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Estimating the finite population total under
frame imperfections and nonresponse

Marianne Angsved®

Abstract

When sampling from a finite population the access to a good sampling
frame is of vital importance. However, the statistician often has to
face the problem with non-negligible frame imperfections, e.g.
overcoverage and undercoverage. More so, error from nonresponse is
an increasing problem in many surveys today. In this paper we discuss
different approaches to deal with these problems simultaneously. In
particular, we address the situation when there exists a new up-to-date
current register and the improvement this brings along.

Keywords: Finite population sampling, target population, sampling frame,
overcoverage, undercoverage, nonresponse, GREG estimator, calibration.
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1 The problem

1.1 Introduction

When planning for a survey there are several decisions the statistician has
to make, one being on what sampling frame to use. The access to a good
sampling frame is of vital importance. Ideally the sampling frame should be
a perfect match to the target population, i.e. to the population the statisti-
cian wishes to study. This property is essential for the sampling frame since
it allows every element in the population to have a nonzero probability of
selection, a requirement for unbiased estimation. Furthermore, a desirable
feature of the sampling frame would be the existence of good auxiliary in-
formation, since this will be an aid in the statistician’s work to find the best
possible strategy, i.e. the best possible combination of sampling design and
estimator. However, it is far from always possible in practice to come up
with a perfect sampling frame. The statistician most often has to accept
the fact that the sampling frame has imperfections with respect to matching
the target population. Also, the auxiliary information may be more or less
useful. Hence, error from frame imperfection may be substantial.

More so, error from nonresponse is an increasing problem in many surveys
today. The problem with nonresponse is extensively handled in the litera-
ture. Two main approaches are distinguished for dealing with nonresponse,
reweighting and imputation.

Now, the practising statistician will most likely have to deal with these
two errors simultaneously. One complication when both nonresponse and
frame imperfections occur is that we for elements in the nonresponse set
may be unable to determine whether they belong to the target population
or to the overcoverage set.

In this paper two main techniques for the estimation of a finite population
total under frame imperfections and nonresponse are considered. We will not
address any other type of nonsampling error.

1.2 Target population, frame population and related
population sets
When discussing sampling from a finite population and subsequent estima-

tion of finite population parameters several different population types can be
defined, see e.g. Kish (1979) and Murthy (1983). For our purpose we define



three populations. The target population, denoted U, is the set of elements
the statistician wishes to study, i.e. for which estimates are required. The
frame population, denoted Uy, is the set of all elements that can be reached
via the (sampling) frame. The current register population, denoted Ug, is
the set of all elements that can be reached via an up-to-date current register.
The term current register population was introduced in Angsved (2004). The
current register is not at hand at the sampling stage of a survey, but it may
be at hand at the estimation stage. The current register could be an updated
version of the frame. Or it could be a register which is different from the
original frame, e.g. a newly developed register. The register population ac-
cessible from the current register matches the target population better than
the frame population.

In the ideal situation the target population and the frame population
coincide. However, this is far from always the case. Typically there are
several types of frame imperfections, see e.g. Lessler and Kalsbeek (1992)
who define six sources of error that spring from frame imperfections.

In the following we will suppose that only two types of frame imperfections
are present, viz. overcoverage and undercoverage. Let the set of elements in
U which can be reached via the frame be denoted U;, i.e. Uy = Upr NU,
the intersection of Ur and U. The frame suffers from overcoverage if the set
Uoc = Ur - Uy is non-empty, where it is assumed that this set can not be
identified from available frame information. The frame has undercoverage
if the set Uye = U - U is non-empty. The two sets will be called the
overcoverage set and the undercoverage set, respectively. Figure 1.1 shows
how these sets are related.

Figure 1.1. Target population and imperfect frame population

Frame population: Ur

: ./ Target population: U

_______________________________________



The target population is represented by a dotted line to stress the fact that
the target population membership is unknown.
Let N = #U (the number of elements in the target population), Np =

#Up, N; = #U;, Noc = #Uoc and Nyc = #Uyc.

1.3 Further notations and definitions

Let sp denote a sample of size ng, drawn from the frame population, Up,
with first- and second-order inclusion probabilities 7pr, = P (k € sp) > 0 and
wr = P (k,l € sp) > 0 for all k&l € Up, respectively. Let rp denote the
response set, where 7 C sp. The response set is generated by the (unknown)
response mechanism ¢ (rp |sp). Let or denote the nonresponse set. Thus we
have sp = rp U op.

Let
Sy - sample elements that belong to the target population

soc - sample elements that belong to the overcoverage population

Borrowing ideas from two-phase sampling we make the following assump-
tions about the available auxiliary information. The vector xy;, of J; values,
is the vector with auxiliary information defined according to (1) below. The
vector Xgp is a vector with Jo, = J — J; auxiliary values available for all
elements in the sample, i.e. for all k € sp. Let

X . X1k kelU (1)
Llk = 0 k€ Uoc
and, for k € sp, let
. Xok ke St
X12k = { 0 k€ soo (2)

Using these definitions we have the combined auxiliary vector

X = (X, X/Qk)l (3)
available for k € s;.

Associated with each element k € U is a fixed but unknown value y, for
the study variable y. The parameter of interest is the population total of v,

tyy = Zyk = ZUyk

keU



Let
B y kelU
Yk = { 0 keUpo (4)
To simplify, we assume that all y, (k € U) are positive. For a single element,
let the symbol ~ symbolize division by gy, i.€. §x = Yr/TFk-

Since U; and Uy are exhaustive and mutually exclusive on the set U we
may write the parameter as

byu = tyu, + tyuye

If it is possible to identify the set s;, as the case may be, we can use the
theory of domain estimation in order to estimate ¢,;,. When there is reason
to assume that the undercoverage is negligible it should suffice to use t,y,
as estimator for ¢,;;. However, if this is not the case we must find a way to
compensate for the negative bias. One way to do this is to find a guesstimate
for t,1,., denoted by .77 . The term guesstimate is used here to emphasize
the fact that since no values on the study variable exist for the undercoverage
set it is not possible to use common design based estimators to estimate the
total in this set. Using fyUI together with a guesstimate t;{,’; _ we obtain an
estimator for ¢,;7. Another way would be to use direct estimation of ¢,;.

In section 2 we give a short introduction to estimation under frame imper-
fections. The estimation setup under both frame imperfections and nonre-
sponse is introduced in section 3. In section 4 two estimators for the total of
y in Uy, t,u,, are considered. Section 5.1 suggests a method to find a guessti-
mate of the total of y in the undercoverage set, to be used together with
tyu,, while section 5.2 presents a method for direct estimation of the total
of y in the target population. In section 6 we present results from a small
simulation study. Finally, some concluding remarks are given in section 7.

2 The estimation situation under frame im-
perfections

In the estimation setup where the only nonsampling error is coverage error
the main concern in the estimation process would be the existence of un-
dercoverage. The elements in the undercoverage set has zero probability of
being selected for any sample and this may cause bias in the estimate(s).

6



Bias resulting from the overcoverage can be avoided since we assume that we
correctly can identify the sample elements that belong to the overcoverage.
In this estimation setup, values on the study variable will exist for every el-
ement in the sample intersection set, s;, i.e. the set of sample elements that
belong to the target population. Since the intersection set, U;, is a domain
of the frame population we could use an appropriate and (approximately)
unbiased domain estimator to estimate the total of U;. However, using only
the estimate of the total of y in the intersection set as an estimate for the
total of y in the population will lead to a non-negligible negative bias (since
we assume y > 0 for all £ € U) unless the undercoverage is negligible. Ways
to adjust for this negative bias will rely on more or less speculative reasoning
which may have to be applied to many study variables separately.

However, when we are in the favourable situation where a perfect current
register exists at the estimation stage of the survey, the estimation setup
improves considerably compared to the standard estimation setup, where
the only information available comes from the (imperfect) frame. From the
current register we can identify, for every k € Up, whether k € Uy or k €
Uoc. Furthermore, we have access to an auxiliary vector for every element
in the target population, and hence for every element in the undercoverage
set. This means that better estimators can be used for the intersection set.
Additionally there are better prospects for guesstimating the total of the
undercoverage set (Angsved, 2004).

3 The estimation situation under frame im-
perfections and nonresponse - an introduc-
tion

One specific complication in the standard estimation setup when both nonre-
sponse and frame imperfections occur is that we can not determine whether
a nonresponding element belongs to the target population or to the overcov-
erage set. Figure 3.1 illustrates the survey situation in the estimation setup
with both frame imperfections and nonresponse.



Figure 3.1. Target population, imperfect frame population and sample when
nonresponse has occurred. Standard estimation setup

Frame population: Ur

| Sample: 57

é/ Target population: U

The dotted line in figure 3.1 is used to stress the fact that the target pop-
ulation membership is unknown and the shaded area to stress the fact that
no there is no information available for the nonresponse set. However, from
the response set rp we can identify two subsets:

Ty - responding/observed sample elements that belong to the target
population
roc - responding/observed sample elements that belong to the over-

coverage population

Furthermore, we have, two subsets of the nonresponse set op:

o1 - nonresponding /non-observed sample elements that belong to
the target population
ooc - mnonresponding/non-observed sample elements that belong to

the overcoverage population

Note that it is not possible from sample information to identify membership
to either of the two subsets of or, i.e. to o7 or opc.

In the standard estimation setup in figure 3.1 no frame information ex-
ists for elements k € Ur on whether & € U; or k € Upc. Moreover, the
undercoverage is unknown. In this estimation setup the statistician has to
make unverifiable assumptions concerning the undercoverage as well as of the
overcoverage in the nonresponse set.



When the up-to-date current register exists we are in a much more favourable

situation. The following figure illustrates this improved situation when Up =
U.

Figure 3.2. Target population, imperfect frame population and sample when
nonresponse has occured. Perfect current register at hand, i.e. Ug = U.

Frame population: Ur

| Sample: s

0, | Target population: U

We now have an improved setup for making inference to the target pop-
ulation. One possibility would be to draw a probability sample from the
undercoverage set identified in U. This sample would enable us to calculate
an objective estimate of ¢,1,,.. However, as is often the case, the time sched-
ule and/or the survey budget may not admit the extra selection of elements.
Another possibility would be to use the additional information the current
register provides. For every element k € Up, it is possible to identify whether
the element belongs to the intersection set, U;, or to the overcoverage set,
Uoc. This implies that for elements in the nonresponding set o it is possi-
ble to identify whether these belong to the overcoverage oo or to the target
population o;. Thus, it is possible to identify the set s; and we could use
domain estimators under nonresponse to estimate the total ¢;;,. Moreover,
we have current auxiliary information x; for all £k € U which thus provides
information on the elements in Ur¢. This information could be used to find
guesstimates of ¢,y

It should be noted here that when we specify the ”domain” estimator
t,u, we do this realizing that only one ”domain” total is to be estimated, i.e.



the total of y in U;. In this paper we do not consider the survey case when
estimation is required for other subpopulations.

Henceforth we assume that the current register is perfect in the sense that
the register population equals the target population, i.e., Ug = U.

4 A perfect current register exists - estima-
tion of ¢y,

As noted earlier, the set U constitutes a domain of U, and when we are in
the favourable situation where we have access to a perfect current register at
the estimation stage of the survey it is possible to identify the set s in spite
of the nonresponse. Thus, in order to estimate the total of U; we could use
common design based domain estimators used in the presence of nonresponse
to estimate the total of Uj.

Two main approaches are generally distinguished for dealing with nonre-
sponse, reweighting and imputation. One frequently used approach is when
imputation is used for item nonresponse only and then reweighting is ap-
plied to compensate for the unit nonresponse. In this paper we will focus on
reweighting.

The calibration appoach for nonresponse and the two-phase approach to
reweighting, where the response homogeneity groups model (RHG) is an often
used model, are two methods that use reweighting for dealing with nonre-
sponse. The RHG model states that elements respond independently and
that the sample consists of nonoverlapping groups with the property that
elements within each group respond with the same probability but that the
response probability may differ between groups. The response distribution
is explicitly modeled. Under the RHG model, regression estimators for two-
phase sampling can easily be adapted to the nonresponse situation. An
estimator based on the RHG model has negligible nonresponse bias if the re-
sponse model agrees with the true but unknown response distribution. How-
ever, the model does not have to be a perfect image of the real world in order
to reduce nonresponse bias. The assumption of constant probability within
well constructed groups will reduce nonresponse bias compared to more sim-
ple models. The RHG method is discussed in detail in Sarndal, Swensson,
and Wretman (1992).

In calibration for nonresponse no modeling of the response probabili-
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ties is done. The properties of the calibration estimator will depend on
the formulation of the auxiliary vector, the strength of association between
the auxiliary vector and the study variable and of the response behaviour
(Sdrndal and Lundstrém, 2005). When auxiliary information exists at both
the sample level and the population level Estevao and Sérndal (2002) show
that, although in the context of two-phase sampling, different options exist
for the use of auxiliary information originating from the two different levels.
Sérndal and Lundstrom (2005) consider three different calibration estimators
adjusting for nonresponse using auxiliary information from both the sample
level and the population level. They distinguish two types of procedures,
single-step calibration and two-step calibration. For the two-step calibration
procedure they consider two different alternatives, A and B, for the use of the
auxiliary information. They conclude that although the three calibration es-
timators are not identical, one can expect the estimators to have only minor
differences in regard to their capacity to provide effective protection against
nonresponse bias. They also state that the two-step B alternative uses final
weights that are less controlled, which may have some effect on the bias and
the variance. Henceforth, we will use the single-step calibration procedure.

In section 4.1 we will present a RHG model suitable for the estimation of
tyu,. In section 4.2 we will consider estimation of t,;, using calibration for
nonresponse.

4.1 Regression estimator under the response homo-
geneity groups model

A simple and naive assumption about the response probabilities is that
Pr(k € rp|sp) = 6, = 0 for all k. A more useful response modeling would be
to use response homogeneity groups (RHG). The use of response homogeneity
groups allows more realistic response models in that it will give every element
within a group the same response probability but the response probabilities
are allowed to vary between the groups.

The general formulation of the response model, adapted to the situation
with frame imperfections, is as follows: the realized sample s is partitioned
into groups spp, h = 0,1,... ,h,..., H,, such that response probabilities
are constant within groups, but are allowed to vary between groups. For our
purpose we define the RHG-group with h = 0, i.e. sgq, as the group that cor-
responds to the set spc, the sample elements that belong to the overcoverage
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population. This can be done since we have information from the current
register on which elements in sg that belong to RHG-group spg = spc. Fur-
thermore, for h =1,... , Hy,, let s;, = spp. In the following we will use the
notation sy, to emphasize the fact that the RHG-group sp¢ is excluded. For
s (h=1,..., Hs,) we have the response set r,. The (random) number of
elements in sy, and 7y, are denoted n,,, and n,,, respectively. Given sp we

have

Pr(keri|sr) = mrs, =0hs, >0 k€ sm
Pr(k&l € ry|s;) = mwys, =Pr(kerpls))Pr(ler;|s;) k#les;
(5)

for h=1,..., H,,.

Conditioning on the response count vector n,, = (Ny,,, ... , Ny, -,
Ny, HSF) the conditional response probabilities (for h = 1,... , H,,) are
s =Pr(ker/|s,n,)=m =f = Trn (6a)
k‘sl,nrl I|S1,1yp; kk|517n1‘1 Ih -
'STh

for k € s, and

frn (ny;, — 1)
S k£
T, = PrR&L € rrlsrmy) =3 (ng, —1) © F7 €S
fIhfIh’; kGSIh,leSIh/;h#h/
(6b)

Under the RHG model given by (5) and using the auxiliary information
defined by (1) and (3) respectively we obtain an estimator for t,y,, i.e. we
obtain

Hsp

; N (ﬂk — Qlk) -1 (Z/k - @k)
b =Y G+ (Y. et Y (7)
Uy SIh TFE TIh TRk
h=1
where
N _ o/ PRHG
Yk = X1kB1r,
-1
Ler XX, Lor X1kY
/ -1 1kX&1k 1 1kYk
= Xy I B J1n (8)
r T g T v 0'2
h—1 Ih NFEO 1k h—1 Ih TFEO 1k

12



for k € Uy, and

N ' B RHG
yk = XkB’I‘I
—1
Hsp ;- Hsp
o / f_1 kak f—l XEYk (9)
= % Ih TIn T O'2 Ih TIn T O'2
h—1 FES | h—1 FEOk

for k € s;. Here 0}, and o3 expresses the statistician’s best opinion of the
residual variability of y in a linear relationship with x5 and xj, respectively.
For details, see Sérndal et al. (1992).

For large samples the approximate conditional expectation of fyU,cr given
Sp, is, assuming that the RHG model in (5) holds,

Erp (fyUm \SF) = nrp, Erp (fyU,w 5, HTF)
~ fyUI’r‘eg (10)
where
A PN
Lyu,reqg = ZSI Yk + (ZUI Xk — ZSI X1k) B1s, (11)
with
BISI = T;(llsltxlysl
-1
Xlkxllk ) X1kYk
_ ok 12
(ZSI WFkU%k ZSI WFkU%k ( )

The estimator tAyUITeg is a domain regression estimator that could have been
used in case of full response. Note that fyUﬁeg is approximately unbiased
for t,y, and thus fyUICT is approximatly unbiased. In section 6 results from a
small Monte Carlo simulation (see table 6.9) indicate confirmation of these
results.

Remark 1 When the response model is a poor reflection of the true response
behavior the regression estimator under the RHG model is biased, at worst
severely so (Tangdahl, 2004). This scenario will not be considered here.

For the variance and a variance estimator for ¢, we need the following
residuals,

By, = yp — X B, (13)

13



for k € Uy, with

-1
X1kX'1k X1kYk
B - (2, 5%) X, (14

01k 01k

and
Ej, = yx — B, (15)

for k € sy, with

-1

oy XpX), XkYk

B, = E E 16
4 ( ST U%?TFk> 2 ( )

31 O TFE
Moreover, let
€1k = Yk — Y1k (17)
and
ek = Yk — Yk (18)
Using the principles in Sérndal et al. (1992) the approximate variance is

AV (1 ( ?/UICT) AVSAM ( ?/UICT) + AVNR ( ijcr>

with
AVSAM yU,cr Z Z (Trr — Tremr) Eip By (19)
and
Hep f
h
AVNR ( yUlcr) =E;DEDTF nim n 28”1 |S] (20)
h=1 T Ih

where S]% is the variance in the set s, of Ek= Ek /T with Ek given by
SIh

(15) . The first component in AV (f,1,¢r) reflects the sampling variance. The
second component represents the increase in variance caused by nonresponse,
i.e. the nonresponse variance. Note that, for this particular estimator, the
AVypr component is equal to zero for full response.

14



A variance estimator is given by

‘7 (EyU]CT> VSA]\/[ ( yU]CT> + VNR ( yUICT>

with
~ TFel — TFETFL,
VSAM yUlcr ——————C1fu (21)
T
I 7-‘-Fkﬂ-‘-kl SF,rp
and
SF
Vg (b)) =Y 0 —Jm g2 (22)
NR yUrer ) — ,n/slh errp
h=1 Mron

where S2.  is the variance in the set rj, of é, = ex /7 and where ey, is given
€rrnp

by (18) . This variance estimator is obtained by replacing Fi; and Ej in (19)
and (20) by e and ey, respectively.

4.2 Calibration for nonresponse

When auxiliary information exists at both the sample level and the popula-
tion level the calibration technique, when used under nonresponse, seeks a
weight system for k € r, where r is the response set, that satisfies the calibra-
tion equation ), vpXy, = ( %U;{lk > . In Sérndal and Lundstrém (2005) a
s X2k

single-step nonresponse calibration estimator for domains is suggested. Using
this estimator and the definition of y; from (4) and the auxiliary information
from (1) and (3), we obtain the estimator

fyU,caz = Z” VIkUk (23)

where

. I -1
Vi = 1 + (txUI — Zrl }'ck) (Z” Xk}vck) Xk (24)

ZUI X1k
Dos Kok )

for every k € r7, with .t.xU] = (

15



Remark 2 An alternative to vy, would be
1

. I -
Uik = 1 + (txUI — Z ik) (Z Zkiﬁg) Zj
Tr T

Here z, is an instrument vector that can be any vector value specified for
k € s1 of the same dimension as x,. The vector z, can be a specified function
of xk, e.g. z = cpXy. Henceforth we will assume the standard specification,
Zp — Xgk.

The bias of t,1/,cq With respect to t,q;,, for large response sets, is a function
of yx, X and 0y, of all k € U; and it is given approximately by

B (tyvea) ~ — ZUI (1 —0k) Eor, (25)

where Egr, = yr — X, By,s with

1
Bu,o = (ZU, ekxkx;g) ZU, 0k XKk

The proof is given in appendix A.2. If there exists a vector A such that

0= 1 4+ X'x; the approximate bias in (25) is equal to zero.
k

Using the principles in Sarndal and Lundstrom a variance estimator of
tyUIcal is

Vv (tAijcal) VSAM ( ijcal) + VNR ( yUlcal) (26)

where

1
VSAM yUIcal ZZ” ( > (vikerv,k) (Vii€iv1)

TFEFETFL 7TFk1

_ Z (— — 1> Vrk (TJ]k — 1) (€1vlk)2
1 TRk

TFE

(27)

and
VNR ( ijcal) = ZT} U1k (UIIC - 1) (évjk)g (28)
with v given by (24) . The residuals are given by

€lotk = Yk — XlkB‘U]T]

16



and
N
ev]k = yk - X]gB’l)]T]

where

(80 L v
BUITI — ( :,B\(QI)I — (Zm YJIkax;C) Zrl VieXkYk

vITI

with vy, given by (24).
Another suggestion would be to use

/ -1
vk = Ve = 1 + (ZI o) % (ZI x%,) x o (20)

in the variance estimator.

5 A perfect current register exists - estima-
tion of ¢,y

In this section we will present two approaches in estimation of ¢,

(i) estimation of ¢,y in two steps and

(ii) direct estimation of ¢, .

The first step in approach (i) is to find an (at least approximately) unbi-
ased estimator of ¢,,. In step two we must find a guesstimate of ¢,y,,,. One
way of reasoning is as follows.

Let ug, a column vector with P components, denote an auxiliary vector
value known in the current register. The vector is denoted u in order to
distinguish it from the auxiliary vector x appearing in the estimator for ¢,,,
since the two vectors are not necessarily identical. Assume that a strong
linear relationship between y and u in Uye exists, such that y, =~ u,Buy,.,
with

Buvye = (Z e ;“> Yoo Bk (30)

Uvc o7, Uvc oy,

where 02, is a suitably chosen constant, e.g. capturing an assumed het-
eroscedasticity in the linear relationship between y and u. If Byy,. was
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known we would have an approximation of the total in the undercoverage
set, tyu,, using

= ZUUC W, Burye (31)
However, By, is unknown. And, since no observations on y exist in Uy,
it is not possible to find a proper estimator for Byy,,.. However, if Byy, . =
Buy,, i.e. the linear relationship between y and u in Uye is fairly well
approximated by the linear relationship between y and u in U, we could use

oy = E u, B

yUuc Upe K uly
Now, B,p, may be estimated from the sample and we obtain a guesstimate
of tyUUC s

fapp } : 'R
t’yUUc - Uvo ukBUTI
where By, is an estimator for By, based on the set r;.

Remark 3 If we have reason to believe that the linear relationship between
y and w in the undercoverage set is better described by using a subgroup
Urg € Ur, we could use Bm.[g to estimate this relationship.

Example 5.1 Consider a survey of enterprises. If, by comparing the frame
with the current register, it is noticed that the undercoverage set mainly
consists of small enterprises, we would choose the group ¢ in U; to represent
these enterprises. Attention should be paid to the fact that this group must
contain enough observations to avoid an unstable estimate By, .

Now, any guesstimate of ¢,y,, may be used in combination with any
approximately unbiased estimator of t,y,. Approach (i) is considered in
section 5.1 where we consider the situation when both t,;, and Byy, (in
t%c) are estimated using the RHG approach.

Note that, when using approach (i) it is possible to separate the effect of
adjustment of nonresponse from the effect of adjustment of frame error since
the two steps in this approach applies to these two adjustments.

In approach (ii) direct estimation of ¢, is considered. In section 5.2 we
will use calibration as a method of direct estimation. When the calibra-
tion approach is used to adjust for nonresponse and frame imperfections it
is not immediately possible to separate the effect of the nonresponse bias
adjustment from the effect of the adjustment of frame error bias, since the
adjustment for these two errors are done in one single step.
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5.1 Regression estimator under the response homo-
geneity groups model

As discussed in the previous section, a guesstimate of ¢, could be obtained

by

japp /B
e = Dy, WiBur,

Uyc

where f’)m] is an estimator for By, based on the set r;.
One approximately unbiased estimator of By, is given by

-1

Hs, Hsp,
"RHG __ T Z*
BurI - TU"‘Ih, 1:Uy”‘lh,
h=1 h=1
H “Iu
i wu) i u
- Ih i 02T Ih rin 02T
h—1 Ih uk Fk h—1 Ih uk Fk

where 02, is a suitably chosen constant, e.g. capturing an assumed het-

eroscedasticity in the linear relationship between y and u. Using this esti-
mator, a guesstimate of ¢,;,,, would be

o =Y uwBiC (33)

yUuc Uve ury
The (approximate) bias of f%c with respect to ¢y, is given by

B (1@73 ) = 7ty

yUuc yUuc
o /
- E :U ukBUUI - t'yUUC (34)
uc
) L app
i.e. the approximation error of ¢,;7 .

Using t,p,er from (7) and f;f]’; .. from (33) to build an estimator for t,;
we obtain

E = v+l
i (i — 1) (v — G)
N Yk — Y1k 1 Yk — Yk
S 3 (2, B ey, )
I >DRHG
+ ZUUC w, BRI (35)
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It follows that, for large samples, the approximate expectation of fg’w is
given by

B () = B (B (67 bor))
- B, (EnTF Ernp (t‘;j?]p s nF))

A,

Ep ( ;;Ureg)

app
t?/UI + tyUUC

Q

Q

=ty + (tzlg;c - t?/UUC) (36)

where

f,:UTeg = ZSI Uk + (ZUI X1k — Zs, im)/ ]§15, + ZUUC u%ﬁusl (37)

with By,, defined by (12) and

—~ /\71/\
Busl =T tuySI

usjy

- (Z el )12 Uk (38)

SI O'Zkﬂ'pk SI O'Zkﬂ'pk

The estimator * is an estimator that could have been used in case of

yUreg -
frame error and full response (Angsved, 2004).
From Angsved (2004) we have, with some minor modifications, an ap-

proximate sampling variance

AVsam (fgv%’w) = Z ZU, (Trwt — Tremr) FuFy (39)
where

rp—1
Z u, T ukE k
Uyc “k~—ulUp u
Fy = Ey + 5
O uk

with Ey given by (13) and Ey; = yr — u,Byy, with

N\ —1

B — 71 _ UgUy U, Yk
ulr = Ly, tuyls — Uy o2 U, o2

I uk I uk
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Using the Taylor linearization technique we obtain an expression for the
approximate nonresponse variance

H,p,
app . 2 fIh 2
AVNR ( yUcr) - Ep Znsm n Ffws[h (40)
h=1 Tk
where S? is the variance in the set sy, of Fyur/mrg with

Fa;’u,slh

L _ .
3 1 1 p—1
(o, X — 2o, %1x) Tl x1e B B > oo Wk Tus, We B,
02 k 0'2
1k uk

quk =

with By, = yk—x’lk]/?;lsl, B, given by (15) and By = yk—uﬁg]/?;usl respectively.
(For details on the Taylor linearization, see appendix A.1)

A variance estimator of PP is given b
yUcer

1% (fg?cr) = Vsanr (1 ( yUm«) + Vg ( ;[()J[i:r)

An estimated sampling variance component would be

VsAM ( yUCT) Z Z Tk~ TPRTE fkfl (41)

rr 7TFkl7Tkl|sF -,
where

7 p—1
_ ZUUC ukTusluke“k
Jr=ewn+ 3
Ouk

with ey from (17) and

Cuk = Yk — u%]gRHG (42)

ury
Remark 4 An alternative to fr would be
’ Hsp A -1
ZUUC uy, (Zh:l Turm) UgCuk

Jhait = €1 + 5
Ouk

with (Z,Ij:ﬁ” 'T‘m,h) defined in (32) At present it is not clear which choice

is the better and some further work is needed in deciding whether to use fy
or fk,alt i this variance estimator.
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A variance estimator for the nonresponse variance is given by

Hsp
V app _ 772 flh (43)
NR yUcr 'STh n fmurlh
h=1 TIh
where S? is the variance in the set 775, of fiur/mrr Where
:Z"U,‘I‘Ih
(v, xu— >, % )/'f‘_lx e S w T uge
UI 1k ST 1k X187 1k€1k UUC k usy kCuk
fmuk == B + (&3 + D)
Ok O uk

with eyx, e, and ey given by (17),(18) and (42) respectively.

Remark 5 An alternative to fpur would be

! -1
H o~
SF SF
(ZU, X1k = Dy, 1txmh) (Zh:l Txmh) X1k€1k
fxuk,alt = 2
01k
C (e T
ZUUC‘ uk Zhil ursp ukeUk
“+er + 3
O-uk
where
Hs,, H,, Hsp, Hsp,

~ X16X)
~ . ) - o -1 1k

E txmh - E :fIh E :TIh X1, and E Txmh - E fIh E :”h JE—
h=1 h=1 h=1 h—1 FEC 1k

(Z,Il{:ﬁ” ’f‘wm follows analogously). At present it is not clear which choice is
the better and some further work is needed in deciding whether to use fpux
or fruk,ait i this variance estimator.

A special case is when u; = X1, the updated auxiliary information from
the current register. Using uy = x1; and 02, = 02, estimator tyUCT simplifies
and we obtain the special case

Hsp,

rapp yk - ylk) -1 (yk - gk)
tyler = Z g1k + Z (ZSM —+/fu Zm E— (44)

TFk
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5.2 Calibration for nonresponse and frame imperfec-
tions

In Sérndal and Lundstrom (2005) the following estimator is proposed as an
estimator for ¢,y in case of both frame imperfections and nonresponse,

tAyUcal,l = Z 171ka (45)
I

with 171;3 =1+ (EmlU — Zrl 5(1;3)/ (Zrl Xlk)v(/lk)_l X1k where EmlU should be
a close approximation of ), x1;. In the situation when a perfect current
register exists, Y, X1 is known and we obtain

tAyUcal,l = Z Ulkgk (46)
I

with ik = 1 + (ZU X1k — Zrl 5(1;3)/ (Zrl Xlk)v(llk)_l X1k-

The difference fyUcaU —fyUIwM, the latter from (23) when using x; = Xy,
indicates the additional contribution of tAyUcaU compared to tAyUImM. We have

~ ~ !~
tyvcail — tyUrcaln = (ZU X1k — ZU, Xlk) By,
= ZU XllkBlTI (47)
o~ 1 5
where By, = (Z XlkX1k> Z” X1k k-

Using the pr1nc1ples in Sarndal and Lundstrom we propose the following
variance estimator of tyircar1

V (tyveat) = Veanr (Eyveat) + Vivr (fyvearr) (48)

where

Vonnt (Fyoens) ZZN( =) (i) (e

TrETFL 7TF1~:l

- p— (— - 1> e (01— 1) (egr)”

TFk

(49)

and

Vg ( yUcal, 1) = Z or (o, — 1) (écpk)g (50)

TI

23



where
Cpk = Yk — Xllk]/?\’lswz (51)

with

~ -1
Bigr, = (Zrl @kxlkiﬁk) Z” CrX1kTk (52)

Still following Sérndal and Lundstrom, and using the fact that we can identify
the set o; from op we propose the use of

' 1
Or = Qs = 1+ (ZSI Xk — Z” ilk) (Z” X1k5<'1k) X1k (53)

in the variance estimator.

However, the approach above does not take full advantage of all possible
information since only one level of auxiliary information is involved in the
estimator. Using the auxiliary information from both the sample level and
the population level we obtain

tyveal = Z” VUK (54)

with
1

=t [(B )-8 8] (0 ) e e

Looking at the difference fyycal — fyUIcal (with the latter from (23)) we notice
that t,.q adds the term

> v Xik . ZU, X1k IE
51 5(2k s igk T
PN
- (S o X, ) B 2

where

- By,
B, = ﬁg)

= (Z” in;c) o Z” Xk Uk (57)




to tyUlcal .

For large response sets, the approximate bias of tAyUcal is

~ 1
B (tyUcal) ~ - ZU} (1 - ‘9/6) EGk + ZUUC XllkBéI}I - t’yUUC (58)

where 6, are the unknown response probabilities and Eyg, = y — X} Bgy, with

(Z kakxk) IZUI OrXr Yk

The derivation is given in appendix A.3. The approximate bias is a function
of both the unknown response probabilities and the unknown elements in the
undercoverage.

Again using the principles in Sarndal and Lundstrém we propose the
following variance estimator of fyycal

BWY
Byy,

Bou, = B

V (fyUcal) VSA]VI ( yUcal) + VNR( yUcal) (59)
where
1
V ca v v
san (tyveat) ZZH (WFWFZ kaz) (vke1or) (vi€101)
(60)
— — -1 — 1) (e1n)?
and
VNR ( yUcal) = Z Vg (Uk - ]-) (évk)2 (61)
I
where
€1k = Yk — X'lkﬁﬁ«), (62)
Cok = Yk — XZEWI (63)
with
_ [BW S V
B,, = E%%)j = (Zrl vkxkx;c) ZTI VEXKYk (64)

with vy given by (55).
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Remark 6 When auwziliary information exists at the population level only
two alternative variance estimators may be used, V (tyUcal,l) from (48) using

/ —1
O = Ps =1+ (ZSI X1k — Zm ilk) (Zn X1k5<'1k) X1k (65)

A ~

or'V (tyUml) from (59) using

l -1
v, = vy = 1+ (ZU X1k — Z klk) (Z Xlkillk) X1k (66)
Tr TI

6 A small simulation study

A limited Monte Carlo study was performed in order to get some empirical
insight into the behaviour of the suggested point estimators for ¢,y as well
as of their corresponding variance estimators.

The starting point was to create the population sets Ur and U, and their
subsets Upyc,Upc and Ur. The objective was that these sets to some ex-
tent should resemble an actual real life population. In order to do this we
used information from an illustration on changes in the Business Register at
Statistics Sweden (Angsved, 2004).

6.1 Population sets and study variable

An artificial population, denoted MU20000, of 20 000 elements was created
from the population M U281 according to Axelson (2000). The population
MU281 consists of the 281 smallest municipalities in Sweden in 1982, see
appendix B in Sdrndal, Swensson, and Wretman (1992), and MU20000 was
created in order to mimic MU281. From MU20000 the different population
sets, i.e. the target population, the overcoverage population and the un-
dercoverage population, to be used in the Monte Carlo study, were created.
Using simple random sampling, M U20000 was divided into two subsets. The
first part, denoted U (of size Nr = 10 000) was used as frame population in
the simulation study and from this set we created the overcoverage and the
intersection sets. From the second part of MU20000, denoted U-,cwporns the
undercoverage set was created.

In order to create the overcoverage set the variable corresponding to P75
in Ur was used to form five size groups. The overcoverage was determined
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by drawing a Bernoulli sample from each group with inclusion probabilities,
P ("death”), given in table 6.1.

Table 6.1 P(”death”) in five size groups (the groups created from P75)

P75 0-30 30-50 50-70 70-100 | 100-300
P(”death”) | 0.07835 | 0.04628 | 0.03943 | 0.03575 | 0.04702

Using these Bernoulli samples we created the overcoverage set Upe of size
Noc = 666 and the intersection set U of size N; = 9 334. Table 6.2 illus-
trates the frequency distribution by size group in the intersection set and the
overcoverage set respectively.

Table 6.2 Population by size group (the groups created from P75) in the
intersection set and the overcoverage set

P75 0-30 30-50 50-70 70-100 | 100-300 | Total
Ur (%) | 6632 (71.1) | 1586 (17.0) | 629 (6.7) | 341 (3.7) | 146 (1.6) | 9 334 (100)
Uoc (%) | 473 (71.0) | 111 (16.7) |49 (4.0) | 26 (4.0) | 7 (L.0) | 666 (100)

The next step was to create the undercoverage set. This was done from
the set Uspewborn Which was divided into five size groups using the variable
corresponding to P§85. From each group a Bernoulli sample was drawn with
inclusion probabilities, P ("born”) , given in table 6.3.

Table 6.3 P(”born”) in five size groups (the groups created from P85)

P85 0-30 30-50 50-70 70-100 | 100-300
P (born”) | 0.10174 | 0.04723 | 0.02954 | 0.01773 | 0.02765

This gave us the undercoverage set Uy of size Nye = 850. Table 6.4 illus-
trates the frequency distribution by size group in the undercoverage set.

Table 6.4 Population by size group (the groups created from P85) in the
intersection set and the undercoverage set

P85 0-30 30-50 50-70 70-100 | 100-300 | Total
Ur (%) | 6491 (69.5) | 1636 (17.5) | 655 (7.0) | 382 (4.1) | 170 (1.8) | 9 334 (100)
Upc (%) | 722 (84.9) |88 (10.4) |28 (3.3) |8 (0.9) |4 (0.5) | 850 (100)

From these created sets we can form U = U; U Uy, of size N = 10 184.

The variable in U corresponding to REVS/ was chosen as the study
variable y in the Monte Carlo study. From the created population sets we
are able to calculate the values of t,i/, t,,, and t,y,.
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Table 6.5 The total of y and the number of elements in U, Uyc and Uj.

ty Number of elements
U 27 778 011 10 184
Upe | 1817 452 850
Ur 25 960 559 9 334

Thus we have created a situation with an undercoverage rate of 8.3%
(Nyc/N = 850/10 184) and an overcoverage rate of 6.7% (Noc /N = 666/10
000). Furthermore, we see that t,u,./t,v = 1 817 452/27 778 011 ~ 6.5%,
i.e. t,y, underapproximates t,;; by roughly 6.5%.

6.2 Auxiliary information, response mechanism and
point estimators

Estimators for the total of y in both U; and U, denoted #,, and %, in
general, were included in the Monte Carlo study.

Auxiliary information at the population level only were considered in the
study. Two specifications of the auxiliary vector x; were considered, x; = x1x
and xy = (214, 7o) respectively, where x1, = 1 for all k in U and zy is a
quantitative auxiliary variable. Furthermore, two different choices of o5 were
considered, the variables in U corresponding to CS82 and MES§4 respectively.
Henceforth they are referred to as Case CS and Case MFE respectively, while
Case x1 will refer to the use of x; = 21 = 1.

The three cases of auxiliary information represent different strength of
association with the study variable. One measure of this strength is the
multiple coefficient of determination. Table 6.6 presents the multiple coeffi-
cient of determination between y and the three cases of auxiliary vector for
different population sets.

Table 6.6 Multiple coefficient of determination in the sets U, U; and Uyc.

U Ur | Uvc
Case x,1 0 0 0

Case CS 1 0.34 | 0.34 | 0.29
Case ME | 0.82 | 082 | 0.80

The population regression lines in Uye and U; are presented in figures
6.1 and 6.2 for Case CS and Case MFE. The solid line represent regression in
Upe and the dotted line regression in Uy, respectively. The lines are printed
over the range of x5 values in Uy and Uj, respectively.
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Figure 6.1 Case CS Figure 6.2 Case MFE
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The regression lines show that the approximation Byy,, . ~ Bxy, is better in
Case ME than in Case CS. Since By, is estimated approximately unbiased

this means that the guesstimation £;7% =", xgﬁfffG will be better in
Case ME than in Case CS. We note that the range of the x5 values in Case
CS in Upe is between 0 and 30 and in U; between 0 and 70. This fact
could actually be a reason to use the subgroup Uy, k € g if 0 < 29, < 30,
in the approximation of By, i.6. Bxuye = Bxu;,. However, this is not
considered in the study.

We also note that under Case x; we have Byy, . = Bavye = Juy. and
Bxv, = Bzv, = yu,- From table 6.5 we calculate 4, ~ 2138 and 7y, ~
2781. Clearly, since §i,. # yu, the guesstimation under Case z; will be
poor.

Six population response groups, Ugn, h = 0,1,2,3,4,5, were formed
where the group Upgg corresponds to Upe. The variable in Up correspond-
ing to S82 was chosen for this grouping. For h = 1,... 5 all elements in the

same group were assigned the same response probability value, denoted 6.
Table 6.7 Response probabilities in five RHG groups

Population group | N 0,
Un 1921 | 0.624
Urs 1795 | 0.668
Urs 1833 | 0.693
Ura 2271 | 0.728
Urs 1514 | 0.813

Using auxiliary information at population level only, regression based

estimators, i.e. t,1,e from (7) and f%f’cr from (44), as well as calibration

based estimators, i.e. fyUIcal from (23) and fyUcal from (54), were used in
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the study. Note that we use the special case 0%, = 1 in fyy,er and tyr),,.
The five groups from table 6.7 were used as RHG groups in the regression
based estimators. Furthermore, two different versions of ¢, and 7, were
considered:

Di: h=H,,=land f;'=f"'=

Ng,

Ny

D2: h=17"'7HsFandf}?1:M

TIh

I

Since the regression based estimator using RHG groups explicitly models the
nonresponse (in version D2) we wanted to create a situation where the RHG
estimator and the calibration based estimator used the same level of informa-
tion. Thus, we created the auxiliary variable X3, = (V1x, Yor> Var> Yk Vsk) s
where v, = 1 for all £ in group 1,v,, = 1 for all k£ in group 2 and so on.
These five groups represent the RHG groups in table 6.7.

Therefore, two versions of LtyU,caz and tAyUcal were considered:

D3:  not including x3; in the auxiliary vector
D/: including x3; in the auxiliary vector

The superscripts (reg) and (req, RHG) are used to distinguish estimators
using versions DI and D2, respectively, and superscripts (cal) and (cal,xz3)
to distinguish estimators using versions D3 and Dj.

It should be noted that we have created a situation favourable for the
regression based estimators using the RHG groups in table 6.7 in the sense
that these estimators have a negligible nonresponse bias.

Within each case (Case z1, Case CS and Case ME) the estimators

~(reg,RHG RHG ~cal,
(reg, RHG) ) and £E)

cal,x ~reg, .
[ and t?(JUI 3), as well as t?(/Ug , are comparable since

. . . . . i(reg,RHG
information on the response behaviour are involved, although in t?(ﬁzg )

and tff;g FHG) the variable x3 enters indirectly in the RHG groups. Similarly,
the estimators fﬁf) and f;cg? as well as tﬁ;g) and fﬁl)
no information on the response behaviour is involved.

are comparable since

6.3 Analyses of the simulation runs

A simple random sample sy of size ng, = 2 000 was drawn and a response
set rp of size n,, was generated using independent Bernoulli trials with the
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preassigned response probabilities. This was repeated to obtain M = 20 000
samples and their associated response sets.

We denote by fy any estimator presented above and V its estimated vari-
ance, and by #,;;, an estimator for the total of U; and by #,i; an estimator for
the total of U. For the mth simulation run, the estimators fy were computed
for all cases, Case x1, Case CS and Case MFE, and definitions D1 to D/,
as well as their estimated variances. Let fy(m) denote the mth value of an
arbitrary estimator fy and ‘7(m) its estimated variance.

The relative Monte Carlo bias is defined as

RByc ( yUI) (EMC ( yU1> - t?/UI) /t’yUI

and
RBuc (tyw) = (Bmc (b)) — tyw) [ty
where
Eyc (byo,) ZtyUI(m)/ M
and

EMC Z tyu(m)/ M

respectively. Furthermore, we define
RBuc (tyv, tyw) = (Enc (b)) — tyw) Jtyw

i.e. the relative Monte Carlo bias using LtyU, as an estimator for ¢, .
We define the Monte Carlo variance of ¢,

i=1

and the Monte Carlo expectation of V'
M
Ene (V(m)) = ZV(m)/M
i=1
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Confidence intervals were constructed as
CI (fyem)) = [@(m) = 1.967/ Vi), Ey(m) + 1.96 V(m)}

The empirical coverage rate (in %) of the interval CI ({y(m)) is defined as

. 00 —
C'I:{MC t = WZ y(m)a

1 lfC[(y(m) =R
0 otherwise

Finally, in order to evaluate the adjustment for undercoverage we define,
for the regression based estimators,

where [ (fy(m),ty) =

M

Ewo ( Z?JPUC ) - Z Z?]pUc(m)/ M

i=1

fapp BRHG
where ZeyU ZUUC k xrj(m)

Remark 7 The formulations of definitions D1 and D3 are such that Z rp €k =

~ ~ N —1
0, where ey, = Yp—X},Bxr, with By,., = (Txn) tayr, = (Z” XX ) > s XkUks

~ Areg) 1 eal) fren) _ jlea) _
so estimators t,;; and t,; ty =t

Furthermore, we have tA?(;;g) = tA@(fgl) = t;Uﬁxr,-

agree and we have = tiy, Bxr; -

6.4 Results

The Monte Carlo sampling distributions of point estimators are presented in
appendix B.

6.4.1 {,y, as an estimator of ¢,

We start by analysing the properties of fyUI with respect to estimating ¢, .
This means that in this case the only nonsampling error is due to nonre-
sponse.

From section 4.1 we know that, for large samples, f(’;jf RHG)

has a negligi-

ble bias and that the variance estimator of f?(ﬁf FHG) 1) 0s small bias. We also
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have that fﬁ? and tA?(EIg) coincide for all cases in this study and therefore have
the same (approximate) bias and variance. However, the variance estimators

need not be the same. The (approximate) bias of fg;}lll)(: f@(ﬁ]g))

may be calculated from (25) for all cases.

Table 6.8 Relative approzimate bias of t ., (
Case x1 | Case CS | Case ME
flne?) #5901 0.0223 | 0.0124 | 0.0005
f;’;lg’RHG) appr. 0 | appr. 0 appr. 0
f?(ﬁll,x@,) appr. 0 | appr. 0 | appr. O

tA(cal) _ E(Teg))

A(CGZ7X3)
and Ly,

tA(Teg,RHG) and tA(cal,xg)

yU; /o “yUp yUr

We compare these results with the results for the relative Monte Carlo bias.

Table 6.9 The relative Monte Carlo bias of fyUI, RBuc (fyUI), with the stan-
dard error of RBpy¢ (f ;) within parentheses

Case 1 Case CS | Case ME
i #4590 1 0.0536 | 0.0288 | 0.0019
(0.00016) | (0.00013) | (0.00007)
flrerBID 10,0003 | 0.0002 | 0.0001
(0.00013) | (0.00012) | 0.00006)
i) 10,0000 | 0.0001 | 0.0001
(0.00011) | (0.00010) | 0.00007)

Since the standard error is negligible the difference in results between table
6.8 and table 6.9 for f;(;}l? and tA@(];Ig) is not due to simulation effects. As
it seems, the approximate bias from (25) underestimates the bias for these
estimators. From (74) in appendix A.2 we have that the error of t,i,cq

involves the term
!
X1k Ea
ZUI 1 )) (BTI . BQUI)

(Zn X ( D

which in our setup with auxiliary information x; at population level only, is

- (Z” Xy — ZUZ Xk)l (:/B\'r] - BaU,)

(67)
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Calculating this term for the 20 000 simulation runs, summing them and
dividing by (20000 - t,;7,) we have, for the three cases, 0.0311, 0.0162 and
0.0014, respectively. Adding these to the values for fﬁ? and f;’;lg)in table

6.8 the bias now is at the same level as the relative Monte Carlo bias.

_ tA(TeQ))

Table 6.10 Adjusted relative approximate bias of fﬁj)( WU,

Case 1 | Case CS | Case ME

~reg) 7(cal
{759 4490 1 0.0534 | 0.0286 | 0.0019

Thus, in our particular setup the bias approximation is poor for these esti-
mators.

Remark 8 The approximate bias in (25) may need to be adjusted. However,
this is not considered any further here.

From table 6.9 we see that the estimators using information on the re-
sponse behaviour are, not surprisingly, approximately unbiased. However,
when no information on the response behaviour exist the estimators using
an auxiliary vector with strong association with the study variable also per-
form well as the results from 1??(];;]) and Egcgf) under Case ME indicate. This
is further illustrated by figure B.1 to B.12 in appendix B.

For the calibration based estimators we used two alternative variance
estimators in this study, i.e. V' (fyU,caz) from (26) using

-1

!
Vrk = Vuk = 1 + ( E U Xk — E }'ck) ( E Xk}vck) Xk (68)
I T T

as well as

—1

!
Vik = VUsik = 1 + (Z ik — Z )v(k) (Z Xk)v(;g) Xk (69)
Sr TI TI

RHG

As we noted before, the variance estimator of tA?(Ef ’ ) has small bias, which

is confirmed by the results in table 6.11.
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Table 6.11 Enic (Vimy) /Vare (tyo,)
Case 1 | Case CS | Case ME

e 1.0015 | 1.0802 | 1.1544
e BIG ) 0.9992 | 1.0027 | 0.9914

29 (vpe) | 11649 | 11691 | 1.1678
flealxa) (o) | 11586 | 1.1652 | 1.1619

yUr
290 (k) | 11649 | 11684 | 1.1667
5% (ug,1) | 11568 | 11624 | 1.1587

) . ) ) ) ~(cal ~(cal,
The variance estimator of the calibration estimators t?(fgl) and t?(ﬁl *3) over-

estimate the variance by approximately 16% in all cases. The same thing
may be said of the variance estimator for tA@(EIg) in the case of strong auxiliary
vector information.

The results for the empirical coverage rate is a reflection of the results for
the relative Monte Carlo bias and the Monte Carlo expectation of V (tyo,)-
An estimator with high relative Monte Carlo bias shows a poor empirical
coverage rate. When the variance is overestimated this somewhat increases
the empirical coverage rate (compare C Ry of f;’;lg) and CRyc of f;(;}lf),
estimators with the same RBj¢).

Table 6.12 The empirical coverage rate of fyUI, CRyc (fyUI)

Case x1 | Case CS | Case ME
e 324 | 65.7 96.2
flesBIS 949 | 04.9 95.0
259 (vu) | 38.0 68.8 96.2
#550%) (wy,i) | 96.3 96.5 96.5
2590 (we,r) | 38.0 68.8 96.5
#5805 (wg,0) | 96.3 96.5 96.4

~

6.4.2 t,y, as an estimator of ¢,y

In our particular setup we have t,y,. /t,u = 6.5%. This means that if we use
an (approximately) unbiased estimator for ¢,;, in order to estimate t,;; the
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bias, with respect to ¢, would be (approximately) -0.065.
Table 6.13 shows the relative Monte Carlo bias using t,;;, as an estimator
for tyU-

Table 6.13 The relative Monte Carlo bias using t,y, for estimating t,u,
RBuc (tyu,, ty)

Case x1 | Case CS | Case ME
i {590 | 10,0153 | -0.0385 | -0.0636
fee IS 10,0652 | -0.0652 | -0.0653
o)1 00653 | -0.0653 | -0.0654

For all estimators and all three cases of auxiliary information the relative
Monte Carlo bias is negative. However, the results in table 6.13 are implied
already by the results in table 6.9 together with the fact that t,y, . /t,v ~
6.5%. An approximately unbiased estimator (with respect to ¢,;,) will ob-
viously be biased when it comes to estimate t,;;. From table 6.13 we notice
that estimators f?(ﬁf) and f;(;}l? under Case x; have the least bias with respect
to tyy. This should not be interpreted as if these estimators perform well
in estimating ¢,;;. Rather our results are a consequence of the nonresponse
bias that affects these estimators. Another set of response probabilities in
the Monte Carlo study would have given another result.

~

6.4.3 t,y as an estimator of ¢,

In order to analyse the properties of fyU we start by looking at the guessti-
mation of ¢,1,,. Recall that we want

app _ !/
2fyUUC - E :U X/CBXUUC

uc

to be a good approximation for ¢, in order to find a good adjustment for
the undercoverage. Moreover, since we cannot estimate By, we make the
assumption that By, =~ Bxy, and instead we use

app  _ /
tyUUC _ Z XkBXUI

Uyc

since it is possible to find an estimate of t;’g,pUC from the response set.
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In table 6.14 we show (£77  — tyuye) /tyvpe and (t?&p{m - tyUUC) Jtytve s
abp

WUbc from

respectively, where £aPp

WUve — tyye 18 the approximation error of ¢
(34).

Table 6.14 (t5F  — tyuye) [tyvye and (thUpUC - tyUUc) [tyvpe

Case x1 | Case CS | Case ME
tZ’;}Z}C 0.0 0.0 0.0
t;{,’;c 0.3 0.2 0.0

We notice that, for our artificial population t;’(’]’; .. works well for all cases of
auxiliary information. This is due to the definition of the regression coeffi-
cient which results in t,77 = t,1,.. However, for t;;7  Case ME produces
the best approximation. This is implied already in figure 6.1 and 6.2 (see
section 6.2) where the regression lines in Uye and U; displayed that the
approximation By, . = Bxy, is better in Case ME than in Case CS.

The next step is to analyse how the actual guesstimate of ¢,y for the
regression based estimators, i.e. how

rapp R RHG
D E x, B
yUuco Upe k—xry

performed. From the study we get the following results:

Table 6.15 (EMC (z?;’(};c) - tyUUC) [tyuue

Case x1 | Case CS | Case ME
i) 0.3705 | 0.2145 | 0.0067
free I 10,3011 | 0.1793 | 0.0028

Since By, is estimated approximately unbiasedly by ]/?\)fff @ the use of an
auxiliary variable where the approximation By, ~ Bxy, works well also
makes the guesstimation less biased. However, the use of information on
the response mechanism from the RHG groups has modest effect on the
guesstimation in the present particular simulation setup.

The (approximate) bias of f?(fg”(= f&fg)), f;cl}ll’m) and fﬁg’RHG) may be
calculated from (36) and (58) for all cases.
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Table 6.16 Relative approzimate bias of 1,

Case x1 | Case CS | Case ME
Nre cal
fle?) 150 1 0.0362 | 0.0211 | 0.0004
frerBIS 10,0197 | 0.0117 | 0.0002
i) 10,0055 | 0.0048 | 0.0002

ca 1)(

), f;Cgl’x3) and fﬁg’RHG)

We compare these results with the results for the relative Monte Carlo bias.

Table 6.17 The relative Monte Carlo bias of fyU, RBuyc (fyU),with the stan-
dard error of RBp¢ (fyU) within parentheses

Case x1 Case CS | Case MFE
{750 8490 1 0.0744 | 0.0409 | 0.0022
(0.00016) | (0.00014) | (0.00007)
{1 0.0200 | 0.0119 | 0.0003
(0.00014) | (0.00012) | (0.00007)
AV 0.0057 | 0.0049 | 0.0003
(0.00011) | (0.00010) | (0.00007)

The bias approximation works well for estimators f?(fg""” and tA?(Eg’RHG).

Analysing the approximate bias of t( (= t?(;;g)), we have, from (76) in ap-
pendix A.3, the term

5 Soxie VY /5 r(B) 1)
(3w (F)) (b)) + 5, X (BB

ST

which, in our setup with auxiliary information x; at population level only, is

(X, 22, %) (B —Bon) + 3, % (B

(compare (67)). Starting with summation of the first term in (70) and divid-
ing by (20000 - t,;) we have, for the three cases 0.0291, 0.0151 and 0.0013,
respectively. Adding these to the values for t(CU and t(m] in table 6.16 the
relative bias gets closer to the level of the relative Monte Carlo bias.

BGU,) (70)
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Table 6.18 Adjusted relative approzimate bias of f;‘;‘]ll)(: fg;g) )

Case x1 | Case CS | Case ME
Nre ~cal
ile?) #4590 1 0.0653 | 0.0362 | 0.0017

Using the same procedure for the second term of (70) and adding to the values
in table 6.18 we get 0.0742, 0.0408 and 0.0022, even closer to the level of the
relative Monte Carlo bias. Thus, in our particular setup the approximation
is poor for these estimators.

Remark 9 The approximate bias in (58) may need to be adjusted. However,
this is not considered any further here.

Looking at table 6.13 and specifically at the estimators with a relative
bias (with respect to t,;7) of approximately -6.5%, i.e. f?(ﬁjg HHG) and t;(fgj’m) ,
and comparing with their counterparts from table 6.17 the latter show a bias
reduction (with respect to t,y).

For the calibration based estimators we used two alternative variance

estimators in the study, i.e. 1% (tAyUcau) from (48) using

1

1 (5, 5 ) (S, 58)
and V (fyUml) from (59) using

I -1
vy = vy = 1+ (ZU X — Zm )v(k) (Zm ka;:) Xk (72)

Table 6.19 Exic (Vimy) /Vie ()
Case 1 | Case CS | Case ME

e 0.9058 | 1.0753 | 1.1390
flneo FIG) 0.8639 | 1.0029 | 0.9918

29 (pak) | 09785 | 1.0015 | 1.0278
£ (pg,) | 10132 | 1.0195 | 1.0238
150 (o) 1.1541 | 1.1585 | 1.1569
f%) (wyr) | 11485 | 11547 | 11517
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Using vy in the variance estimator for the calibration based estimators the
variance is overestimated by approximately 15%. The variance estimators
using ¢, performed better in our particular setup. Since, in vy, we have
YouXe — Z” % where Zr, %), underestimates ), x; on the average the
weight vy is, on the average, too large, making the estimated variance (on
the average) too large.

The results for the regression estimators exhibit a mixed picture. In
particular, Case x; appears to give variance underestimation, while in Case
ME (strong auxiliary information) the variance of the simple estimator tA@(ﬁg)
is overestimated.

The results on variance estimation merit further theoretical and empirical
studies, a task that lies outside the scope of the present paper.

Finally, we take a look at the empirical coverage rate of fyU.

Table 6.20 The empirical coverage rate of fyU, CRye (fyU)

Case x1 | Case CS | Case ME
i) 6.8 38.5 95.8
flre RIG) 79.2 89.5 95.1
2 (0oh) | 79 35.9 94.7
251 (0,.4) | 93.6 94.0 95.3
i (wyy) [ 108 | 416 96.0
150 () | 95.2 95.5 96.4

These results clearly states that, in our particular setup, the use of informa-
tion on the response mechanism will result in an empirical coverage rate ap-
proximately at the nominal 95% confidence level, with exception of fg}fg RHG)
under Case x1 and Case CS. The reason for this exception is that the guessti-
mation of ¢y, is poor under these cases. The corresponding calibration
based estimators show allover good coverage rates. However, if no informa-
tion on the response mechanism is available the use of auxiliary information
highly correlated with y also works well. Leaving out both of these the
coverage rate deteriorates drastically.

It should be noted that since the Monte Carlo study is based on one
specific population, with specific characteristics for Uy, Uye and U, further
studies using populations with other characteristics for the over- and under-
coverage is needed to be able to draw more general conclusions. It should
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also be noted that only a single study variable and only the estimation of a
population total have been considered in this study.

7 Concluding remarks

In the situation where the statistician has access to a perfect current register
the prospects of adjusting for frame error bias increases. Information on
whether elements in the sample belong to the target population or to the
overcoverage set exist and (approximately) unbiased domain estimators may
be used in order to estimate the total of U;. Moreover, we have current
auxiliary information for all elements in the target population which provides
information on the elements in undercoverage set. This information could
be used to find guesstimates of the total in the undercoverage set. In this
paper we have presented a way to use this (current) auxiliary information
in regression based estimators and calibration based estimators. Along with
these suggested estimators we have proposed variance estimators as well as
general expressions for the (approximate) bias.

Results from a small Monte Carlo study confirm that doing nothing about
the problem with undercoverage leads to negative bias for an always posi-
tive study variable. Using information on the response mechanism together
with an auxiliary vector with strong association with the study variable the
suggested estimators for the total of U show an empirical coverage rate ap-
proximately at the nominal 95% confidence level.

Note that the Monte Carlo study is based on one specific population,
with specific characteristics for Uy,Uye and U, and further studies using
populations with other characteristics for the over- and undercoverage is
needed to be able to draw more general conclusions. It should also be noted
that only a single study variable and only the estimation of a population
total have been considered in this study.

In practice, the estimation situation with access to a perfect current reg-
ister may be somewhat unrealistic. A situation where an updated (but im-
perfect) current register is at hand at the estimation stage of a survey is more
likely to appear. The following situation is an example on such a situation.
Consider a survey setup where the sample is drawn in month m and the
questionnaire is sent out to the sampled elements in months m to m+11, say.
If the frame is updated during this period the updated frame is a potential
candidate to serve as a current register. Issues along this line need to be
studied further.
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Appendix A: Derivations

. . . rapp
A.1 Taylor linearization of tyUer
We start, by rewriting E;’gf’cr,
/
HSF HSF
capp Z —12 - ZZ = RRHG
tyUcr — fIh TTh Yk + ZU} X1k — Sin X1k B17‘I
h=1 h=1 '
/
HsF HSF
- 1 < D RHG ' RRHG
+ Z E Xk — E fIh E : Xk B'rI + Z ukBurl
SIn TIh Uve
h=1 h=1
—1
HSF HSF HSF
~ ~ i A~ ~
= E :t’y?“zh + (txlUI - twlsf) Z Txmh thl?ﬂ'lh
h=1 h=1 h=1
Hsp, " (He, -t Hyp,
+ tzsl - g tmr]h § Tx’r‘u,, Z 1:XZ/"‘Ih,
h=1 h=1 h=1
Hsp .,
/ T 7
+tuUUc Tu"']h tuy"'lh
h=1 h=1

~ ~ ~ ~ ~

= f (t@/"'lh,’ TX17‘1h,> tleTIh,’ tm‘lh,v TXTIh,v thTIh’ Tu"']h,’ tuy"'lh; h = 17 e

We will need the following partial derivatives

- = 1
at?]"'lh
—1
8f ~ / o -~ S RHG
atA— = — (tleI - tmlsI) TX17‘1h (I)jljiBlTI
71547 IR h=1
-1
H,p
of T
ai: = (tﬂ?lUI - t:ms;) Txl""]h, ¢Jl
J1YTIh h=1
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) B RHG
TP
ITIh

/ —1

6f HSF HSF
_ n Z n Z T R RHG
Bf - tws] - thIh TXTIh, (I)JJ"BTI
J3'rIn h=1 h=1
/ —1

Hap, Hep,

of ) ) _
8A = tst - Z txmh Z Txmh ¢j
Eiyrin h=1 h=1

3f / A N RHG
atA ) = ~bwye TUTIh CI)pPIBurI
PP'TIh h=1
Hep -1
LA D D I
Bf uUy e urpp §4
PYTIn h=1

where @, is a J x J matrix with the value 1 in positions (7, j') and (5, j)
and the value 0 everywhere else and ¢; is a j-vector with the jth component
equal to one and zeros elsewhere. ®,, and ¢, follow analogously.

Furthermore, we will need the conditional expected values:

~ o yk ~
Egp (tyr,, |57 ) = Erp (f TR DN pn |5F) =D o, YK/ TR = tys,

-~ _ XlkX/ XlkX/ ~
ERD (TX1T1h, |8F) = ERD (flhl Z 12k |SF> - Z k= wam

TIh STh 2
Ih 7TF1€(71]€ Ih WFlf\Ulk

The conditional expected values of f:xly”h, f:mlh, TXTIh , f:xyr]h, Ty, and f:uy”h
follow analogously.
Evaluating the partial derivatives at the expected value point

~ A~ ~ ~ A~ ~ A~

tysins Lxisins Cxaysins Caospns Lxspn o Sxysns TU51h7tuy51h) the partial derivatives

0 0
- / and — / conveniently vanish and we obtain
atjj'ﬁh 6tjy7'lh
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Hs,
EZ][)]pcr ~ Z & + (t:ﬁUI - E96151>/ B181 + tfluUUCBUSI + Z (tA’yTIh - E?/«Wh)

S1 MRk 1
—1
Hqp Hep
N , ~ ~ ~ ~
- (trlUI - tllsz) E TX151h, E (TX17‘1h - Txlslh) B151
h=1 h=1
—1
Hep Hep
- i A~ ~ ~
+ (t:ﬁUI - twlsl) E Txlslh § (txl?ﬂ“lh - tleSIh)
h=1 h=1
—1
Hep Hep Hep
~ ~ 7 , A~ ~ ~
- E (tm“lh - txslh) BSI + tuUUc TUSIh E , (thTIh - tuyslh)
h=1 h=1 h=1
—1

Hsp,

Hap
, ~ ~ ~ ~
_tuUUC E Tuslh E (Tm‘lh - Tuslh) BUSI
h=1 h=1

Simplification yields

Hsp
oo Y : VR 'R
tyUcr ~ t'!ﬂ']h + (tﬂflUI - t37151> B181 + tuUUCBUSI

h=1

-1
Hsp
N ’ ~ ~ ~ N )~
- (tmlUI - tzlsl) Txlslh Txl'r]hBlsI + (tleI - tzlsl) BlsI

-1
+ (tI1U1 - E»’1C151>/ Zi\‘xlslh ZExlyrlh - (tmlUI - E961517) B151
h=1 h=1

-1

S I
$ IiMF

H,p, Hsp, Hsp, Hsp,
- Z E;TIhBSI + Z E;smle - t{uUUc Z TUSIh Z TUTIhBUSI
h=1 h=1 h=1 h=1
H,, ~m,,
—i—tquUC]/?\)usI + tquUUC Z Tuslh Z EUyTIh o t’IUUUC EUSI
h=1 h=1
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We get

EZI()]pcr R (t«TlUI - «’6151> BlSl + tuUUCBUSI + txslB

H,p,
+ (tmlUI - r151> TxlsI E (txly"'lh - TXlTIhBlsz)
h=1
HsF HSF

h=1

+ Z (t?ﬂ'lh - tf’cTIhBSI) uUUcTusl (thTIh - TUTIhBUSI)
h=1

- (txlU] - 1131> BlS] + tuUUCBUS] + t.rSIB

Hyp, -
. / T X1 Bk
+ (bzyvy — ays;) Trps, E fin E : 2
T1h TFEO |
H‘SF A HSF al
Ey u B
1 kHuk
+ E fin E +tuUUcTu51 th Z 2
he1 Tih TRk Tih O, . TPk

. L& . P . P
where F, =y — x1,B1s, B =y — X,Bs, and By, = yp — By, -

Rewriting again we obtain

/\% ~ 3 I} =
tyUcr ~ (trle -Tlsl) BlSI + tuUUCBUSI + tmsIBSI
HSF -~ 1 2 A
+ Z fil Z (twlU] - txlsj) TxlslxlkElk Ek ’LLUUCT ukE’LLk
Ih
1 TIh kaalk 7TFk; O'ukﬂ'pk
= (twlUI «’6151> BlSl + tuUUCBUSI + tmsIB
HSF
-1 quk
+ fIh r T
Th
h=1 Fk
(tmlUI - ismlsI)/ rf[\‘;llsIXlkEA’lk ~ ;LUUCT ukEuk
where F,. = + B + 3

2
01k O uk
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A.2 Derivation of approximate bias of fyU]ml

The derivation of the approximate bias of fyUIcal follow the approach from
Sarndal and Lundstrém (2005).
The calibration estimator t,y,.q can be written as

!
2 . X1k - 3
=3 o [(Fri) -2, 8]B
ST
where
B()
B

= (Zn ka;g) B Zm Xk Uk

For large response sets, Em is close in probability to the vector

(Z kakxk) IZUI OrXrYn

TI:

OUI

Bou, = B

Now we rewrite (73) to obtain
i _ Z Ui + ZUIXU; —Z < /B
yUrcal 7‘1 k ZSI ka 7‘1 k oU;
!/
X . ~
((EE) 1] o)

S

!
Note that the last term (Zm X, — ( ZU’ fclk )) (]/-S’m — Bgy,) is of lower
Zs, Xok

order of importance, compared to the preceeding two terms.
We can write the error of ¢yy,cu as

tAyUIcal yUI Z” E@k — Z FEoir + |:Z Xok — Z XQk:| B(OI}]
/
(e

where Egk = gk — }VC%BQUI.
Evaluating the error of fyU,caz we see that the expectation of Zrl FEor, —

ZU, Eog. is — ZUI (1 — 0;) Eg, and that of [ZSI Xop — ZU, xzk}/BgL is zero.
The expectation of the last term is not exactly zero, but (BTI - BgUI)

tends to zero in probability with increasing size of the response set. Thus,
B (tyv,cal) = — >, (1= 0k) Epg.
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A.3 Derivation of approximate bias of fyUcal

The derivation of the approximate bias of f,pc follow the approach from
Sarndal and Lundstrém (2005).

~

The calibration estimator ¢,;.q can be written as

/
~ o X k - o~y
tyUcal = E r Yk + |:( %Z }VCIQk > - E . Xk:| BT] (75)
where

35(1
B,
B

~

TI

= (Zn ka;:) - Zm Xk Uk

For large response sets, B,, is close in probability to the vector

= (ZUI HkaXZ) - ZUI OrX 1Yk

1
By,

B e
1

Now we rewrite (75) to obtain
; . >_u Xk T
tyUcal = . — B
ytjeal Z” et K Zs, Xok Zn x| Do
!/
X . ~
¥ K )Y, } (B., B,
Sr

!
Note that the last term (Z” X — ( %Z};{QZ >> (E” — BgUI) is of lower

order of importance, compared to the preceeding two terms.
We can write the error of t,p.q as

!
? - g 2
tyvca =ty = Z” Eor — ZUI Eogr. + [Zsl Xok — ZUI X2k:| Bfg[}l
- ZUI X1k I (’\
- - : B, - B )
(Z’“I Xk ( > sy Xok T
1
+ ZUUC XllkBél}I — tyUye
p(1 1)
™ ZUUC Xllk (Bg‘]) - BGUI) (76)
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” ~ 5/
where Eyg, = U — X Bou, -
Thus, the error can be written as

~ ~ 1 5(1 1
tyUcal — tyU = tijcal — tyUI + ZUUC Xllk:Bé(}I - tyUUC + ZUUC‘ Xllk: <B7(“1) o Bél}l)

The expectation of the term ﬁ(l) — BSL), is not exactly zero, but Eﬁ? - BfglL);I

tends to zero in probability with increasing 51ze of the response set. Thus,
Bt ( yUcal) ~ = ZU, ( 91@) Eor + ZUUC XlkBGUI tyuye
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Appendix B: Monte Carlo sampling

distributions

In figure B.1 to B.12 the vertical line marks t,;;, = 25 960 559.

Figure B.1 fﬁf) - Case 11

4|||||. \

T 1
2.4*10"7  2.6*10"7  2.8*10"7 3107 3.2"10%7

Figure B.4 ¢,

flrea- RHG) - cage X1

T
2.4*10"7 2.6*10"7 2.8"10"7  3*10%7

1
3.2°10"7

Figure B.2 fﬁf) - Case CS

T T 1
2.4*10"7  2.6*10"7 2.8*10"7 31077 3.2*10"7

Figure B.5 fﬁf’RHG) - Case CS

T 1
2.4*10"7  2.6*10"7  2.8*10"7 3*1077 3.2*10"7

Figure B.3 tAZ(f;Ig) - Case ME

1
2.4*10"7  2.6*10"7 2.8*10"7 31077 3.2*10"7

Figure B.6 fﬁlg’RHG) - Case ME

1
2.4*10"7  2.6*10"7  2.8*10"7 3*10"7 3.2*10"7
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Figure B.7 fé“gf) - Case 1,

Figure B.10 f;cl}lll’m) - Case x,

W 4l||||- W

2.410"7  2.6*10"7 2.8*10"7  3*10"7  3.2"10"7

2.4*10"7  2.6*107 2.8*10"7  3*10"7  3.2"10"7

Figure B.8 f;c[}zll) - Case CS

2.4*10"7  2.6*10"7 2.8*10"7 31077 3.2*10"7

Figure B.11 f;c[}zll’m) - Case CS

2.4*10"7  2.6*10"7  2.8*10"7 3*1077 3.2*10"7

Figure B.9 E?(jgf) - Case ME

Figure B.12 Eéi;’j”‘” - Case ME

2.4*10"7  2.6*10"7 2.8*10"7 31077 3.2*10"7

2.4*10"7  2.6*10"7 2.8*10"7  3*10"7  3.2*10"7

ol




In figure B.13 to B.24 the vertical line marks t,; = 27 778 011.

Figure B.13 tﬁ;g) -

T
2.4*10"7  2.6*10"7 2. 8*10’\7 3* 10’\7 32”10"7

Case x

Figure B.16 tA?(}fg’RHG) -

|¢||| \

2.4*10"7  2.6*107 2.8*10"7 3107  3.2"10"7

Case x4

Figure B.14 t(req - Case CS

4.|\‘||||\|.._

2.410"7  2.6"10"7  2.8"10"7 3107  3.2*10"7

Figure B.17 t(req’RHG

2.4*10"7  2.6*10"7 2.8*10"7  3*10°7  3.2*10"7

- Case CS

Figure B.15 t(reg) Case ME

r
2.4*10"7  2.6"10"7 28* 07 31 0"7 3.2"10"7

Figure B.18 t(reg’RHG) Case ME

2.4*10"7 26‘ 0r7 28* 07 37107  3.2*10"7
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Figure B.19 tA?(f(}d) - Case 1,

T T T T 1
2.4*10"7  2.6*10"7  2.8*10"7 31077 3.2*10"7

Figure B.22 f;cgl’m) - Case x,

2.4*10"7 2.6*10"7 2.8*10"7  3*10°7  3.2*10"7

Figure B.20 fﬁl) - Case CS

B 4.|“||||\|.._ W

2.410"7  2.6*10"7 2.8*10"7  3*10"7  3.2"10"7

Figure B.23 f;cgl’xg) - Case CS

2.4*10"7  2.6*107 2.8*10"7  3*10"7  3.2"10"7

Figure B.21 fﬁl) - Case ME

2.4*10"7  2.6*10"7  2.8*10"7 31077 3.2*10"7

Figure B.24 f;cgl’xg) - Case ME

2.4*10"7  2.6*107 2.8*10"7 3107  3.2"10"7
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