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a b s t r a c t

This paper presents an optimal technique for parameter estimation of a Solid Oxide Fuel Cell (SOFC)
model. The idea is to minimize the Sum of Squared Error (SSE) between the output voltage and
the experimental data. To achieve this purpose, a new metaheuristic, called the Converged Grass
Fibrous Root Optimization Algorithm (CGRA) is presented and is validated by comparing it with
some well-known algorithms. The method is then applied to the optimal parameter estimation of
the model To analyze the method accuracy and its robustness, the proposed model is verified under
different pressure and temperature operating conditions and the results have been compared with
some different methods from the literature. Simulation results indicate a good confirmation between
the experimental results and the model designed based on the proposed CGRA. The results for the CGRA
show that the SSE results for 3 atm constant pressure and 563.85◦C, 649.85◦C, 699.85◦C, 749.85◦C,
and 799.85◦C are 1.67E−4, 1.84E−4, 9.42E−4, 1.87E−3, and 1.62E−3, respectively and for 799.85◦C
constant temperature with 1 atm, 2 atm, 3 atm, 4 atm, and 5 atm, are 1.68E−3, 1.84E−3, 9.42E−3,
1.87E−3, and 1.62E−3, respectively that are the minimum values among the other analyzed methods
that indicate that the suggested technique gives better efficiency with the highest robustness and
convergence speed compared with the other methods.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In recent years, the use of fossil fuels has been increased,
while these resources are running out, and activists around the
world and environmental experts and economists are consider-
ing replacing clean fuels with various methods for use as an
alternative energy source (Fan et al., 2020; Leng et al., 2018;
Akbary et al., 2019). A range of different factors including fossil
resources limitations, their negative effects on the environment,
utilization of hydrocarbon resources, rising fossil fuel prices, po-
litical strife and their effects on sustainable energy, have led many
politicians, energy experts and environmentalists to move to-
ward presenting a new security-based structure to supply energy,
preserve the environment and to enhance the energy system
efficiency (Hosseini Firouz and Ghadimi, 2016; Hamian et al.,
2018; Eslami et al., 2019; Saeedi et al., 2019). Hydrogen is one
of the best options for playing the role of energy carrier (Yin
and Razmjooy, 2020; Yuan et al., 2020; Yu and Ghadimi, 2019).
Hydrogen is known as one of the abundant elements on the
world (Liu et al., 2017). In a hydrogen-based energy ideal system,

∗ Corresponding author.
E-mail address: qingdaoshihong@163.com (H. Shi).

hydrogen has been produced by surplus electricity produced by
the renewable energy sources like solar, wind, and geothermal
for guaranteeing of a safe energy supply, preserving the envi-
ronment and improving the energy system efficiency (Gollou and
Ghadimi, 2017; Mirzapour et al., 2019). With this approach, most
of researchers believe that hydrogen will be the ultimate fuel
for human in not-so-distant future. The fuel cell is the latest
technology in the world to direct convert of chemical energy
into the electricity (Ebrahimian et al., 2018; Bagal et al., 2018).
Fuel cells have been considered as an interesting technology in
many countries around the world due to their high efficiency and
very low pollution characteristics (Gheydi et al., 2016). Hydrogen
is the main fuel of fuel cells that can be produced in various
ways (Yuan et al., 2020). Hydrogen generation from natural gas is
the most important and economical method. Fuel cell technology,
in which hydrogen produces oxygen, electricity, and heat during
a series of electrochemical tests, is one of the best options for
energy production (Aghajani and Ghadimi, 2018). Due to their
efficient, non-emission of environmental pollutants, high density,
lack of moving parts and lack of vibration and sound, fuel cells are
desirable equipment for energy production.

One of the most important and widely used model of fuel
cells is Solid Oxide Fuel Cell (SOFC) (Liu et al., 2020; Meng et al.,
2020). The high operating temperature of this type of fuel cell
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has led to the use of various fuels such as natural gas in such
a direct way. In addition, the heat generated in this type of fuel
cell is of high quality and can be used in most thermal systems.
The operating range of solid oxide combustion coils is about
700 ◦C to 1000 ◦C (Ramadhani et al., 2017). To design a proper
SOFC system, we need to have a complete information about
them. In other words, mathematical modeling of SOFCs is an
important part of optimal designing of this component (Firouz
and Ghadimi, 2016). Numerous methods have been presented
for mathematical Modeling of fuel cells. For example, Tang et al.
(2018) presented a technique for model parameters estimation
of SOFCs using Extreme Learning Machine-Hammerstein (ELM-
Hammerstein). By considering the Lipschitz criterion, the gener-
alized ELM was performed to the model for parameter estimation
of the model. Simulation results indicated that the technique give
proper confirmation with empirical data.

Another technique for optimal parameter selection of an SOFC
using metaheuristics is proposed by Wei and Stanford (2019).
The idea minimizes the mean squared deviation error between
the actual data and the estimated value by optimal selecting of
the model undetermined parameters. The minimization process
in the work was developed by a modified version of Binary Shark
Smell Optimizer. The method was compared with some other
works to indicated its efficient performance. Wu et al. (2019)
introduced a multi-objective problem for the SOFC system. The
main idea was to maximize the total performance of the SOFC
and to minimize the system cost when air leakage fault happens.
The authors used

a non-dominated sorting Particle Swarm optimization (PSO)
algorithm for the optimization. The method was compared with
some state of art methods to indicate its higher efficiency with
minimum cost toward different methods.

in 2020, Wang et al. (2020) proposed an RNA-genetic algo-
rithm to achieve optimal values for parameter identification of
the SOFC. The study investigated a sensitivity analysis for the
system and the algorithm efficiency was compared with some
other methods. Simulation results indicated a proper agreement
for the algorithm in modeling of the SOFC.

By considering the above literature, it is observed that there
are numerous studies which have been proposed for parameters
identification of an SOFC in both transient and steady-state sce-
narios. However, there are still lots of improvements that can
be performed for developing the efficiency of the identification
methodology. The main idea of this study is to present a reliable
procedure for optimal parameters selection of the SOFC. The
contributions of this study are briefly given below:

– New optimized design has been proposed for optimal selec-
tion of SOFC parameters.

– The method is developed based on a new model of Grass
Fibrous Root Optimization Algorithm.

– The method is analyzed under various temperatures and
pressures.

– The method results are compared with some different works
from the literature

– Wilcoxon’s statistical analysis and Friedman test are used for
more analysis.

2. Mathematical model of Solid Oxide Fuel Cell

The mathematical model of a SOFC is briefly described in this
section. Generally, the output voltage of a single SOFC cell is
defined as follows:

Vcell = ENernst − Vconc − VΩ − Vact (1)

where, ENernst defines the Nernst reversible voltage, Vconc describes
the concentration loss voltage, VΩ represents the ohmic loss
voltage, and Vact is the activation loss voltage.

Accordingly, the total output voltage for a SOFC stack including
Ncell number of cells is defined by the following equation:

Vstack = Ncell × Vcell = ENerst − Econc − EΩ − Eact (2)

where, the Nernst reversible voltage is obtained by the following
equation (Meng et al., 2020):

ENerst = E0 +
R × T
4 × F

ln

(
PO2 × P2

H2

P2
H2O

)
(3)

where, E0 defines the standard potential, T represents the SOFC
operating temperature (K), PO2 , PH2 , and PH2O define the partial
pressure of oxygen, hydrogen, and water, Rstands for the uni-
versal gas constant, and F describes the Faraday constant. Here,
R = 8.314 kJ (k mol K)−1 , F = 96, 486 Cmol−1. From Eq. (2), Vact
is achieved as follows:

Vact =
2 × R × T
ne × F

× sinh−1
(

I
2 × I0

)
(4)

Accordingly, the ohmic loss voltage in the equation is achieved
by the following formula.

VΩ = RΩ × I (5)

where, RΩ defines the ionic resistance that is decreased slowly
by temperature increasing (Wang and Nehrir, 2007) and the
current equation can be obtained based on the ButlereVolmer as
follows (Chan et al., 2002):

I = I0 ×

[
exp

(
β × ne × F × Vact,cell

R × T

)
− exp

(
(β − 1) × ne × F × Vact,cell

R × T

)]
(6)

where, I0 represents the exchange current density, β stands for
transfer coefficient, and ne describes the quantity value of the
transferred mole electrons. Since β = 0.5 (Gong et al., 2014),
Eq. (6) is transferred to the following equation:

I = 2 × I0 × sinh
(
ne × F × Vact,cell

2 × R × T

)
(7)

Besides, the concentration voltage loss is achieved as follows:

Vconc =
R × T
4 × F

×

[
ln

(
P2
H2

× PO2

P2
H2O

)
− ln

(
P∗2
H2

× P∗

O2

P∗2
H2O

)]
(8)

Finally, based on the ButlereVolmer (Chan et al., 2001; Larminie
et al., 2003), the SOFC output voltage is defined as follows:

Vstack = E0 − A × sinh−1
(

I
2 × Ia0

)
− A sinh−1

(
I

2 × Ic0

)
− I × RΩ + B × ln

(
IL − L
IL

)
(9)

where, IL stands for the current limitation density (mA cm2), A
defines Tafel line slope, B defines a constant depends on the
operating state of the fuel cell, RΩ describes the area-specific
resistance (kΩ cm2), Ia0 and Ic0 describe the anode and the cathode
exchange current density, respectively. The present study consid-
ers seven unknown parameters including E0, A, B, Ia0 , I

c
0 , RΩ , and

IL of the SOFC model for designing an optimal model for it.



1430 H. Shi, J. Li and N. Zafetti / Energy Reports 6 (2020) 1428–1437

3. The objective function

To select optimal values for the undetermined parameters in
SOFC model, the minimum value of the sum of squared error (SSE)
between the output voltage and the experimental data has been
considered that is formulated as follows:

min SSE (x) =
1
n

N∑
i=1

(Vout − Vest)
2 (10)

=
1
n

N∑
i=1

(
Vout −

[
E0 − A × sinh−1

(
I

2 × Ia0

)
− A sinh−1

(
I

2 × Ic0

)

− I × RΩ + B × ln
(
IL − L
IL

)])2

where, N describes the estimation data, and x = {x1, x2, x3, x4,
x5, x6, x7} = {E0, A, B, Ia0, I

c
0, RΩ , IL} includes the optimization

variables such that Isa and Rahim (2013):

L ≤ IL (11)
Ic0 < Ia0
xi ≤ xi ≤ xi
i = 1, 2, . . . , n

Eqs. (10) and (11) indicate the objective function and the con-
straints to achieve a good agreement between the experimental
output voltage and the output voltage such that to achieve to this
purpose, Eq. (10) should be minimized by optimal selection of the
undetermined parameter (x) under the constraint from Eq. (11).
However, classic methods are the first option for achieving the
minimum value of Eq. (10), they fail in solving complicated prob-
lems, or even stuck in the local optimum. Recently, the ability
of the metaheuristics in solving different kinds of complicated
optimization problems is exponentially increasing. which turned
them as the first option to solve these types of problems (Martens
and Sutskever, 2011; Bengio et al., 2007). Since, in this study, a
new modified version of metaheuristic method, called Converged
Grass Fibrous Root Optimization Algorithm has been adopted
for optimal selection of the SOFC parameters for optimal model
estimation.

4. Converged Grass Fibrous Root Optimization Algorithm

In recent years, Akkar and Mahdi (2017a) proposed a new
metaheuristic technique based on fibrous root system of the
grass called Grass Fibrous Root Optimization Algorithm (GRA).
The GRA is inspired by the grass plants regeneration, and their
progress and fibrous root system. The grass plants have been
regenerated by two mechanisms. The first one is based on the
underground stems performed by sending out roots and shooting
the rhizomes and the second procedure is based on the grown
stems below the surface. The explained mechanisms continuously
improve the secondary roots for replacing the vanished primary
roots. The hair roots are produced by the secondary roots and
are usually used for local and global searching of the mineral
and the water resources. The aforementioned mechanisms of the
grass plants make the main conception of the GRA. In this section,
the Converged Grass Fibrous Root Optimization Algorithm (CGRA)
will be presented in detail. Because CGRA is a modified model of
GRA (Akkar and Mahdi, 2017a), the GRA is first briefly explained
followed by the definition of the proposed CGRA.

4.1. Mathematical model of GRA

The population (Pop) of GRA contains an initial swarm (grass
swarm) that is generated randomly and uniformly in the solution

space. After initializing the algorithm in the seeding process (pop),
a new population (PopNew) is reproduced in the range [Pl, Pu]
such that Pl and Pu define the lower and the upper ranges for
the population. After initializing and evaluating the value of each
grass swarm, the best value (Gbest ) is achieved by the following
equation:

Gbest = min (F (swarm)) (12)

where, Gbest ∈ Rd and d represents the dimension of the prob-
lem, and here F describes the mean square error (MSE) function
between the estimated data and the experimental data from the
SOFC model.

The new population (PopNew) also contains a number of grasses
(Gr) which is achieved by the Gbest by stolons that are frequently
deviated by the elementary grass (GrN ) with a step size less than
PopHNew by the following equation:

Gr =

( 0.5 × pop × Avg (MSE)

Avg (MSE) + min (MSE)

) (13)

where, min and Avg define the average value and the minimum
value, respectively.

The new branch grasses deviated by the Gbest and the sur-
vived best initial grasses have been achieved by the following
equations:

GrN = ones (Gr, 1) × Gbest + 2 × max
(
PopHNew

)
× (σ (Gr, 1) − 0.5) × Gbest

(14)
Sde = GrN + 2 × max

(
PopHNew

)
× (σ (pop–Gr − 1, 1) − 0.5) × PopHNew

(15)

where, σ points to a random value between 0 and 1, ones (.) sig-
nify to the one’s column vector, and GrN represents the (pop–Gr−
1) highest MSE initial population. Therefore, new population
(PopNew) is achieved by the following equation:

PopNew = [Gbest;GrN ; Sde] (16)

The new population (PopNew) is obtained to provide the minimum
valued MSE and is restricted in the range PL

New and PH
New . In this

situation, once Gbest gets better results than the preceding one, it
is replaced with the best new grass as the new candidate, else, the
absolute rate of decrease in MSE is achieved. Once the tolerance
value (ε) gives low value, the global stack (stackg ) is increased
and after reaching to its maximum value, the next local search
will start, i.e.

M = min
i=1,...,pop

(MSE) (17)

bestmin = min
j=1,...,iter

(M) (18)⏐⏐⏐⏐mini=1,...,pop (MSE) − Gbest

mini=1,...,pop(MSE)

⏐⏐⏐⏐ ≤ ε (19)

The updating process for the hair root location is achieved as
follows:

mGbest (1, i) = Avg (Gbest) + Gbest (1, i) + C2 × (σ − 0.5) (20)

C = [C1, C2, . . . , C10] (21)

C2 = C × (1 + (∥σ × 10∥)) (22)

i = 1, 2, . . . , d, k = 1, 2, . . . ,N (23)

where, mGbest represents the locally modified Gbest , C stands for
the investigated step size vector equation, C2 is the random com-
ponent of C , and N describes the number of secondary generated
roots in the range 0 and d. In the event that the achieved mGbest
has a value less than the Gbest value, the new Gbest will be equal
to mGbest , else, the absolute rate of decreasing for MSE will be
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Table 1
The utilized test function in the paper.

Function Equation

F1 (x)
D−1∑
i=1

(
(xi − 1)2 + 100

(
x2i − xi+1

))
[−2.045, 2.045]

F2 (x)
D∑

i=1

x2i [−512, 512]

F3 (x) 10D +

D∑
i=1

(
x2i − 10cos (2πxi)

)
[−512, 512]

F4 (x) −20exp

⎛⎝−0.2

√ 1
D

D∑
i=1

(
x2i
)⎞⎠− exp

(
1
D

D∑
i=1

(cos (2πxi))

)
+ 20 + e [−10, 10]

Table 2
The validation the proposed technique and the compared methods on utilized test functions.
Benchmark CGRA GRA (Akkar and

Mahdi, 2017a)
DHO (Brammya
et al., 2019)

BOA (Arora and
Singh, 2019)

SOA (Dhiman and
Kumar, 2019)

LOA (Yazdani and
Jolai, 2016)

F1
MV 0.00 0.00 3.66e−9 3.85e−4 2.14e−9 2.08e−4
SD 0.00 0.00 6.29e−9 10.62e−4 6.38e−9 5.34e−5

F2
MV 3.91 6.14 13.25 46.79 12.46 54.91
SD 1.37 6.38 7.14 38.24 5.39 42.19

F3
MV 0.00 3.42 6.29 56.17 9.94 28.37
SD 0.00 2.76 4.40 17.29 5.08 9.43

F4
MV 0.00 1.90e−16 7.16e−11 6.12 4.37e−3 6.31e−2
SD 0.00 0.00 4.37e−3 4.25 6.23e−3 6.38e−2

obtained. Once the rate has a value less than ε, the local stack
counter (stackl) has been increased by one, if stackl results the
maximum predefined value, the hair root loop will be stopped
and a new secondary root loop has been started and at the final
of each iteration, the stopping criteria (εSC ) has been checked.

4.2. Converged Grass Fibrous Root Optimization Algorithm (CGRA)

Although, the Grass Fibrous Root Optimization algorithm
presents good results based on the literature (Akkar and Mahdi,
2017b, 2016), it has a significant shortcoming in reaching to a sat-
isfied convergence. In this study, two modifications are presented
to develop the algorithm performance and to resolve the ex-
plained consideration. In the first mechanism, Quasi-oppositional
is adopted to develop the speed and the accuracy of the to-
tal algorithm. To have enough vision of the Quasi-oppositional,
oppositional-based learning should be first defined. The
oppositional-based is a mechanism to compare each individual in
the population with its opposite value to select the better one as
more proper candidate (Tizhoosh, 2005; Çelik, 2020). For using
this mechanism, let us consider the swarms by defining them
with P in the range [Pl, Pu]that are placed in a D-dementia search
space. The opposite candidate for a considered Pi is defined as
follows:

P̌i = Pl + Pu − Pi (24)

i = 1, 2, . . . ,D (25)

Accordingly, the quasi-opposite number of a considered Pi is
defined as follows:

P̀i = rand
(

αi + βi

2
, P̌i

)
(26)

The second mechanism for improving the algorithm efficiency is
to use the chaotic conception. The chaotic mechanism generates
unpredictable behaviors in any system. Some systems have so
complicated behavior which is originated based on their chaotic
nature. This leads the researches to work on a field of science,

called chaos theory. This theory can be also used for the pop-
ulation diversity increasing and escaping from the local opti-
mum (Yang et al., 2007; Rim et al., 2018). This study employed
the logistic map as a well-defined model of chaotic functions for
the algorithmmodification. The logistic map is defined as follows:

δq+1
o,n = 4δqo,n(1 − δqo,n) (27)

where, o stands for the number of system generators, n represents
the population number, q describes the number of iterations, δn
represents the value of the chaotic mechanism at iteration n in
the range [0, 1] (Yang et al., 2007; Rim et al., 2018). Therefore,
by considering the above assumption, the modified new branch
grasses deviated by the Gbest and the modified survived best initial
grasses are obtained based on the following equations:

Smde = GrN + 2 × max
(
PopHNew

)
×
(
δqo,n (pop–Gr − 1, 1) − 0.5

)
× PopHNew

(28)
GrmN = ones (Gr, 1) × Gbest + 2 × max

(
PopHNew

)
×
(
δqo,n (Gr, 1) − 0.5

)
× Gbest

(29)

4.3. The performance verification of the proposed algorithm

To determine the capability of the CGRA and validate its ef-
ficiency toward other methods, it has been applied to some
different benchmark functions and the results are compared with
other well-known metaheuristics to show its prominence. For
the comparison, the following algorithms have been employed:
Deer Hunting Optimization (DHO) Algorithm (Brammya et al.,
2019), Seagull Optimization Algorithm (SOA) (Dhiman and Ku-
mar, 2019), Lion Optimization Algorithm (LOA) (Yazdani and Jo-
lai, 2016), Butterfly optimization algorithm (BOA) (Arora and
Singh, 2019), and basic Grass Fibrous Root Optimization Algo-
rithm (GRA) (Akkar and Mahdi, 2017a). The utilized test functions
in the present research have been given in the Table 1:

The validation results of the presented technique and the
compared methods on utilized test functions have been given in
Table 2.
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Table 3
The lower and the upper limitations for the unknown parameters.
Parameter Range Unit Parameter Range Unit

EOC [0, 1.2] V B [0, 1] V
A [0, 1] V IL [0, 10,000] mA cm−2

I0,a [0, 100] mA cm−2 Rohm [0,1] K� cm−2

I0,c [0, 100] mA cm−2

As can be observed from Table 2, the mean value (MV) and
the standard deviation value (SD) in the presented algorithm for
all of the functions is the least. The small value of MV shows the
proposed CGRA has the highest accuracy toward the compared
algorithms for the adopted test functions. Besides, the small
value of SD shows that the presented method has the highest
robustness than the others.

5. Simulation results

To calculate the efficiency of the proposed CGRA for optimal
estimation of the SOFC unknown parameters, the experimental
data of the SOFC with 96 cells are considered and extracted
from Wang and Nehrir (2007) and the performance has been
studied based on the voltage vs. current profile using MATLAB
2017b software. Table 3 illustrates the lower and the upper
ranges for the unknown parameters.

Based on Zhang and Wang (2013) and Sun et al. (2015), the
stopping criteria is considered for the maximum number of iter-
ation by the value of 50,000 and number of grass swarm is set to
be 60.

5.1. Analysis based on different temperatures

This subsection considers different temperature operating con-
dition for the SOFC. Here, the simulation is applied to the model
by considering various temperatures such that at every opera-
tional condition 120 data point has been generated. The data
are measured under different temperatures including: 563.85 ◦C,
649.85 ◦C, 699.85 ◦C, 749.85 ◦C, and 799.85 ◦C at constant pres-
sure, 3 atm. The results of sum of squared error between the
achieved model and the experimental data under different tem-
peratures are illustrated in Table 4. The method in Table also
indicates a comparison between the suggested CGRA and some
different state of art techniques including RNA-GA (Wang et al.,
2020), ISI (El-Hay et al., 2019), BSSO (Wei and Stanford, 2019),
SBO (El-Hay et al., 2018), ISA (El-Hay et al., 2019), and basic
GRA (Akkar and Mahdi, 2017a).

Table 4 indicates that the suggested CGRA method has the
minimum value of the SSE compared with other analyzed meth-
ods. Also, it is observed that the proposed CGRA method has the
lowest standard deviation values compared with other methods.
Table 5 indicates the optimal values for the unknown parameters
based on the CRGA method at pressure 3 atm and under different
temperatures.

Table 5
Optimal evaluated values for the unknown parameters at pressure 3 atm and
under different temperatures.

Variables 563.85 ◦C 649.85 ◦C 699.85 ◦C 749.85 ◦C 799.85 ◦C

Eoc (V) 1.213 1.150 1.135 1.198 1.138
A (V) 0.094 0.084 0.052 0.046 0.039
Io,a (mA cm−2) 14.197 18.216 18.965 24.374 28.845
Io,c (mA cm−2) 5.322 7.005 7.147 7.264 7.832
B (V) 0.051 0.068 0.062 0.064 0.075
IL (mA cm−2) 147..315 158.41 158.44 159.36 160.253
Rohm (K� cm−2) 0.112 0.013 0.0081 0.0012 0.0009
SSE 1.67E−4 1.84E−4 9.42E−4 1.87E−3 1.62E−3

It is important to note that the impact of temperature varia-
tions on the unknown parameters indicate that although by in-
creasing the temperature value, the anode and cathode exchange
current densities have been increased, the open circuit voltage
has been decreased. Figs. 1 and 2 shows the polarization curve
and the output power vs. current curve for modeled and the ex-
perimental data comparison for various operating temperatures
and constant pressure of 3 atm.

Besides, the error profile for the voltage and the power of the
data for different temperature values are shown in Figs. 3, 4.

As can be observed from Figs. 1–4, there is a good confirmation
between the empirical data and the optimal model based on
CGRA method. From Figs. 3 and 4 show that the error range for
the output voltage under various temperatures are less than 0.16
V and the error range for the power under various temperatures
are less than 0.0073 kW. From the results, it can be observed that
lower temperatures give smaller errors. In other words, using the
proposed method for the lower temperatures give better results.

5.2. Analysis based on different temperatures

This subsection considers different pressure operating condi-
tion for the SOFC. The data have been measured under different
pressure including: 1 atm, 2 atm, 3 atm, 4 atm, and 5 atm at
constant temperature, 799.85 ◦C. Table 6 illustrates the results
of SSE between the achieved model and the experimental data
under different pressures and Table 7 indicates optimal evaluated
values for the unknown parameters at temperature 799.85 ◦C and
under different pressures.

As can be observed from the results of Table 6, the minimum
value of both SSE and standard deviation values is reached by
the proposed CGRA method which shows the methods precision
and robustness toward the other compared methods. The results
obtained in Table 7 illustrates that by increasing the pressure
values, the open circuit voltage has been enhanced. Besides, the
anode and cathode exchange current densities similar to limiting
current density change in a small limitation. It is important to
note that the variables A, B, and Rohm are almost constant different
pressures values. Figs. 5 and 6 shows the polarization curve
and the output power vs. current curve for modeled and the

Table 4
The results of SSE between the achieved model and the experimental data under different temperatures.
Algorithms 563.85 ◦C 649.85 ◦C 699.85 ◦C 749.85 ◦C 799.85 ◦C

RNA-GA (Wang et al., 2020) 3.31E − 2 (2.12E − 2) 4.17E − 2 (1.69E − 2) 1.78E − 2 (4.28E − 2) 6.81E − 1 (3.91E − 1) 1.47 (8.98E − 1)
ISI (El-Hay et al., 2019) 1.98E − 2 (1.57E − 2) 1.97E − 2 (2.71E − 2) 5.32E − 2 (5.79E − 2) 1.58E − 1 (4.37E − 1) 3.54 (7.59E − 1)
BSSO (Wei and Stanford, 2019) 4.59E − 3 (9.97E − 3) 9.52E − 3 (8.96E − 3) 2.28E − 2 (6.45E − 2) 6.27E − 2 (3.34E − 1) 7.34E−2 (8.78E − 2)
SBO (El-Hay et al., 2018) 2.84E − 3 (5.39E − 2) 2.04E − 3 (4.47E − 2) 1.45E − 2 (3.60E − 2) 1.38E − 1 (3.31E − 1) 2.83E−2 (7.24E − 1)
ISA (El-Hay et al., 2019) 3.28E − 2 (9.97E − 2) 2.43E − 2 (2.83E − 2) 3.08E − 2 (5.18E − 2) 4.83E − 2 (1.67E − 1) 6.88E−2 (7.39E − 2)
GRA (Akkar and Mahdi, 2017a) 1.59E − 2 (1.89E − 2) 2.26E − 2 (1.89E − 2) 7.36E − 2 (9.94E − 2) 1.29E − 1 (3.31E − 1) 5.34E − 1 (9.35E − 1)
CGRA 6.32E − 4 (6.78E − 4) 1.18E − 3 (1.92E − 3) 3.94E − 3 (4.38E − 3) 2.95E − 3 (6.41E − 3) 1.73E − 3 (2.22E − 4)
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Fig. 1. The polarization curve for modeled and the experimental data comparison for various operating temperatures and constant pressure of 3 atm.

Fig. 2. The output power vs. current curve for modeled and the experimental data comparison for various operating temperatures and constant pressure of 3 atm.

Fig. 3. Polarization curve error for modeled and the experimental data comparison for various operating temperatures and constant pressure of 3 atm.

Table 6
The results of SSE between the achieved model and the experimental data under different pressures.
Algorithms 1 atm 2 atm 3 atm 4 atm 5 atm

RNA-GA (Wang et al., 2020) 1.77 (9.31E − 1) 1.64 (8.42E − 1) 1.43 (6.16E − 1) 1.67 (8.94E − 1) 1.58 (8.67E − 1)
ISI (El-Hay et al., 2019) 1.47 (4.71E − 1) 4.13 (6.31E − 1) 3.48 (7.41E − 1) 3.50 (9.39E − 1) 3.50 (6.23E − 1)
BSSO (Wei and Stanford, 2019) 8.48E − 2 (10.12E − 2) 9.18E − 2 (10.04E − 2) 7.45E − 2 (8.71E − 2) 6.28E − 2 (9.34E − 2) 4.68E − 2 (7.34E − 2)
GRA (Akkar and Mahdi, 2017a) 6.59E − 1 (8.11E − 1) 8.86E − 1 (5.32E − 1) 5.64E − 1 (9.36E − 1) 5.95E − 1 (9.63E − 1) 7.44E − 1 (7.22E − 1)
CGRA 1.49E − 3 (5.23E − 5) 1.64E − 3 (1.92E − 4) 1.67E − 3 (2.27E − 2) 1.54E − 3 (1.87E − 5) 1.44E − 3 (1.98E − 5)
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Fig. 4. Power current error for modeled and the experimental data comparison for various operating temperatures and constant pressure of 3 atm.

Fig. 5. The polarization curve for modeled and the experimental data comparison for various operating pressures and constant temperature of 799.85 ◦C.

Fig. 6. The output power vs. current curve for modeled and the experimental data comparison for various operating pressures and constant temperatures of 799.85 ◦C.

experimental data comparison for various operating pressures
and constant temperature of 799.85 ◦C for the proposed CGRA
method.

Also, the error profile for the voltage and the power of the data
for different pressure values are shown in Figs. 5, 6.

As can be observed from Figs. 5, 6 and the comparison be-
tween the empirical data and the proposed model for voltage
and power errors under different pressures and temperatures, the
robustness of the model in different pressures is higher than the
model with different temperatures.

5.3. More analysis of the system

For more analysis of the system in terms of convergence
efficiency, the convergence profiles for some different operation
conditions are plotted in Fig. 7. From Fig. 7, it is observed that
the speed of convergence for the proposed CGRA method has
better condition toward the other compared methods for all
operational conditions with different values of pressures and
temperatures. This shows that the proposed method gives better
balance between exploitation and exploration.
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Fig. 7. The convergence profile under various operational pressures and temperatures for (A) (649.85 ◦C, 3atm), (B) (799.85 ◦C, 3 atm), (C) (749.85 ◦C, 1 atm), and
(D) (799.85 ◦C, 5 atm).
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Table 7
Optimal evaluated values for the unknown parameters at temperature 799.85 ◦C
and under different pressures.

Variables 1 atm 2 atm 3 atm 4 atm 5 atm

Eoc (V) 1.124 1.168 1.185 1.192 1.203

A (V) 0.043 0.043 0.043 0.043 0.043

Io,a (mA cm−2) 28.42 28.59 28.48 28.41 28.34

Io,c (mA cm−2) 7.237 7.184 7.245 7.242 7.234

B (V) 0.085 0.087 0.087 0.087 0.087

IL (mA cm−2) 161.11 161.24 161.35 161.28 161.25

Rohm (K� cm−2) 0.016 0.016 0.016 0.016 0.016

SSE 1.68E − 3 1.84E − 3 9.42E − 3 1.87E − 3 1.62E − 3

Fig. 8. The results of Friedman test for the analyzed methods.

In the following, the Wilcoxon’s statistical analysis has been
utilized for evaluating the performance of the suggested CGRA
and the compared methods under identical operational condi-
tions. Tables 3 and 5 indicate this test. As it is observed, the
best results are established by the suggested CGRA at higher
than 97% probability level for all the operational condition for 30
independent runs. The Friedman test has been also performed for
ranking the analyzed methods under the established operational
conditions. The results of this test are shown in Fig. 8. The results
for both tests indicate the suggested methods prominence toward
the other compared methods.

6. Conclusions

This paper presented a new optimized technique for optimal
parameters estimation of a Solid Oxide Fuel Cell (SOFC). The
model was designed based on the voltage vs. current profile of
the SOFC. The main purpose was to minimize the sum of squared
error (SSE) between the experimental data and the achieved data
as an objective function. For minimizing the objective function,
a new metaheuristic called Converged Grass Fibrous Root Op-
timization Algorithm (CGRA) was introduced. For analyzing the
performance of the proposed model, it was validated in different
conditions with various temperature and pressure values. The
convergence speed and statistical analysis were also applied to
the model and the results were compared with some state of art
methods including RNA-GA, ISI, BSSO, and the basic GRA (Wang
et al., 2020) from the literature. The results for the CGRA showed
that the SSE results for 3 atm constant pressure and 563.85 ◦C,
649.85 ◦C, 699.85 ◦C, 749.85 ◦C, and 799.85 ◦C are 1.67E−4,

1.84E−4, 9.42E−4, 1.87E−3, and 1.62E−3, respectively and for
799.85 ◦C constant temperature with 1 atm, 2 atm, 3 atm, 4
atm, and 5 atm, are 1.68E−3, 1.84E−3, 9.42E−3, 1.87E−3, and
1.62E−3, respectively that are the minimum values among the
other analyzed methods. Simulation results showed well confir-
mation between the empirical results and the model designed
based on the proposed CGRA. The results also showed the pro-
posed method has better efficiency with the highest robustness
compared with other analyzed methods. The future work for this
study may be working on the Application of the suggested algo-
rithm on different kinds of fuel cells such as polymer electrolyte
membrane fuel cells.
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