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a b s t r a c t

In this paper, a multi-objective optimization method has been established on a hybrid PV, wind, fuel
cell, and battery system. The optimization is based on three models including energy supply reliability,
electricity efficiency, and capital cost of the hybrid system. A new model of the Elephant Herding
Optimization (BEHO) Algorithm is utilized to solve the multi-objective optimization problem and is
validated based on different algorithms and benchmark functions. The main purpose is to determine
the Pareto surface including a set of possible design solutions to help the decision-makers obtaining
the global optimum solution. The final results indicated that the proposed method is an applicable
approach for designing of the proposed hybrid system.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The world’s orientation toward energy and moving toward an
oil-free economy on the one hand and the various advantages
of renewable energies, on the other hand, make it imperative to
prioritize the development of these clean energies with various
economic and environmental benefits (Liu et al., 2020). Improving
citizens’ awareness of the benefits of using renewable energies
will certainly facilitate the development of cleaner energy in the
world (Fathi et al., 2020). Special capacity for economic develop-
ment, promotion of energy supply and security and environmen-
tal protection and reduction of air pollution are three important
advantages of renewable energies. Also, the need to diversify the
country’s energy basket to improve energy security is another
reason for the need to develop renewable energies. This is one of
the priorities of the energy sector in light of the dramatic increase
in energy demand in the coming years (Kiran and Chandrakala,
2020).

The scarcity of power grids in remote areas and the high cost
of connecting these areas to national electricity networks lead
to the use of other energy sources independently of the grid.
One of the major problems with the use of renewable sources
is the severity of the winds during the day and the lack of solar
energy at night, which combines wind and solar systems (Fathi

∗ Corresponding author.
E-mail address: kittisak.j@chula.ac.th (K. Jermsittiparsert).

et al., 2020; Aghajani and Ghadimi, 2018). These hybrid systems
also have some problems such as low system reliability and lack
of peak load during the year. To resolve this problem, different
solutions can be proposed (Liu et al., 2017; Gollou and Ghadimi,
2017). One of the useful, new, and widely used method is to adopt
fuel cells as the storage system of these systems. Several works
have been performed in this orientation. For example, Mirzapour
et al. (2019) presented and optimized a hybrid system based
on fuel cell, biomass gasifier generator set, power conditioning
unit, and battery backup for an academic section in Maulana
Azad National Institute of Technology in India. The HOMER sim-
ulator was adopted for designing the grid and it simulated the
financial criteria of the system (Hosseini Firouz and Ghadimi,
2016; Hamian et al., 2018; Leng et al., 2018; Akbary et al., 2019;
Ebrahimian et al., 2018). The examination was executed in dif-
ferent conditions. The simulation results showed that the cost
of energy (COE) for the biomass gasifier generator set, solar PV,
and fuel cell crossover energy system has is about15 Rs/kWh and
complete net present cost (NPC) is 52 Rs/kWh.

Khodaei et al. (2018) proposed an optimized techno-economic
grid-connected hybrid system including wind, solar, and fuel
cell for residential applications. The storage system was uti-
lized for increased system reliability. Different parameters of
the system were analyzed to achieve their effectiveness on the
system, The Genetic Algorithm (GA) and the Particle Swarm
Optimization algorithm were utilized for minimizing the sys-
tem maintenance and operation cost. Final results showed the

https://doi.org/10.1016/j.egyr.2020.05.017
2352-4847/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

As Area of a single PV cell (m2)
CT Tafel constant
E Nernst Potential (v)
fmaintenence Maintenance factor of SOFC
F Faraday constant
icapital Capitalization ratio
I Fuel cell stack current (A)
J Current densities
N Number of tubes
Nb Lifespan of batteries (year)
Np Lifespan of project (year)
Nunits Production volume of SOFC
N Number of cells
P Pressure
R Resistance (�)
Rc Connections resistance
Rm Membrane resistance
S Membrane area (cm2)
Ss Salvage value of PV panels ($/m2)
T Temperature (◦C)
U Hydrogen utilization factor
V Voltage (v)

Greek letters

α Thermal voltage timing completion fac-
tor (V )

αb Initial cost of batteries ($/m2)
αs Initial cost of PV panels ($/m2)
αOMs Yearly operation and maintenance cost

for solar ($/m2 year)
β Parametric coefficient
λ Tunable parameter
γ Interest rate
κ Inflation rate
ν Escalation rate
η Efficiency
ξ Pseudo-experimental parametric coeffi-

cients
� Ohmic loss
r Solar radiation (W/m2)

Subscripts

a Activation
b Battery
C Capacitance
c Concentration
CO2 Oxygen concentration at the

cathode/gas interface (mol cm−3)
CH2 Hydrogen concentration at the anode

membrane /gas interface (mol cm−3)
elec Electrolyzer
FC Fuel cell
G Electrical energy that is generated by

the PV

method’s prominence characteristics in using as cooling, heating,

and
power source (CHP).

Bagal et al. (2018) studied a hybrid PV-Wind-Fuel Cell sys-
tem and then, they optimized it for electricity production for
remote sites in the Colombian Caribbean region. For performance
analysis of the studied system, its simulation was applied to the
demand of 200 W by considering the wind speed and the solar
radiation variations for every single day in different regions. A
multi-objective optimization was implemented to the study for
minimizing the Levelized CO2 emission and energy cost.

Gheydi et al. (2016) proposed a three-part hybrid system
based on the thermal solar system, wind turbine and, and fuel
cell. The presented system allowed to maximize the yearly gen-
erated electricity based on the supplied power optimizing yearly.
The method was then applied to a practical case study in Lebanon.
The final results showed a secure achievement toward different
renewable energy sources variations.

Firouz and Ghadimi (2016) proposed an adaptive multi-agent
management system for a CHP system in micro-grid. The CHP
system contained three parts: wind turbine, Fuel cell, and PV. The
controller for the system was based on a fuzzy controller. The
main objective was to design the load frequency controller (LFC)
to control the frequency oscillation of the agents and to minimize
the production cost of the overall system. The PSO algorithm
was used to the optimal selection of the key parameters of the
controller to adjust the system efficiency.

Eslami et al. (2019) investigated a combine CHP system in-
cluding PV, wind, fuel cell, and battery for a nursing home in
Istanbul. The study used HOMER software to characterize the
optimal configuration of the hybrid system by considering the
cost of energy and the total NPC. Simulation results showed the
best configuration for the hybrid system.

Based on the literature, there is a lot of researches that worked
on the optimal unit sizing of the hybrid solar-wind DG system.
This study presents a new configuration by combining a high-
temperature polymer electrolyte membrane fuel cell (PEMFC)
system (including the electrolyzer and the fuel cell stacks) with
the hybrid wind/PV system. The system presents a multi-objective
optimization technique by considering the efficiency, energy re-
liability, and cost of the hybrid model.

2. Mathematical modeling of the overall system

The analyzed model in this study is a hybrid model including
wind turbine, fuel cell, and solar system with electrolyzer and cell
stacks (wind/solar/fuel cell) to use during a long time with storing
the energy for the required times. In the operation process, the
surplus electrical energy which is produced by PV and wind is
adopted for producing hydrogen using electrolyzer. Afterward,
the generated hydrogen is stored in hydrogen reservoir tanks.
The hydrogen reservoir tanks are then employed to generate
electricity by supplying fuel cell stacks. Fig. 1 indicates an en-
ergy management technique for the proposed hybrid DG based
on (Saeedi et al., 2019).

2.1. Model of the fuel cell stack

This research utilizes a proton exchange membrane fuel cell
(PEMFC) in the system due to its several advantages such as its
higher efficiency and simple working. The model of the PEMFC
stack is based on a steady-state model. The water is assumed as
the membrane electrolyte saturator that makes it be a function
of temperature. Fig. 2 shows a simple circuit model of a PEMFC.

Thereupon, the PEMFC current density depends on the geo-
metric features, the reactants quantity, and the hydrogen utiliza-
tion factor.

IFC =
2 × nH2,in × UFC

NFC × AFC
(1)



Y. Cao, H. Yao, Z. Wang et al. / Energy Reports 6 (2020) 1353–1362 1355

Fig. 1. The graphical conception of the energy management system for the presented hybrid system.

Fig. 2. The circuit model of a PEMFC.

where, nH2,in stands for the number of H2 tubes, UFC describes the
hydrogen utilization factor, NFC is the cells number, and AFC is the
active area.

Following Fig. 2, the PEMFC output voltage is achieved can be
achieved based on the following equation:

VOUT = E − Va − VC − VΩ (2)

where, Va describes the activation loss voltage, VC determines
the concentration losses voltage, VΩ stands for the ohmic losses
voltage, and E describes the Nernst (reversible) potential and is

achieved as follows:

E = 1.23+
(
−8.5 × 10−4)

× (TFC − 298.15) +
RTFC
4F

ln
(
PH2

√
PO2

)
(3)

The activation loss decreases the reactions speed on the elec-
trode’s surface and can be formulated by the following equation:

Va = −0.95 + ×T + 7.6 × 10−5
× T × ln (CO2) + 1.93 × 10−4

× T × ln (IFC ) (4)

where, IFC describes the PEM fuel cell stack current and CO2

determines the oxygen concentration at the cathode/gas interface
(mol cm−3) by the following:

CO2 =
pO2 × e

(
498
T

)
50.8 × 107 (5)

where, PO2 stands for oxygen partial pressures (Pa).
And ξ describes the pseudo-empirical parametric and this (Re-

strepo et al., 2014).

ξ = 0.003 + 0.0002ln (A) + 43 × 10−6ln
(
CH2

)
(6)
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And CH2 stands for the Hydrogen concentration at the anode
membrane/gas interface (mol cm−3) and is achieved as follows:

CH2 =
pH2 × e

(
−77
T

)
10.9 × 107 (7)

where, pH2 describe the hydrogen partial pressures (Pa).
The Ohmic voltage drop for the fuel cells is modeled by the

following:

VΩ = IPEM (Rm + Rc) (8)

where,

Rm = ρmlS−1 (9)

ρm =

181.6 ×

[
0.062

(
TFC
303

)2 ( IFC
S

)2.5
+ 0.03

(
IFC
S

)
+ 1

]
[
λ − 0.063 − 3

(
IFC
S

)]
× e

TFC−30
TFC

(10)

where, S stands for the membrane area (cm2), I describes the
membrane thickness, IFC determines the PEMFC operating cur-
rent, TFC represents the operating cell temperature (K ), λ de-
termines a tunable parameter, Rc and Rm describe the connec-
tions resistance and membrane resistance, and ρm stands for the
resistivity of the membrane.

Finally, the concentration overvoltage can be also obtained
based on the following equations:

VC = −β × ln
(
Jmax −

J
Jmax

)
(11)

where, β stands for the parametric coefficient, J and Jmax describes
the typical and the maximum current densities, respectively.

2.2. Model of electrolyzer

The model of the electrolyzer is performed by the following
assumption:

In the electrolyzer model, the water vapor of the electrolytic
cells in the anode and the cathode are fully saturated and in-
compressible. The value of the temperature and the pressure
for the electrolytic cells in gas flow channels are considered
constants. The liquid and the gas phases are assumed separable.
The enthalpy of the water vapor has been assumed constant
during the working temperature. The working temperature for
the electrolytic cells is considered 100 ◦C. The required energy
for water supply and hydrogen compressing has been neglected.

The system cannot receive the maximum value that is due
to the parasitic current losses. By considering the Faraday Law,
the experimental hydrogen rate is achieved by the following
equation (Guo et al., 2017):

ηI = 96.5 × e

(
0.09
Iel

−
75.5
I2el

)
(12)

where, ηI describes the current efficiency and Iel represents the
electrolyzer current density (A/cm2).

And the rate of hydrogen production (mol/s) is obtained as
follows:

rhp =
ηI × Iel × Nel

2 × F
(13)

where, Nel describes the number of electrolytic cells, Iel stands for
the electrolyzer current (A), F determines the Faraday constant
(F = 96487 C/mol).

Based on the explained assumptions, the Nernst equation (E) is
considered to evaluate the reversible potential of the electrolytic
cells that are explained before. The electrolytic cells have some

Fig. 3. The circuit model of a PV cell/module model.

unavoidable losses like ohmic, concentration polarization, and
activation losses, the open-circuit voltage is greater than E. By
neglecting the concentration overpotential loss due to its small
value in electrolyzer cells (Yang et al., 2007), the open-circuit
voltage can be formulated as follows:

Vel = E + VΩ
el + V a

el (14)

where, VΩ
el describes the ohmic polarization loss for the cells

(V ), and V a
el represents the activation polarization loss for the

electrolytic cells (V ) and is obtained by the following equa-
tion (Hoogers, 2002):

V a
el = CT + ST lgi (15)

where, CT = 0.06 describes the Tafel constant, and ST = 0.1
represents the Tafel slope.

Finally, the Ohmic Voltage loss is obtained as follows:

VΩ
el = 0.127 × Iel × e−2870×

(
1

1273 −
1
Tel

)
(16)

2.3. Model of PV cell/module

A simple circuit-based model of a PV cell can be determined
by four parameters that are shown in Fig. 3. Based on Fig. 3, the
load current can be achieved as follows (Chen et al., 2017).

I = IL − ID = IL − Io ×

[
exp

(
U +

I × Rs

α
− 1

)]
(17)

where U stands for the output voltage, Io represents the satura-
tion current (A), Rs describes the series resistance (r), α describes
the thermal voltage timing completion factor (V ), and IL describes
the light current (A) and is achieved by the following equation.

IL =
r

rref
×

[
IrefL − Ct refI ×

(
Tc − T ref

c

)]
(18)

where r stands for solar radiation (W/m2), rref is the reference
solar radiation that is assumed 1000 (W/cm2), IrefL describes the
light currently at reference condition, Ct refI represents the tem-
perature coefficient of the short-circuit current that is considered
A/25 ◦C, and Tc and T ref

c are the temperature of a PV cell (◦C) and
the reference temperature with value 25 ◦C, respectively.

The PV efficiency is highly affected by the temperature and
the temperature is highly affected by different parameters such
as solar radiation, output voltage, output current, and the ambi-
ent temperature. The relation between the PV module and the
temperature is given in the following:

CPV ×
dTc
dt

= raPV × r −
U × I
Ar

− Cht (Tc − Ta) (19)

where, CPV represents the total heat capacity per unit area of
the solar cell/module )J/(◦C m2)], raPV describes the absorption
rate for PV cells radiation, Cht stands for the heat transfer coeffi-
cient [W/(◦C m2)]. Ta stands for the ambient temperature (◦C). Ar
describes the PV cell absorption area (m2)
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2.4. Model of wind energy conversion system

The generator of the wind turbine model is achieved based on
the following formula (Chedid et al., 1998):

PWTG =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 v < vci
Pr ×

(
v3

− v3
ci

)
v3
r − v3

ci
vci ≤ v ≤ vr

Pr vr ≤ v ≤ vco

0 v > v_co

(20)

where, vci stands for the cut-in wind speed, v represents the local
wind speed, vco describes the cut-out wind speed, and vr defines
the rated wind speed for the wind turbine generator. Besides, the
output power for the wind turbine is obtained by the following
equation:

PW = PWTG × AW × ηw (21)

where, ηwdefines the wind turbine generator efficiency where
according to Betz’s law, is no more than 16/27 (59.3%) of the
kinetic energy in wind and AW stands for the swept area of it
(m2).

2.5. Model of battery

In this part, a simple model of lead–acid has been employed.
The model is considered by identical charge and discharge effi-
ciencies about 0.88. To prevent the deep discharge, 20% capacity
of the batteries does not take part in the charging/discharging
processes. The left-over electricity of the battery when it is
charged can be obtained as follows:{
Pre = Pre + 0.88 × Pch

i Pch
i × 0.88 ≥ PC

Pre = PC Pch
i × 0.88 ≤ PC

(22)

And the left-over electricity of the battery when it is dis-
charged is achieved as follows:⎧⎪⎨⎪⎩
Pre = Pre − 0.88 × Pch

i
Pre − Pdis

i

0.88
≥ 0.20 × PC

Pre = PC
Pre − Pdis

i

0.88
≤ 0.20 × PC

(23)

where, Pre stands for the left-over electricity of the lead–acid bat-
tery, PC describes the battery capacitance, Pch

i and Pdis
i represent

the electric energy charging/discharging into/from the battery.

3. Objective function for the cost

The total cost of the proposed hybrid PV/wind/PEMFC/battery
is defined by an objective function as follows:

CT = CPV + Cwind + CPEMFC + Cbattery (24)

Such that the cost of the PV conversion system, the storage
battery, and a wind energy conversion system is obtained by the
following:

3.1. The cost model of the PV conversion system

The total cost of photovoltaic conversion system is achieved
as follows:

CPV =
IPVs − SPVs + CmPVs

Np
(25)

where, Np describes the lifespan of the project, IPV describes the
initial cost of the PV energy conversion system as follows:

IPV = αs × As (26)

The SPVs is the PV energy conversion system salvage value and
is obtained as follows:

SPVs = Ss × As ×

(
1 + κ

1 + γ

)Np

(27)

The CmPVs determines the maintenance cost of PV energy
conversion system and is achieved as follows:

CmPVs = αcmPVs × As ×

Np∑
i=1

(
1 + ν

1 + γ

)i

(28)

3.2. The cost model of the wind conversion system

The total cost of the wind energy conversion system is
achieved by the following formulation:

Cwind =
Iwind − Swind + Cmwind

Np
(29)

where, Np describes the lifespan of the project, Iwind describes the
initial cost of the wind turbine generator as follows:

IPV = αwind × Awind (30)

The Swind is the wind turbine generator system salvage value
and is obtained as follows:

Swind = Swind × Awind ×

(
1 + κ

1 + γ

)Np

(31)

The Cmwind determines the maintenance cost of the wind
turbine generator system and is obtained by the following for-
mulation:

Cmwind = αcmwind × Awind ×

Np∑
i=1

(
1 + ν

1 + γ

)i

(32)

3.3. The cost model of the battery

The total cost of the battery is considered as follows:

Cbattery =
Ibattery + Cmbattery

Np
(33)

where, Ibattery stands for the initial cost of the lead–acid battery
and is achieved as follows:

Ibattery = αbattery × PC ×

Nb∑
i=1

(
1 + ν

1 + γ

) i−1
Nb

(34)

The Cmbattery determines the maintenance cost of the lead–acid
battery and is obtained as follows:

Cmbattery = αcmbattery × PC ×

Np∑
i=1

(
1 + ν

1 + γ

)i

(35)

3.4. The cost model for the PEMFC

The capital cost of the PEM fuel cell based on (Tan et al., 2015)
is as follows:

CPEMFC =

(
Cpurchase
PEMFC + Cmaintenence

PEMFC + Camortization
PEMFC

)
×

(
Nunits

500000

)−0.362

(36)

where,

Cpurchase
PEMFC = 1.1 × [0.027 × APEMFC + 0.88] × NPEMFC + 0.24

× NPEMFC + 279.4 (37)
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Table 1
The details for parameters utilized in the hybrid system model.
Parameter Value Unit Parameter Value Unit

Np 20 year ν 12 %
Nb 10 year APEMFC 1.5 m2

αs 450 $/m2 Ss 45 $/m2

αcmPVs 4.3 $/m2 year γ 12 %
αcmwind 2.5 $/m2 year Nunits 1482 −

αbattery 100 $/m2 fmaintenence 0.06 −

αwind 100 $/m2 icapital 10 %
αcmbattery 10 $/m2 year Swind 10 $/m2

κ 9 %

Cmaintenence
PEMFC = fmaintenence × Cpurchase

PEMFC (38)

Camortization
PEMFC = icapital × Cpurchase

PEMFC (39)

where, Nunits represents the production volume of the PEMFC,
fmaintenence describes the maintenance factor of PEMFC, and icapital
represents the capitalization ratio.

The details for the parameters are given in Table 1.
Fig. 4 shows the multi-objective optimization architecture for

the proposed system.

4. Objective function for electricity efficiency

Another function that is utilized for the optimization of the
hybrid system is to consider the electricity efficiency within 24 h
as follows:

η =
PG

Pwind + PPV
(40)

where, PPV and Pwind describe the solar energy absorbed by the
PV system and the wind energy absorbed by the wind energy
conversion system, respectively and PG stands for the electrical
energy that is generated by the PV, wind energy conversion
system, and the PEMFC stack and is obtained as follows:

PG = PL − Pshrg + P surplus
H2

+ (Pre − 0.20 × Pc) × 0.88 (41)

where, PL describes the 24-hours demand for total electric en-
ergy, P surplus

H2
defines the electric energy that is produced by the

surplus hydrogen after 24 h’s running, Pshrgstands for the mis-
match between the electric energy and the users’ demand, the
term (Pre − 0.20 × Pc)×0.88 determines the remained electricity
energy in the battery storage after 24 h system running.

The input wind energy for energy conversion and the input
solar energy for the PV conversion are given below:

Pwind =

∫ 24

0
0.5 × ρ × Awind × ν3dt (42)

PPV =

∫ 24

0
φ × APV × Nsdt (43)

where, Ns stands for the number of PV cells that are put in series
and ρ describes the density of the local air.

5. Objective function for the energy supply reliability

This section explains the reliability of the energy supply as
another part of the cost function for the hybrid system. this term
can be determined based on the following equation:

R =
PL − Pshrg

PL
(44)

Table 2
The optimization constraints for the hybrid system.
Parameter Initial value [Min. value, Max. value] Unit

Pc 50 [50, 500] −

Ns 200 [50, 200] −

Awind 50 [50, 500] m2

APEMFC 1000 [1000,5000] cm2

NPEMFC 100 [50, 500] −

6. The total objective function

Based on the definitions in the previous sections, the study
aims to optimize three different cost functions including the
efficiency of the hybrid system, the capital cost, and the reliability
of the energy supply. This makes the problem to be as a multi-
objective optimization problem. Here, a developed model of a
metaheuristic called Elephant Herding Optimization Algorithm
(EHO) is used for this purpose. The optimization is done under
some constraints. The total objective function in this study is
illustrated below:

Maximize(electricity efficiency (η) , power supply reliability (R))
Minimize (Capital cost (CT ))

Subject to:
xj ≤ xj ≤ xj

where, xj and xj stand for the lower and the upper limitations of
the jth constraint. Five main parameters for the optimization of
the above problem are given below (see Table 2).

7. Balanced elephant herding optimization algorithm

Evolutionary and metaheuristic algorithms (metaheuristics)
are very powerful tools of artificial intelligence to solve optimiza-
tion problems through intelligent methods and are nowadays
widely used in several branches of science and engineering. These
algorithms, which generally simulate the natural processes, are
search methods that search for the best possible solution in
the possible search space for an optimization problem. An im-
portant case that should be considered in metaheuristics is the
dynamic balance between diversification and intensification. Di-
versification performs an extended searching in the search space
and intensification indicates the solutions experienced during
searching in the solution space. Considering the correct trade-
off between these two strategies gives better solution space to
the algorithms and decreases time-wasting. There are several
models of metaheuristics such as Variance Reduction of Gaussian
Distribution (VRGD) (Namadchian et al., 2016), Butterfly Opti-
mization Algorithm (BOA) (Arora and Singh, 2019), Owl Search
Algorithm (OSA) (Jain et al., 2018), Emperor Penguin Optimizer
(EPO) (Dhiman and Kumar, 2018), Improved Cat Swarm Opti-
mization (ICSO) algorithm (Kumar and Singh, 2018), World Cup
Optimization (WCO) algorithm (Razmjooy et al., 2016), sunflower
optimization (SFO) algorithm (Gomes et al., 2019), and Elephant
herding optimization (EHO) (Wang et al., 2016).

Wang et al. proposed a new bio-inspired algorithm based on
elephant herding behavior (Wang et al., 2016). Elephants are a
kind of mammal animals that have big sizes. These animals have
a long trunk that helps to breathe, lifting objects and drinking wa-
ter. They also have strong legs to carry their weights. Naturally, in
contrast, the male elephants that like to live alone upon growing
up, female elephants have social behaviors and like to comprise
the clans of females and the calves. They live in several clusters
under the leadership of a matriarch that is usually the oldest one.
However male elephants live independently from their family
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Fig. 4. The multi-objective optimization architecture for the proposed system.

group, they can connect with the family members over low-
frequency vibrations. Each member of the elephant clans has high
attention to the calves as the of a family group. This specific
behavior has been a reason for proposing a new bio-inspired that
is called Elephant Herding Optimization (EHO) Algorithm. The
EHO Algorithm is based on the following characteristics:

7.1. Clan operator

As before mentioned, each clan has been led under the lead-
ership of a matriarch. This case causes that matriarch ci affecting
the next position of the elephants in clan ci. Therefore, the new
position for the elephant j in clan ci (xnewci,j ) is achieved as follows:

xnewci,j = xci,j + α ×
(
xbestci − xci,j

)
× r (45)

where, xci,j stands for the old position of elephant j in clan ci,
xbestci describes matriarch ci that has the best solution in clan ci,
α represents a scale factor to determine the impact of matriarch
ci on xci,j In the range [0, 1] and r ∈ [0, 1] is another random
value.

And the updating formulation for the fittest elephant in each
clan is achieved as follows:

xnewci,j = β × xcenterci (46)

where β stands for a factor to define the effect of the xcenterci on
xnewci,j in the range [0, 1].

In the above equation, xnewci,j is obtained by considering the
information from the elephants in clan ci and xcenterci determines
the center of clan ci. For the dth dimension, this term can be
evaluated through D evaluations as follows:

xcenterci =
1
nci

nci∑
j=1

xdci,j (47)

where d determines the dth dimension in the range [1, D], D
stands for the total dimension, nci describes the total number of
elephants in the clan ci, and xdci,j describes the dth case of the
elephant candidate xci,j.

7.2. Separating operator

As before mentioned, male elephants live independently from
the family when they have grown up. This feature is modeled
in the EHO algorithm as a separating operator. This feature is
modeled as follows:

xworst
ci = x +

(
1 + x − x

)
× δ (48)

where, xworst
ci describes the worst elephant individual in clan ci,

δ ∈ [0, 1] is a random uniform distribution value, and x and

x represent the minimum and the maximum limitations of the
elephant individual position, respectively.

More information about the EHO algorithm can be studied
(Wang et al., 2016).

7.3. The balanced EHO algorithm

However, the EHO algorithm is a new and high-performance
algorithm for optimization, it has also some issues that should
be resolved. The main problem is the early convergence of the
EHO algorithm. In this algorithm, the individuals gradually move
in the search space near the best general optimum point and do
not explore the rest of the space which is due to the inadequate
balance mechanism between local and global search. This study
proposes an improved version of the EHO algorithm for resolving
this problem.

Here, the Lévy flight mechanism has been adopted for devel-
oping the EHO algorithm. This mechanism has a high capability
to resolve premature convergence of the algorithm (Cao et al.,
2019a,b; Fei et al., 2019) as a prominent shortcoming of the EHO.
Lévy flight (LF) simulates a random walk mechanism for viable
handling of the local search (Choi and Lee, 1998). This Lévy flight
mechanism is modeled as follows:

Le (w) ≈ w−1−τ (49)

w = A × |B|−1/τ (50)

σ 2
=

{
Γ (1 + τ )

τΓ ((1 + τ )/2)
sin(πτ/2)
2(1+τ )/2

} 2
τ

(51)

where, Γ (.) is Gamma function, 0 < τ ≤ 2, A ∼ N(0, σ 2),
B ∼ N(0, σ 2), w stands for the step size, τ describes Lévy index,
and A/B ∼ N(0, σ 2) point to the samples formed by a Gaussian
distribution with a mean value of zero and variance of σ 2. In this
study, τ = 3/2 (Li et al., 2018).

Based on the defined mechanism, the new updated equation
for the clan and the separating operators are as follows:

xnewci,j = xci,j + α ×
(
xbestci − xci,j

)
× r × Le(δ) (52)

xworst
ci = x +

(
1 + x − x

)
× δ × Le(δ) (53)

where, xnewci,j is the newly updated position for the elephant j in
clan ci (xnewci,j ), and xworst

ci describes the new updated worst elephant
individual in clan ci.

Besides, to guarantee of achieving the best solution candidates,
fitter candidates have been kept:

xnewci,j =

{
xnewci,j F

(
xnewci,j

)
> F (xnewci,j )

xnewci,j otherwise (54)

xworst
ci =

{
xworst
ci F

(
xworst
ci

)
> F (xworst

ci )
xworst
ci otherwise (55)
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Fig. 5. The block diagram of the proposed BEHO.

Fig. 5 shows the block diagram of the presented BEHO.

8. Algorithm validation

In this section, to indicate the ability of the presented BEHO
algorithm, it is validated by implementing it into some different
functions. The results also compared with some different state
of the art algorithms like genetic algorithm (GA) (Holland, 1992),
particle swarm optimization algorithm (PSO) (Bansal, 2019), fluid
search optimization algorithm (FSO) (Dong and Wang, 2018),
world cup optimization algorithm (WCO) (Razmjooy et al., 2016),
and the basic Elephant Herd Optimization (EHO) algorithm (Wang
et al., 2016). The configuration of the selected laptop for simu-
lation is Intel R⃝ CoreTM i7-4720 HQ CPU@2.60 GHz with 16 GB
RAM and the platform for the simulation is MATLAB R2017b.
Table 3 indicates the utilized equations and their constraints for
the validation with 30 dimensions.

After applying the utilized algorithms to the functions, the
results for validation are achieved and provided in Table 4. This
Table indicates the standard deviation value and the mean value
of the compared methods by assuming 30-dimensions.

As can be seen, the best results are achieved by the EHO family
for the adopted benchmark functions. The simulation for each
algorithm has been run for 30 times to show its precision and
standard deviation value. due to the minimum value of the BEHO
algorithm, it can be considered as the highest accuracy algorithm
among the compared methods. Besides, due to the low value of
the standard deviation value, it has shown the highest precision
among the others.

9. Simulation results

As before mentioned, the main purpose is to optimize a three-
term multi-objective optimization including the energy supply
reliability, the electricity efficiency, and the capital cost based on
a newly introduced metaheuristic to achieve the best solution

Fig. 6. Hourly profile of wind speed data, solar irradiance data, and the power
demand data.

on a hybrid PV/wind/PEMFC/battery system. Fig. 6 Indicate the
hourly profile of the solar irradiance data, wind speed data, and
the power demand data, respectively that are used as the inputs
for the case study. As can be seen, the wind speed during the
24 h starts with about 14.2 m/s in 12:00 and then after some
descending oscillations, it reaches its lowest value about 1.1 m/s
in 24:00. The results also show that from 8:00 to 13:00, an
increasing irradiation occurs. In contrast, from 13:00 to about
18:00, the irradiance behaves as a downtrend process and after
18:00, this minimum value continues in about a side way value.
Finally, by considering the power demand, it is clear the power
demand in 12:00 is about 5.2 kW and this changes until 8:00 with
maximum power demand. Another time of high power demand
in the range 17:00 to 24.

For more clarifications about the Pareto solution set, the cost
values of 300 optimal designs have been normalized in the range
[0,1] and the results are shown in Table 5 and Fig. 7. From the
results, it is clear that there are three scenarios for the system
analysis: the minimum capital cost (S1), the maximum energy
supply reliability (S2), and the maximum electricity efficiency
(S3). Here, the S1 shows the high energy efficiency from 14.68%
to 15.82%, with the corresponding cost from 2461$/year to 3083
$/year with energy supply reliability from 77.20% to 80.47%. The
S3 shows the low capital cost from 2834 $/year to 2934 $/year
and the electricity efficiency in the range 17.53% and 18.74% along
with energy supply reliability from 76.24% to 76.89%. Finally, S2
gives a high energy supply reliability in the range 85.36% and
87.82% with the capital cost from 2846 $/year to 3373 $/year and
with the electricity efficiency in the range 8.61% and 11.75%.

Therefore, if the main objective is to focus on the lower capital
cost of the hybrid system, S1 (with scarifying the energy supply
reliability), is the best selection, if the main objective is to em-
phasize on the higher energy supply reliability, S2 gives the best
selection (of course by losing the ability for the other two aspects,
and if the main objective is to obtain higher electricity efficiency
of the hybrid system with losing the other two aspects, S3 is the
best selection.

For more clarification of the results, the study uses the approx-
imated Pareto front. Generally, to obtain the desired performance,
the decision variables values can be found by the decision mak-
ers. In other words, these results help the decision variables to
consider what should be sacrificed to obtain better efficiency for
the other objective function. Besides, after determining the design
variables, the dynamic response of the units can be observed
by the provided models according to the weather and load con-
ditions. By this way, the design makers can recognize how to
choose the size of units in the hybrid system for decreasing the
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Table 3
The utilized benchmarks for efficiency analysis.
Function Equation Constraint

Ackley f1 (x) = −20exp

⎛⎝−0.2

√ 1
D

D∑
i=1

x2i

⎞⎠− exp

(
1
D

D∑
i=1

cos (2πxi)

)
+ 20 + e [−10, 10]

Rastrigin f2 (x) = 10D +

D∑
i=1

(
x2i − 10 cos(2πxi)

)
[−512, 512]

Rosenbrock f3 (x) =

D−1∑
i=1

(
100

(
x2i − xi+1

)
+ (xi − 1)2

)
[−2.045, 2.045]

Sphere f4 (x) =

D∑
i=1

x2i [−512, 512]

Table 4
The validation results of the compared methods.
Benchmark BEHO EHO (Wang et al., 2016) GA (Holland, 1992) PSO (Bansal, 2019) WCO (Razmjooy et al., 2016) FSO (Dong and Wang, 2018)

f1 mean 0.00 9.38e−18 4.18e−2 7.85 4.28e−3 5.34e−16
std 0.00 0.00 3.53e−2 2.16 2.14e−3 0.00

f2 mean 0.00 1.98 70.61 74.24 2.19 3.42
std 0.00 1.58 1.66 8.96 4.35 3.27

f3 mean 5.48 5.84 35.41 200.1 13.16 8.64
std 3.61 1.32 27.15 59.00 4.62 2.56

f4 mean 0.00 5.28e−14 1.62e−4 7.59e−4 5.27e−9 2.16e−12
std 0.00 2.37e−18 2.57e−5 4.93e−4 2.74e−9 4.93e−17

Fig. 7. Normalized objectives for 300 designs of the proposed hybrid system..

Fig. 8. Pareto front of the electricity efficiency and the energy supply reliability.

renewable energy fluctuation by the help of Pareto front (see
Fig. 8).

Therefore, based on the above results and the Pareto front,
the decision-makers can provide the best selection based on their
positions.

Table 5
The cost function values for different scenarios.
Cost function S1 S2 S3

η (%) 14.68–15.82 8.61–11.75 17.53–18.74
R (%) 77.20–80.47 85.36–87.82 76.24–76.89
CT ($/year) 2461–3083 2846–3373 2834–2934

10. Conclusions

This study proposed a multi-objective optimization structure
for a hybrid PV/Wind/PEMFC/Battery system. The optimization
configuration included three parts of cost minimization, energy
supply reliability maximization, and electricity efficiency maxi-
mization. The optimization process was performed using a new
balanced model of the Elephant Herding Optimization (BEHO)
Algorithm. The purpose of the study was to determine the Pareto
surface of the problem to make the decision operation easy for
decision-makers.

The proposed method analyzed three different scenarios in-
cluding minimum capital cost (S1), maximum energy supply re-
liability (S2), and maximum electricity efficiency (S3). The final
results showed that the only case for selecting the best config-
uration is to check the Pareto solution set. In addition to the
parameters that are considered for the optimization in this work,
there are some other parameters that can effect on the system,
for example, PEMFC area and number of PEMFC cells that give an
inspiration to work on them in the future work.
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