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Abstract

Asset price processes are completely described by information processes
and investors’ preferences. In this paper we derive the relationship be-
tween the process of investors’ expectations of the terminal stock price
and asset prices in a general continuous time pricing kernel framework.
To derive the asset price process we make use of the modern technique
of forward-backward stochastic differential equations. With this ap-
proach it is possible to show the driving factors for stochastic volatility
of asset prices and to give theoretical arguments for empirically well
documented facts. We show that stylized facts that look at first hand
like financial market anomalies may be explained by an information
process with stochastic volatility.
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1 Introduction

In the last decades much empirical work has been done on time series of
asset prices. Many studies report mean reversion in stock returns [see Fama
and French [9]; Poterba, Summers [28]], predictability of the equity premium
and other ”anomalies”. Empirical research on options suggests significant
mispricing compared to theoretical option prices, especially compared to the
Black-Scholes model (see Canina, Figlewski [4]; Jackwerth, Rubinstein [20];
Rubinstein [29] and for an outstanding survey Ghysels, Harvey, Renault [13]).
Most of these well documented facts still lack a sound theoretical explana-
tion. While the smile effect, for example, can be explained with stochastic
volatility models the stochastic process of the volatility is usually exoge-
neously given. Only few models address the basic economic question why
volatility is stochastic. Thus, usually a somewhat arbitrary volatility process
is introduced.!

Many theoretical papers have already investigated the viability of sto-
chastic processes for asset prices, i.e. the consistency with an equilibrium.
A common framework for the investigation is a representative investor econ-
omy. Basically, as was shown for example by Decamps, Lazrak [6] an equi-
librium in a representative investor economy implies that the pricing kernel
is a deterministic function of wealth. Hence, not every arbitrage free asset
price process is consistent with such an equilibrium, since the existence of a
strict positive pricing kernel is sufficient to ensure the absence of arbitrage
possibilities. The assumption of arbitrage free markets does not imply that
the pricing kernel is a deterministic function of wealth. Whether certain
asset price processes are consistent with an equilibrium in a representative
investor economy has been analyzed for example in Bick [1]; Bick [2]; He,
Leland [14] and Pham, Touzi [27]. Franke, Stapleton, Subrahmanyam [12]
choose a slightly different, more constructive approach to investigate the via-
bility of asset price processes. Instead of starting with the stochastic process
of asset prices, they take the process of investors’ expectations of the future
cash flow as given. They further assume that the asset pays no dividends.
Since the price is completely described by the distribution of the cash flow
and by investors’ preferences it is possible to construct any viable asset price
process from the characteristics of information processes and preferences. By

1For models that are able to generate stochastic volatility see David [5] and Veronesi
[32].



the assumption of rational investors it is possible to impose restrictions on
the process representing investors’ expectations, i.e. the information process.
Hence, with the information process the distribution of the cash flow is given
and from the assumptions on investors’ preferences the characteristics of the
pricing kernel are given, too. Thus, the asset price process can be derived
from the underlying assumptions.

In this paper we follow the approach of Franke, Stapleton, Subrahmanyam.
While Franke, Stapleton, Subrahmanyam emphasize the importance of the
utility function or more precisely the elasticity of the pricing kernel our task
is to show the influence of the variations in expectations, i.e. the influence
of the volatility of the information process on the asset price process. We
extend their approach in that we allow for a second risk factor driving the
process of investors’ expectations. Hence, in our model the volatility of the
information process may be stochastic. Further we will give an economic jus-
tification for the generalization. We are arguing that introducing stochastic
volatility of the information process is a sensible assumption. To see this
consider a stochastic process with only one risk factor, e.g. the geometric
Brownian motion. In this case, the uncertainty about the stock price in T is
an only time dependent deterministic function. It is sensible to assume, that
this uncertainty may also be a stochastic function since this uncertainty is
driven by exogenous shocks. Unexpected news announcements may be seen
as one of these exogenous shocks. We will turn to this point again in section
3.

With our approach we are able to link explicitly financial markets phe-
nomena to the process of investors’ expectations. We will show that many
properties of asset price processes and especially empirically documented
properties of the risk premia can be explained by the characteristics of the
volatility of the information process. Further, we give an economic justifi-
cation for stochastic volatility asset models and we discuss the justification
of specifications of stochastic volatility by relating them to the process of
investors’ expectations.

The organization of this paper is as follows. The next section gives a short
review on related papers. In section 3 we discuss the viability of information
processes under the assumption of rational expectations. In section 4 we give
a brief characterization of the pricing kernel. In section 5 we derive viable as-
set price processes with the modern technique of forward-backward stochastic
differential equations (an outstanding overview on backward stochastic dif-
ferential equations and forward-backward stochastic differential equations is
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given in El Karoui et al. [8]). Section 6 summarizes the main results.

2 A Short Survey on Related Papers

Before the seminal paper of Huang [19] continuous time models in finance
were already prevalent. The usual assumption was that the equilibrium asset
prices can be represented by Itd integrals. Huang was the first to give a
sound theoretical justification for this assumption. One main result in his
paper is that if equilibrium asset prices are adapted to a filtration generated
by a Brownian motion, then equilibrium asset prices are It6 integrals. Thus
Huang provided a justification for continuous sample paths of equilibrium
asset prices by linking them to the information flow.

The studies in the 90’s on the foundation of equilibrium asset price
processes addressed the question which characteristics of the state price den-
sity can be supported by sensible assumptions on the utility function of a
representative agent. Connected to this was the question, which utility func-
tions are implied by equilibrium asset prices which are governed by specific
stochastic differential equations. Bick [2] characterizes processes as viable by
the "no-trade criteria”, i.e. an asset price process is a possible equilibrium
if there exists a von Neumann-Morgenstern utility function such that it is
optimal for the representative agent to buy the market portfolio in ¢t = 0 and
hold it until 7. Bick requires path-independence of the pricing kernel for
viability which is equivalent to the requirement that the pricing kernel is a
deterministic function of wealth.? Ensuing papers of He, Leland [14], Hodges,
Carverhill [17], Hodges, Selby [16] and Decamps, Lazrak [6] generalize this
analysis further.

Pham and Touzi [27] tackle the case of stochastic volatility. They provide
utility-theoretic foundations for common assumptions on the risk premia in
stochastic volatility models. Their analysis is similar to the previously men-
tioned, as they start with stochastic differential equations for the asset prices.
The main results of their paper are necessary and sufficient conditions for the
viability of the risk premia. Of special interest may be their analysis of the
classical stochastic volatility model of Hull and White [18] and the concept
of a minimal martingale measure introduced by Follmer and Schweizer [10].
Hull and White were the first to derive an explicit formula for the price of
an European option written on an asset with stochastic volatility. Yet their

2See for example Decamps, Lazrak [6] and section 4 of this paper.
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result crucially depends on the assumption that the volatility risk premium
is independent of the underlying asset. Since in an incomplete market the
equivalent martingale measure and, thus, the risk premia are not uniquely
determined by arbitrage arguments, some restriction has to be imposed on
the risk premia. The analysis of Pham and Touzi establishes that this kind
of volatility risk premium is consistent with constant relative risk aversion.
For the specification of the equivalent martingale measure in incomplete mar-
kets Follmer and Schweizer [10] propose the concept of a minimal martingale
measure. Loosely stated the minimal martingale measure is defined such
that only traded risk is priced, hence, risk that is uncorrelated with traded
assets has a price of zero. As intuition suggests this kind of equilibrium is
supported by logarithmic preferences.

The analysis of Franke, Stapleton and Subrahmanyam [12] differs in var-
ious ways from the former papers. First, they do not assume the existence
of a representative investor, instead they simply assume that markets do
not admit arbitrage possibilities and hence, a pricing kernel exists. Second,
they do not take the asset price process as given. Their approach is more
constructive as the basis of the model is a process for conditional expecta-
tions of the exogenously given asset price at some terminal date. From the
assumption of rational investors they deduce the martingale property of the
process of conditional expectations. With the assumption that the process of
conditional expectations is governed by a geometric Brownian motion with-
out drift their analysis establishes a strong relationship between the process
of conditional expectations and the asset price process. In particular, they
show that the asset price process follows a geometric Brownian motion if
conditional expectations follow a geometric Brownian motion without drift
and the pricing kernel has constant elasticity. They also derive properties
of the price process for a pricing kernel with either declining or increasing
elasticity. In these cases asset returns are autocorrelated and the variance of
the asset price is higher than with constant elasticity of the pricing kernel.

3 Characterization and Viability of Informa-
tion Processes

In this section we introduce an information process I similar to the one
in Franke, Stapleton, Subrahmanyam [12]. It is defined as the process of



conditional expectations of investors about a future cash flow. Thus, this
process describes all the information available to the investors. We focus on
the question how the asset price process is depending on the characteristics
of such an information process I while we take the information process as
given.

We consider a market with the given time horizon 7" > 0 and the two
dimensional standard Brownian motion W = {(W/,W}) : t € [0,T]} on a
given probability space (2, F, F;, P) where (F), clo.r] is the filtration gener-
ated by W augmented by all the F-null sets, with 7 = Fr. The information
process [ is defined on this probability space. As already mentioned, this
process is assumed to represent investors’ expectations about the future cash
flow paid to the shareholder of a company. We assume that this strictly
positive dividend is paid only in T'. Since investors are assumed to act to-
tally rational, I; is a positive P-martingale and hence admits the following
representation®

t
It:10+/ I (ohdw! + oV awy) , 0<t<T. (1)
0

The martingale representation theorem provides that there exist two processes
ol and atI V. By this theorem one only knows that these processes are adapted

to F; and that P <f0T (ag)st < oo> =1and P (fOT (ngv)st < oo> =1

In the following we make the assumption o' = 0 for all ¢t € [0,7] and we
require a special characterization of of. Of course, with these assumptions
we assume a special representation of I;. Later we will give some economic
arguments for this special representation.

In the remainder of this paper we assume that the volatility o/ of the
information process is governed by the following stochastic differential equa-
tion:

t t
ol = o} —I—/ b(s, I,,0l) ds —I—/ o’ (s, I,y dWy , 0<t<T, (2)
0 0

where b is the drift and ¢" describes the volatility of o (these two functions
are assumed to be deterministic). Since I; represents investors’ expecta-
tions in ¢ about the value of the asset in T', the process I; and the forward

3See for example Karatzas and Shreve [22].
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price process of the asset F; must be equal at time 7. Thus, by definition
Fr = Ip. Hence, by postulating such an information process I; the value of
the asset in T" which is equal to the cash flow at date T is given. Equation
(1) is a generalization of the information process considered in Franke, Sta-
pleton, Subrahmanyam [12]. While their information process is modeled as
a geometric Brownian motion, equation (1) admits constant, time varying,
deterministic or stochastic volatility.

In the remainder of this paper o {I,| 0 < u < ¢} represents the filtration
generated by I; which by assumption represents all the information available
to investors in t. We will now turn to the economic meaning of different
volatility models. First take the case of constant volatility, i.e. of = o for
all t € [0,7]. Hence, the logarithm of I7 is normally distributed with ex-

N2
pectation E¥ (In Iz|o {I,]0 <u <t})=1In (L) — (Ug)

var (InIplo {1,]0 <u <t}) = (06)2 (T'—1t) for 0 < t < T. Since the price
of the asset in T is equal to Ir this implies that the uncertainty about the
final value of the asset is a linearly decreasing function of time.

This constant rate of uncertainty resolution over time implies some special
information flow. The intensity of information arrival must be constant over
time, i.e. there are no periods where more information is getting into the
market than during other periods. Deterministic but time varying volatility
would allow for periods with a more intense information flow, but uncertainty
resolution is still a deterministic function of time. Such deterministic time
patterns might be explained by some sort of clustering of the information
flow; companies announcing their results in certain periods, e.g. at the end
of a year, many macroeconomic announcements such as monthly economic
information releases occur at certain week-days (see Ederington and Lee [7]
for a related econometric study). These facts may explain to some degree a
deterministic time pattern of the volatility of the information process. Hence,
under the assumption of time varying volatility the conditional variance of
I7 is no more linear in ¢. But the volatility and the process of conditional
variances of I can still be perfectly forecasted.

Since the information process is governed by such scheduled information
releases but also by unforeseen information events we consider some ran-
domness in the volatility of the information process to get a more realistic
model for the conditional expectations. First assume that volatility is a borel

(T —t) and variance



function of ¢, I; and o/, hence it is a deterministic function of ¢, I; and o:
t
0{:06+/b(s,fs,0£)ds, 0<t<T. (3)
0

This formulation of the volatility is, for example, consistent with a leverage
effect, i.e. volatility increases with decreasing asset value. The easiest way

to model the leverage effect, is to assume a constant elasticity of variance
model (CEV)

0,{:5[[“,0§t§T,f0rsomeawithO§a§1andE>Oconstant.

The model (equation (3)) includes all variations of the volatility of the in-
formation process which can be described by deterministic functions of t,
I; and o!. Notice that with our model (equation (3)) o/ is random since it
is a function of I, but it is o {/,|0 < u < t}-measurable, thus the current
volatility is known. Economically this means that the current (short-term
or myopic) risk is known but the long-term risk evolves stochastically over
time.

Even this more general model neglects some kind of uncertainty. Many
news about the economy or politics as well as about markets and companies
are published completely erratically so that stochastic terms have to be con-
sidered explicitly in the volatility process. Therefore to include these facts
in the model, the volatility is governed by a separate stochastic differential
equation with a stochastic term (equation (2)). It will be obvious from The-
orem 1 that modeling the volatility of the information process by a separate
stochastic differential equation with a stochastic term has an important ef-
fect on the asset price process. With this model, the volatility risk of the
information process is priced, i.e. a risk premium is paid. Hence, all other
variations in the volatility of the information process are not priced.

We can conclude that in general we have to consider stochastic volatility
which exhibits some time pattern. The quantification of these facts is an
empirical task and is closely related to the estimation of the volatility of
asset prices.

4 Characterization of the Pricing Kernel

To derive the asset price process we need the Girsanov-theorem. In this
section we give a brief summary of Girsanov’s theorem and an economic
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interpretation of the process defining the pricing kernel. Further, we apply
Girsanov’s theorem in a representative investor economy to gain a deeper
understanding of the pricing kernel.

4.1 Brief summary of Girsanov’s theorem

Assuming that the market, in some filtered probability space (2, G, G;, P) on
which defined a standard Brownian motion W, admits no arbitrage possibil-
ities it is well known that there exists a martingale measure P equivalent to
P under which the forward price F; is a martingale*, thus

F=E"(Fr|G), 0<t<T.

Defining the density process 7, := EPf (3—113\9,5>, 0 <t <T,then F follows a

ﬁ—martingale if and only if nF follows a P-martingale, in other words

nFE,=E"(ny Fr|G) , 0<t<T.

Now, for an adapted real-valued process A\ with P ( fOT )\tzdt < oo) =1

consider

ddy = —oMNdw,, 0<t<T, (4)
o =1

Y

then it is clear that ®™ is a P-martingale. Further, the unique solution to
equation (4) is 8™ = exp (— JEAudw, — 1 [ |)\u|2du> for 0 <t < 7T. By

construction the process ®™ has the properties of a density process.
However, it follows from the no arbitrage assumption that there exists a
process  such that ®*) defines a probability measure P by

dp ;
d—P=<b§>, 0<t<T, Pas.

under which F' is a martingale. Hence, we have

F, = EF (@ij“T) Fr ygt> . 0<t<T, (5)

“We consider only forward contracts with maturity time 7", thus for notational conve-
nience we write F; instead of Fy 7.



(r)
o
where for notational convenience we write (I)EF”T for (Tn) <I>§T) is called the

pricing kernel. To simplify notation in the remainder the index (k) is omitted.
__ Furthermore, it is well known from Girsanov’s theorem that the process
W, which is given by

t
W, = W + /‘mﬂw, 0<t<T,
0

follows a standard Brownian motion on the space (Q, g, ]3>

Thus, technically the transformation is done by multiplying the asset
price under the probability measure P with a suitable P-martingale.” To get
some economic intuition we apply these results in a simplified economy.

4.2 Interpretation in a simplified economy

Consider the following market with no arbitrage opportunities: On the fil-
tered probability space (€',G’, G, P') with a one-dimensional Brownian mo-
tion W' defined on it the forward price is given by

dF, = Fydt+FS dW', 0<t<T, (6)
Fy = Fy>0,

with pu, > deterministic functions depending on ¢ and F; and ¥ # 0. Thus,
this market is complete and there is a unique martingale measure. With

k= & define ®&; = exp (— fot Ky dW, — %fé |/<ou|2du> , then applying Itd’s
formula it is easily seen that ®;F; is a martingale and thus

F=E"(Fr|G), 0<t<T,

where P’ is defined by

The instantaneous covariance, i.e. the quadratic variation, between this
process ¢ and the forward price process F' is equal to the instantaneous
drift p of the forward price process.

’For a detailed derivation see for example Karatzas, Shreve [21] and Musiela, Rutkowski
[25].
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In the remainder of this section we will now briefly discuss the relationship
between the general pricing kernel which is based on the no arbitrage assump-
tion and the pricing kernel in a representative investor economy. We assume
that the representative investor has a state-independent utility function U of
wealth F7, which belongs to the set of twice continuous differentiable, strictly
increasing and strictly concave functions defined on (0, 00) . We assume that
F is given by a stochastic differential equation of form (6). It is well known,
that in equilibrium in such an economy, the following equation must hold®

90 (k)

Qo7 = 69077 (7)

, , (0
for some scalar a > 0. Since B (®gr) = 1 we get a = EF %U(FT) .

Thus, for ®; 7 we get the common characterization (see for example Bick [2])

90 ()

P — ox
t, T — a 9
B (55U (Fr) )

0<tgT.

Since ®;, = ®y; = E (®y7|G!) the process ® can be characterized by a
function A satisfying the Feynman-Kac partial differential equation

oh  Oh 1%

_ b - 2.2
0 = St ot oge™”
91 (a)
h(Tz) = 92~
a

by ®0; = h(t,F;). We derive the following stochastic differential equation
for the pricing kernel by applying Itd’s formula

dPo; = gh(t,m S FdW,, 0<t<T,
s

@070 = 1.

¢See for example Pham, Touzi [27] or Decamps, Lazrak [6].
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To derive the elasticity of the pricing kernel we compare this to

d(I)()’t = _q)O,t K¢ dVVt/ 5 0 S t S T,
(I)O,O = 1.
and yield

0
—h(t, F})

ki ox

—_— == F <t<T.

N ht,F) 0sts (®)

Equation (8) shows that in the economy under consideration the ratio of the
instantaneous volatility of the Girsanov-process, i.e. the market price of risk,
and the instantaneous volatility of the asset are equal to the elasticity of the
pricing kernel. In T the following relation holds

3h(T Fr) a—QU(F )
Felo _ e UV o2 Vg
Et t=T h(T, FT) QU(FT)
or

thus the realtive risk aversion of the representative agent equals the elasticity
of the pricing kernel.”

In the remainder of this paper we will not rely on the existence of an
equilibrium. Instead we will only make the assumption that no arbitrage
possibilities exist and thus that the transformation of measure is given by
an appropriate Girsanov-functional. In this more general case, the pricing
kernel is not necessarily a deterministic function of the asset price.®

5 Derivation of Asset Price Processes

In this section we derive the forward price process of the asset in the market
defined in section 3. The point of start is

F,=EY (®,r Fr|lo{l,|J0<u<t}), 0<t<T,

"For a more detailed derivation and discussion see for example Decamps, Lazrak [6]
and Franke, Stapleton, Subrahmanyam [12]. For a derivation and discussion of the pricing
kernel in an equilibrium model not relying on the representative agent assumption see for
example Franke, Stapleton, Subrahmanyam [11].

8See for example Decamps, Lazrak [6].
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where the filtration is the one generated by the information process /. Be-
cause of the equality of Fir and I the following relationship holds.

F=EP[Frlo{l|0<u<t)]=E[Ip|lo{ll0o<u<t}, 0<t<T.

We assume that the transformation from P to P is given by a Girsanov-
functional. More precisely we assume that there is an adapted R2-valued

process Ay = (A, A\(?) which defines the martingale (|| - || is the euclidean
R*-norm)
t t 1 t
b0, = oxp (= [ aaws = [apawy 5 [Pas). o
0 0 0
0<t<T,

and the transformed probability measure

P(A) = E[(I)O,TlA] , A€ JTT.

With this definition P and P are mutually absolutely continuous on F7 and

the process
wi I, [ty()
Wi )= (W fotks(z)ds . 0<t<T,
W/'tV I/I/t +f0 >\8 dS

is a 2-dimensional Brownian motion under P. Hence, we have the represen-
tation for F' under the probability measure P

T T T T
F,=1Ip— / AP ZzW s — / APz s — / ZW dwt — / Z@ awYy
t t t t

S

for 0 <t < T, where Z = (ZW, Z (2))I is the process given by application of
the martingale representation theorem on F. We assume that A is a smooth
deterministic function that may depend on ¢, I; and of: A (¢,1;,07).

In the following theorem we give a formula for the forward price F; in
terms of the information process and the market price of risk A (t, I, ol )
For the derivation we have to solve a forward-backward stochastic differential
equation. This is done by application of mathematical theorems given in Ma,
Protter, Yong [23] and Ma, Yong [24].

13



Theorem 1 Assume that the information process I, is governed by the sto-
chastic differential equation

t
It:]0+/ Loldw!, 0<t<T,
0
where the volatility process ol is given by
t t
ol = o —|—/ b(s, I,,0l)ds +/ oV (s, I, o) dwy , 0<t<T,
0 0

with deterministic smooth functions b and 0. Then the forward price F, of
the asset admits the following representation under the probability measure

P

T T
F,=1Ir —/ A (s, I, o1y ZWds —/ A (s, 1,00 Z2Pds
t t

T T
— / ZWaw! — / Z@awy,
t t
0<t<T,

with

zM Lol 0 ,
= = <t
Z < Zt(z) 0 O'V(t, It;UtI) V u(t7lt;0't) , 0<t<T,

and
T
Jult, ) = (g, (t, ), uz, (t, )",

where u : [0,T] x R? — R is the solution of the partial differential equation
0= u(t,zy,25) — A (t, 1, T9) T2 Uy, (T, 21, T2) (10)

_)\(2) (t7 X1, xz) O-V(ta X, IQ) umg (t7 X1, :EZ)

2

(m%ﬂfg umlml (tJ X1, IQ) + (UV (ta X1, IQ)) umgmz (t7 X1, fEQ))

+b(t, 21, T2) Uy, (t, 1, T2)

u(T), $1,$2) =T

+

N —

for 0 <t < T, with indices on the function u indicating partial derivatives.
Moreover F; is given by

Fi=u(t,I,ol), 0<t<T.

14



Proof. We have the following system:

the forward stochastic differential equation (F'SDE) for the information

process I; and its volatility process ol

I, B X(l) X(l) t 0
(a{) N (X(z) X@) +/0 (s, X2, x2) )% ()

Cf D x® Wi
x®x! 0 d
+ V). 0<t<T,
/0 ( 0 oV(s, X, x?) ) (dWSV )

(. J/

and the backward stochastic differential equation (BSDE) for the forward
price F; of the asset

T
F, = Y, =Xh— / <)\(1) (5, X, X)) ZW + A® (5, xV, xP) Z§2>> ds
t

T Z(l) r AW
_/ i (dWSV>’ 0<t<T. (12)

t s s
The coupled system (11) and (12) is a forward-backward stochastic differen-
tial equation (FBSDE). We use the Four-Step-Scheme given in Ma, Protter,
Yong [23], more precisely we apply the version given in Ma, Yong [24], to

find the solution.

Step 1: We define the function z(t, x,y,w) = o’ (t, z, y)w for (t,z,y,w) €
R x R? x R x R% With this definition we have the 2-dimensional function

B % . T1T2 W1
Z(tu‘rayJw) - ( 29 ) (t’x7y’w) o < O'V(t,zl)xQ) w2 ) '

Step 2: With the function z we solve the partial differential equation
(PDE)

u(t,z) = x —|—/t NV (5,21, 29) 21 (s,2,u (s, ), Juls, x))

AP (5,21, 15) 2 (s x u(s x),Ju(s, x))
1 T1T2 Ugiz; Uzqizo
+§tT {( < Upgzy  Uzgzy ) (ij)}
0 Uz, (8, )
+<(b(s,x}>’(um2(s,x))> ds, O0<tST,
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where by tr {-} we denote the trace of a 2 x 2-matrix and by (-,-) the inner
product of the Euclidean space R%. Hence, we have for 0 <t < T

0 = w(t,x) — AV (t,2) o uy, (t,2) — AP (t,2) 0V (t, ) ugy (L, )

1 2
+§ (m%x% Uzym, (t7 x) + (Uv(t7 I)) Upgay (tv :L‘)) + b(t7 :E) Uz (tv I)

w(T,x) = .

We jump directly to Step 4, omitting Step 3: We define Y; = u(t, X;) and
Zy = ol (t, Xy, u(t, Xy)) v u(t, X;), then (X,Y,Z) is an adapted solution of
(11) and (12). ]

Theorem 1 shows the close relationship between the asset price process
and the information process. Given the information process and the pricing
kernel Theorem 1 establishes a characterization of the asset price process
as a function of the information process and the pricing kernel. The drift
of the asset price process is governed by the market price of risk \; and
the diffusion of the asset price process Z;. The diffusion Z; depends on the
information process I; itself, on the volatility process of I, i.e. of, and on
the first derivatives w.r.t. x; and x5 of the function characterizing the asset
price: g—mul (t, I, ol ), 5—17‘2 (t, I, ol ) Thus, with Theorem 1 we have an explicit
representation of the asset price process in terms of the information process
and the pricing kernel for a 2-dimensional market model. The application of
Theorem 1 to n-dimensional market models is straight forward.

It is obvious from Theorem 1 that the drift of the asset price process
depends on the volatility of the information process. Thus, empirical stud-
ies implicitly assuming non stochastic volatility of the information process
may find unexplainable variations in the drift. Further, neglecting stochastic
volatility of the information process leads to only one risk premium in the
asset price process, i.e. o] = 0 provides Zt(2) =0.

To gain some better understanding of the implications of Theorem 1 in
the remainder of this section we discuss the case when all the coefficients are
only functions in ¢. Thus, with this assumption equation (10) simplifies to

0 = w(t,mz,m9) — AL (t) x122 Ug, (t, 21, 22) (13)
_/\(2) (t) UV (t) Ugey (ta L1, Iz)

1 2
+§ ("L‘%:L% Ugyay (tv L1, ‘732) + (UV (t)) Ugyzy (tv L1, xQ))
+0(t) ug, (t,x1,20) , 0<t<T,

wT,z) = x
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and the solution of equation (13) for u(¢, x) is (see Appendix)

T
u(t,xy,x2) = x1€xp (—xg/ A(l)(s)ds>
¢

exp ( /t ' <—>\(2) (r) oV (r) + b(r)) ( / : —A(l)(s)ds> dr)
exp (/tT% (0" ()’ (/T —A(l)(s)ds>2dr> L 0<t<T

Hence, F; is given by

F, = Iexp (—o,{ /t ' A(l)(s)ds)
exp (— /t ' (—/\(2)(7") oV (r) + b(r)> ( / ' A(l)(s)ds> dr)
exp (/j% (0" (r)? (/T A(l)(s)ds>2dr> L 0<t<T,

and

P 7
— = F <t <LKT.
! Zt@) ! ( —aV(t) ftT A(l)(s)ds > 0

The forward price of the asset can be rewritten as

dF, = Fof <\/ 1— 22D () + A(z)(t)pt) dt

+Fof (\/1 — pRdW] + p, dW,Y) , 0<t<T, (14)
Fr = Ir

with

and

(15)



p is the instantaneous correlation between the asset price and its volatility.
Hence, in the usual notation (we make use of dW/} = /1 — p2dW/ +p, dW})
the forward price F' is given by

dF, = FoF <\/1 — 22V () + )\(2)(t),0t> dt + ol dwl | 0<t<T,
(16)
where W and WV have correlation p.

It is important to notice that even though the information process and its
volatility process are uncorrelated, the asset price process and its volatility
process are correlated. This is in contrast to an assumption in many sto-
chastic volatility models (see for example Hull, White [18] or Stein, Stein
[31]) and has already been criticized by Pham and Touzi [27]. Corollary 1
establishes conditions for p = 0.

Corollary 1 The correlation p is zero if and only if
(i) ¥ =0
or

(i) AV =0 a.s.

Condition (7) is trivial since it implies that the volatility of the information
process is not governed by a Brownian motion. Condition (i7) implies that
the correlation p is zero, if AV the risk premium relative to the source of
uncertainty WY, is zero. Thus Corollary 1 gives an economic foundation
for stochastic volatility models where the asset price and its volatility are
correlated.”

Corollary 2 Assume that the market price of risk A s positive (resp. AW
negative) and a¥ > 0. Then the correlation p between the forward price and
its volatility is negative (resp. positive).

This result is obvious from equation (15). Ruling out the implausible case
that the market price of risk is not positive, we can conclude that the corre-
lation is negative. Thus, our analysis supports the usual result in empirical
studies that volatility and price of an asset are negatively correlated. But
our argument is inverse to the argument which bases on the leverage effect.
The intuition of Corollary 2 is as follows: For a higher volatility of, hence
a higher risk, at time ¢ a risk averse investor requires a higher reward. And

9See for example Schobel, Zhu [30] and Heston, Nandi [15].
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thus, the current price F; has to be lower, since the terminal value Fr of the
forward price is given by I (remember Fr = I7).1°
With equation (16) we can give an explanation for the well documented

time pattern of the sharpe ratio with p the instantaneous drift of F' (

)
O'F

p, = ok (\/1 — p2AW )(t)p > for 0 <t < T, defined as usual) :
= V1=V )+ 2P, , 0<t<T. (17)

This equation shows that the sharpe ratio iF may be time-varying and sto-
o
chastic even if the risk premia are constant, i.e. XV (¢) = const., \&(t) =

const. in equation (17). Hence, equation (17) suggests that seemingly un-

explainable variations of the risk premia A\ and the sharpe ratio iF may be
o

due to the assumption of a constant correlation p between W and WV.
To illustrate our results we now consider the case when the volatility of
the information process depends on time only.

Example Let 0! depend on time only. Then the volatility of the information
process satisfies

t
af:aéjt/b(s)ds, 0<t<T.
0

Then, by Theorem 1, the forward price of the asset satisfies the sto-
chastic differential equation

dF, = FAY (t) ol dt + Fyol aw? , 0<t<T.

With this simplified model it is easily seen, that the properties of the
volatility of the information process transfer to the properties of the
drift and the volatility of the asset price process. The drift of the as-
set price process is equal to the volatility of the information process
multiplied by the market price of risk. The volatility of the informa-
tion process and the volatility of the asset price process are identical.

10The described effect is known as the volatility feedback effect. For similar results in
discrete time see Campbell, Hentschel [3] and Wu [33].
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Further simplifying the model by assuming that the volatility of the in-
formation process is constant, i.e. the information process is governed
by a geometric Brownian motion and assuming A constant, we get

dF, = FAY ol dt + F,o! dw (18)

From equation (18) it is obvious that the asset price follows a geomet-
ric Brownian motion process if the information process has constant
volatility and the risk premium is constant.

In this case the relative risk aversion is constant, too. From

82

A U (Fr)

s —652 Fr = constant,
—U (F
ox (Fr)

we derive the following form of the utility function of the representative
investor for the case AV #£ o1

+Cy, XEe€ RJr, (19)

where C1, C5 are constants. This utility function belongs to the HARA-
class. In contrast, if AV = o/, we get

UX)=Ciln(X)+Cy, XecRT, (20)

with C, Cs being two constant parameters. Thus our example illus-
trates that a forward price process governed by a geometric Brownian
motion is consistent with an information process with constant volatil-
ity and a representative investor with a utility function given by equa-
tion (19) or equation (20) where the relative risk aversion is given by
the sharpe ratio divided by the volatility.!!

See also Bick [1], [2] and Franke, Stapleton, Subrahmanyam [12].
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6 Conclusions

Different approaches to examine asset price processes exist. On the one hand,
due to the availability of financial markets data, an enormous amount of time
series properties have been well documented by recent empirical studies. On
the other hand many theoretical papers establish necessary characteristics
of asset price processes to be consistent with an equilibrium. Unfortunately
the gap between empirically well documented stylized facts and theoretically
explainable facts is still vast. The purpose of this paper was on the one hand
to introduce new mathematical tools for the analysis of asset price processes
and to give a general context in which the behavior of asset price processes
can be studied. On the other hand we wanted to show that the discrep-
ancy between empirical and theoretical findings may result from the fact
that one important source of risk is neglected. In this paper we have consid-
ered this risk, i.e. that even the risk of an asset is unknown and therefore
risky, too. In this case the information process has stochastic volatility. With
this generalization of usual information processes a foundation for stochastic
volatility models of asset prices has been established. Further it has been
shown that the still prevalent assumption of zero correlation between asset
prices and their volatility is not sensible and hence we gave a foundation for
option pricing models allowing for correlation between asset prices and their
volatility. Further, we have shown that under resonable assumptions the cor-
relation between asset prices and their volatility is negative. Finally we have
shown the close relationship between the volatility process of the information
process and the risk premia of an asset. Because of this dependence of the
risk premia on the volatility process a theoretical foundation can be given
for financial market phenomena.

Our approach offers numerous avenues for future research. More research
should be devoted to the information process and its volatility. Because
of the established coherence between information processes and asset price
processes this is no more a purely theoretical task. Characteristics of in-
formation processes can be deduced from asset price processes. Hence, it is
possible to investigate empirically whether asset price processes are consis-
tent with the strong assumptions usually made on information processes.
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A Appendix

The PDE, with indices on the functions indicating partial derivatives,

0 = ut(taxlaxz) - )\(1) (t,fEl,IQ) 12 uml(twrlaxZ)

_A(Z) (t7 I, IQ) O-V(t’ Z1, IQ) umz (t7 X1, xZ)

1 2
+= (z%avg Uz ay (t, T1, T2) + (O'V(t,$1,112)) Ugozy (t,xl,xg))

2
+b(t7 x1, IQ) uzg (t7 Z1, IQ)
wT,z) = x
can be solved for only time-dependent coefficients.
For notational simplicity define the functions: o := —\', g := —=\?¢" +b,
vi=0o" = —%. Hence, the PDE can be written as
O — ut(t7x17*r2) +Oé(t,$1,ﬂf2) T1T2 Uzl(t,fl,l’g) +/8(t,$1,$2) uzg(t7x17x2)

1 1
+§l‘%x§ Ugyay (t7 Xy, 1'2) + 572(1;7 L1, $2) Ugozy (t7 X1, 1'2)

with the boundary condition u(7T, x) = x;.
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We have to consider the two cases 1 = 0 and x; # 0. If x; = 0 we have
the trivial solution. Thus, in the following we choose z1 # 0.

Assume that the coefficients of the PDE do not depend on x;. Then u can
be separated as follows: u(t,x1,x2) = @(x1, x2)Y(t, 2). With the boundary
condition u(T, z1,x9) = x7 it follows @(z1,x9)(T, z2) = x1 and because of
xy # 0 : (T, z9) # 0 for all x. Hence, the following relationship holds:

(21, 22) = Frray-

After some computation the partial differential equation can be written as
(without noting the variables of the functions «, § and 7)

o o Q/}:m (Ta .1'2) 2 1/};2@ (TJ $2) . ,.)/_Z ¢m2m2 (T7 .1'2)
0 = I/Jt(t, Iz) + ¢(t,$2) (Ozxz ﬂ w(T; x2) + Y Q/JQ(T, .1'2) D) w(T, x2) >
T 2

without loss of generality choose the boundary condition ¥(7), z2) = 1.

Now assume that all coefficients are only time-dependent.

In the case of constant volatility, that is ¢ = 0 and b = 0 and hence
B =0 and v = 0, we have the following solution of the PDE

Wt 73) — exp (x2 /t Ta(s)ds> |

With this knowledge, for the general PDE with time-dependent coefficients
we try the ansatz

W(t, 25) = exp (—xz /0 ta(s)ds) A1),

with A(T') = 1. This leads to an ordinary first-order differential equation for
A which has the solution

A(t) = exp (% /t " 98(r) ( / Ta(s)ds> +2(r) ( / Ta(s)ds)er> |

Hence, the solution of the PDE for u is

T
u(t,xy,x2) = x1€xXp (mg/ a(s)ds)
¢

exp (% /t " 95r) ( / Ta(s)ds) +2(r) ( / Ta(s)ds>2dr)
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and in terms of the original coefficients

T
u(t,xy,x2) = x1€xp (—xg/ Al(s)ds)
t

exp ( /t ' (—A(Q) (r) oV (r) + b(r)) (— / : A(l)(s)ds> d7~>
exp ( [ 3oy (-] )\(l)(S)ds)Zdr> |
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