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a b s t r a c t

Scientifically and accurately forecasting of future shale gas output tends is very important in making
energy policies, especially for China whose historical data of shale gas output is very limited. The
existing grey shale gas output prediction model does not perform well in prediction due to its
defects. To overcome these shortcoming, this paper, based on the principle of ‘‘new information
priority’’, combined with the contradiction between model prediction results and qualitative data
analysis conclusions, designs a grey prediction model combining new initial conditions and original
data reprocessing. Then the new model’s accumulative order is optimized by fraction accumulation
generation operation and its properties is discussed. Finally, the new model is used to simulate and
forecast shale gas output in China from 2012 to 2018 and compared it with the existing shale gas
prediction model. The comparison results show that the new model reduces by 84.34%, 68.96% and
75.60% of the mean relative simulation percentage error (MRSPE), mean relative prediction percentage
error (MRPPE) and comprehensive mean relative percentage error (CMPPE) respectively. This paper not
only has theoretical innovations but also provides a good mathematical method for predicting shale
gas output.

© 2020 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

China’s shale gas resource has a deep mining potential than
other countries (Ma et al., 2017; Zou et al., 2016), but its de-
velopment level is still low now (Zhao et al., 2015). With the
high speed of Chinese economic growth, the demand for shale
gas resource is constantly increasing. It poses a great challenge to
energy development and can even be a threat to national energy
security. A Scientific and accurate prediction methods for China’s
shale gas output, can grasp the development potential of China’s
shale gas resources, and have great significance for promoting the
Chinese government to rationally formulate energy policies and
guaranteeing China’s energy supply.

Before choosing a suitable mathematical model to forecast
China’s shale gas output, we searched the relevant literature
on Web of Science by entering the key words ‘‘shale gas’’ and
‘‘forecasting’’, and there are lots relevant research were founded.
However, most of these studies are focused on the shale gas
reservoir or exploration mechanism (Fan et al., 2020; Kovalchuk
and Hadjistassou, 2020). The research of shale gas output is

∗ Corresponding author.
E-mail address: mengzhouctbu@163.com (M. Zhou).

mainly to study the daily or monthly production of shale gas
with large sample characteristics from a microscopic perspec-
tive (Wang and Jiang, 2019; Wang et al., 2018). The methods used
are large-sample learning methods such as machine learning and
statistics.

Currently, the exploiting of China’s shale gas is still in initial
stage (Wang et al., 2019; Chen et al., 2018), and the histori-
cal data of shale gas output is very limited (only seven years
data) (Sang et al., 2016). The complex geological conditions sur-
rounding (Dong et al., 2015; Guo, 2016), immature shale gas
exploration technology (Yu, 2015; Wu et al., 2015b), and unclear
formation mechanism (Cui et al., 2019), make prediction of shale
gas in China highly uncertain (Li et al., 2016). Hence, the above
machine learning and statistical prediction models based on big
data cannot effectively simulate and predict with limited data and
uncertainties.

The grey system theory was proposed by professor Deng Ju-
long in 1982, which aimed to process the ‘‘small data’’ and ‘‘poor
information’’ uncertainty problems (Deng, 1982). In 2018, based
on the grey system theory, Bo Zeng et al. developed a grey
unbiased prediction model (abbreviated as UGM(1,1)), to forecast
the output of China’s shale gas, which shown a relative good
simulation result (Zeng et al., 2018). But the poor prediction result
is not ideal. The latest data shows that the actual value of China’s

https://doi.org/10.1016/j.egyr.2020.05.021
2352-4847/© 2020 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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shale gas output in 2017 and 2018 are 89.95 and 108.81 hundred
million cubic meters (Hmcm) respectively. However, in Ref. Zeng
et al. (2018), the prediction value of China’s shale gas output
in 2017 and 2018 are 106.581 and 146.358 Hmcm, which the
prediction errors reach 18.49% and 34.51%. It apparently indicates
the performance of UGM(1,1) is not ideal and this model cannot
be used to forecast the output of China’s shale gas.

Why there are such big difference between the simulation
effect and prediction effect of UGM(1,1) model? The major rea-
sons are as follows: (i) The initial value is used as the iterative
base value to derive the time response function of the predic-
tion model to guide the influence of the model error stacking
degree, which in turn affects the modeling effect of the model.
The initial value selection of the UGM(1,1) model is calculated
based on the principle of minimum simulation error. However,
according to the principle of new information priority in grey
system theory, the last data has the greatest impact on the trend
of the sequence (Xia et al., 2020; Li and Wei, 2012). It means that
the existing grey prediction model is upgraded simulation ability,
but at the expense of some predictive ability. (ii) The modeling
sequence of UGM(1,1) model is processed data by weighted grey
weakening buffer operator. The setting of the weight of this buffer
operator has strong subjectivity (Li et al., 2019; Liu et al., 2014),
which is easy to be inconsistent with the actual situation and
has a large subjective effect on the future prediction results. (iii)
The accumulative generation technique is a unique method of the
grey prediction method, and the accumulative generation order is
an important factor affecting the stability of the grey model (Luo
and An, 2019; Wu et al., 2019). The accumulative generation
order of UGM(1,1) model is set to 1 order. However, between 0
and 1 order, there must also be a fractional order, through which
the order of magnitude between the accumulated numbers can
be precisely adjusted.

Based on the above analysis, a new shale gas output grey
prediction model is established in this paper. The new model
overcomes the deficiencies of the UGM(1,1) model, and has the
following advantages:

(I) The fractional order accumulation technique and inverse
fractional order accumulation technique are innovatively intro-
duced in sequence generation process of the new model, The
purpose of grey accumulation is to mine grey information, that
is, to accumulate the data and process its changes. The new
sequence after accumulation is setted as modeling sequence,
and the quality of the modeling sequence directly affects the
performance of the grey prediction model. Compared with the
traditional integer order accumulation generation process, the
fractional order accumulation generation process can search the
accumulation generation order of the modeling sequence with
better quality in a wider range (Wu et al., 2015a).

(II) The time response function of the new model is derived
by using the latest value as the initial value, which reflects the
timeliness of information. Different from the initial value selec-
tion based on the principle of ‘‘minimum simulation error’’, we
follow the idea of sacrificing some simulation accuracy to select
the initial value in order to improve the prediction accuracy.
According to the ‘‘new information priority’’ principle, the latest
data has the greatest impact on the development of the sequence,
so the latest data is used as the initial value in this article to
ensure that the prediction accuracy is further improved.

(III) The buffer operator constructed by subjective weighting
has a greater impact on the rationality of the data. There is no
need to use a weighted buffer operator. Hence, the modeling
sequence of the new model can be pre-processed by a general
buffer operator.

This paper uses a lot of symbols and abbreviations. To im-
prove the readability of the article, the meanings of symbols are

Table 1
Symbols and their meanings.
Index Symbol Meaning

1 S(0) An original time sequence
2 S(r) r- fractional order accumulation of sequence S(0)

3 S(0)D 1-average weakening buffer operator sequence of S(0)

4 ŝ(r) (k) The simulated value of s(r) (k)

listed in Table 1. Similarly, the core abbreviations, corresponding
definitions and expressions are listed in Table 2.

The remaining of this paper is organized as follows: In Sec-
tion 2, we briefly introduce the average weakening buffer op-
erator (AWBO). In Section 3, we propose a new grey prediction
model for shale gas output called SGGM(1,1, r), and then deduce
the solution of new model and study its properties. In Section 4,
we study the modeling condition and error-checking methods for
new model. In Section 5, we validate the modeling effect of the
new prediction model on China’s shale gas output. Based on these
findings, we forecast the future shale gas output in China and
provide suggestions for future shale gas development. And the
conclusions are drawn in Section 6.

To gain a clearer understanding, the structure chart of the
article is given as Fig. 1.

2. Data preprocessing method: Grey average weakening buffer
operator

The real system is often affected by shock disturbances and
led the model loses its effectiveness (Zhou et al., 2020; Zeng
et al., 2020a). When the system behavior sequence is distorted
by a certain impact, it can no longer correctly reflect the true
developing law of the system, and then it is difficult to predict the
future changes based on the disturbed sequence. For example, the
actual growth rate of shale gas in China is decreasing from 700%
to 21% between 2012 and 2018; the average annual increase rate
between 2012 and 2016 was about 320%; If we put the growth
rate into the mathematical model to forecast the output of shale
gas in China at year 2018, the predicted output will reach to
700 Hmcm. However, the actual output is just 108.81 Hmcm,
which has big different from the quantitative prediction result.
This means that if the prediction model completely depends on
the current law of the growth rate of the original sequence,
and the lack of qualitative analysis based on the future system
development trend, it will cause the prediction results to be
invalid.

To eliminate the impact interference of the system behav-
ior sequence, and restore the data as it is, Professor Liu Sifeng
proposed a series of grey buffer sequence operators in 1997.
The grey average weakening buffer operator is the most com-
mon one among the existing buffer operators. It can addresses
the contradiction between low-growth system and high-growth
modeling results by suppressing the high-growth characteristics
of the system.

Definition 1 (Liu, 1997). Given sequence S(0) =
(
s(0) (1) , s(0) (2) ,

. . . , s(0) (m)
)
, where s(0) (k) ≥ 0, k = 1, 2, . . . ,m. Let

S(0)D =
(
s(0) (1) d, s(0) (2) d, . . . , s(0) (m) d

)
where

s(0) (k) d =
1

m − k + 1

[
s(0) (k) + s(0) (k + 1) + · · · + s(0) (m)

]
,

k = 1, 2, . . . ,m

(1)

Then D is a weakening operator which is referred to as an
average weakening buffer operator (AWBO).
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Fig. 1. Structure of this paper.

Table 2
Nomenclature.
Index Nomenclature Definition Expression

1 AWBO Average weakening buffer operator s (k) d =
1

m − k + 1
[s (k) + s (k + 1) + · · · + s (m)]

2 r-FOA r-order fractional order accumulation s(r) (k) =

k∑
i=1

Γ (r + k − i)
Γ (k − i + 1) Γ (r)

s(0) (i)

3 r-IFOA r-order inverse fractional order accumulation s(0) (k) =

k−1∑
i=0

(−1)i
Γ (r + 1)

Γ (i + 1) Γ (r − i + 1)
s(r) (k − i)

4 SGGM(1,1, r) The basic form of shale gas output grey prediction model s(r) (k + 1) = µ1s(r) (k) + µ2k + µ3

5 MRSPE The mean relative simulation percentage error ∆S (u) =

⏐⏐⏐⏐ εS (u)
s(0) (u)

× 100%
⏐⏐⏐⏐

6 MRPPE The mean relative prediction percentage error ∆F (v) =

⏐⏐⏐⏐ εF (v)

s(0) (v)
× 100%

⏐⏐⏐⏐
7 CMRPE The comprehensive mean relative percentage error ∆ =

∆S (1) + ∆S (2) + · · · + ∆S (m) + ∆F (m + 1) , . . . , ∆F (m + n)
m + n
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3. A new grey prediction model for shale gas output

In this section, a new grey prediction model is constructed and
its parameter estimation method is proposed. Then the solution
of the model is derived with the latest value as the initial value
particularly. Finally, properties of the new model is discussed. The
detailed modeling process is presented as follows.

3.1. The SGGM(1, 1, r) model

Definition 2. Let sequence S(0) =
(
s(0) (1) , s(0) (2) , . . . , s(0) (m)

)
as a raw sequence, s(0) (k) ≥ 0, r ∈ R+, S(r) =

(
s(r) (1) , s(r) (2) ,

. . . , s(r) (m)
)
be the r − FAO (Fractional Order Accumulation) of

sequence S(0),
where

s(r) (k) =

k∑
i=1

Γ (r + k − i)
Γ (k − i + 1) Γ (r)

s(0) (i) , k = 1, 2, . . . ,m (2)

then when k = 1, 2, . . . ,m,

s(r) (k + 1) = µ1s(r) (k) + µ2k + µ3 (3)

is referred to as the basic form of shale gas output grey prediction
model, SGGM(1,1, r) for short.

Definition 3. Let sequence S(r) =
(
s(r) (1) , s(r) (2) , . . . , s(r) (m)

)
as a raw sequence, s(r) (k) ≥ 0, r ∈ R+, S(0) =

(
s(0) (1) , s(0) (2) ,

. . . , s(0) (m)
)
be the r − IFAO (Inverse Fractional Order Accumu-

lation) of sequence S(r),
where

s(0) (k) =

k−1∑
i=0

(−1)i
Γ (r + 1)

Γ (i + 1) Γ (r − i + 1)
s(r) (k − i) ,

k = 1, 2, . . . ,m

(4)

3.2. The parameters estimation of SGGM(1, 1, r)

We use ordinary least-squares (OLS) method and Cramer’s
ruler to estimate the parameters µ1, µ2 and µ3 according to the
equation of SGGM(1, 1, r).

Let ŝ(r) (k) be the simulated value of s(r) (k) and µ̂1, µ̂2, µ̂3 are
the parametric estimated value of SGGM(1,1, r). According to OLS,
the following conditions need to be satisfied when the simulation
error is minimal:

∆ = min
m∑

k=2

[
s(r) (k) − ŝ(r) (k)

]2
= min

m∑
k=2

[
s(r) (k) − µ1s(r) (k − 1) − µ2 (k − 1) − µ3

]2 (5)

We minimize ∆ with parameters µ̂1, µ̂2 and µ̂3 to obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂∆

∂µ̂1
= −2

m∑
k=2

[
s(r) (k) − µ̂1s(r) (k − 1) − µ̂2 (k − 1) − µ̂3

]
s(r)

× (k − 1) = 0

∂∆

∂µ̂2
= −2

m∑
k=2

[
s(r) (k) − µ̂1s(r) (k − 1) − µ̂2 (k − 1) − µ̂3

]
× (k − 1) = 0

∂∆

∂µ̂3
= −2

m∑
k=2

[
s(r) (k) − µ̂1s(r) (k − 1) − µ̂2 (k − 1) − µ̂3

]
= 0

(6)

After transposition, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ̂1

m∑
k=2

s(r) (k − 1)2 + µ̂2

m∑
k=2

(k − 1) s(r) (k − 1)

+µ̂3

m∑
k=2

s(r) (k − 1) =

m∑
k=2

[
s(r) (k) s(r) (k − 1)

]
µ̂1

m∑
k=2

(k − 1) s(r) (k − 1) + µ̂2

m∑
k=2

(k − 1)2

+µ̂3

m∑
k=2

(k − 1) =

m∑
k=2

[
(k − 1) s(r) (k)

]
µ̂1

m∑
k=2

s(r) (k − 1) + µ̂2

m∑
k=2

(k − 1) + µ̂3 (m − 1) =

m∑
k=2

s(r) (k)

(7)

In Eq. (7), parameters µ̂1, µ̂2 and µ̂3 are unknown. According
to Cramer’s rule, we can calculate these unknown parameters, to
obtain

D =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

m∑
k=2

s(r) (k − 1)2
m∑

k=2

(k − 1) s(r) (k − 1)
m∑

k=2

s(r) (k − 1)

m∑
k=2

(k − 1) s(r) (k − 1)
m∑

k=2

(k − 1)2
m∑

k=2

(k − 1)

m∑
k=2

s(r) (k − 1)
m∑

k=2

(k − 1) m − 1

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

D1 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

m∑
k=2

[
s(r) (k) s(r) (k − 1)

] m∑
k=2

(k − 1) s(r) (k − 1)
m∑

k=2

s(r) (k − 1)

m∑
k=2

(k − 1) s(r) (k)
m∑

k=2

(k − 1)2
m∑

k=2

(k − 1)

m∑
k=2

s(r) (k)
m∑

k=2

(k − 1) m − 1

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

D2 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

m∑
k=2

s(r) (k − 1)2
m∑

k=2

[
s(r) (k) s(r) (k − 1)

] m∑
k=2

s(r) (k − 1)

m∑
k=2

(k − 1) s(r) (k − 1)
m∑

k=2

(k − 1) s(r) (k)
m∑

k=2

(k − 1)

m∑
k=2

s(r) (k − 1)
m∑

k=2

x(r) (k) m − 1

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

D3 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

m∑
k=2

s(r) (k − 1)2
m∑

k=2

(k − 1) s(r) (k − 1)
m∑

k=2

[
s(r) (k) s(r) (k − 1)

]
m∑

k=2

(k − 1) s(r) (k − 1)
m∑

k=2

(k − 1)2
m∑

k=2

(k − 1) s(r) (k)

m∑
k=2

s(r) (k − 1)
m∑

k=2

(k − 1)
m∑

k=2

s(r) (k)

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
In light of Cramer’ rule, parameters µ̂1, µ̂2 and µ̂3 can be

computed as follows:

µ̂1 =
D1

D
, µ̂2 =

D2

D
, µ̂3 =

D3

D

3.3. The solution of SGGM(1,1,r)

In this subsection, the latest value s(r) (m) is set as initial value
which is used to derive the solution of SGGM(1,1, r).



1612 B. Zeng, M. Zhou, X. Liu et al. / Energy Reports 6 (2020) 1608–1618

Theorem 1. The SGGM(1,1, r) model is defined as Definition 2, then
(i) The time response function of the SGGM(1,1, r) is as follow:

s(r) (k) =
s(r) (m)

µ1
m−k +

µ3
(
1 − µ1

k−m
)

1 − µ1
↙

↗ +
kµ2 (1 − µ1) − mµ2 (1 − µ1) µ1

k−m
− µ2

(
1 − µk−m

1

)
(1 − µ1)

2 ,

k = 1, 2, . . .

(8)

(ii) The final restored expression of s(0) (k) is as follow:

ŝ(0) (k) =

k−1∑
i=0

(−1)i
Γ (r + 1)

Γ (i + 1) Γ (r − i + 1)

×

(
s(r) (m)

µ1
m−k +

µ3
(
1 − µ1

k−m
)

1 − µ1
↙

↗ +
kµ2 (1 − µ1) − mµ2 (1 − µ1) µ1

k−m
− µ2

(
1 − µk−m

1

)
(1 − µ1)

2

)
,

k = 1, 2, . . .

(9)

Proof. (i) According Definition 2, the simulation process is as
follows:
when k = m − 1, we can get

s(r) (m) = µ1s(r) (m − 1) + µ2 (m − 1) + µ3 (10)

After transposition, we obtain

s(r) (m − 1) =
s(r) (m) − µ2 (m − 1) − µ3

µ1
(11)

When k = m − 2, we can get

s(r) (m − 1) = µ1s(r) (m − 2) + µ2 (m − 2) + µ3 (12)

After transposition, we obtain

s(r) (m − 2) =
s(r) (m − 1) − µ2 (m − 2) − µ3

µ1
(13)

Substituting Eq. (11) into Eq. (13), we can get

s(r) (m − 2) =

s(r)(m)−µ2(m−1)−µ3
µ1

− µ2 (m − 2) − µ3

µ1
(14)

After transposition, we obtain

s(r) (m − 2)

=
s(r) (m) − µ2 (m − 1) − µ3 − µ1µ2 (m − 2) − µ1µ3

µ1
2 (15)

When k = m − 3, we can get

s(r) (m − 2) = µ1s(r) (m − 3) + µ2 (m − 3) + µ3 (16)

After transposition, we obtain

s(r) (m − 3) =
s(r) (m − 2) − µ2 (m − 3) − µ3

µ1
(17)

Substituting Eq. (15) into Eq. (17), we can get

s(r) (m − 3)

=
s(r) (m) − µ2 (m − 1) − µ3 − µ1µ2 (m − 2) − µ1µ3

µ1
3

−
µ2 (m − 3) + µ3

µ1
(18)

After transposition, we obtain

s(r) (m − 3)

=
s(r) (m) − µ2 (m − 1) − µ3 − µ1µ2 (m − 2) − µ1µ3

µ1
3 ↙

↗ −
µ1

2 (µ2 (m − 3) + µ3)

µ1
3

(19)

...

When k = m − t , we can get

s(r) (m − t)

=
s(r) (m) − µ2 (m − 1) − µ3 − µ1µ2 (m − 2) − µ1µ3

µ1
t ↙

↗ −
µ1

2µ2 (m − 3) + µ1
2µ3 + · · · + µ1

t−1µ2 (m − t) + µ1
t−1µ3

µ1
t

(20)

After transposition, we obtain

s(r) (m − t) =
s(r) (m)

µ1
t −

µ3
(
1 − µ1

t
)

µ1
t (1 − µ1)

+
µ2µ1

(
µ1

−t
− µ1

−1
)

(1 − µ1)
2 ↙

↗ +
µ2 (m − t) (1 − µ1) − (1 − µ1) µ2 (m − 1) µ1

−t

(1 − µ1)
2

(21)

Let m − k = t , feed t into Eq. (21) and can obtain the time
response function of SGGM(1,1, r), which is

s(r) (k) =
s(r) (m)

µ1
m−k +

µ3
(
1 − µ1

k−m
)

1 − µ1
↙

↗ +
kµ2 (1 − µ1) − mµ2 (1 − µ1) µ1

k−m
− µ2

(
1 − µk−m

1

)
(1 − µ1)

2

(22)

(ii) According Definition 2, the prediction process is as follows
When k = m + 1, we can get

s(r) (m + 1) = µ1s(r) (m) + µ2m + µ3 (23)

When k = m + 2, we can get

s(r) (m + 2) = µ1s(r) (m + 1) + µ2 (m + 1) + µ3 (24)

Substituting Eq. (23) into Eq. (24), we can get

s(r) (m + 2) = µ1
2s(r) (m)+µ1µ2m+µ1µ3+µ2 (m + 1)+µ3 (25)

When k = m + 3, we can get

s(r) (m + 3) = µ1s(r) (m + 2) + µ2 (m + 2) + µ3 (26)

Substituting Eq. (25) into Eq. (26), we can get

s(r) (m + 3) = µ1
3s(r) (m) + µ1

2µ2m + µ1
2µ3 + µ1µ2 (m + 1)

+ µ1µ3 + µ2 (m + 2) + µ3 (27)

...

When k = m + t , we can get

s(r) (m + t)
= µ1

ts(r) (m) + µ1
t−1µ2m + µ1

t−2µ2 (m + 1)
+ · · · + µ1µ2 (m + t − 2) ↙

↗ +µ2 (m + t − 1) + µ1
t−1µ3 + µ1

t−2µ3 + · · · + µ1µ3 + µ3

(28)
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After transposition, we obtain

s(r) (m + t)

= µ1
ts(r) (m) +

µ3
(
1 − µ1

t
)

1 − µ1
+

(1 − µ1) µ2 (m + t)
(1 − µ1)

2 ↙

↗ −
(1 − µ1) µ1

tµ2m + µ2
(
1 − µt

1

)
(1 − µ1)

2

(29)

Let k − m = t , feed t into Eq. (29) and can obtain the time
response function of SGGM(1,1, r), which is

s(r) (k) =
s(r) (m)

µ1
m−k +

µ3
(
1 − µ1

k−m
)

1 − µ1
↙

↗ +
kµ2 (1 − µ1) − mµ2 (1 − µ1) µ1

k−m
− µ2

(
1 − µk−m

1

)
(1 − µ1)

2

(30)

According to Definition 3, the final restored expression of
s(r) (k) can be calculated as follows:

ŝ(0) (k) =

k−1∑
i=0

(−1)i
Γ (r + 1)

Γ (i + 1) Γ (r − i + 1)
s(r) (k) (31)

Then substituting Eq. (30) into Eq. (31), we obtain

ŝ(0) (k) =

k−1∑
i=0

(−1)i
Γ (r + 1)

Γ (i + 1) Γ (r − i + 1)

×

(
s(r) (m)

µ1
m−k +

µ3
(
1 − µ1

k−m
)

1 − µ1
↙

↗ +
kµ2 (1 − µ1) − mµ2 (1 − µ1) µ1

k−m
− µ2

(
1 − µk−m

1

)
(1 − µ1)

2

)
(32)

In Eq. (32), ŝ(0) (k) is called the restored expression of S(0),
which also called the solution of SGGM(1,1, r), where k =

1, 2, . . . .

3.4. The properties of SGGM(1,1,r)

Theorem 2. When r = 1, the proposed SGGM(1,1, r) model can
simulate the following sequences without errors.

(i) A homogeneous exponential sequence

s = (s(0)(1), s(0)(2), . . . , s(0)(m)), where s(0)(t) = aqk, αq ̸= 0 and
k = 1, 2, . . . ,m.

(ii) A non-homogeneous exponential sequence

S =
(
s(0) (1) , s(0) (2) , . . . , s(0) (m)

)
, where s(0) (t) = βqk + ϕ,

βϕq ̸= 0 and k = 1, 2, . . . ,m.

The proof is omitted here.

4. The modeling condition and error checking method of
SGGM(1,1,r)

4.1. The modeling condition of SGGM(1,1,r)

The modeling condition testing is a necessary process to es-
tablish a prediction model, which enhances the rigor of model. A
model can only be used for prediction when the modeling condi-
tions are satisfied. In grey system theory, the quasi-exponential
law is usually used as a test method for grey prediction model.

Definition 4. Let S = (s (1) , s (2) , . . . , s (m)), where s (k) ≥ 0 for
k = 1, 2, . . . ,m, then the following is named as the smoothness
ratio of sequence:

ρ (k) =
s (k)∑k−1
i=1 s (i)

, k = 2, 3, . . . ,m

The concept of smoothness ratio reflects the smoothness of a
sequence. Obviously the smoother the sequence the smaller the
smoothing rate is.

Definition 5. If a sequence S = (s (1) , s (2) , . . . , s (m)), where
s (k) ≥ 0 for k = 1, 2, . . . ,m satisfies the following conditions,
then S is referred to as a quasi-smooth sequence.

(i) ρ(k+1)
ρ(k) < 1, k = 2, 3, . . . ,m − 1;

(ii) ρ (k) = [0, ε], k = 3, 4, . . . ,m;
(iii) ε < 0.8.
The quasi-smooth condition of a sequence is the basis for

judging whether the SGGM(1,1, r) model can be established.

4.2. The error checking method of SGGM(1,1,r)

In practice, it may never know what a real system model is,
but a ‘‘relatively’’ accurate model can be used to describe the real
system. Generally speaking, a good model often has properties
such as goodness of fit, predictive power, and so on. In order to
check the error of the SGGM(1,1, r) model, the following error
checking methods are introduced:

Definition 6. Let S(0) = (s (1) , s (2) , . . . , s (m) , s (m + 1) , . . .

, s (m + n)) as a raw sequence. Using the first m elements of S(0)

build the SGGM(1,1, r) model; the simulation sequence is Ŝ(0),
which is given as follows

Ŝ(0)
=
(
ŝ(0) (1) , ŝ(0) (2) , . . . , ŝ(0) (m)

)
Using the lastm elements of S(0) build the SGGM(1,1, r) model;

the prediction sequence is F̂ (0), which is given as follows

F̂ (0)
=
(
ŝ(0) (m + 1) , ŝ(0) (m + 2) , . . . , ŝ(0) (m + n)

)
The error of simulation sequence and prediction sequence are

marked as εS and εF respectively, which are given as follows

εS = (εS (1) , εS (2) , . . . , εS (m)) ,

εF = (εF (m + 1) , εF (m + 2) , . . . , εF (m + n))

where

εS (u) = s(0) (u) − ŝ(0) (u) , u = 1, 2, . . . ,m

εF (v) = s(0) (v) − ŝ(0) (v) , v = m + 1,m + 2, . . . ,m + n
The relative simulation percentage error of Ŝ(0) is marked as

∆S . That is

∆S = (∆S (1) , ∆S (2) , . . . , ∆S (m))

where

∆S (u) =

⏐⏐⏐⏐ εS (u)
s(0) (u)

× 100%
⏐⏐⏐⏐ , u = 1, 2, . . . ,m

The mean relative simulation percentage error (MRSPE) of Ŝ(0)

is marked as ∆S . That is

∆S =
1
m

m∑
u=1

∆S (u)

The relative prediction percentage error of F̂ (0) is marked as
∆F . That is

∆F = (∆F (m + 1) , ∆F (m + 2) , . . . , ∆F (m + n))
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Table 3
Output of shale gas in China from 2012 to 2018. (Unit:Hundred million cubic
meters).
Source: Data sources (http://www.gov.cn/xinwen/2019-07/16/content_5410035.
htm).
Year 2012 2013 2014 2015 2016 2017 2018

Output 0.25 2 13 44.71 78.82 89.95 108.81

where

∆F (v) =

⏐⏐⏐⏐ εF (v)

s(0) (v)
× 100%

⏐⏐⏐⏐ , v = m + 1,m + 2, . . . ,m + n

The mean relative prediction percentage error (MRPPE) of F̂ (0)

is marked as ∆F . That is

∆F =
1
n

m+n∑
v=m+1

∆F (v)

The comprehensive mean relative percentage error (CMRPE)
of S(0) is marked as ∆. That is

∆ =
∆S (1) + ∆S (2) + · · · + ∆S (m) + ∆F (m + 1) , . . . , ∆F (m + n)

m + n

For given threshold value α, β , ω, when ∆S < α, ∆F < β and
∆ < ω is satisfied, the grey model is said to be error-satisfactory.

4.3. The modeling flow chart for SGGM(1,1,r)

According to the SGGM(1,1, r) modeling process, the modeling
flow chart is shown in Fig. 2.

5. Forecasting China’s shale gas output

5.1. Data preprocessing

The precondition for forecasting is that the system will de-
velop in accordance with the existing laws, and on this basis, the
prediction of system development trend can be realized. How-
ever, the reality system may not move forward in full accordance
with the existing laws. It is necessary to use data preprocessing
methods to add future trends of the system to existing models in
order to achieve more accurate predictions in the future. There-
fore, before modeling China’s shale gas output, the raw data needs
to be analyzed and preprocessed as follows.

(i) Data collection: China’s shale gas exploration history is rel-
atively short, and the shale gas output records began in 2012. We
collected the shale gas output data from 2012 to 2018 published
by Chinese government website, as shown in Table 3.

(ii) Data analysis: we draw a scatter of China’s shale gas output
based on the data in Table 1, and the scatter is shown in Fig. 3.

It can be seen from Fig. 3. that China’s shale gas output grows
monotonously at different growth rates in each periods: the shale
gas output increased sharply from 2012 to 2016, and from 2016 to
2018, shale gas output growth slowly. It indicates that the output
is unlikely to maintain a high-speed development trend in the
future.

(iii) Data preprocessing using average weakening buffer op-
erator: from the above analysis results, China’s shale gas output
has grown rapidly between 2012 and 2016, which contradicts
the qualitative analysis. To this end, we use the average weak-
ening buffer operator to process the raw sequence from 2012 to
2016.

Fig. 2. Flowchart for the SGGM(1,1, r) model.

We know from Table 1 that

S(0) =
(
s(0) (1) , s(0) (2) , s(0) (3) , s(0) (4) , s(0) (5) , s(0) (6) , s(0) (7)

)
= (0.25, 2, 13, 44.71, 78.82, 89.95, 108.81)

According to Definition 1,

S(0)D =
(
s(0)d (1) , s(0) (2) d, s(0) (3) d, s(0) (4) d, s(0) (5) d,

s(0) (6) d, s(0) (7) d
)

= (27.76, 34.63, 45.51, 61.77, 78.82, 89.95, 108.81)

The scatter diagrams of raw sequence S(0) and preprocessed
sequence S(0)D is shown in Fig. 4.

http://www.gov.cn/xinwen/2019-07/16/content_5410035.htm
http://www.gov.cn/xinwen/2019-07/16/content_5410035.htm


B. Zeng, M. Zhou, X. Liu et al. / Energy Reports 6 (2020) 1608–1618 1615

Fig. 3. The scatter of China’s shale gas output.

Fig. 4. The scatter diagrams of the raw sequence S(0) and the preprocessed sequence S(0)D.

Table 4
The smoothness ratios and quasi-smooth conditions of sequence SD.
Smoothness ratio ρ (2) = 1.247 ρ (3) = 0.729 ρ (4) = 0.572 ρ (5) = 0.465 ρ (6) = 0.362

Quasi-smooth condition –
ρ (3)
ρ (2)

= 0.585
ρ (4)
ρ (3)

= 0.785
ρ (5)
ρ (4)

= 0.811
ρ (6)
ρ (5)

= 0.779

5.2. Quasi-smooth condition test

A sequence needs to be tested for quasi-smooth condition
before modeling. Therefore, we perform a quasi-smooth test on
sequence SD before establishing the SGGM(1,1, r) model.

From Definitions 4 and 5, the Smoothness ratios and quasi-
smooth conditions of sequence SD are obtained as shown in
Table 4.

As shown in Table 4, when k = 3, 4, 5, 6, the Smoothness
ratios are all less than 0.8; when k = 2, 3, . . . , 5, the quasi-
smooth conditions are all less than 1. According to Definition 5,
the sequence SD satisfies the quasi-smoothness conditions, and
can be used to establish the SGGM(1,1, r) model.

5.3. Modeling by SGGM(1,1,r) model

In the calculating processing below, we choose the China’s
shale gas output value from 2012 to 2016 as training set, and

Table 5
The parameters of SGGM(1,1, r).
Parameter r µ1 µ2 µ3

Value 0.026623 0.674471 7.512238 8.812008

the China’s shale gas output value in 2017 and 2018 as test set,
and utilize Particle Swarm optimization (PSO) to estimate r of
SGGM(1,1, r) model. The unknown parameters of SGGM(1,1, r)
are presented in Table 5. The simulation and prediction value,
MRSPE, MRPPE and CMRPE of SGGM(1,1, r) and UGM(1,1) are
presented in Table 6.

5.4. Comparing and analysis

The quantitative evaluations are given in Table 6, we can
learn that the SGGM(1,1, r) model improves the UGM(1,1) model
with and 84.34%, 68.96% and 75.60% reductions in the MRSPE,
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Fig. 5. The scatter diagrams of simulation and prediction value of two models.

Fig. 6. The scatter diagrams of simulation and prediction percent error of SGGM(1,1, r) and UGM(1,1).

Table 6
Results of the value by SGGM(1,1, r) and UGM(1,1). (Unit:Hundred million cubic meters).
Year No SGGM(1,1, r) UGM(1,1) (Zeng et al., 2018)

Processed value Simulation value Relative error (%) Processed value Simulation value Relative error (%)

2012 1 27.76 27.752 0.014 28.36 28.360a 0a

2013 2 34.63 34.303 0.944 35.52 33.964 4.381
2014 3 45.51 46.179 1.468 41.02 44.067 7.428
2015 4 61.77 61.413 0.578 60.16 58.297 3.097
2016 5 78.82 78.823 0.004 78.00 78.344 0.441

Actual value Prediction value Relative error (%) Actual value Prediction value Relative error (%)

2017 6 89.95 97.650 8.559 89.95 106.581 18.489
2018 7 108.81 117.393 7.888 108.81 146.358 34.508

MRSPE (2012–2016) 0.601 3.837
MRPPE (2017–2018) 8.224 26.499
CMRPE (2012–2018) 2.779 11.391

aThe data here is supplementary data, which is convenient for comparison.

MRPPE and CMRPE respectively. To vividly show models perfor-
mance, two perspectives are considered: one is fitting effect, and
the other is modeling error. They are shown in Figs. 5 and 6
respectively.

Compared with Fig. 5(a) and (b), the simulated values of
SGGM(1,1, r) are nearly completely fit the processed value, and
is more accurate than the simulated values of UGM(1,1). And the
forecasted values of SGGM(1,1, r) tends to be closer to the real
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Table 7
Prediction values by the SGGM(1,1, r) model for China’s shale gas output.
(Unit:Hundred million cubic meters).
Year 2019 2020 2021 2022 2023 2024 2025

Value 123.0247 137.9089 152.8928 167.8652 182.8062 197.7142 212.5912

value, while the forecasted values of UGM(1,1) trends to deviate
from the real value. Fig. 6 illustrates that the modeling errors of
UGM(1,1) is always bigger than that of SGGM(1,1, r). In summary,
it apparently indicates that the SGGM(1,1, r) model is superior to
the UGM(1,1) model for forecasting China’s shale gas output.

We also use classic grey prediction models to predict and sim-
ulate the China’s shale gas output. The experimental results show
that the simulation error of the classic GM(1,1) model (Deng,
1989) is as high as 735.62% and the prediction error is up to
460.4%; the simulation error of the classic discrete grey prediction
model DGM(1,1) model (Xie and Liu, 2005) is as high as 74.29%
and the prediction error is 663.38% higher. Obviously, classic grey
prediction models have no reference value for the prediction of
China’s shale gas output.

5.5. Forecasting the future output from 2019 to 2025

Because of its outstanding performance, the SGGM(1,1, r)
model is employed to predict the China’s shale gas output in the
next 7 years, and the prediction results are shown in Table 7.

In the absence of major technological breakthroughs and
strong policy guidance, there will be no huge changes in the shale
gas exploration system, so the annual growth rate of shale gas
production will be relatively stable. It can be seen from Table 7
that China’s shale gas production will maintain a relatively stable
growth rate at the current low growth rate in the next few years.
It indicates that the prediction results are reasonable and consis-
tent with the low development level of the shale gas exploration
system.

5.6. Suggestions for China’s shale gas output

The China’s shale gas development plan (2016–2020) expected
to produce 300 Hmcm of shale gas in 2020. However, The predic-
tion results show the output will reach to about 140 Hmcm by
2020, it indicates only 45.97% of the planned shale gas output can
be completed in 2020. In this case, it is difficult to reverse China’s
excessive dependence on coal energy structure and reduce its
dependence on foreign energy at the current development level.
In order to promote the development of shale gas in China, the
main measures are to break through the technical bottleneck
of shale gas exploration and provide appropriate shale gas pol-
icy guidance. After that, China’s shale gas output can meet the
planning requirements of energy policies.

Firstly, it should break through the core technology of shale
gas development and take into account the research and de-
velopment of supporting technologies for shale gas develop-
ment. China’s government departments should increase invest-
ment and attention in shale gas research, and encourage scien-
tific researchers to carry out relevant scientific research through
special programs to provide a strong guarantee for shale gas
development technology. It is worth noting that shale gas has
obvious geological particularity. Due to the different geological
characteristics of various countries, mature shale gas develop-
ment technology cannot be directly applied abroad. Therefore,
researchers need to study a series of issues such as shale gas
production conditions and shale gas properties in China to form
a shale gas theory that conforms to China’s geological char-
acteristics. Secondly, appropriate policy should be making as

the guarantee and driving force for the development of shale
gas industry. China’s government departments should eliminate
barriers for shale gas to enter the market, enhancing the compet-
itiveness of the oil and gas market, and formulate corresponding
regulations for oil and gas companies to monitor their market be-
havior and restrict monopolistic behavior, maintaining a healthy
market competition environment. In addition, for long-term sus-
tainable development of shale gas resources, It is necessary to
ensure the ‘‘green’’ development of shale gas. That is to take
into account environmental protection during the development
of shale gas, minimize waste of resources and environmental
pollution, and build the clean development of shale gas.

6. Conclusions

The output of shale gas plays an important role in making
energy policies, especially for China whose energy structure is in
transition from high-carbon energy to clean energy. This study
proposed a new shale gas output grey prediction model, named
the SGGM(1,1, r) model. The experimental results and quantita-
tive analysis conclusions demonstrated that the new model has
well performance and is suitable for forecasting China’s shale gas
output.

The existing grey shale gas output prediction model caused
inadequate initial value, stiff accumulative generation order and
inappropriate data preprocessing method, which led to an un-
satisfied prediction result. To this end, the SGGM(1,1, r) model
was constructed to overcome the above shortcoming. The new
model was design by consideration ‘‘new information priority’’
principle and fraction accumulative generation operation, and its
time response function was derived by using the latest value as
the initial value. Subsequently, the new model was applied to
simulate and forecast China’s shale gas output incorporating grey
average weakening buffer operator. Comparing the experimental
results of the new model with that of the existing model, the
former was significantly better than the latter. Finally, the new
model was used to predict the shale gas output during the period
from 2019 to 2025, and some advice were given for developing
China’s shale gas output.

This research, however, is subject to the limitation of the
high uncertainty of China’s shale gas system, which limits the
prediction ability of grey prediction model. In grey system theory,
the grey prediction model is modeled by the grey system behavior
sequence to achieve the purpose of prediction; theoretically, by
increasing the system whitening information, the uncertainty of
the system can be reduced, and the prediction accuracy of the
grey model can be further improved (Zeng et al., 2020b). In
the future, we will conduct further research on the shale gas
system, extract the whitening information of China’s shale gas
system, and set more model parameters based on the whitening
information to enhance the prediction ability of the grey predic-
tion model, which is of great significance for formulating energy
policies.
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