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Abstract

The main theorem of this paper states that if f : Rm
+ → Rm

+ is increas-
ing and continuous and the set S = {x ≥ 0 : f(x) ≤ x} is bounded
and contains some x′ > 0 then there is a non-zero fixed point of f . If
in addition to this there is x′′ ∈ S, x′′ < x′ there are multiple fixed
points. The main theorem is equivalent to the Brouwer fixed point
theorem.
Keywords: Increasing function, Fixed point

In this paper we study the existence of fixed points of continuous increas-
ing functions defined on finite dimensional spaces. A function f : A →
Rm, where A ⊂ Rm, is increasing or monotone if for x′ and x in A,

x′ ≥ x ⇒ f(x′) ≥ f(x). (1)

The main result of this paper states that if f : Rm
+ → Rm

+ is increasing and
continuous and the set S = {x ≥ 0 : f(x) ≤ x} is bounded and contains
some x′ > 0 then there is a non-zero fixed point x of f , x = f(x) 6= 0.

The theorem was proved, using degree theory, and applied to eco-
nomic models in [1]. However, in this paper the proof uses the Knaster-
Koratowski-Mazurkiewicz lemma (KKM) (see e.g. [2]), which is equiva-
lent to the Brouwer fixed point theorem. A corollary to the theorem is
added in which we obtain the Brouwer fixed point theorem. Thus, our
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theorem is equivalent to Brouwer and this shows the “non-simplicity” of
our theorem, and its possible use in other applications.

Furthermore, if there are x′′ and x′, both in S such that x′′ < x′, then
there are at least two fixed points of f .

Theorem 1 Assume that f : Rm
+ → Rm

+ is continuous and satisfies x′ ≥ x ⇒
f(x′) ≥ f(x). Let S = {x ≥ 0 : f(x) ≤ x}. If S is bounded, and if there is
x′ > 0, x′ ∈ S, then there is x ≥ 0, x 6= 0, such that x = f(x).

Proof: For each x′ ∈ S, x′ > 0, f takes {x ≥ 0 : x ≤ x′} to itself. Let
M = cl{x ≥ 0 : x′ ∈ S, x′ > 0, x ≤ x′}, then f takes M to M . To see this,
assume that there is x ∈ M such that f(x) ∈ ∼M which implies that there
is ε > 0 such that |f(x) − y| > ε for all y ∈ M . For each δ > 0 there is
x′′ ∈ M such that |x− x′′| < δ, x′′ ≤ x′, x′ ∈ M and thus f(x′′) ≤ f(x′) ≤ x′

and f(x′′) ∈ M which thus contradicts the continuity of f .
Let ∂M to be the boundary of M relative to Rm

+ and let ∆ = {x ∈ Rm
+ :∑

i xi = 1} is the unit (m − 1)−simplex. For x ∈ ∆ we have that there is
α > 0 such that αx ≤ x′ for some x′ ∈ S. There is also ᾱ = max α for
αx ∈ M since M is compact. Furthermore, ᾱx ∈ ∂M and αx /∈ ∂M for
α 6= ᾱ. Then the function h : ∆ → ∂M

h(x) =
{
y ∈ ∂M : y

( ∑

i

yi

)−1
= x

}

is well defined.
h is also continuous. Assume that h is not continuous at x ∈ ∆. At x,

y = kx for some constant k > 0. Then, there is ε > 0 such that for each
δ > 0 there is x′ ∈ ∆, x′ > 0 such that |x − x′| < δ and |y − y′| > ε. Let
y′ = k′x′, k′ > 0. Then, |x − x′| = |y/k − y′/k′| < δ and since |y − y′| > ε
we must have y ≥ y′ or y ≤ y′ with yi = y′i for some i, only if yi = y′i = 0.
Clearly, y and y′ can not both be in ∂M which contradicts the definition of
h.

The sets Ci ⊂ ∆ defined by

Ci = {x ∈ ∆ : fi(h(x)) ≥ hi(x)}, i = 1, . . . ,m

is a closed covering of ∆. If x /∈ Ci for all i, then f(h(x) < h(x) contradict-
ing the definition of ∂M . For each Ci we have that Ci ⊃ ∆i = {x ∈ ∆ :
xi = 0}. By the KKM lemma there is x ∈ ∩iCi, and then f(y) ≥ y, y = h(x).
Continuity of f and the definition of M then yield y = f(y). Q.E.D.

Corollary 2 The Brouwer Fixed Point Theorem. Let f : ∆ → ∆ be continuous,
where ∆ = {x ∈ Rm

+ :
∑

i xi = 1} is the unit (m − 1)−simplex. Then, there is
x ∈ ∆ such that x = f(x).
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Proof: Define g : Rm
+ → Rm

+ by

gi(x) =

{
inf{fi(x

′) : x′ ∈ ∆, x ≤ x′} if
∑

j xj ≤ 1
sup{fi(x

′) : x′ ∈ ∆, x ≥ x′} if
∑

j xj ≥ 1
(2)

Then, g is continuous and monotone. Finally, define h : Rm
+ → Rm

+ by

h(x) =


∑

j

xj




α

g(x)

which implies that h satisfies the conditions of Theorem 1 for α > 1 suffi-
ciently large. Then there is x̄ 6= 0 such that x̄ = h(x̄) or

x̄ =


∑

j

x̄j




α

g(x̄)

Assume next that
∑

j x̄j > 1. From the definition of g we have that g(x̄) ≥
f(x′) for some x′ ∈ ∆ and thus

∑
i gi(x̄) ≥ 1 and

∑

i

x̄i <


∑

j

x̄j




α ∑

i

gi(x̄)

which contradicts x̄ being a fixed point. Thus, 0 <
∑

j x̄j ≤ 1. Due to this
we find that x̄ ≤ g(x̄). ∆′ = {x ≥ x̄ :

∑
i xi = 1} is a proper subsimplex

of ∆. For x ∈ ∆′ and the monotonicity of g we have that g(x) ≥ g(x̄).
Furthermore, from the definition of g we have f(x) ≥ g(x). Combining all
inequalities we find that f(x) ≥ x̄. Thus,

f(∆′) ⊂ ∆′

Define X to be the set of vectors of all monotone sequences {xn}, xn+1 ≥ xn

such that x0 ≥ x̄ and
∑

i x
n
i ≤ 1. Specifically, the elements of the sequence

defined by x0 = x̄, xn+1 = g(xn) is in this set, and since g is continuous, this
sequence converges to some x∗ = g(x∗). From Zorn’s lemma (see e.g. [3])
it follows that there is y ∈ X such that y is greater than all elements of X .
Clearly, y ∈ ∆′ and thus f(y) ∈ ∆′ and from the definition of g it follows
that x∗ ≤ g(y) = f(y) and hence, f(y) ∈ X , and f(y) ≤ y which implies
that y = f(y). Q.E.D.

The following proposition deals with functions which map the whole
of Rm into itself. The result is a consequence of Tarski’s fixed point theo-
rem (see e.g. [4]) and it is easy to prove directly as in [5].
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Proposition 3 Assume that f : Rm → Rm is continuous and satisfies x′ ≥ x ⇒
f(x′) ≥ f(x). Let S = {x : f(x) ≤ x} be non–empty and bounded from below.
Then, for each x′′ ∈ S, there is x̄ ≤ x′′ such that x̄ = f(x̄).

We can now combine the results of these propositions to obtain condi-
tions for the existence of more than one fixed point.

Proposition 4 Assume that f : Rm → Rm is continuous and satisfies x′ ≥ x ⇒
f(x′) ≥ f(x). Let S = {x ≥ 0 : f(x) ≤ x}. Assume that S is bounded and
contains two points x′ and x′′ such that x′′ < x′. Then, there are two fixed points,
x̄ and x̃, of f for which x̄ ≤ x̃ (x̄ 6= x̃).

Proof: The fixed point x̄ is given by a direct application of Proposition 3.
Next, set z = x − x̄ which yields z′ = x′ − x > 0. Define g(z) = f(x) − x̄.
Due to monotonicity of f , g(z) maps Rm

+ into itself and by assumption the
set S = {z ≥ 0 : g(z) ≤ z} contains z′ > 0. Theorem 1 can now be applied
and we thus have a fixed point z̃ = g(z̃) ≥ 0, z̃ 6= 0, i.e. x̃− x̄ = f(x̃)− x̄ ≥
0, x̃ 6= x̄. Q.E.D.
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