
Qin, Fuzhen; Liu, Peixue; Niu, Haichun; Song, Haiyan; Yousefi, Nasser

Article

Parameter estimation of PEMFC based on Improved Fluid
Search Optimization Algorithm

Energy Reports

Provided in Cooperation with:
Elsevier

Suggested Citation: Qin, Fuzhen; Liu, Peixue; Niu, Haichun; Song, Haiyan; Yousefi, Nasser (2020) :
Parameter estimation of PEMFC based on Improved Fluid Search Optimization Algorithm, Energy
Reports, ISSN 2352-4847, Elsevier, Amsterdam, Vol. 6, pp. 1224-1232,
https://doi.org/10.1016/j.egyr.2020.05.006

This Version is available at:
https://hdl.handle.net/10419/244115

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.egyr.2020.05.006%0A
https://hdl.handle.net/10419/244115
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Energy Reports 6 (2020) 1224–1232

Contents lists available at ScienceDirect

Energy Reports

journal homepage: www.elsevier.com/locate/egyr

Research Paper

Parameter estimation of PEMFC based on Improved Fluid Search
Optimization Algorithm
Fuzhen Qin a,∗, Peixue Liu a, Haichun Niu a, Haiyan Song a, Nasser Yousefi b
a School of Intelligent Manufacturing, Qingdao Huanghai University, Qingdao, Shandong, 400427, China
b Islamic Azad University, Karaj Branch, Iran

a r t i c l e i n f o

Article history:
Received 30 March 2020
Received in revised form 3 May 2020
Accepted 7 May 2020
Available online xxxx

Keywords:
Parameter estimation
Proton exchange membrane fuel
The sum of square error
Improved fluid search optimization
algorithm

a b s t r a c t

This paper presents a new optimal method for model estimation of the unknown parameters of circuit-
based proton exchange membrane fuel cells (PEMFCs). The main idea is to minimize the sum of squared
error (SSE) value between the actual data and the estimated results. The optimization process here is
based on an Improved Fluid Search Optimization Algorithm (IFSO). For verification of the suggested
method, it is applied to three practical case studies including Horizon H-12 stacks, NedStack PS6, and
Ballard Mark V 5 kW under different operating conditions with temperature variations between 30
oC and 55o C and pressure variations between 1.0/1.0 Bar and 3.0/3.0 Bar. The results of these case
studies are also compared with CGOA, MRFO, and basic FSO algorithm to show the proposed method’s
effectiveness. The results show that the minimum value of SSE among different algorithms is 0.7845,
2.15, and 0.084, respectively that are reached by the suggested IFSO algorithm.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Energy has long been recognized as the driving force of hu-
man societies and has been added to human importance and
influence in human development. For this reason, one of the
most important things in today’s world that has a great impact
on international relations and the development of countries is
energy supply. The current pattern of energy consumption, over
the past centuries and decades and in the recently industrialized
world, has relied on the use of fossil fuels on a large scale so
that these sources of energy provide about 90 percent of the
world’s required energy (Cao et al., 2019; Eslami et al., 2019). The
excessive use of fossil fuels has created problems that endanger
human health and well-being on a global scale, so it is feared
that it will suffer irreparable damage soon (Liu et al., 2017;
Gollou and Ghadimi, 2017). The biggest problem with the use
of fossil fuels is that the recovery of energy and carbon dioxide
that have been out of the world’s energy and energy cycle over
millions of years. This direct energy releasing and the resulting
greenhouse gases increase the Earth’s temperature and cause
abnormal environmental changes such as polar ice melting and
rising ocean water levels, flooding, storms, droughts and Famine,
outbreaks of pests, parasites and infectious diseases (Mirzapour
et al., 2019; Hosseini Firouz and Ghadimi, 2016). On the other
hand, unintentional and irresponsible use of these energy sources
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has exacerbated environmental problems and pollution (Hekler
et al., 2019; Gong and Razmjooy, 2020). Another problem with
the use of fossil fuels is their deterioration. So, according to the
above, clean energy production and renewable energy sources
that are inexhaustible and have no problems with fossil fuel
sources and, most importantly, are available free of charge in
most parts of the world. Fuel cells are part of clean, voiceless, and
inexpensive power generation systems whose applications are
expanding worldwide. The fuel cell system consists of some cells
that are assembled with its lateral system. A fuel cell converts
chemical fuel energy directly into electricity (Akbary et al., 2019).
The energy storage function of a fuel cell is not like a battery; a
fuel cell converts energy from one state to another so that the
materials in the cell are not consumed. Hydrogen gas is used as
an ideal fuel in fuel cells due to its high reactivity, abundance,
and environmental pollution. The topic of renewable energies
is a fascinating and up-to-date discussion and the near future
will replace fossil fuels. Fuel cell systems are rapidly growing
and commercializing (Fei et al., 2019; Fawzi et al., 2019). The
smallest unit of a fuel cell system is a single fuel cell composed of
anode, cathode, and electrolyte (Yin and Razmjooy, 2020; El-Hay
et al., 2019; El-Fergany, 2017). This conversion is straightforward
and has a high return. The most popular type of fuel cell is
the proton-exchange membrane fuel cell (PEMFC) (Chugh et al.,
2020; Agwa et al., 2019; El-Hay et al., 2018). PEMFC is a high-
efficiency power generation system with an efficiency of about
40% to 50% for different power scales (Mir et al., 2020). The main
process in PEMFC is applying the exothermic reaction between
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hydrogen and oxygen in the air to generate electricity, distilled
water, and heat (Ebrahimian et al., 2018). Among the profits of
PEMFC over other fuel cells, lighter weight, solid electrolyte, short
start-up time without noise, variability, and the ability to renew
the system in a closed cycle independent of the battery are some
characteristics (Chevalier et al., 2013; Rasheed et al., 2017). As
can be explained from the literature, using the classic methods
usually fails to achieve a good model of the PEMFC. Besides, the
simple metaheuristics sometimes stuck in the local minimum.
Therefore, the main purpose of the present study is to develop
a new metaheuristic method for optimal selection of a PEMFC
stack model parameters. The idea is to improve the optimization
algorithm to resolve the diversity and the premature convergence
of the method. The main contributions of the paper are briefly
addressed in the following:

– New optimal method for model estimation of a circuit-based
PEMFCs is proposed

– The idea is to minimize the SSE value between the actual
data and the estimated results

– Improved version of Fluid Search Optimization Algorithm
(IFSO) is proposed for minimizing the SSE

– Three practical case studies under different operating con-
ditions are used for the analysis

– The results compared with CGOA, GRA, and basic FSO
algorithms

The rest of the study is organized as follows: Section 2 de-
clares some works from the literature about the PEMFC model
identification. Section 3 presents a general model of PEMFCs. In
Section 4, the method of improving the Fluid Search Optimization
Algorithm has been explained. Section 5 indicates the problem
formulation of the study. Section 6 gives the simulation results
of the proposed method and the paper is finally concluded in
Section 7.

2. Related works

Typically, the mathematical model of PEMFCs is a significant
case that should be adopted for optimal designing the system.
The mathematical modeling considers the electrochemical and
the physical reactions to analyze the fuel cell performance (Firouz
and Ghadimi, 2016). due to the importance of system modeling,
numerous research works are introduced (Fan et al., 2020).

Chakraborty (2019) introduced a modified version of Improved
Jaya Algorithm for the optimal designing of a PEMFC Stack.
The study addressed a constrained optimization to the optimal
selection of the number of PEMFCs to be connected in series, in
parallel, and the cell area to decrease the construction cost as low
as possible. The final simulation was compared with four well-
known and the results showed the superiority of the proposed
algorithm (Zhang et al., 2020; Gheydi et al., 2016).

Shao et al. (2019) proposed a one-dimension dynamic PEMFC
model to decrease its complexity of evaluation based on the
Matlab-Simulink environment. The model contains five inter-
connected subsystems. For optimal parameter estimation of the
PEMFC with avoiding premature convergence, a hybrid GA-PSO
optimization algorithm was used. The simulation result indicated
that the error value between the actual data and the estimated
value is less than 1%. The results also were compared with some
literature works.

Cao et al. (2020) presented an optimized version of PEMFC
to the proper arrangement of the PEMFC system. They also used
an LQR optimal procedure for controlling the PEMFC system. To
improve the performance of the controller, a modified version
of the whale optimization algorithm was adopted. Simulation

Fig. 1. The circuit-model of a PEMFC.

results were compared with some other approaches to show the
method’s effectiveness.

Yuan et al. (2020) proposed an optimized method for optimal
selection of PEMFCs parameters. The main idea is to minimize the
sum of squared error (SSE) value between the experimental data
and the estimated results. The optimization was performed based
on an improved version of the Sunflower Optimization Algorithm
(DSFO). The simulations were applied to two benchmarks. The
results were compared with experimental data and also some
literature research works.

3. Dynamic mechanism of model of the PEMFC

As aforementioned, for proper optimizing of the PEMFC, we
need to model and simulate before construction. The general I-
V polarization profile of a PEMFC is mathematically modeled
with three voltage losses including ohmic overpotential voltage
(VΩ ), concentration overpotential (Vcon), and activation overvolt-
age (Vact ). Fig. 1 shows the circuit-based model of a PEMFC.

Therefore, based on Fig. 1, the explanations, and the assump-
tion that the reference temperature value during the operating
changes is assumed 25 ◦C, the output terminal voltage of N
connected PEMFC can be formulated as follows:

VFC = N × (ENerst − Vcon − VΩ − Vact ) (1)

where, ENerst describes the Nernst potential and is achieved by the
following equation:

ENerst = 1.23 − 8.5 × 10−4 (TPEM − 298.15)

+ 4.31 × 10−5
× TPEM × ln

(
PH2

√
PO2

) (2)

where,

PH2 =
Rha × PH2O

2

⎡⎢⎣ 1

Rha×PH2O
Pa

× e
1.635IPEM /A
T1.334 IPEM

− 1

⎤⎥⎦ (3)

PO2 = Rhc × PH2O

⎡⎢⎣ 1

Rhc×PH2O
Pc

× e
1.635IPEM /A
T1.334 IPEM

− 1

⎤⎥⎦ (4)

log10
(
PH2O

)
= 2.95 × 10−2Tc − 9.18 × 10−5T 2

c

+ 1.4 × 10−7T 3
c − 2.18 (5)

Tc = TPEM − 273.15 (6)

where, TPEM describes the operating cell temperature (K ), Pa and
Pc determines the inlet pressure for the anode and the cathode,
Rha and Rhc represent the vapor relative humidity at anode and
cathode, respectively, PH , PO2 , and PH2O define the partial pressure
of Hydrogen, Oxygen, and water, respectively. The concentration
overpotential (Vcon) of the PEMFC is achieved as follows:

Vcon = −βln
(
1 −

J
Jmax

)
(7)

where, β stands for a parametric coefficient, J defines a real
current density, and Jmax describes the maximum value of J.
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The mathematical model of the activation overvoltage (Vact ) is
achieved as follows:
Eop = −

[
γ1 + γ2 × TPEM + γ3 × TPEM × ln

(
CO2

)
+ γ4 × TPEM × ln (IPEM)]

(8)

where, γi determines the ith experimental coefficients and CO2
and CH2 represent the Oxygen and the Hydrogen saturation in
the cathode’s catalytic interface (mol/cm3) and are obtained by
the following equation:

CO2 =
PO2

5.1 × 106 × e
498
TPEM (9)

CH2 =
PH2

1.1 × 106 × e
−77
TPEM (10)

Finally, the ohmic overpotential voltage (VΩ ) in the cells is for-
mulated as follows:

VΩ = IPEM × (Rm + Rc) (11)

where, IPEM describes the operating current of the PEMFC, Rc is
the resistance of the connection, and Rm defines the membrane
resistance and is achieved as follows,

Rm = ρmlS−1 (12)

ρm =

181.6
[
0.062

(
TPEM
303

)2 (
IPEM
S

)2.5
+ 0.03

(
IPEM
S

)
+ 1

]
[
λ − 0.063 − 3

(
IPEM
S

)]
× e

TPEM−303
TPEM

(13)

where, ρmstands for the membrane resistivity, l describes the
membrane thickness, λ defines a tunable parameter, and S de-
scribes the membrane surface (cm2).

With a close look at the above equations, seven parameters
including γ1, γ2, γ3, γ4, λ, Rc , and β can be considered for optimal
parameter identification of the PEMFC (Aghajani and Ghadimi,
2018). Generally, the above-mentioned parameters are usually
does not give in the PEMFCs builder’s datasheet. This subject
made the researchers work on the optimal selection of these pa-
rameters. Therefore, the main purpose of this paper is to propose
a new methodology to develop system identification.

4. Fluid search optimization algorithm

Optimization is a key part of this study. As can be described
before, the main idea is to utilize a method for modeling the
PEMFCs by minimizing the error value between the actual output
value and the model output value. There are different meth-
ods for minimizing the optimization problems. especially, clas-
sic methods like gradient descent (Yu and Ghadimi, 2019) or
HJB (Hosseini Firouz and Ghadimi, 2016) methods that give an
exact solution for the problem. A big shortcoming of using these
methods is that in some cases, using them for solving complicated
problems is so time-consuming or completely impossible. In such
cases, the best alternative is to use metaheuristic methods. A
prominent advantage of Meta-heuristic methods is that they are
not problem-dependent. Besides, they can solve any constrained
and unconstrained problem without needing a big time-wasting.
Metaheuristic methods often inspired by different natural phe-
nomena. For example, some of the meta-heuristic methods are
like genetic algorithm (Hamian et al., 2018) that simulates Dar-
win’s principles of selection to find the optimal formula, Grass
Fibrous Root Optimization Algorithm (GRA) that simulates the
Fibrous Root behavior (Leng et al., 2018), Butterfly Optimiza-
tion Algorithm (BOA) (Khodaei et al., 2018) that simulates the
butterflies’ migration from the cold areas to the warmer places
in the cold seasons, Teaching-Learning-Based Optimization Algo-
rithm (Bagal et al., 2018) that simulates the relations between

Teaching and Learning. Another new metaheuristic method is
Fluid Search Optimization (FSO) algorithm which is recently in-
troduced by Dong et al. The FSO algorithm simulates Bernoulli’s
principle in fluid mechanics.

4.1. The basic fluid search optimization algorithm

The principle of Bernoulli is to determine how the speed of a
fluid depends on the fluid pressure such that enhancing the fluid
speed, decreases the fluid pressure and the potential energy. the
formulation of the Bernoulli principle is as follows.

p +
1
2
ρv2

= p0 (14)

where, p describes the pressure of a selected point on a stream-
line, p0 represents a constant pressure for the system, v deter-
mines the fluid flow speed at the point, and ρ represents the fluid
density at each point in the fluid. Dong and Wang reformulated
this equation as follows:

v =

√
2(p0 − p)

ρ
(15)

Based on this equation, the new position of the solution is
achieved by the following recursive equation,

xnew = xold + v (16)

where, xnew and xold represent the new and the previous position
of the infinitesimals.

Here, the fluid infinitesimal pressure is assumed as the objec-
tive function value such that enhancing the pressure, decreases
the fluid infinitesimal velocity. The fluid infinitesimal optimiza-
tion depends on the fluid flowing inverse process from the high
pressure to the low pressure involuntary. The fluid infinitesimals
have been converged if the point with the highest pressure has
been reached.

The algorithm starts with n number of random population
(infinitesimals), i.e. X = [x1, x2, . . . , xn]. With this assumption,
the infinitesimal pressure pi is achieved as follows:

pi =
(yworst − yi)

(yworst − ybest)
(17)

P0 = 1

where, y describes the fitness function, pi defines a normalized
value in the range [0, 1] to consider the effect of different cost
functions on the algorithm, and yworst and ybest represent the
worst and the best results of y after optimization, respectively.
Infinitesimal density is another mechanism of the algorithm that
shows the overall neighbor infinitesimals of the cell of the current
infinitesimal and is achieved by the following equation:

ρ = m × lD
−1

(18)

where, D stands for the dimension of the hypercube, m defines
the value of the infinitesimals, and l describes the length for the
cell side.

For increasing the convergence ability, the algorithm uses the
normalized value of the pressure by the following equation:

p⃗i =

n∑
j=1
j̸=i

rand⊗pj
(Xj − Xi)

|(Xj − Xi)|2
+rand⊗pbest×2×

(Xbest − Xi)
|(Xbest − Xi)|2

(19)

where, p⃗i describes a vector value. And the new direction is
achieved as follows:

Dn = γ × Dl + p⃗i ×
⏐⏐p⃗i⏐⏐−1

2 (20)
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where, γ describes the inertial factor, Dn and Dl represents the
new and the previous directions, respectively.

With all this, the basic FSO algorithm has a significant draw-
back in terms of premature convergence. In the next section, a
mechanism is applied to resolve this problem.

4.2. Fluid search optimization algorithm based on chaos theory
(IFSO)

In this part, two improvement mechanisms have been used for
developing the FSO algorithm. The first mechanism for algorithm
improvement is Quasi-oppositional based learning. For more clar-
ification of this conception, oppositional-based learning should be
first clarified. The oppositional-based learning is a mechanism to
modify the system convergence speed based on comparing every
single member of the population with their opposite value and
to choose the best one as the new candidate (Saeedi et al., 2019;
Haixiong et al., 2020). To do so, consider x as a real number in a
solution space with D dimension that is ranged in the interval
[α, β]. The opposite of the candidate x is defined by x̌ and is
achieved by the following:

x̌i = αi + βi − xi (21)

i = 1, 2, . . . ,D (22)

Based on the above definition, the quasi-opposite number can be
defined by x̂ by the following (Liu et al., 2020):

x̂i = rand
(

αi + βi

2
, x̌i

)
(23)

Another mechanism for algorithm improvement is based on the
chaotic conception. The chaotic mechanism considers random
and unpredictable processes in any system. Generally, the na-
ture of some systems is nonlinear and so complicated which is
originated due to their chaotic nature. This leads us to use this
mechanism for increasing the population diversity in the FSO
algorithm. this mechanism also develops the FSO algorithm in
terms of convergence speed and escaping from falling into the
local optimal point (Meng et al., 2020; Cai et al., 2019). In this
paper, the logistic map is adopted as a popular type of chaotic
functions for algorithm improvement. Based on the logistic map
mechanism,

δq+1
o,n = 4δqo,n(1 − δqo,n) (24)

where, o represents the system generators quantity, n describes
the population number, q stands for the iteration number, δn
describes the chaotic mechanism value in iteration n which is
ranged in the interval [0, 1] (Meng et al., 2020; Cai et al., 2019).
By considering the logistic map mechanism and the chaotic con-
ception, the new direction for the proposed FSO is achieved as
follows:

Dq+1
n = Dq

n + δqo,n × Dq
l (25)

Fig. 2 shows the flowchart diagram of the IFSO algorithm.
For verifying the proposed IFSO algorithm, it is applied to four

different test functions and the results are compared with some
different metaheuristics including CGOA (Arora and Anand, 2018),
GRA (Leng et al., 2018), and basic FSO (Leng et al., 2018). Table 1
illustrates the adopted functions for the compared algorithms
validation.

The results of the algorithms by considering the above bench-
marks are given in Table 2. The verification is based on analyzing
the median value, standard deviation (std) value, minimum, and
the maximum values of the cost function.

As can be observed from Table 2, the presented IFSO algorithm
has the best accuracy compared with CGOA (Arora and Anand,

Fig. 2. The diagram flowchart of the IFSO.

2018), GRA (Leng et al., 2018), and basic FSO for the analyzed test
functions. The results of the standard deviation value show also
that the proposed IFSO algorithm with the minimum std has the
best condition among the others in terms of robustness.

5. Problem formulation

Based on the before mentioned explanations, the main idea
of the present research is to use the IFSO algorithm for optimal
selection of the seven presented unknown parameters of PEMFCs
stacks as a nonlinearly constrained optimization problem. To
achieve the best parameter selection, the sum of squared error
(SSE) between the actual output voltage and the estimated output
voltage should be minimized. The SSE formulation is given below:

FSSE = min (SSE) = min

{
n∑

i=1

(Ve(i) − VFC (i))2
}

(26)

where, VFC and Ve describe the experimental and the estimated
values for the output voltage.
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Table 1
The utilized functions for the verification.
Formulation Range F∗

F1 = x × sin (4x) + 1.1y × sin (2y) 0 < x, y < 0 −18.55

F2 = 0.5 +

sin 2
(√

x2 + y2 − 0.5
)

1 + 0.1
(
x2 + y2

) 0 < x, y < 2 0.5

F3 = |x| + |y| +
(
x2 + y2

)0.25
× sin

(
30

(
(x + 0.5)2 + y2

)0.1)
[−∞, ∞] −0.25

F4 = 10n +

n∑
i=1

(
x2i − 10 cos (2πxi)

)
, n = 9 [−5.12,5.12] 0

Table 2
The validation results of the compared algorithms.

CGOA (Arora and Anand, 2018) GRA (Leng et al., 2018) FSO (Leng et al., 2018) IFSO

F1 Maximum
Minimum
Median
std

−8.19
−18.58
−16.37
4.62

−9.83
−18.41
−15.74
3.51

−10.32
−18.56
−16.42
3.46

−10.85
−18.67
−16.84
2.19

F2 Maximum
Minimum
Median
std

0.541
0.500
0.526
0.067

0.538
0.500
0.519
0.007

0.520
0.500
0.512
0.005

0.509
0.500
0.502
0.000

F3 Maximum
Minimum
Median
std

−0.152
−0.316
−0.227
0.314

−0.213
−0.307
−0.219
0.357

−0.219
−0.320
−0.241
0.096

−0.345
−0.337
−0.340
0.017

F4 Maximum
Minimum
Median
std

16.28
4.08
10.35
5.284

21.49
0.009
11.43
6.281

19.08
0.000
9.27
0.628

6.37
0.000
3.16
0.028

Table 3
The search ranges of the parameters for all the case studies.
Parameter γ1 γ2 γ3 γ4 β λ Rc

Minimum −1.20 1 3.6 −26 0.014 13 1E−4
Maximum −0.85 5 9.8 −9.54 0.50 23 8E−4

6. Simulation results

After explaining the structure of the proposed system pa-
rameter, the method has been validated on three well-known
practical PEMFC stacks including Horizon H-12 stacks, NedStack
PS6, and Ballard Mark V 5 kW. The parameters values and op-
erating conditions for the considered PEMFC stacks have been
collected from El-Fergany et al. (2019), El-Fergany (2018) and Ali
et al. (2017). For performing a fair analysis, the search ranges
for all case studies are assumed identical. For both test cases,
the maximum ratio of the density (θ ) is considered as 20% and
the ratio of diversification search (M ′) is assumed 70% (Dong and
Wang, 2018). Table 3 illustrates these ranges.

6.1. Case study 1: Ballard Mark V

The first case study is a 5 kW Ballard Mark V PEMFCs stack.
Table 4 illustrates the main parameters of this PEMFC stack. For
better validation of the algorithm, in addition to comparing the
proposed IFSO with the experimental data, it has compared with
GRA, CGOA, and the basic FSO algorithms with 30 runs for each
algorithm to have a fair comparison among them.

The current–voltage curve of the Ballard Mark V for the ex-
perimental curve and model curve using GRA, CGOA, the basic
FSO, and the proposed IFSO algorithms are shown in Fig. 3. Fig. 3
shows a good agreement among measured and model voltage
points.

Table 5 illustrates the estimated parameters of Ballard Mark V,
SSE validation, and running time for the CGOA (Arora and Anand,

Table 4
The main parameters of Ballard Mark V.
Parameter Value Unit

Power 5 kW
Maximum cell current 70 A
TPEM 343 K
Number of cells 35 –
membrane area 50.6 cm2

ultimate Jmax 1500 mA/cm2

l 178 µm

Fig. 3. The current–voltage curve for the Ballard Mark V.

2018), MRFO (Selem et al., 0000), basic FSO (Leng et al., 2018),
and the proposed IFSO.

As can be observed from Fig. 3 and the records of Table 5, the
proposed IFSO algorithm has the minimum value of SSE (0.7845)
with a fast convergence characteristic compared with other al-
gorithms. the results also show how the presented modification
effects on the accuracy and convergence of the FSO algorithm.

To show the reliability of the proposed model based on IFSO, it
is analyzed under different conditions, i.e. temperature variations
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Table 5
The estimated parameters of Ballard Mark V, SSE validation, and running time for the analyzed algorithms.

Parameter Algorithm

CGOA (Arora and Anand, 2018) MRFO (Selem et al., 0000) FSO (Leng et al., 2018) IFSO

γ1 −2.12 −1.09 −0.95 −1.12
γ2 × 10−3 3.80 3.82 3.36 3.57
γ3 × 10−5 7.19 7.73 7.42 8.01
γ4 × 10−5

−17.03 −16.28 −15.83 −15.94
λ 23.00 23.00 22.00 22.00
Rc × 10−4 1.00 1.00 1.00 1.00
β 0.042 1.36 0.029 0.015
SSE 2.613 0.85 0.952 0.784
Elapsed time (s) 5.61 6.19 6.13 3.80

Fig. 4. The temperatures variations in 40 ◦C and 70 ◦C.

Fig. 5. The partial pressures variations in 1.0/1.0 Bar and 3.0/3.0 Bar.

and partial pressure variations. Fig. 4 shows the temperature
variations in 40 ◦C and 70 ◦C and Fig. 5 shows the variations of
the partial pressure during 1.0/1.0 Bar and 3.0/3.0 Bar.

6.2. Case study 2: NedStack PS6

The second case study is a NedStack PS6 with a rated power
of 6 kW PEMFCs stack. The information for the NedStack PS6
has been extracted from N.F.C. Technology and El Monem et al.
(2014). Table 6 illustrates the required parameters of the Ned-
Stack PS6.

The current–voltage curve of the NedStack PS6 for the em-
pirical curve and model curve based on GRA, CGOA, the basic
FSO, and the proposed IFSO algorithms have been shown in Fig. 6
which shows a satisfying agreement among measured and model
voltage points.

By applying the proposed IFSO algorithm to the NedStack PS6
system, the optimal value for the seven unknown parameters
have been identified. Table 7 indicates the results of the GRA,
CGOA, and basic FSO algorithms by illustrating the estimated
parameters, SSE validation, and running time.

Table 6
The main parameters of NedStack PS6.
Parameter Value Unit

Ncells 65 –
Power 6 kW
Maximum cell current 225 A
TPEM 343 K
Partial pressure [1, 5] Bar
Membrane area 240 cm2

Ultimate Jmax 1200 mA/cm2

l 178 µm

Fig. 6. The current–voltage curve for the NedStack PS6.

Fig. 7 shows the temperature variations between 30 ◦C and
55 ◦C. As can be clear from Fig. 7 and Table 7, in this case,
study, the proposed IFSO algorithm gives the best results with
minimum SSE (2.15) as the fastest convergence again compared
with other algorithms. To show the reliability of the proposed
model based on IFSO, it is analyzed under different conditions,
i.e. temperature variations and partial pressure variations. Fig. 4
shows the temperature variations in 40 ◦C and 70 ◦C and Fig. 5
shows the variations of the partial pressure during 1.0/1.0 Bar and
3.0/3.0 Bar. (See Fig. 8.)

6.3. Case study 3: Horizon H-12

The final case study is Horizon H-12 PEMFC stack. The system
information is given in Table 8. The information for the Horizon
H-12 has been extracted from Ondrejička et al. (2019). Table 8
indicates the required parameters of the Horizon H-12.

The current–voltage curve of the Horizon H-12 for the em-
pirical curve and model curve based on GRA, CGOA, the basic
FSO, and the proposed IFSO algorithms have been shown in Fig. 9
which shows a satisfying agreement among measured and model
voltage points.

By implementing the presented IFSO algorithm to the Horizon
H-12 system, the optimal value for the seven unknown parame-
ters has been estimated. Table 8 indicates the results of the GRA,
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Table 7
The estimated parameters of NedStack PS6, SSE validation, and running time for the analyzed algorithms.

Parameter Algorithm

CGOA (Arora and Anand, 2018) MRFO (Selem et al., 0000) FSO (Leng et al., 2018) IFSO

γ1 −1.19 −0.94 −0.92 −0.92
γ2 × 10−3 3.32 3.49 3.51 3.46
γ3 × 10−5 4.19 9.51 7.46 7.59
γ4 × 10−5

−9.61 −9.54 −9.57 −9.62
λ 12.41 13.09 13.10 13.15
Rc × 10−4 0.11 1.00 0.08 0.10
β 0.05 0.01 0.05 0.04
SSE 2.53 2.26 2.32 2.15
Elapsed time (s) 5.18 7.54 4.82 1.28

Fig. 7. The temperatures variations in 30 ◦C and 55 ◦C.

Fig. 8. The partial pressures variations in 0.4/1.0 Bar and 0.55/1.0 Bar.

Table 8
The main parameters of Horizon H-12.
Parameter Value Unit

Ncells 13 –
Power 12 W
TPEM 328.15 K
Partial pressure [0.4, 0.55] Bar
Membrane area 8.1 cm2

Ultimate Jmax 246.9 mA/cm2

CGOA, and basic FSO algorithms by illustrating the estimated
parameters, SSE validation, and running time.

As can be clear from Figs. 10, 11, and Table 9, in this case,
study, the proposed IFSO algorithm gives the best results with
minimum SSE (0.084) as the fastest convergence again compared
with other algorithms. To show the reliability of the proposed
model based on IFSO, it is analyzed under different conditions,
i.e. temperature variations and partial pressure variations. Fig. 10
shows the temperature variations in 30 ◦C and 55 ◦C and Fig. 11
shows the variations of the partial pressure during 0.4/1.0 Bar and
0.55/1.0 Bar.

Fig. 9. The current–voltage curve for the H-12 PEMFC.

Fig. 10. The temperatures variations in 30 ◦C and 55 ◦C.

Fig. 11. The partial pressures variations in 0.4/1.0 Bar and 0.55/1.0 Bar.

7. Conclusions

In the present study, a new improved version of the Fluid
Search Optimization Algorithm (IFSO) was presented for the op-
timal selection of unknown parameters of PEMFS stack models.
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Table 9
The estimated parameters of H-12 PEMFC, SSE validation, and running time for the analyzed algorithms.

Parameter Algorithm

CGOA (Arora and Anand, 2018) MRFO (Selem et al., 0000) FSO (Leng et al., 2018) IFSO

γ1 −1.14 −1.06 −1.15 −1.08
γ2 × 10−3 2.56 2.36 2.49 2.34
γ3 × 10−5 4.01 4.33 3.28 3.76
γ4 × 10−5

−9.54 −9.54 −9.54 −9.54
λ 14.27 19.81 14.85 19.92
Rc × 10−4 7.47 2.85 8.00 7.97
β 0.16 0.18 0.17 0.18
SSE 0.117 0.11 0.121 0.084
Elapsed time (s) 6.19 6.38 4.19 3.54

The main purpose was to minimize the sum of squared error
(SSE) between the actual output voltage and the estimated output
voltage. The research adopts three practical case studies including
Horizon H-12 stacks, NedStack PS6, and Ballard Mark V 5 kW un-
der different operating conditions and the results were compared
with three different metaheuristics including CGOA, MRFO, and
basic FSO algorithms to show the superiority of the presented
algorithm. In future research, we will work on a more accurate
model of the PEMFC by considering the model uncertainties by
robust modeling based on the affine analysis.
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