

more complicated, and thus more realistic functions, will be considered. This could

improve forecast accuracy, but comes at the cost of increased computational complexity

as the result.
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Table 2 RMSFE relative to an AR(p) for monthly U.S. CPI, 6 months ahead forecast.

89:1-98:12 89:1-91:6 91:7-93:12 94:1-96:6 96:7-98:12

BMA 1.0911 0.8151 0.8986 1.9560 1.8041
Top 1 1.1247 0.7735 0.8989 2.1858 1.9074
Top 2 1.1300 0.7978 0.9103 2.1334 1.9181
Top 3 1.1148 0.8174 0.8443 2.1195 1.8477
Median model 1.1469 0.7967 0.8989 2.2709 1.8950

BMA-FM-AR 1.2189 1.0005 1.3682 1.7506 1.5350
Top 1 1.2435 1.0155 1.3923 1.8061 1.5742
Top 2 1.2418 1.0065 1.3722 1.8172 1.6308
Top 3 1.2313 0.9941 1.4138 1.7883 1.5304
Median model 1.2348 1.0186 1.3715 1.7645 1.5742

BMA-FM 1.4915 1.3485 1.4502 2.1612 1.7257
Top 1 1.5288 1.3430 1.5996 2.2069 1.7404
Top 2 1.5163 1.3575 1.5199 2.2273 1.6904
Top 3 1.5021 1.3344 1.5422 2.1313 1.7432
Median model 1.5283 1.3430 1.5990 2.2044 1.7404

FM-AR, Lag 0.8859 0.7765 0.8140 1.1341 1.3683
FM-AR 0.8998 0.7764 0.9312 1.1005 1.3103
FM 1.4747 1.3808 1.3082 2.0714 1.7743

FM-AR, v = 1 0.9068 0.8074 0.8177 1.1450 1.3864
FM-AR, v = 2 0.8998 0.7764 0.9312 1.1005 1.3103
FM-AR, v = 3 0.8990 0.7756 0.9278 1.0950 1.3174
FM-AR, v = 4 0.9020 0.7766 0.9472 1.0902 1.3065

FM, v = 1 1.7330 1.7039 1.4604 2.2050 2.0197
FM, v = 2 1.7249 1.6917 1.4193 2.2327 2.0553
FM, v = 3 1.6954 1.6390 1.4651 2.2308 1.9917
FM, v = 4 1.5412 1.4061 1.2932 2.2986 2.0215

Random walk 2.6683 2.4604 2.8274 3.1155 3.1363
AR, RMSFE 0.0053 0.0083 0.0050 0.0031 0.0031
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Table 3 RMSFE relative to an AR(p) for monthly U.S. CPI, 12 months ahead forecast.

89:1-98:12 89:1-91:6 91:7-93:12 94:1-96:6 96:7-98:12

BMA 1.2098 0.9203 0.9186 1.9561 2.0671
Top 1 1.2541 0.9288 1.0022 1.7705 2.1715
Top 2 1.2765 0.9460 1.0617 2.2253 1.9353
Top 3 1.2147 1.0089 0.8740 1.9053 2.1088
Median model 1.2300 0.9074 0.9534 1.8035 2.1640

BMA-FM-AR 1.2489 1.4686 0.8855 2.2020 1.4674
Top 1 1.2830 1.4890 0.8585 2.4392 1.5491
Top 2 1.2734 1.4655 0.8890 2.2842 1.5670
Top 3 1.3079 1.4671 0.9498 2.2635 1.6436
Median model 1.2769 1.4890 0.8917 2.2423 1.5654

BMA-FM 1.4063 1.6903 1.0391 2.4939 1.4448
Top 1 1.3969 1.6589 1.0378 2.5728 1.3888
Top 2 1.4601 1.6750 1.1153 2.7405 1.4501
Top 3 1.3887 1.7042 0.9846 2.4904 1.4453
Median model 1.3940 1.6551 1.0339 2.5703 1.3893

FM-AR, Lag 0.9472 1.1032 0.5940 1.3414 1.4666
FM-AR 0.9500 1.0960 0.6902 1.3328 1.3079
FM 1.4225 1.7191 1.0590 2.4182 1.4948

FM-AR, v = 1 0.9383 1.0845 0.6327 1.3495 1.3760
FM-AR, v = 2 0.9230 1.0558 0.6621 1.2532 1.3227
FM-AR, v = 3 0.9250 1.0439 0.6244 1.3119 1.4021
FM-AR, v = 4 0.9229 1.0570 0.6390 1.2492 1.3690

FM, v = 1 1.6768 2.0189 1.3410 2.5525 1.6960
FM, v = 2 1.6748 1.9993 1.3237 2.6328 1.7292
FM, v = 3 1.6424 1.9722 1.2235 2.8380 1.7192
FM, v = 4 1.4618 1.7028 1.0418 2.6525 1.6846

Random walk 2.6668 2.5597 2.5628 4.1441 2.4498
AR, RMSFE 0.0106 0.0108 0.0157 0.0051 0.0076
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Table 4 RMSFE relative to an AR(p) for quarterly U.S. CPI, 4 quarters ahead forecast.

81:1-00:4 81:1-85:4 86:1-90:4 91:1-95:4 96:1-00:4

BMA 0.8118 0.7582 0.8570 0.7386 1.2992
Top 1 0.8814 0.8313 0.9189 0.8344 1.3409
Top 2 0.9429 0.9030 0.9680 0.8794 1.3878
Top 3 0.8782 0.8369 0.9565 0.6481 1.3371
Median model 0.9376 0.9326 0.8691 0.8896 1.3728

BMA-FM-AR 0.8113 0.7122 0.9516 0.8462 1.1386
Top 1 0.8610 0.7881 0.9754 0.8619 1.1308
Top 2 0.8635 0.7488 1.0365 0.8986 1.1863
Top 3 0.8256 0.7370 0.9370 0.8918 1.1373
Median model 0.8899 0.8135 1.0179 0.8619 1.1833

BMA-FM 0.8037 0.7012 0.9480 0.8463 1.1278
Top 1 0.8301 0.7344 0.9708 0.8593 1.1377
Top 2 0.8420 0.7041 1.0480 0.9001 1.1603
Top 3 0.8195 0.7235 0.9346 0.8819 1.1859
Median model 0.8088 0.6732 1.0084 0.8614 1.1378

FM-AR, Lag 0.7029 0.5199 0.9625 0.7350 1.0822
FM-AR 0.7605 0.6579 0.9277 0.7350 1.0822
FM 0.8852 0.8395 1.0013 0.7454 1.1028

FM-AR, v = 1 0.8039 0.7461 0.9546 0.5489 1.1170
FM-AR, v = 2 0.8116 0.7544 0.9729 0.5163 1.1152
FM-AR, v = 3 0.8080 0.7445 0.9843 0.5076 1.1033
FM-AR, v = 4 0.7416 0.6219 0.9277 0.7350 1.0822

FM, v = 1 0.9676 0.9040 1.0914 0.9737 1.0905
FM, v = 2 0.9042 0.8457 1.0223 0.8615 1.0878
FM, v = 3 0.8552 0.8290 0.9620 0.5962 1.0741
FM, v = 4 0.8383 0.7562 1.0013 0.7454 1.1136

Random walk 1.4910 1.3339 1.6208 2.0157 1.4262
AR, RMSFE 0.0184 0.0289 0.0180 0.0117 0.0077
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Table 5 RMSFE relative to an AR(p) for quarterly U.S. CPI, 8 quarters ahead forecast.

81:1-00:4 81:1-85:4 86:1-90:4 91:1-95:4 96:1-00:4

BMA 0.8469 0.8139 1.0077 0.8152 0.8860
Top 1 1.0033 0.9257 1.2254 1.1174 1.1244
Top 2 0.9542 0.8172 1.3516 1.0963 1.0937
Top 3 0.9726 0.9515 1.1286 0.7770 1.2175
Median model 1.0934 1.0175 1.4188 0.9938 1.3249

BMA-FM-AR 0.7840 0.7343 0.9761 0.7497 0.9600
Top 1 0.8633 0.8264 1.0579 0.7300 1.0673
Top 2 0.8878 0.8926 0.9667 0.6914 0.9918
Top 3 0.8273 0.8023 0.9065 0.8022 1.0280
Median model 0.8194 0.7624 1.0602 0.7175 1.0634

BMA-FM 0.7775 0.7265 0.9689 0.7520 0.9554
Top 1 0.8379 0.7911 1.0564 0.7168 1.0671
Top 2 0.8886 0.8943 0.9611 0.7066 0.9716
Top 3 0.8647 0.8529 0.9557 0.7542 1.0153
Median model 0.8279 0.7899 1.0102 0.7059 1.0671

FM-AR, Lag 0.7368 0.6286 1.1048 0.6695 1.0312
FM-AR 0.7821 0.7276 1.0350 0.6310 1.0310
FM 0.8287 0.7746 1.0765 0.6968 1.0676

FM-AR, v = 1 0.8096 0.7539 1.1073 0.5372 1.1077
FM-AR, v = 2 0.7942 0.7550 1.0264 0.5092 1.1300
FM-AR, v = 3 0.8117 0.7904 1.0201 0.5209 1.0014
FM-AR, v = 4 0.7448 0.6703 1.0350 0.6310 1.0310

FM, v = 1 0.9387 0.8777 1.1680 0.9187 1.1259
FM, v = 2 0.8546 0.8101 1.0164 0.7928 1.1372
FM, v = 3 0.7982 0.7801 0.9787 0.5331 1.0014
FM, v = 4 0.7814 0.7021 1.0765 0.6968 1.0676

Random walk 1.5620 1.5332 1.6817 1.5093 1.7726
AR, RMSFE 0.0449 0.0757 0.0338 0.0298 0.0173
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Table 6 RMSFE relative to an AR(p) for quarterly U.S. GDP, 4 quarters ahead
forecast.

81:1-00:4 81:1-85:4 86:1-90:4 91:1-95:4 96:1-00:4

BMA 1.2063 1.1241 2.0225 1.1881 0.9988
Top 1 1.1099 1.0836 1.7165 0.9905 0.9725
Top 2 1.3137 1.2435 2.2510 1.2081 1.0758
Top 3 1.2749 1.1216 2.4049 1.2816 1.1548
Median model 1.3179 1.1917 2.2045 1.4320 0.9725

BMA-FM-AR 1.0100 0.9199 1.6678 1.0699 0.8370
Top 1 1.0570 0.9495 1.8045 1.1128 0.9399
Top 2 1.0084 0.9092 1.6169 1.0855 0.9616
Top 3 1.0483 0.9517 1.7625 1.0890 0.9312
Median model 1.0215 0.9207 1.7204 1.0653 0.9581

BMA-FM 1.0111 0.9480 1.5730 1.0406 0.8266
Top 1 1.0107 0.9573 1.4718 1.0436 0.8778
Top 2 1.0338 0.9575 1.6618 1.0703 0.8599
Top 3 1.0771 0.9822 1.7482 1.1734 0.7916
Median model 1.0098 0.9572 1.4806 1.0386 0.8662

FM-AR, Lag 1.0031 0.9422 1.6103 1.0319 0.6892
FM-AR 0.9486 0.8780 1.4170 1.0319 0.7901
FM 0.9486 0.8780 1.4170 1.0319 0.7901

FM-AR, v = 1 0.9828 0.9901 0.9047 0.9879 0.9620
FM-AR, v = 2 0.9323 0.8571 1.3808 1.0319 0.7901
FM-AR, v = 3 0.9485 0.8473 1.6461 0.9949 0.8564
FM-AR, v = 4 0.9527 0.8575 1.6932 0.9422 0.9254

FM, v = 1 0.9828 0.9901 0.9047 0.9879 0.9620
FM, v = 2 0.9323 0.8571 1.3808 1.0319 0.7901
FM, v = 3 0.9485 0.8473 1.6461 0.9949 0.8564
FM, v = 4 0.9527 0.8575 1.6932 0.9422 0.9254

Random walk 1.3654 1.4445 1.1553 1.2466 0.9992
AR, RMSFE 0.0198 0.0325 0.0099 0.0179 0.0097
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Table 7 RMSFE relative to an AR(p) for quarterly U.S. GDP, 8 quarters ahead
forecast.

81:1-00:4 81:1-85:4 86:1-90:4 91:1-95:4 96:1-00:4

BMA 1.0405 0.8242 2.4397 1.1525 1.5025
Top 1 1.0523 0.7986 2.3529 1.2145 1.6886
Top 2 1.1186 1.0393 2.5036 1.0022 1.2828
Top 3 1.2311 0.9005 3.0433 1.5464 1.3403
Median model 1.0401 0.8134 2.4967 1.2126 1.2583

BMA-FM-AR 0.9615 0.7761 2.0866 1.1358 1.1387
Top 1 1.0726 0.8735 2.4169 1.2232 1.3094
Top 2 1.0054 0.8168 2.1116 1.1595 1.3516
Top 3 1.0520 0.8435 2.4308 1.2215 1.2274
Median model 1.0428 0.8499 2.2900 1.2102 1.2358

BMA-FM 0.9603 0.7701 2.0662 1.1547 1.1015
Top 1 1.0562 0.8820 2.2669 1.2049 1.2131
Top 2 0.9937 0.7788 2.3552 1.1686 1.1752
Top 3 1.0467 0.8391 2.2653 1.2503 1.2316
Median model 1.0399 0.8352 2.2969 1.2299 1.2157

FM-AR, Lag 1.0480 0.9597 2.2734 1.0671 0.8531
FM-AR 0.9986 0.9264 1.8114 1.0671 0.8531
FM 0.9986 0.9264 1.8114 1.0671 0.8531

FM-AR, v = 1 1.0218 1.0313 0.9943 1.0025 1.0042
FM-AR, v = 2 0.9608 0.8950 1.4641 1.0671 0.8531
FM-AR, v = 3 0.9704 0.8799 1.8158 1.0645 0.8734
FM-AR, v = 4 0.9909 0.9141 1.8340 1.0593 0.8706

FM, v = 1 1.0218 1.0313 0.9943 1.0025 1.0042
FM, v = 2 0.9608 0.8950 1.4641 1.0671 0.8531
FM, v = 3 0.9704 0.8799 1.8158 1.0645 0.8734
FM, v = 4 0.9909 0.9141 1.8340 1.0593 0.8706

Random walk 1.3643 1.3344 2.6074 1.2800 0.9730
AR, RMSFE 0.0340 0.0557 0.0120 0.0339 0.0151
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Table 8 RMSFE relative to an AR(p) for quarterly Swedish inflation rate, 4 quarters
ahead forecast.

99:1-03:4 99:1-01:2 01:3-03:4

BMA 1.8653 1.8252 1.9077
Top 1 2.0525 1.8655 2.2372
Top 2 1.7154 1.5059 1.9164
Top 3 2.2446 2.3128 2.1684
Median model 2.1348 1.9876 2.2833

BMA-FM-AR 3.7170 4.8758 1.7449
Top 1 3.7621 4.9464 1.7314
Top 2 3.9111 5.2129 1.5651
Top 3 3.8674 5.1130 1.6903
Median model 3.8101 5.0274 1.6970

BMA-FM 3.7880 5.0065 1.6604
Top 1 3.9833 5.2662 1.7414
Top 2 4.0304 5.2869 1.8921
Top 3 4.2011 5.5781 1.7559
Median model 4.0192 5.3173 1.7449

FM-AR, Lag 1.2061 1.3896 0.9692
FM-AR 1.2678 1.5859 0.7909
FM 0.7346 0.6250 0.8371

FM-AR, v = 1 0.6796 0.5573 0.7909
FM-AR, v = 2 0.6678 0.5206 0.7969
FM-AR, v = 3 0.6864 0.5148 0.8331
FM-AR, v = 4 1.4255 1.7763 0.9038

FM, v = 1 0.7346 0.6250 0.8371
FM, v = 2 0.6127 0.4593 0.7439
FM, v = 3 0.6144 0.4630 0.7442
FM, v = 4 0.9607 1.0707 0.8254

Random walk 1.1763 1.2390 1.1046
AR, RMSFE 0.8714 0.8883 0.8541
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Table 9 RMSFE relative to an AR(p) for quarterly Swedish inflation rate, 8 quarters
ahead forecast.

99:1-03:4 99:1-01:2 01:3-03:4

BMA 2.4462 1.0398 4.6134
Top 1 2.9144 1.4916 5.2969
Top 2 2.4841 1.3079 4.4822
Top 3 2.6555 1.4714 4.7224
Median model 2.5931 0.9828 4.9694

BMA-FM-AR 2.3955 2.0820 3.1810
Top 1 2.9568 2.2670 4.4709
Top 2 3.1632 2.1864 5.1297
Top 3 3.2356 2.3933 5.0265
Median model 2.5212 2.3200 3.0653

BMA-FM 2.8479 1.8076 4.8192
Top 1 3.1357 1.9874 5.3096
Top 2 2.9875 1.7706 5.1955
Top 3 3.1580 1.9899 5.3608
Median model 2.9583 1.9486 4.9207

FM-AR, Lag 1.0504 0.5611 1.8879
FM-AR 1.0504 0.5611 1.8879
FM 1.1689 0.4917 2.2081

FM-AR, v = 1 0.5919 0.4178 0.9481
FM-AR, v = 2 0.8329 0.6488 1.2429
FM-AR, v = 3 0.7756 0.6011 1.1624
FM-AR, v = 4 1.2303 0.6737 2.1957

FM, v = 1 0.7033 0.4917 1.1330
FM, v = 2 0.6381 0.4496 1.0233
FM, v = 3 0.6209 0.4560 0.9694
FM, v = 4 1.3026 0.7200 2.3181

Random walk 1.0256 0.8284 1.4808
AR, RMSFE 1.3238 1.6292 0.9223
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Appendix A Data

The transformation codes for the time series are

Code Transformation

1 level

2 4 quarters log difference (ln yt − ln yt−4)

3 4 quarters growth rate (yt − yt−4)

4 4 quarters percentage change ((yt − yt−4) /yt−4)

Table A.1 Financial variables
Variable Description Transf.

1. GovDebt Government debt 2
2. AFGX Affärsvärlden stock index 2
3. REPO Repo rate 1
4. DISK Discount rate 1
5. R3M 3 month money market rate 1
6. R5Y 5 year government bond rate 1
7. R10Y 10 year government bond rate 1
8. GBor Central government borrowing requirement 1
9. RsTCW Short rate (TCW) 1
10. RlTCW Long rate (TCW) 1

Table A.2 Exchange rates

Variable Description Transf.
11. NFX Effective exchange rate (TCW) 2
12. RFX Effective real exchange rate (TCW) 2
13. USD SEK/USD exchange rate 2
14. DEM SEK/DEM exchange rate 2

Table A.3 Money supply

Variable Description Transf.
15. M0 Narrow money 2
16. M3 Broad money 2

Table A.4 Labor costs
Variable Description Transf.

17. WCSS Wages incl. social security 2
18. WgCst Wages excl. social security 2
19. WageMM Hourly wages, mining and manufacturing 2
20. HLCInd Hourly labor cost: total industry 2
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Table A.5 Population

Variable Description Transf.
21. PpTot Total population 2
22. Pp1664 Share in ages 16-64 2
23. Pp014 Share in ages 0-14 2
24. Pp1529 Share in ages 15-29 2
25. Pp2534 Share in ages 25-34 2
26. Pp3049 Share in ages 30-49 2
27. Pp5064 Share in ages 50-64 2
28. Pp6574 Share in ages 65-74 2
29. Pp75+ Share 75 and older 2

Table A.6 Labor market variables
Variable Description Transf.

30. AvJob # of available jobs 2
31. LabFrc # in labor force 2
32. NLFrc # not in labor force 2
33. RelLF LabFrc/Pp1664 1
34. Empld # employed 2
35. PrvEmp # privatly employed 2
36. PubEmp # publicly employed 2
37. Av4Wrk # available for work 2
38. NA4Wrk # not available for work 2
39. NUnemp # unemployed 2
40. Unemp Unemployment 1
41. U02W # unemployed < 2 weeks 3
42. U314W # unemployed 3 - 14 weeks 3
43. U1552W # unemployed 15 - 52 weeks 3
44. U52W+ # unemployed more than 52 weeks 3
45. NewJob New jobs 3

Table A.7 Real activity and Expectations

Variable Description Transf.
46. IndProd Industrial production 4
47. NewCar New cars 1
48. NewHouse New single family houses 1
49. HourWork Hours worked 2
50. GDP GDP 2
51. RGDP Real GDP 2
52. NAIRU NAIRU 1
53. OutGap Output gap 1
54. ProdGap Production gap 1
55. BCI Business confidence indicator 1
56. HExpSWE Household exp. Swedish economy 1
57. HExpOwn Household exp. own economy 1
58. GDPTCW TCW-weighted GDP 2
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Table A.8 Prices
Variable Description Transf.

59. InfFor Foreign CPI (TCW) 4
60. InfRel Relative CPI 4
61. PPP Real exchange rate 4
62. Infla Swedish CPI 4
63. InfNet Swedish NPI 4
64. InfHse House price index 4
65. MrtWgh Weight of mortgage interest in CPI 1
66. InfUnd Underlying inflation 4
67. InfFd Food component of CPI 4
68. InfFl Housing fuel and electricity comp. of CPI 4
69. InfHWg Factor price index, housing incl. wages 4
70. InfCns Construction cost index 4
71. InfPrd Producer price index 4
72. InfImpP Import price index 4
73. InfExp Export price index 4
74. InfTCW TCW-weighted Swedish CPI 4
75. ExpInf Households exp. of inflation 1 year from now 1
76. POilUSD Oil price, USD 4
77. POilSEK Oil price, SEK 4
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