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a b s t r a c t

This paper proposes a new optimal method for the parameter identification of a proton exchange
membrane fuel cell (PEMFC) for increasing the model accuracy. In this research, a new improved
version based on deer hunting optimization algorithm (DHOA) is applied to the Convolutional neural
network for the PEMFC parameters identification purpose. Indeed, the method is implemented to
develop the method performance for estimating the PEMFC model parameters. The method is then
validated based on 4 operational conditions. Experimental results declared that utilizing the proposed
method gives a prediction with higher accuracy for the parameters of the PEMFC model.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In recent years, more than ever, our world is threatened with
a strong dependence on fossil fuels, especially oil and coal. Air
pollution, environmental degradation, and climate changes are
the result of this dependence. According to NASA’s Goddard Space
Flight Center, the amount of carbon dioxide in the air has been
at its highest value for the past 7000 years which is 1 ppm.
Alongside these problems, glacial melt and rising sea levels are
other climate change problems (Shaw et al., 2018). That is why
it is important to supply energy from renewable sources. Renew-
able energy sources are clean and cause the least damage to the
environment. At the same time, these resources are endless and
will be usable for many years and generations to come (Askari
and Ameri, 2012; Avdis et al., 2018; Bartolucci et al., 2019).
Among different types of renewable and clean energies, hydrogen
is one of the new popular sources that have unique advantages
toward the others, such as its very low pollution, its reversibility
during the production cycle, and its low effect on the greenhouse
effect. Besides, since hydrogen gas in itself is not abundant, but
it is available in various other forms, such that the other sources
can be used to obtain hydrogen through reformation and other
relevant techniques. The best method for using hydrogen energy
is to adopt it as a fuel for the fuel cells. Fuel cells are a type
of energy converter that converts chemical energy directly into
electrical energy. They act like batteries, but unlike batteries, they
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do not run out of fuel and do not require recharging. Fuel cells
convert the chemical potential of hydrogen into electrical energy
and its by-product is water and heat (Mahdiyeh et al., 2019;
Ijaodola et al., 2019).

In the meantime, proton-exchange membrane fuel cell
(PEMFC) is known as a popular model of fuel cells. PEMFC with a
suitable power density of 1400 W/L is a good alternative to inter-
nal combustion engines in the transmission system. The fuel cell
itself is divided into hydrogen and methanol fuel cells. Hydrogen
is currently used for heavier and higher power systems such as
cars and buses and methanol for portable and portable systems
such as mobile and laptop. PEMFCs are the most efficient energy
generation among different types of fuel cells. They also operate
fast with no contamination and low operational temperature
in the range 60 ◦C–80 ◦C (Zhou and Dhupia, 2020). Therefore,
studying these kinds of fuel cells can be helpful. In recent years,
researchers are studying different techniques for improving the
PEMFC’s efficiency. Several researches have been performed to
the fuel cell applications, like dynamic modeling of the fuel cell,
extracting empirical data from the experimental results of the
fuel cell, and steady-state stability of the fuel cell (Sun et al., 2015;
Ge et al., 2018; El-Hay et al., 2019).

In this study, an optimal technique is addressed to develop
the performance of a PEMFC. To do so, a modified deep neural
network is introduced and utilized for the system parameters
identification. The adopted technique is a new improved version
of the deer hunting optimization algorithm that is recently intro-
duced and has better convergence speed characteristics than the
original type.

Finally, as aforementioned, the proposed optimal network is
employed for nonlinear modeling of a PEMFC system.

https://doi.org/10.1016/j.egyr.2020.06.011
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2. Literature review

Several works have been performed for modeling of the PEM-
FCs. For instance, in 2000, Baschuk and Li (2000) introduced a
mathematical model for studying a PEMFC system’s operation
and efficiency. The model considered electrochemical and phys-
ical processes occurring in the system. The model results were
compared with some different methods and demonstrated its
superiority toward the other models.

In 2005, Ramousse et al. (2005) proposed a model by con-
sidering the gas diffusion in the water diffusion, electro-osmotic
transport, and the porous electrodes through the polymeric mem-
brane. The model was built by synthesizing independent determi-
nation of mass and heat transfers in the cell with a third definition
of coupled charge and mass transfers in the electrodes.

In 2010, Asl et al. (2010) presented a model for PEMFC based
on voltage–load current features. Two mathematical modelings
were developed for computing the steady-state electrochemical
model and dynamic voltage–current (V–I) characteristics of PEM-
FCs. The humidity of the membrane in steady-state conditions has
been considered by mathematical and theoretical equations. The
results showed good confirmation for the algorithm with other
simulation and experimental results.

In 2011, Steiner et al. (2011) presented a method for the
fault detection of a PEMFC based on the Elman Neural Network.
Two residuals are considered based on the comparison between
the parameters evaluated by a neural network and the practical
operation of the fuel cell in the normal condition. The residuals
are then used for the classification and the detection of fuel
cell’s states-of-health between normal operation and flooding (or
drying out).

In 2014, Papadopoulos et al. (2014) presented two dynamical
models based on the electrical equivalent and the semi-empirical
formulas for PEMFC. Furthermore, they developed a model based
on a transfer function following the semi-empirical equations.

In 2017, Kumar et al. (2018) presented a model for PEMFC
based on autoregressive with exogenous input (ARX) and autore-
gressive moving average with exogenous input (ARMAX) valida-
tion. PI and PID controllers were then adopted to achieve the
desired load current.

However, the described models were useful to design and for
performance analysis of the fuel cells, there are some problems
for them. Several models were presented based on accurate mod-
eling of the fuel cells which consider different physical concepts
for these models, such as momentum’s conservation, thermody-
namics, mass, power, and energy to achieve a proper thermal
model. This conception makes the system model complicated.
Besides, there are always some phenomena that are unknown
and cannot be measured in the model, such as unknown dis-
turbances and parameter uncertainties. In recent years, because
of the potential of the neural networks for solving complicated
and nonlinear dynamic models, they become an efficient tool to
solve nonlinear systems (Tao et al., 2005; Hatti and Tioursi, 2009;
Rezazadeh et al., 2010). There are different works about using
neural networks for system identification (Grondin-Perez et al.,
2014; Maleki and Maleki, 2015; Jianmin et al., 2014). In 2016,
Abbaspour et al. (2016) introduced a robust control for PEMFC
based on a neural network.

Due to the deviations between the partial pressure of hy-
drogen and oxygen in PEMFCs that lead to serious membrane
damage, the study used a robust and adaptive control to stabilize
the partial pressure to lengthen their lifetime. The neural network
was utilized to provide PEMFC nonlinearities in the problem.

A big problem in the neural networks is their shortcoming
in searching the global minimum of the network error, that
is, the main drawback of the classic neural networks based on

gradient descent is to escape from the local minimum. Recently,
several methods have been introduced for solving this prob-
lem. For instance, Razmjooy and Ramezani (0000) presented an
improved model of the neural network for optimal system iden-
tification. In that study, a new hybrid WNN is adopted based on
the gravitational search algorithm for the identification.

Jun et al. (2020) proposed an applicable method for parameter
estimation of the PEMFC. The method was based on a modi-
fied Elman neural network using a combined metaheuristic al-
gorithm where the suggested metaheuristic algorithm was based
on a combination of the World Cup Optimization (WCO) and
the Fluid Search Optimization (FSO) algorithms. The method was
finally verified under different operational conditions to show the
method efficiency.

There are also several types of research works that have
been performed over the modeling of PEMFC (Bao and Bessler,
2015; Solsona et al., 2017). From the literature, it is obvious
that using optimization algorithms can develop the performance
of the neural networks by moving toward the global minimum
error (Razmjooy et al., 2016; Gholamreza and Ghadimi, 2018;
Dongmin and Ghadimi, 2019). By considering the aforesaid ex-
planations, in this study, a new improved optimization method
is presented for optimizing the performance of a deep neural
network for nonlinear modeling of a PEMFC.

3. Convolutional neural networks

Artificial neural networks are inspired by the connections of
the neurons in the human brain to solve different complicated
problems. Several types of neural networks have been intro-
duced (Yang et al., 2017; Rahimi and Ghadimi, 2017; Farzaneh
et al., 2019). In recent years, utilizing the deep learning in the
neural networks (i.e. deep neural networks), because of their
high efficiency is exponentially increasing (Firouz et al., 2016).
Convolutional Neural Network (CNN) is a kind of these networks.
The main source of CNN is inspired by the main structure of the
visual ability in the animals.

In this network, the membranous neurons respond to motive
in bounded areas called the receptive field. The receptive field
for the neurons partially overlaps until the visual field is tiled.
Convolution operators can be adopted for modeling the reply to
the motive in single neurons. An important part of CNN belongs to
the Convolutional neuron layers. There is no limitation about the
equality in the number of the input and the output matrices. The
principal purpose of the learning step is to achieve some kernel
to be utilized in system identification.

In this research, a backpropagation algorithm has been
adopted for the optimal selection of the network connection
weights. In this layer, the sliding window is employed for the
convolution. A vector is then created by the sliding window and
the dot product of the weights and the inputs are added up.
Rectified Linear Unit (ReLU) with a function f (x) = max(x, 0) is
adopted as the activation function for the neurons (Melika et al.,
2018).

This process has been implemented in the PEMFC model. Max
pooling is also adopted for more scale reduction of the output.
In this study, the highest value is selected for the subsequent
layer of the sliding grid. Based on the aforementioned cases in
the introduction, after initializing the CNN, a proper method is
required for minimizing error value between the achieved values
compared with the desired value. This process is usually applied
by the backpropagation (BP) algorithm. Based on the BP algo-
rithm, after calculating the error between the training pairs, it is
adopted for adjusting the neurons weights based on the desired
output (Farzaneh et al., 2019; Hua et al., 2018). The technique for
minimizing the error in BPs is gradient descent. This method min-
imizes the cross-entropy loss as the fitness function for achieving
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the minimum error value (Paria et al., 2019). Consider δl+1 as
the error term for the (l + 1) st layer in the network with a cost
function F (W , b; x, y) where (W , b) define the parameters and
(x, y) signifies the training data and label pairs. If the lth layer
is densely connected to the (l + 1) st layer, then the error for the
lstlayer is achieved as follows:

δl = (
(
W l)T δl+1) × f ′

(
z l
)

(1)

where the gradients are,

∇W lF (W , b; x, y) = δl+1
×
(
al
)T

(2)

∇blF (W , b; x, y) = δl+1 (3)

where, al signifies the input to the lth layer and a1 is the input
data. If the lst layer is a subsampling and convolutional layer, the
error is achieved as follows:

δl = U
((

W l
k

)T
δl+1
k

)
× f ′

(
z lk
)

(4)

where, k signifies the filter number, f ′
(
z lk
)
is the derivative of the

activation function, and the operation U spread the error over the
pooling layer by evaluating the error of the entered units to the
pooling layer.

Finally, for evaluating the gradient error, the border handling
convolution operation flip the error matrix δlk the same way we
flip the filters in the convolutional layer.

∇W l
k
F (W , b; x, y) =

m∑
i=1

(
ali
)
× rot90

(
δl+1
k , 2

)
(5)

∇blk
F (W , b; x, y) =

∑
a,b

(
δl+1
k

)
a,b (6)

where, m is the number of samples.
However, CNN has been considered as a strong model iden-

tifier, designing an optimal structure for its layout is a principal
problem; because most of the layouts are designed experimen-
tally.

Recently, several research works have been introduced to
modify them based on meta-heuristic algorithms (Homayoun
et al., 2018; Bengio et al., 2007).

4. Deer Hunting Optimization Algorithm (DHOA)

Optimization is a mechanism for achieving the optimum value
of a given problem based on the system dynamic and its con-
straints. Sometimes using classic optimization algorithms fails in
finding the best solution or needs a significant amount of time to
solve it. Recently, using Meta-heuristics as a kind of new and fast
techniques have been introduced for solving different NP-hard
problems. These problems are inspired by different phenomena
such as physics, nature, and human social reactions.

In some cases, these algorithms are also improved to achieve
a better optimal solution in the global optimum point.

Some examples of these algorithms are the Genetic algo-
rithm (Aghdam et al., 2011; Mohammadhossein et al., 2019;
Holland, 1992; Mirjalili, 2019; Mousavi and Soleymani, 2014),
particle swarm optimization (Razmjooy and Ramezani, 0000;
Moallem and Razmjooy, 2012), world cup optimization algo-
rithm (Razmjooy et al., 2016), and Variance Reduction of Gaussian
Distribution (Dongmin and Ghadimi, 2019) which have been
designed for solving different complicated problems.

In the present year, Brammya et al. presented a new meta-
heuristic algorithm based on hunting the deer (Brammya et al.,
2019). Deer has special features that make the hunting process
difficult for the predators. The visual sense is a prominent feature
in a deer. This sense is five times stronger than the human visual

sense. Another feature is its olfactory sense. The olfactory sense
is sixty times stronger than humans.

Once a deer senses danger, it alerts other deer by sniffing
loudly and treading heavily. Another specific feature of a deer is
its ability in the detection of ultra-high-frequency sounds. In the
following, the method of deer hunting is illustrated in detail.

– initialization
Like any meta-heuristic algorithm, deer hunting optimization

starts with a set of the random population called hunters. This
initializing can be determined as follows:

X = [y1, y2, . . . , ym], 1 < i ≤ m (7)

where, m describes the number of hunters population (solutions)
and X is the total population.

– Initializing the Parameters
In the second step, the deer’s position angle (position angle)

and wind angle as the main parameters of the algorithm should
be initialized. Because the search space is assumed as a circle, the
wind angle is formulated in the circumference of a circle.

θi = 2πλ (8)

where, λ describes a random value between 0 and 1 and i is at
the present iteration. In addition, the position angle of the deer
is modeled as follows:

φi = π + θ (9)

where, θ represents the wind angle.

– Position propagation
Finding the best solution to the algorithm at the first iteration

is almost impossible. However, after evaluating the value of the
cost function based on the randomly generated values, the best
value is assumed as the candidate optimum solution value.

In this part, two parameters are considered; the first one is
the leader position (X L) that describes the first best position of
the hunter and the second parameter is the successor position
(X S) that is the succeeding hunter position.

(a) Propagation based on the leader’s position:
By applying the first iteration for achieving the best positions,

all the population attempts to obtain the best position by updat-
ing the position of them. Therefore, encircling behavior can be
formulated as follows:

Xi+1 = X L
− Y × Sw ×

⏐⏐L × X L
− Xi

⏐⏐ (10)

where, Xi and Xi+1 describe the current and the next positions,
Sw describes a random value based on the wind speed in the
range [0, 2], and L and Y illustrate the coefficient vectors which
can be formulated as follows:

Y = 0.25 × log
(
I +

1
Imax

)
β (11)

L = 2 × τ (12)

where, Imax describes the maximum iteration, β and is a random
parameter in the range −1 and 1, and τ is a random value in the
range [0, 1].

Fig. 1 shows the position updating, where (X, Z) describes the
initial position of the hunter which can be updated based on the
prey position. The position updating will be continuing once the
best position (X∗, Z∗) is achieved based on L and Y.

Hunters move to the direction where the leader is positioned.
If the leader has an unsuccessful movement, the hunter will
remain in the prior position.

Position update follows Eq. (8) only when Sw < 1, i.e. the
hunters can randomly move in any direction without respect to
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Fig. 1. Updating the best position X∗ .

the position angle. So, based on Eqs. (7) and (8), the hunters can
update their position in any random location within the space.

(b) Propagation based on the position angle
With considering the position angle in the update rule, we

can develop the solution space. The evaluating of the angle is
important for assigning the position of the hunter such that prey
is uninformed of the attack which makes the hunting process suc-
cessful. The angle of visualization for the prey (deer) is formulated
as follows:

ai =
1
8

× π × λ (13)

By considering the difference between the prey visual angle and
the wind angle, we can evaluate a parameter that helps for
updating the position angle.

di = θi − ai (14)

where, θ represents the wind angle.
Afterward, for updating the position angle,

φi+1 = φi + di (15)

And finally, by using the achieved position angle, the new position
is achieved by the following equation,

Xi+1 = X L
− Sw ×

⏐⏐cos (φi+1) × X L
− Xi

⏐⏐ (16)

Since the hunter is out of the visual angle of the deer, the hunter
is not in the view of it.

(c) Propagation based on the position of the successor
For applying the exploration term to the encircling behavior,

the vector L can be adjusted. Based on assuming an initial random
search, the value of the vector L is not considered more than 1.

Hence, the successor position is utilized for updating instead
of the first achieved best solution. This process makes a global
search for the algorithm as the following equation:

Xi+1 = X S
− Y × Sw ×

⏐⏐L × X L
− Xi

⏐⏐ (17)

where, X S describes the successor position of the hunters from
the current population.

In each iteration, the algorithm updates the position of the
hunters by considering the best solution. The best solution has
been selected when |L| ≥ 1. Once |L| < 1, a hunter will be chosen
randomly.

This procedure gives a switch called L which can change the
algorithm between exploitation and exploration phases.

A disadvantage of the original DHOA is it is the problem of
premature convergence. In the next part, a new mechanism is
proposed for removing this shortcoming.

– The balanced DHOA
In this part, Lévy flight (LF) is adopted to develop the DHOA.

Lévy flight is a mechanism for resolving the problem of premature
convergence drawback.

Lévy flight generate a random walk mechanism for suitable
controlling of the local search (Choi and Lee, 1998) as follows:

Le (w) ≈ w−1−ξ (18)

w =
A

|B|
1/ξ (19)

σ 2
=

{
Γ (1 + ξ )

ξΓ ((1 + ξ )/2)
sin(πξ/2)
2(1+ξ )/2

} 2
ξ

(20)

where, 0 < τ ≤ 2, A ∼ N(0, σ 2) and B ∼ N(0, σ 2), Γ (.) describes
the Gamma function,w represents the step size, ξ represents Lévy
index, A/B ∼ N(0, σ 2) means that the samples generated from a
Gaussian distribution in which mean are zero and variance is σ 2,
respectively.

In this study, ξ = 3/2 (Li et al., 2018).
Based on the Lévy flight mechanism, the new improved posi-

tion for the hunters is:

X l
i+1 = Xi+1 + (X∗

− AD) × Le(δ) (21)

where, X l
i+1 represents the new position of search agent Xi+1 and,

A = a(2 × r − 1) (22)

D = CX ′(t) − X(t) (23)

where, a is in the range 0 and 2, r is a random value in the inter-
val [0, 1], and X ′(t) describes a random position vector selected
from the present population.

To guarantee the best solution candidates, fitter agents are
kept:
→

Del =

{
X l
i+1 F

(
X l
i+1

)
> F (Xi+1)

Xi+1 otherwise
(24)

The flowchart of the balanced DHOA (BDHOA) is given in Fig. 2.

5. Validation of the BDHOA

In this section, a comparative study has been implemented
between the proposed method and some different popular and
new algorithms for performance analysis of the proposed BD-
HOA. To do so, four standard benchmarks have been validated
on the presented BDHOA, particle swarm optimization algo-
rithm (PSO) (Bansal, 2019), genetic algorithm (GA) (Holland,
1992), standard whale optimization algorithm (WOA) (Mirjalili
and Lewis, 2016), and world cup optimization (WCO) algorithm
(Razmjooy et al., 2016). The algorithm has also been compared
with the original DHOA for illustrating the improved system’s
capability.

The simulations have been implemented in MATLAB R2016b
with a laptop configuration of 2.50 GHz CPU and 16.0 GB RAM.
Table 1 illustrates the utilized benchmarks with D dimensions
and x as the parameter that should be optimally selected.

The results of the comparison based on mean deviation (MD)
and the standard deviation (SD) values are illustrated in Table 2.

As can be reported from Table 2, the proposed BDHOA has
the smallest mean deviation value compared with the other al-
gorithms. The mean deviation (MD) is a measure that determines
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Fig. 2. The Flowchart diagram of the improved BDHOA.

how much the observations in the data set deviates from the
mean value of the observations in the data set. Therefore, the
minimum value of MD in BDHOA shows its higher accuracy
compared with others. On the other hand, it can be observed
that the minimum value of standard deviation (Std) also has
been achieved by the suggested BDHOA. The Std is a measure to
show how spread out the numbers are. Therefore, the minimum
value of std by the suggested BDHOA shows its higher robustness
toward the other compared algorithms.

6. Validation of the method by PEMFC

A PEMFC is a conversion system that employs and converts
hydrogen and the oxygen in the air to generate energy. PEMFC
includes a thin polymer membrane as the electrolyte for supply-
ing a catalytic environment to develop the necessary reactions on
both sides of the electrodes.

A PEMC releases the chemical energy released by the electro-
chemical reaction of hydrogen and oxygen into electrical energy,
in contrast to the process of direct combustion of hydrogen and
oxygen gases that produce thermal energy. Hydrogen gas enters
the fuel cell from the anode side. In the anode and the vicinity
of the catalyst, it becomes a proton and an electron. The pro-
ton penetrates the cathode through the electrolytic membrane.

The electrons also travel through the outer charge circuit to the
cathode, generating an electric current from the fuel cell. Mean-
while, a stream of oxygen enters the fuel cell from the cathode
and is formed on the same side by combining with the protons
transferred from the anode and the electrons entering through
the outer circuit during a chemical reaction of water molecules.
A general structure of a PEMFC is shown in Fig. 3.

For validation of the total system efficiency, it is applied to a
250 watts PEMFC in 4 different operational conditions including
3/5 bar with 353.15 K, 1.1 bar with 343.15 K, 2.5/3 bar with
343.15 K, and 1.1/1.5 bar with 343.15 K.

The empirical data for validating the voltage efficiency is ex-
tracted from the model in Zhang and Wang (2013). From the
four aforementioned operational conditions, 224 pairs of inputs
and outputs have been selected, where, 157 of pairs (about 70%)
of the data is adopted for training of the proposed optimized
CNN, 22 pairs (10%) for validating, and 45 pairs (20%) are utilized
for testing the data. This kind of splitting the data between
training, validation, and testing is based on k-fold and due to the
small size of data (Zhang et al., 2014). Furthermore, a set of 60
pairs with different operational conditions is employed from Mo
et al. (2006) for analyzing the diagrams and for validating the
forecasting precision by the proposed optimized CNN. To precise
validating of the data, it is first normalized to the range [0, 1]
before training as follows:
=

xj =
xj − xj_min

xj_max − xj_min
(25)

where, xj represents the jth basic data, xj_min and xj_max describe
the lower and upper limitations of the main information in the
defined dataset, respectively.

7. Modified CNN based on BDHOA

In this section, a new improved Convolutional neural network
is presented by the justification of the weights for the hyper-
parameters. The main purpose of the optimized neural network
here is to design a proper system for the PEMFC system identifi-
cation. Candidate solutions in the proposed optimized identifier
are a sequence of integers.

Here, the output voltage forecasting of the PEMFC based on the
optimized CNN model is studied to analyze the voltage values at
present and the past. A general form of the identification system
is shown in Fig. 4.

To achieve an optimal structure for the CNN, the minimum
distance between the desired and the measured values are re-
quired for training the CNN (based on the proposed BDHOA),
i.e. training the network by minimizing the sum of squared error
between the obtained voltage from the network (Output) and the
empirical output voltage of the PEMFC is as follows:

min ε = min

⎧⎨⎩
M∑
j=1

(
Z − Z∗

)2⎫⎬⎭ (26)

where, M represents the quantity of the samples for the experi-
mental data, and Z and are Z∗ are the achieved voltage from the
network and the output voltage obtained by the experiment from
the PEMFC.

The mentioned error function above should be minimized by
the proposed BDHOA algorithm to design an optimal network.
The initializing of CNN is based on the training dataset. The
presented improved algorithm is then used for optimizing the
hidden nodes. Fig. 5 shows the training error profile for the
PEMFC parameter identification using the proposed method.

The training error profile results for 4 different conditions are
simulated and shown in Figs. 6–9 where the values of PH2/PO2 are
indicated under different temperatures.
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Table 1
The utilized benchmarks for the performance analysis.
Benchmark Formula Constraint Dimension

Rastrigin F1 (x) = 10 × D +

D∑
i=1

(
x2i − 10 × cos (2πxi)

)
[−512, 512] 30–50

Rosenbrock F2 (x) =

D−1∑
i=1

(
100

(
x2i − xi+1

)
+ (xi − 1)2

)
[−2.045, 2.045] 30–50

Ackley F3 (x) = 20 + exp(1) − 20 × exp

⎛⎝−0.2

√0.5
D∑

i=1

x2i

⎞⎠− exp

(
0.5

D∑
i=1

cos (2πxi)

)
[−10, 10] 30–50

Sphere F4 (x) =

D∑
i=1

x2i [−512, 512] 30–50

Table 2
The performance analysis of the compared methods by 30 dimensions.
Benchmark BDHOA DHOA GA (Holland, 1992) PSO (Bansal, 2019) WCO (Razmjooy et al., 2016) WOA (Mirjalili and Lewis, 2016)

f1
MD 0.00 3.16 70.61 74.24 2.19 2.58

Std 7.14e−5 2.58 1.66 8.96 4.35 2.14

f2
MD 7.35 9.51 35.41 200.1 13.16 8.47

Std 1.86 2.24 27.15 59.00 4.62 1.73

f3
MD 0.00 5.19e−15 3.19e−2 8.26 3.14e−3 3.17e−16

Std 8.29e−10 2.14e−7 2.14e−2 1.19 1.12e−3 0.00

f4
MD 0.00 1.28e−10 1.15e−4 8.27e−4 6.19e−9 9.65e−11

Std 5.61e−22 15.27e−17 3.14e−5 5.12e−4 3.28e−9 9.83e−17

Fig. 3. A schematic of the model of a PEMFC.

From the above figures, it is obvious that firstly, the training
error for different partial pressure is different and secondly, the
training error for the presented method is low that gives satisfy-
ing results for the presented method for the PEMFC parameter
identification. Fig. 10 shows the polarization profile for the 4
explained operational conditions are shown to prove the identifi-
cation accuracy of the improved CNN model. It is also important
to note that the training error profile of the PEMFC identification

for 3/5 bar, 353.15 K has the highest error that shows that higher
pressure and temperature results higher estimation error.

Besides, Fig. 10 shows the polarization profiles of the opera-
tional conditions to validate the model accuracy of the network.
Here, the voltage curves are achieved according to current, that
is estimated by the network. The achievements showed that the
experimental and estimated values give almost identical results.

From Fig. 10, it is observed that the predicted voltage value
versus current based on the proposed optimized Convolutional
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Fig. 4. The general form of the proposed system.

Fig. 5. The training error profile of the sample data for PEMFC parameter
identification.

Fig. 6. The training error profile of the PEMFC identification for 3/5 bar, 353.15
K.

Fig. 7. The training error profile of the PEMFC identification for 1.1 bar, 343.15
K.

neural network is fitted to the empirical data which shows the

proposed method’s efficiency in reaching a good agreement be-

tween the actual voltage and the estimated voltage.

Fig. 8. The training error profile of the PEMFC identification for 2.5/3 bar, 343.15
K.

Fig. 9. The training error profile of the PEMFC identification for 1.1/1.5 bar,
343.15 K.

8. Conclusions

A fuel cell is a system for direct generating power by con-
verting the chemical energy into electricity. Hydrogen gas is
employed as an ideal fuel in fuel cells due to its high reactivity,
abundance, and environmental pollution. This research studies
on a proton exchange membrane fuel cell (PEMFC). The main
purpose here is to optimal designing of a PEMFC model with high
precision. To achieve this aim, a new improved optimization tech-
nique based on the deer hunting optimization algorithm (DHOA)
is proposed. The performance analysis and comparison with some
other algorithms showed that using the new improved version
increases the algorithm convergence speed. After designing the
proposed algorithm, it is adopted for optimizing the weights of
a Convolutional neural network (CNN) for the identification of
PEMFC parameters. The designed model is then validated by four
different operational conditions and the final results showed the
performance of the presented optimal CNN network for modeling
the nonlinear PEMFC.
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Fig. 10. The polarization diagram of the empirical and the predicted data for the operational conditions.
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