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a b s t r a c t

This research utilized a combined hydrodynamic cavitation reactor to produce biodiesel. The reactor
worked automatically with the help of a controller designed by LabVIEW. For this purpose, rapeseed
oil (0.5 L per experiment) and methanol alcohol with the sodium hydroxide catalyst were used for
biodiesel production. The important factors of the study were: 1.pump flow rate (three levels of 1.4,
2 and 2.6 L/min); 2.the molar ratio of methanol to oil (4:1, 6:1 and 8:1); 3.the rotational speed of the
reactor (8000, 12000 and 16000 rpm), and 4.circulation time (2, 4 and 6 min). The study analyzed
the energy ratio (output energy/input energy) of the produced biodiesel to evaluate the system and
modeled the performance of the system to obtain the best-operating conditions of the reactor. In
this respect the adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and
response surface methodology (RSM) methods were employed. The average energy ratio was obtained
1.205, and the R2 of the best ANFIS, ANN and RSM models were 0.989, 0.966, and 0.990, respectively,
and MSE was calculated at 0.0005, 0.0015 and 0.00003. The results revealed that the RSM and ANFIS
models were preferred to the neural network model in terms of better performance, simplicity, and
high processing speed. In general, the RSM model functioned better than the ANFIS model. Accordingly,
the best reactor settings to obtain the maximum energy ratio (1.35) and biodiesel yield (91.87 %) was
when the circulation time, the rotational speed, the pump flow rate and the molar ratio were set at
2 min, 8000 rpm, 1.4 L/min and 4, respectively.

© 2020 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Biofuels, as organic matter, are one of the major sources of
renewable fuels or alternatives to fossil fuels. Biofuels mainly
emit less pollution than fossil fuels (Demirbas, 2009). Diesel en-
gines powered by biodiesel fuels have lower emissions (carbon
monoxide, unheated hydrocarbons, soot and other pollutants)
than diesel engines powered by diesel fuels (Gerpen, 2005).

Nowadays, most commercial biodiesel is produced worldwide
through transesterification reactions in continuous-stirred tank
reactors. The production of biodiesel in continuous-stirred tank
reactors is accompanied by problems such as low reaction speed,
long reaction time, needing much volume, weight and space
for equipment, sensitivity to the quality of reaction materials,
requiring energy, and being uneconomical. Therefore, the study
of new and alternative technologies with the aim of intensifying
the process of biodiesel fuel production is very important in terms
of production efficiency, process time, energy consumption, and
the quality of the produced biodiesel.

E-mail address: l.naderloo@razi.ac.ir.

Among the innovations of biodiesel production technology,
the hydrodynamic cavitation method is a high-potential method
for producing biodiesel at an industrial scale that can be devel-
oped more easily (Pal et al., 2010b). This method is a cheaper
conversion process and its energy requirement is approximately
half the amount of energy required by the conventional mechan-
ical method. Moreover, the speed and efficiency of the trans-
esterification reaction are boosted through this method (Gogate
and Pandit, 2005). The results of studies done by Kelkar et al.
revealed that the efficiency of the energy of hydrodynamic cavita-
tion reactors was higher than that of acoustic cavitation reactors,
and their production performance was higher, too. Therefore, the
effect of the intensity of the reaction in the hydrodynamic reactor
is higher. At an industrial production scale, the hydrodynamic
cavitation method is conducted more easily (Ji et al., 2006). In
a study, Pal et al. (2010b), employed the hydrodynamic cavita-
tion method and applied perforated plates to produce a type of
biodiesel with less retention time and adequate quality.

Energy balance is the first step in evaluating raw material for
the production of biodiesel. Two accepted indexes for analyzing
the energy ratio and productivity of biofuels are increasing the
net energy (Output energy (MJ/L) - Input energy (MJ/L)) and
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the difference between the total energy outputs and total en-
ergy inputs (Nguyen and Gheewala Sh Fau - Garivait, 0000). The
balance of pure biomass energy, such as biodiesel from which
energy is received, is very important because it is not logical
to consume more energy for its production while the produced
energy is small per unit of energy consumption, otherwise the
system will not remain stable. One method for analyzing sus-
tainability issues is energy analysis. The ratio of the consumed
energy to the energy produced by the product is an index for
comparing systems (Mohammadshirazi et al., 2014). In a study,
the energy analysis of biodiesel production from waste oil in
an ultrasonic reactor was investigated and the energy ratio and
productivity were obtained at 1.28 and 0.024 kg/MJ (Naderloo
et al., 2017). In another study, Mohammadshirazi et al. (2014),
examined the energy of the biodiesel produced from waste oil
using the mechanical mixing method and estimated the energy
ratio and productivity at 1.49 and 0.04 kg/MJ. In assessing the
energy analysis of biodiesel production from rapeseed oil, Abshar
and Sami (2016) showed that the energy ratio and productivity
were obtained at 1.08 and 0.03 kg/MJ. In a study the potentiality
of biodiesel production from palm oil was analyzed in Thailand
and the net energy value and energy ratio were estimated at
24 MJ/kg and 2.5. It was shown that the system was completely
energy-efficient (Papong et al., 2010).

In some studies, the synthesis of biodiesel from waste cooking
oil (Chuah et al., 2017) and rubber seed oil (Bokhari et al., 2017)
via hydrodynamic cavitation (HC) system, and non-edible sources
as Pistacia Khinjuk seed oil (Asif et al., 2017a) and non-edible Sal-
vadora Alii and Thespesia populneoides oils (Asif et al., 2017b) via
ultrasonic cavitation system (UC) have been reported. Parametric
optimization was done by central composite design and response
surface methodology. In these researches, the performance of
HC and UC at optimized values were compared with mechanical
stirring (MS). HC and UC were more efficient than MS in terms
of time and energy efficiency. The HC and UC showed higher
reaction constant and time efficiency than MS, and the superiority
of HC and UC over MS have been established in these studies.

For modeling the relationships between variables, the clas-
sical statistical methods have a number of presuppositions and
limitations. For instance, some of the limitations of the classi-
cal methods include considering a default distribution, such as
normal distribution for response variables, the linearity of the
proposed relationships, the equivalence of the variance of errors,
and so on. In addition, none of these methods can model com-
plex non-linear relationships and high-level interactions (Khanna,
1990; Dayhoff, 1990). Today, with the rapid development of
computer-processing technologies and related software, the ben-
efits of artificial intelligence technology help us solve system-
modeling problems and predict processes (Farkas et al., 2000).
ANN and ANFIS are two methods of artificial intelligence tech-
nologies. For example, in a study, the energy ratio of biodiesel
production from waste oil in an ultrasonic reactor was investi-
gated by the ANFIS method (Naderloo et al., 2017). In modeling
the effects of reactor size and ultrasound power on biodiesel
production efficiency, Mostafaei et al. (2016) calculated the co-
efficient of determination in the ANFIS at model 0.981 and it was
higher than the RSM (R2

= 0.967). The process of producing
biodiesel in a continuous microchannel was optimized by the
RSM method in a study conducted by Mohadesi et al. (2017).
In other studies, Hosseinpour et al. (2016), Miraboutalebi et al.
(2016) and Piloto-Rodríguez et al. (2013), employed the ANN
model to estimate the Cetane number of biodiesel.

Biodiesel yield is usually an important indicator in deter-
mining the optimal reactor conditions, but more energy may
be used for a very small enhancement in the performance of
the biodiesel, while the energy obtained is not much different.

In other words, for the maximization of biodiesel yield in the
reactor, the energy ratio (output energy/input energy) may be
reduced, which is equivalent to more energy consumption. This
will be a significant number in large-scale production. So, in this
study, energy ratio rather than biodiesel yield was used for the
optimization of reactor conditions because it optimizes the reac-
tor performance both in terms of percentage of biodiesel yield
and energy consumption. In this research, a hydrodynamic reac-
tor equipped with a LabVIEW controller was used for biodiesel
production. The LabVIEW controller is an important step towards
the industrialization of the reactor, and it can increase the energy
ratio by reducing human labor. Anyway, to find the best settings
of the hydrodynamic cavitation reactor equipped with a LabVIEW
controller, this study should model the performance of the reactor
for producing biodiesel based on its settings. The ANFIS, ANN
and RSM methods were used for this purpose due to the great
power of artificial intelligence techniques in modeling, and the
best reactor settings were optimized by the best model.

2. Materials and methods

In the present study, transesterification, the most commonly
and commercially used method for biodiesel production, along
with the alkali catalyst, was employed. Fig. 1 shows the schematic
diagram of the used hydrodynamic cavitation reactor and the
hydraulic and electric pathways.

As shown in Fig. 1, the rapeseed oil and methoxide were
first combined with a specific ratio in the homogenizer tank,
and the combination was then pumped to the reactor with a
specified flow. If the temperature of the fluid exceeds the set
value, the cooling system is activated and the cooling operation is
performed. All steps and settings were controlled by the LabVIEW
controller on the PC. The hardware interface among the com-
puter, sensors and operators was the external NI USB DAQ6009
data card, which was connected to a computer with a USB Port.
The connection of this card was only possible by the use of the
software developed by LabVIEW.

2.1. LabVIEW

The overall view of the LabVIEW is shown in Fig. 2. This
controlling system exploited seven electrical valves, a valve for
controlling the flow rate, a switch for activating the cooling fan,
a switch for activating the pump and two thermometers at the
inlet and outlet of the reactor.

The algorithm of this system consisted of six separate stages:
(1) pouring the rapeseed oil and methoxide with different volu-
metric percentages into the pre-mixing tank, (2) initial mixing,
(3) the pass through the reactor operation, (4) cooling stage, (5)
discharging the generated biodiesel into the final tank, and (6)
discharging the final tank.

The energy index evaluated in the present study was the
energy ratio (ER), which was calculated by Eq. (1) (Mandal et al.,
2002; Mohammadi et al., 2010; Ju et al., 2006; Naderloo et al.,
2012):

ER(EUE) =
Eout (MJL−1)
Ein(MJL−1)

(1)

where Eout (MJ/L) and Ein (MJ/L) are the output and input energies,
respectively. The input energy included human labor, rapeseed
oil, alcohol (methanol), sodium hydroxide catalysts, electricity,
and machinery. The human labor, whose energy equivalent mag-
nitude is 1.96 MJ/h in the current study (Esengun et al., 2007),
relates to the operations of the device needed by the operator,
which pours the oil, alcohol and catalyst into the respective tanks
and performs the monitoring and adjustments of the system
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Fig. 1. The schematic diagram of the equipment of the whole system.

Fig. 2. The overall view of the designed LabVIEW program.

equipped with the LabVIEW controller. In addition, the efficiency
of the reaction of biodiesel production was measured by the Gas
chromatograph (GC) device (biodiesel production percentage in
reaction). The outputs included biodiesel, methanol, catalysts, and
the combination of glycerol, monoglyceride and diglyceride.

The energy equivalents of the rapeseed oil (21.7 MJ/kg) (Jafari
et al., 2015), methanol (33.67 MJ/kg) (Singh and Mittal, 1992),
catalyst (21.3 MJ/kg) (Kent, 2013), electricity (11.93 MJ/kwh) (Es-
engun et al., 2007), machine (62.70 MJ/h) (Singh, 2002), biodiesel
(37.25 MJ/kg) (Saiki et al., 1999) and impure glycerin (25.30
MJ/kg) (Mohammadshirazi et al., 2014) were used for analysis. For
system evaluation, it is necessary to produce biodiesel in practice
and perform the requisite analyses.

In this respect, as much as 0.5 l of rapeseed oil, methanol
alcohol with a purity of 99.8 percent and different molar ratios
of methanol to oil and high-purity sodium hydroxide catalyst
(99%) were used for each experiment. In general, the practical
experiment was performed and the biodiesel measured by the
GC device was analyzed. All experiments were performed at a
constant temperature of 50 ◦C. In all of these models, the inputs
included four items: pump flow rate (at three levels of 1.4, 2 and
2.6 L/min), the molar ratio of methanol to oil (at three levels of

4:1, 6:1, and 8:1), rotational speed (8000, 12000 and 16000 rpm),
and circulation time (2, 4 and 6 min). The performance of the
system was modeled so that the best-operating conditions of the
reactor in terms of energy ratio was obtained. The ANFIS, ANN
and RSM methods were employed for this purpose.

2.2. Hydrodynamic cavitation

Whenever there is a drop in the pressure of the fluid flow, and
the vapor pressure is reached, the fluid boils and steam bubbles
are formed and transported by the fluid flow to reach an area with
a higher pressure. In this area, the bubbles are suddenly distilled.
This process is referred to as cavitation. As a result of each bubble
burst, there will be an inflow of the surrounding fluid to fill the
cavity.

The fluid influx creates a lot of local pressure that causes the
surface to corrode if the bubbles are near or in contact with the
solid surface. For the determination of the sensitivity of a system
to cavitation, a dimensionless quantity, namely the cavitation
number, is defined as follows (Singhal et al., 2002):

σ = (pr − pv)/(1/2ρv
2) (2)
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Fig. 3. Cavitation number of reactor related to the operating parameter (pump flow rate, methanol to oil molar ratio, rotational speed).

Fig. 4. The reactor rotor and stator.

where: σ = Cavitation number (dimensionless), pr = reference
pressure (Pa), pv = vapor pressure of the fluid (Pa), ρ = density
of the fluid (kg/m3), and v = velocity of fluid

The cavitation number in the designed reactor changes due to
the change in operating parameters. These changes are approx-
imated by practical measurements and theoretical calculations
in the Design Experts 11 software, which is in accordance with
Fig. 3.

The cavitation number decreased with increasing rotational
speed or decreasing pump flow rate, and vice versa. The changes
in molar ratio and circulation time did not have a significant effect
on the cavitation number. A drop in the cavitation number results
in cavitation or an increase in the cavitation level (Šarc et al.,
2017).

2.3. Application of hydrodynamic cavitation in biodiesel production

Among the technological innovations for biodiesel produc-
tion, hydrodynamic cavitation is a high-potential method for
producing biodiesel on an industrial scale that can be more easily
developed (Pal et al., 2010b). The conversion of oil and alcohol
to biodiesel by hydrodynamic cavitation is cheaper than tradi-
tional methods and its energy requirement is approximately half
the amount of energy required by the conventional mechanical
method.

In the hydrodynamic cavitation method, two phases of the re-
action experience non-homogeneous pressure in a section of the

reactor and the flow rate of the fluid becomes non-homogeneous
due to the rotation in the path with a specific geometric dimen-
sion, leading to the formation of cavitation (Pal et al., 2010a).
The velocity and pressure non-uniformity that generates pulses
within the fluid can be created by a venturi or perforated plates
embedded in the path of the fluid flow.

If the pressure of the venturi bottleneck is reduced to less
than the evaporation pressure of the fluid flow, many holes are
created throughout the fluid, and they increase the pressure and
temperature of the pulses. These pulses lead to better mixing of
heterogeneous fluids and increase the speed and efficiency of the
transesterification reaction (Gogate and Pandit, 2005). The de-
signed reactor, combines four features to increase the cavitation
intensity.

(1) application of several holes in the reactor rotor (Simpson
and Ranade, 2018b), (2) application of grooves parallel with the
axis on the reactor rotor (Ozonek, 2011), (3) design of the reac-
tor stator in the form of a venturi tube (Simpson and Ranade,
2018a), and (4) high speed rotation by high speed electromo-
tor (Petkovšek et al., 2015; Sun et al., 2018). The flow through
the openings of the single-hole or multi-hole plates increases the
fluid velocity and decreases the pressure. The cavity intensity is
directly related to the size of the plate hole (Ozonek, 2011; Pal
et al., 2010b).

Fig. 4 shows an image of the venturi tube of the reactor stator
and rotor. Fig. 5 shows an image of the cross-section of the reactor
rotor with holes and grooves embedded in it.
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Fig. 5. The cross section of the reactor rotor with holes and grooves embedded
on it.

Table 1
The results of comparing the properties of the produced biodiesel with the
EN14214-08 standard.
Properties Unit Allowed

limit
Measured
value

Flash point C◦ 101> 174
Kinematic
viscosity C◦ 40

mm/s 5–3.5 3.93

Acid number mg KOH/g 0.5< 0.41
Iodine number g iodine/100 g 120< 97.56
Density C◦ 15 kg/m3 900–860 868.315
Sulfated ash %mass 0.020< 0.015
Oxidation
stability

h 6> 6.11

3. Results

3.1. The results of examining the quality of the produced biodiesel

To ensure the quality of the produced biodiesel, the study
measured some of its important properties with the aim of com-
paring it with the EN14214-08 standard (see Table 1). As shown
in Table 1, the produced biodiesel met the relevant standards and
could be reliably used in diesel engines.

Table 2 shows some of the characteristics of the conducted
experiments. Thirty test specimens along with the used rape-
seed oil (mL), the volume of methanol alcohol (mL), the molar
ratio of methanol to oil (dimensionless), the rotational speed
of the reactor (rpm), pump flow rate (L/min), circulation time
(min), produced biodiesel volume (mL), the biodiesel yield and
ER (dimensionless) are specified.

Table 3 shows the total value of input and output energies
in the reaction of biodiesel production from rapeseed oil. The
amounts of each input and output of the reaction and their
equivalent energies are shown for producing a liter of biodiesel.
The total amounts of input and output energies were 32.767 and
39.319 MJ/L. Fig. 6 shows the distribution of the consumption
of different energy inputs for producing biodiesel. The lowest
percentage was related to labor (0.24%), followed by electricity
(0.65%), catalyst (0.72%), machinery (2.48%), methanol (22.57%),
and rapeseed oil (73.35%). As can be seen, the most consumed
energy was related to rapeseed oil.

Table 4 shows the average produced biodiesel and the energy
ratio at different levels of the operating parameters. As seen in
this table, by increasing the molar ratio from 4 to 6, the volumes
of the produced biodiesel and biodiesel yield increased, and the
energy ratio decreased slightly. But by increasing the molar ratio
from 6 to 8, all three volumes of the produced biodiesel, biodiesel
yield and energy ratio decreased. Also, as the rotational speed of
the hydrodynamic reactor increased, the volumes of the produced
biodiesel, biodiesel yield and energy ratio decreased. Hence, the
rotational speed of 8000 rpm was the best.

Fig. 6. The distribution of different energy inputs.

The molar ratio of alcohol to oil in terms of stoichiometric
relations is 3:1, which requires long time to complete the trans-
esterification reaction. As the molar ratio increases, the contact
between alcohol and oil molecules increases (Lee and Saka, 2010)
and also with more alcohol, the glycerin-fatty acid linkages is
more easily broken. Miao and Wu (2006) On the other hand,
more alcohol makes intensities cavitation that with formation of
fine emulsions increases the rate of the reaction (Mohod et al.,
2017). So, with the increase of the molar ratio, the biodiesel yield
increases in a shorter time (Canoira et al., 2006; Helwani et al.,
2009). However, the molar ratio of alcohol to oil greater than
the optimal value, reduces the biodiesel yield, which is probably
due to the increase in methanol in the reaction and increase
the solubility of glycerin and prevents the process of glycerin
separation from alkyl esters. Part of the diluted glycerin remains
in alkyl esters and reduce the final product due to foam forma-
tion (Agarwal, 2007; Encinar et al., 2007; Rashid et al., 2008) and
helps to reverse the reaction to the left (Verma and Sharma, 2016;
Musa, 2016; Banerjee and Chakraborty, 2009; Mohod et al., 2017).
It is even possible that an increase in methanol over an optimal
value will result stronger of the catalyst leaching in the methanol
and a decrease in biodiesel yield (Dwivedi and Sharma, 2015;
Mohod et al., 2017).

The results also revealed that by increasing the pump flow
rate from 1.4 to 2 L/min, the volumes of the produced biodiesel,
biodiesel yield and energy ratio increased. By increasing the
pump flow rate from 2 to 2.6 L/min, all three of these parameters
decreased. Hence, the pump flow rate of 2 L/min was the best. The
results demonstrated that with an increase in the circulation time
from 2 to 4 min, the volumes of the produced biodiesel, biodiesel
yield and energy ratio increased, and by increasing the circulation
time from 4 to 6, these parameters decreased.

Finally, according to Table 4, the three operating parameters of
molar ratio, pump flow rate and circulation time follow approxi-
mately the same law. In other words, by increasing the amount of
these parameters, at first, the volumes of the produced biodiesel
and biodiesel yield increased and then decreased.

Increasing the rotational speed caused the intensities cavita-
tion and increased biodiesel yield, but by increasing the rotational
speed from the optimal value, there is no significant effect on
increasing the biodiesel yield but reduces its performance. In
other words, increasing the rotational speed from the optimal
value causes the formation of super cavitation, which causes the
cushioned collapse phenomenon and reduces the overall effects
of cavitation, which reduces the biodiesel yield (Joshi et al., 2017;
Mohod et al., 2017).

As the pump flow rate increases, the speed of flow increases,
resulting less residence time in the reactor, reducing the reactor’s
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Table 2
Some of the characteristics of the conducted experiments.
Run Oil (mL) Alcohol (mL) Molar ratio Speed (rpm) Q (L/min) Time (min) Biodiesel (mL) Biodiesel yield (v. %) ER (dimensionless)

1 500 115 6 8000 2 4 424 84.89 1.219
2 500 154 8 8000 2.6 2 417 83.49 1.194
3 500 77 4 8000 2.6 2 415 83.03 1.251
4 500 77 4 16000 2.6 2 410 81.99 1.239
5 500 154 8 8000 2.6 6 422 84.34 1.168
6 500 77 4 16000 2.6 6 370 74.07 1.109
7 500 115 6 12000 2 4 421 84.24 1.212
8 500 77 4 8000 2.6 6 425 85.01 1.233
9 500 115 6 12000 2 4 419 83.74 1.206
10 500 154 8 16000 2.6 2 422 84.40 1.202
11 500 115 6 12000 2 4 424 84.74 1.218
12 500 115 6 12000 2 4 425 84.99 1.221
13 500 115 6 12000 2.6 4 437 87.33 1.242
14 500 115 6 16000 2 4 445 88.94 1.258
15 500 115 6 12000 2 4 417 83.49 1.203
16 500 154 8 16000 1.4 6 371 74.11 1.083
17 500 115 6 12000 1.4 4 426 85.18 1.221
18 500 77 4 8000 1.4 2 459 91.87 1.354
19 500 77 4 16000 1.4 2 361 72.24 1.126
20 500 115 6 12000 2 4 426 85.24 1.224
21 500 154 8 8000 1.4 2 458 91.57 1.263
22 500 154 8 16000 2.6 6 372 74.50 1.086
23 500 77 4 16000 1.4 6 390 77.92 1.153
24 500 77 4 8000 1.4 6 462 92.38 1.316
25 500 115 6 12000 2 6 409 81.87 1.171
26 500 154 8 8000 1.4 6 422 84.49 1.169
27 500 154 8 16000 1.4 2 425 84.99 1.207
28 500 115 6 12000 2 2 386 77.23 1.161
29 500 77 4 12000 2 4 421 84.15 1.243
30 500 154 8 12000 2 4 429 85.73 1.196

Table 3
The energy consumption pattern for biodiesel production.
Input and output
values

Unit Amount per
unit volume of
biodiesel (L)

Total energy
equivalent
(MJ/L)

Labor h 0.04 0.079
Rapeseed Oil L 1.107 24.034
Alcohol
(Methanol)

L 0.219 7.394

Catalyst (NaOH) L 0.011 0.236
Electricity kWh 0.017 0.213
Machinery h 0.012 0.811
Total Input Energy – – 32.767
Biodiesel L 1 32.780
Alcohol
(Methanol)

L 0.179 6.053

Catalyst (NaOH) L 0.011 0.236
Glycerin L 0.009 0.250
Total output
energy

– – 39.319

effect and less conversion due to incomplete reaction, and ulti-
mately reducing biodiesel yield. If the pump flow rate is lower,
the residence time in the reactor will increase and the effect of
the reactor and biodiesel yield will increase. However, before the
optimal value of pump flow rate, due to the initial combination of
oil and alcohol and incomplete reaction, the biodiesel yield is not
maximum. Similar results were reported by Agarwal et al. (2013).

Circulating oil and alcohol is alone a simple mixing operation.
The maximum duration of circulating in this study was 6 min,
which is very low in the transesterification reaction, but because
circulating causes the compound to pass through the reactor
repeatedly, it can be said that the circulation intensifies the effect
of the reactor. So, in high rotational speeds, increasing in the
circulation time, causing super cavitation and reducing biodiesel
yield.

As these parameters increase, the energy ratio is constantly
decreasing due to the increase in input energy and, of course, the
decrease in output energy due to the decrease in the volumes of

Table 4
The average values of the produced biodiesel and energy ratio at different levels
of the operating parameters.

Biodiesel
volume (mL)

Biodiesel
yield (v. %)

ER (dimen-
sionless)

The molar ratio
of methanol to
oil

4:1 412 82.52 1.225
6:1 421 84.33 1.213
8:1 415 83.07 1.174

The rotational
speed of the
reactor (rpm)

8000 433 86.79 1.241
12000 419 84.00 1.210
16000 396 79.24 1.162

Pump flow rate
(L/min)

1.4 419 83.86 1.210
2 420 84.11 1.211
2.6 410 82.02 1.192

Circulation
time (min)

2 417 83.42 1.222
4 426 85.22 1.222
6 404 80.97 1.165

the produced biodiesel and biodiesel yield. As rotational speed
increases, the volume of the produced biodiesel, biodiesel yield
and energy ratio decrease, which can be due to the increased
cavitation and reversibility of biodiesel production reaction and
increased electricity consumption.

The average value of the energy ratio in biodiesel production
from rapeseed oil was calculated at 1.205, which was more than
one, an indication that output energy was greater than input
energy, and; in other words, the energy has been generated in
this reaction. The reaction of biodiesel production was logically
and scientifically correct in the present research. In a study done
by Abshar and Sami (2016), the energy ratio of biodiesel produc-
tion from rapeseed oil was evaluated and it was obtained at 1.08.
In a study, Mohammadshirazi et al. (2014) analyzed the energy of
biodiesel produced from waste oil using the mechanical mixing
method and estimated the energy ratio was obtained at 1.49.
In another study, Naderloo et al. (2017) used the ANFIS method
to produce biodiesel from waste oil in an ultrasonic reactor and
calculated the energy ratio at 1.28.
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Fig. 7. The graph of the real and predicted values of the ANFIS model.

3.2. Modeling and studying the energy ratio of biodiesel

The inputs of the models included four items: pump flow rate,
the molar ratio of oil to alcohol, rotational speed and circulation
time, and the output of the models was the ER of biodiesel
production. Due to the different scales of the inputs relative to
each other, all normalized inputs and outputs were used for the
correct operation of the smart models. Also, in all models, 30%
and 70% of the data were used for testing and training.

3.2.1. Modeling through ANFIS
The ANFIS fuzzy inference system is a combination of fuzzy

systems and artificial neural networks, with the benefits of both
(Metin Ertunc and Hosoz, 2008; Buragohain and Mahanta, 2008).
This system is useful for solving nonlinear problems that are
very complicated (Cheng et al., 2002). ANFIS is capable of es-
tablishing and deducing non-linear relationships between inputs
and outputs using linguistic concepts (Guillaume, 2001; Naderloo
et al., 2012). Five key factors that were optimized in the ANFIS
model are as follows: the type of input fuzzy sets, the number of
fuzzy input sets, the type of output fuzzy sets, the optimization
method, and the number of epochs. In the best model obtained
using the ANFIS model, there were three fuzzy sets for each input
and their type was gauss2mf. The output of the model and the
optimization method was linear and hybrid, and there were 60
epochs. The normalized actual ER versus predicted ER for the best
ANFIS model is shown in Fig. 7.

3.2.2. Modeling through artificial neural network
Artificial neural networks are used for solving complex prob-

lems, a method similar to that of human brain function. According
to the results of studies conducted on the mechanism and struc-
ture of the human brain, neural networks can be used as a new
computing technology for solveing complex problems such as
pattern recognition, classification, and prediction. In this research,
a network with a multi-layered perceptron model was selected,
and in the best model of the neural network, the Tansig–Purelin
transfer function was used in the first and second layers. The
training function was Levenberg–Marquardt, and the network
structure was 4×1. The normalized actual ER versus predicted ER
for the best ANN model is shown in Fig. 8.

3.2.3. Modeling through response surface methodology (RSM)
The response surface methodology is a set of mathematical

and statistical techniques used for developing, promoting and
optimizing processes in which the intended level is affected by
many variables, and the goal is to optimize the response. In this
study, the Design Expert 11 software was used for this aim. The
model obtained from the RSM method was Cubic. The normalized
actual ER versus predicted ER for the best RSM model is shown
in Fig. 9.

Fig. 8. The graph of the real and predicted values of the ANN model.

Table 5
The performance of the best model derived from the three methods.
Model
type

TSEa MAEb MSE R2 p-value

ANFIS
Train 0.0002 0.0013 9.93E−06 0.999 3.7E−36
Test 0.0152 0.0362 0.0016 0.957 4.73E−06
Total 0.0154 0.0117 0.0005 0.989 5.01E−29

ANN
Train 0.0230 0.0095 0.0010 0.977 4.95E−17
Test 0.0226 0.0203 0.0025 0.957 4.56E−06
Total 0.0456 0.0128 0.0015 0.966 2.88E−22

RSM
Train 0.0009 0.0063 4.34E−05 0.990 7.56E−21
Test 9.13E−05 0.003184 1.01E−05 0.932 2.42E−05
Total 0.0010 0.0053 3.34E−05 0.9901 1.19E−29

aTotal Squared Error.
bMean Absolute Error.

4. Discussion

4.1. Comparing the three models designed for ER

The author used three indexes to compare and evaluate the
three models obtained from the ANFIS, ANN and RSM methods:
(1) comparison of the determination coefficients (R2) and mean
squared errors (MSE) of models, (2) comparison of the residuals
of models, and (3) simplicity and speed of models. Table 5 shows
the characteristics of the models derived from the three methods.

As shown in Table 5, the MSE and R2 of the ANFIS model
at the testing step were 0.0017 and 0.957. In a study (Naderloo
et al., 2017), the ER of biodiesel production from waste oil in an
ultrasonic reactor was modeled by the ANFIS method, and the
results demonstrated that the MSE and R2 of the ANFIS model
at the testing step were 5×10−6 and 0.87. In comparison, it can
be stated that the R2 of the present model was higher. As seen
in Table 5, the MSE and R2 of the ANFIS model were 0.0005 and
0.989 for the whole data. The same factors were 0.0015 and 0.966
for the ANN model and 0.00003 and 0.990 for the RSM model.
In a study (Mostafaei et al., 2016), the value of R2 for modeling
the effects of reactor size and ultrasonic power on the biodiesel
production efficiency in the ANFIS model was estimated at 0.981,
which was higher than that in the RSM method (0.967).

The model is better when it has a higher R2 value and lower
MSE value. As shown in Fig. 10, the model derived from the RSM
was better. The other index for the evaluation of the models is
their residual graph. In the residual graph, the proximity of the
error curve to the horizontal axis shows the good performance of
the model. As a result, according to Fig. 11, the RSM model was
better.
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Fig. 9. The graph of the real and predicted values of the RSM model (normalized values: right; real values: left).

Fig. 10. The values of the R2 (left) and MSE (right) of training, testing and the whole data.

Fig. 11. The residual graphs of ANFIS, ANN and RSM models.

4.1.1. Desirability function
In modeling by different methods and techniques, usually

come up with the model’s several different features, which make
it difficult to compare and select the best method because of the
proximity of the features. The desirability function is a practical

and suitable function for summarizing the features among differ-
ent methods and choosing the best one based on the numerical
evaluation. The output of the desirability function is a value
between zero and one, and the closer output to one is better.
Eqs. (3) to (5) show the desirability function (sarve et al., 2015;
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Fig. 12. The effects of various settings of the reactor on the energy ratio.

Fig. 13. The optimization window of the RSM model to find the maximum energy ratio (right), reactor settings to achieve the maximum energy ratio (left).

Fig. 14. The reactor settings to get energy ratio greater than 1.3.

Vera Candioti et al., 2014).

dimax =
y − L
U − L

(3)

dimin =
U − y
U − L

(4)

Dfinal = (d1 × d2 × · · · × dn)1/n (5)
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Table 6
Investigation of different features of desirability function in three models.
Model Feature 1 Feature 2 Feature 3 Dfinal

R2 d1max MSE d2min TSE d3min

ANFIS 0.989 0.95 0.0005 0.67 0.0154 0.67 0.75
ANN 0.966 0 0.0015 0 0.0456 0 0
RSM 0.990 1 3.34E−05 1 0.0010 1 1

where n is the number of evaluating indexes, U is the maximum
value of the feature among different methods, L is the minimum
value of the feature among different methods, y is the evaluating
feature, dimax is an index that the maximum value of the evaluat-
ing feature is better, dimin is the index that the minimum value
of the evaluating feature is better, and Dfinal is the final result
of desirability function. Based on the results of Table 6, the best
model is RSM.

4.2. Examining the performance of the best model

Due to the excellent performance of the RSM model, it was
examined more accurately and used for finding the best perfor-
mance conditions for the reactor. In the non-normalized model
of all parameters, the effects of variations on the output of the
model can be better examined (see Fig. 12).

Fig. 12 shows the effects of the changes in the input parame-
ters on the ER. To find the reactor settings for maximizing the ER,
it is enough to find the maximum point in the model graph. For
this purpose, as shown in Fig. 13 (left), the output of the model
(ER) was set to the maximum value. The final results from the
optimization of the model are shown in Fig. 13. In this figure, the
maximum ER occurs when the circulation time, rotational speed,
the pump flow rate and the molar ratio are set in 2 min, 8000
rpm, 1.4 L/min and 4, respectively. Fig. 14 displays the reactor
settings to obtain an ER higher than 1.3. The ER in the green zone
was more than 1.3 and in the yellow zone was less than it.

Fig. 15 shows the effect of the ER changes versus impure
biodiesel yield. The impure biodiesel consists of pure biodiesel
with catalysts, alcohols and glycerin. The maximum biodiesel
yield in this research was 92.38%. The produced impure biodiesel
should be washed before consumption. The pure biodiesel ob-
tained in this study was more than 98% yield after washing
according to the EN 14214 standard. In other words, in this study,
the settings of the designed reactor were optimized based on the
ER. The output of the reactor is impure biodiesel, so it is necessary
to consider it instead of the pure biodiesel (output of the reactor
along with the washing process) in modeling and analyzing. As
shown in Fig. 15, by increasing the impure biodiesel yield, the ER
usually increases. But it unusually reduces somewhere because
the ER depends on two factors according to Eq. (1). It has a direct
relationship with the total output energy (highly dependent on
the impure biodiesel yield) and an inverse relationship with the
total input energy. Although the numerator increased through
increasing the impure biodiesel yield and output energy, the
denominator, which is the sum of the input energies, further
increased, and the ER is reduced.

5. Conclusion

In the present study, a hydrodynamic cavitation reactor was
mechanized for the production of biodiesel by the transesteri-
fication method. The user-friendly controller of the reactor was
designed by the LabVIEW Version 2016 and USB-DAQ-6009 Card
and equipped with electric valves and temperature sensors. To
find the best settings of the reactor for biodiesel production in
terms of ER, the study modeled the reactor’s performance based

Fig. 15. The energy ratio changes due to the impure biodiesel yield changes.

on its settings and employed ANFIS, ANN and RSM methods for
modeling. Rapeseed oil, with different molar ratios of methanol
to oil and sodium hydroxide catalyst were used in the reactor for
biodiesel production.

The inputs of the models included four items: pump flow
rate, the molar ratio of methanol to oil, rotational speed and
circulation time. The output of the models was the ER. The re-
sults showed the R2 of the best ANFIS, ANN and RSM models
were 0.989, 0.966, and 0.990, respectively. The MSE of the best
ANFIS, ANN and RSM models were obtained at 0.0005, 0.0015
and 0.00003, respectively. The results revealed that the RSM
and ANFIS models were preferred to the ANN model in terms
of better performance, simplicity, and high processing speed. In
total, the RSM model was better than the ANFIS model based on
the desirability function. Accordingly, the best reactor settings to
obtain the maximum ER (1.35) and biodiesel yield (91.87%) were
when the circulation time, the rotational speed, the pump flow
rate and the molar ratio were 2 min, 8000 rpm, 1.4 L/min and 4,
respectively.
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