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a b s t r a c t

Model-identification and parameter extraction of the proton exchange membrane fuel cell (PEMFC)
is a well-defined procedure for improving the PEMFC efficiency for designing and control purposes.
This paper presents a new version of the improved fluid search optimization algorithm for optimal
parameter identification of the undetermined parameters of the PEMFCs. The total of square deviations
between the experimentally measured values and the optimal achieved values from the algorithm is
considered the cost function. Two empirical PEMFC models including BCS 500-W and NedStack PS6 are
employed and analyzed to present the capability of the proposed procedure under different conditions.
Simulation results are compared with different optimizers under the same conditions to demonstrate
the system efficiency. The final results showed that the proposed chaos-based fluid search optimization
algorithm is successfully used to extract the parameters of a PEMFC model precisely.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Many countries rely heavily on coal, oil and natural gas to
provide their energy, but dependence on fossil fuels is a big
problem (Liu et al., 2020; Ahadi et al., 2015; Ye et al., 2020). The
main issue is that the amount of fossil fuels is limited and will
eventually end or when the extraction of the remaining remains
very costly.

Also, fossil fuels cause pollution of air, water, and soil and
produce greenhouse gases that cause global warming. A clean
and green alternative energy source for fossil fuels is renewable
energy sources.

Renewable energy is the energy that comes from renewable or
recyclable sources and can be replaced by natural resources. Re-
newable energy sources have a much less environmental impact
than fossil fuels. That is why renewable energy sources are very
important. They bring humans to a world with less pollution.

Fuel cells have a huge potential as a future source of renew-
able energy because of their many advantages such as increased
energy conversion and greater environmental compatibility and
rapid advances in their technology.

Hydrogen is recovered from hydrocarbon as a fuel for energy
sources by fuel cells. Nowadays, due to the expansion of wind
and solar energy sources in different countries and having high

∗ Corresponding author.
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and low energy costs, when it is not needed, the possibility of
hydrogen extraction from the process of electrolysis of water has
been economical, i.e. fuel cells are power generation components
that have the capability of direct converting of the chemical
power into the heating and the electricity power.

Fuel cells, because of the ability to be portable, are widely used
in mobile and portable applications such as UAVs and electric
vehicles (Karimi et al., 2012; Ijaodola et al., 2019).

Several types of fuel cells are classified in terms of the type
of electrolyte (Mekhilef et al., 2012). Among different types of
fuel cells, polymer electrolyte membrane (PEM) has provided a
satisfying energy alternative and is turned into one of the popular
ones.

Furthermore, PEMFC needs less time for startup due to its low
operating temperature and high power density.

The efficiency of typical PEMFCs is between 30% and 60%; this
value depends on their loading condition. PEMFCs have also an
operating temperature between 30 ◦C and 100 ◦C.

Since PEMFCs generate unregulated DC voltage, they require
a precise model to take into account their efficiency for the
design, control, and dynamic and steady-state simulation. In the
literature, several models have been given based on the thermo-
dynamic and chemical aspects (Luo et al., 2015; Razmjooy et al.,
2018a). Fig. 1 shows the PEMFC energy production process.

There are also different characteristics in the system like its
steady-state stability, the dynamic models of the system and
empirical data from the experiments that can be utilized for

https://doi.org/10.1016/j.egyr.2020.04.013
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Fig. 1. The PEMFC energy production process.

modeling (Sun et al., 2015; Ge et al., 2018; Aghajani and Ghadimi,
2018).

In 1991, a steady-state, one-dimensional model was proposed
for the PEMFC by Springer et al. (Liu et al., 2017). A steady-state
and isothermal model is studied for the PEMFC.

In 2010, a state–space identification model was presented for
energy management in HEVs by Caux et al. (Gollou and Ghadimi,
2017). The control process of the fuel cell’s temperature and gas
flows was also considered.

In 2014, two dynamical models based on the semi-empirical
formulas and the electrical equivalent were proposed for PEMFC
by Panagiotis et al. (Mirzapour et al., 2019). Besides, an improved
model based on a transfer function by considering semi-empirical
equations was proposed. The main purpose was to design a
parametric analysis for model ability.

In 2017, an empirically validated model for a low-temperature
PEMFC was proposed by considering the humidifier in the model
by Solsona et al. (Hosseini Firouz and Ghadimi, 2016). The control
method was a control-oriented model of a Nafion R⃝ membrane.
The final results were compared with the empirical results.

In 2017, Kumar et al. presented a real-time model for PEMFC
and then they analyzed the modality of the method by dif-
ferent validation like ARX and ARMAX (Hamian et al., 2018).
MATLAB toolbox was utilized for system identification. PI and
PID controllers were also utilized for obtaining the desired load
current.

Furthermore, different research works have been performed
over the modeling of PEMFC (Hosseini Firouz and Ghadimi, 2016;
Leng et al., 2018).

Although the aforesaid classic models are efficient for design-
ing and for analyzing the fuel cells performance, there are some
limitations to these methods.

Classic methods are based on the precise modeling and solv-
ing these models by considering the physical concepts of the
fuel cells like thermodynamics, power, momentum’s conserva-
tion, and mass to obtain a precise thermal model for anything
that happens in them. Although this procedure is ideal, it makes
the identification process more complicated.

Some features in the system nature cannot be measured in the
model. This reason makes these models improper for modeling
the fuel cells, especially in real-time applications.

In the meantime, for improving the model’s precision to reach
into a so close performance model of the actual PEMFC, it is
important to obtain the best parameter values of the system
model.

Recently, the applications of meta-heuristics in optimization
have been extensively increasing. Different types of meta-
heuristics have been inspired by nature, physics, and humans’
social reactions (Akbary et al., 2019; Ebrahimian et al., 2018;
Khodaei et al., 2018; Bagal et al., 2018).

Several research works have been proposed for using the
meta-heuristic methods for parameter identification in the PEM-
FCs. For instance, using differential evolution algorithm (Sun
et al., 2015), particle swarm optimization (Gheydi et al., 2016),
Multi-verse optimizer (Firouz and Ghadimi, 2016), Genetic al-
gorithm (Eslami et al., 2019), dragonfly algorithm (Saeedi et al.,
2019), etc.

From the literature review, it is clear that using the optimiza-
tion algorithms gives better results for the identification of the
PEMFC. The main idea behind this is that they can escape from
the local minimum which leads them to obtain almost the global
optimum (Khodaei et al., 2018; Bagal et al., 2018; Namadchian
et al., 2016).

By considering the above methods and to their promising
results in generating high-quality solutions, meta-heuristics have
been extensively utilized in PEMFCs. However, there is still a lot
of potential for improving identification efficiency.

The main purpose of the proposed method is to parameter
identification of the PEMFCs using a new modified version of
the fluid search optimization algorithm. The fitness function is
the error between the obtained values and the empirical values
measured for the voltage data.

Two experimental case studies are performed to show the
efficiency of the proposed modified FSO through essential com-
parisons. Efficiency analysis of the measures is performed to
endorse the capability of the proposed approach.

2. Materials and methods

2.1. Mathematical modeling of the PEMFC

Generally, the nominal value of the output voltage for a sin-
gle PEMFC component by disregarding irreversibility losses and
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entropy is between 0.9 to 1.23 V. Therefore, for using PEMFC
in the practical applications, several numbers of them should be
combined in series.

In PEMFCs, the current–voltage polarization curve drops
rapidly because of the activation voltage, and then the curve
drops slowly because of the Ohmic resistive voltage falling (Mo
et al., 2006). In the following, diffusion over-potential makes the
voltage value to drop it again at high loading conditions (Corrêa
et al., 2004; Aouali et al., 2017).

The mathematical equation of total output voltage for the
PEMFC stack is given below (Mo et al., 2006):

Vt = Ncell (Voc − vact − vO − vc) (1)

where, Ncell describes the number of connected cells in a stack,
Voc describes the voltage of the open circuit condition per cell,
vact describes the activation over-potential for each cell, vO is
the Ohmic voltage drop in the cells, and vc describes the over-
potential saturation in cells.

The mathematical formulation for achieving the voltage of
the open circuit condition that is so-called reversible voltage for
the incorporating temperatures less than 100 ◦C based on the
following equation (Mo et al., 2006):

Voc = 1.23 − 85 × 10−5(TPEM − 298.15) + 4.31 × 10−5TPEM ln

× (PH2

√
PO2 ) (2)

where (Mo et al., 2006),

PO2 = Rhc × PH2O

⎡⎢⎣ 1

Rhc×PH2O
Pc

× e
1.635IPEM /A
T1.334PEM

− 1

⎤⎥⎦ (3)

PH2 =
Rha × PH2O

2

⎡⎢⎣ 1

Rha×PH2O
Pa

e
1.635IPEM /A
T1.334PEM

− 1

⎤⎥⎦ (4)

PH2O = 29.5×10−3Tc −91.81×10−6T 2
c +14.4×10−8T 3

c −2.18 (5)

Tc = TPEM − 273.15 (6)

The reference temperature value in the operating variations is
considered at 77 ◦F (25 ◦C).

In the following, the mathematical equations for the activation
over-potential are given (Chen and Wang, 2019):

vact = −
[
β1 + β2TPEM + β3TPEM ln(CO2 ) + β4TPEM ln(IPEM )

]
(7)

where (Chen and Wang, 2019),

β2 = 28.6 × 10−4
+ 21 × 10−5 ln(A) + 43 × 10−6 ln(CH2 ) (8)

The other stated voltage drops/losses are given below (Yazdani
and Jolai, 2016):

CO2 =
PO2

50.8 × 105 × e
498
TPEM (9)

CH2 =
PH2

10.9 × 105 × e−
77

TPEM (10)

vO = IPEM (Rm + Rc) (11)

where (Yazdani and Jolai, 2016),

Rm =
ρml
A

(12)

ρm =

181.6
[
1 + 0.03

(
IPEM
A

)
+ 0.062

(
TPEM
303

)2 (
IPEM
A

)2.5
]

[
λ − 0.634 − 3

(
IPEM
A

)]
e4.18×

TPEM−303
TPEM

(13)

vc = −β ln
(
Jmax − J
Jmax

)
(14)

where, TPEM describes the operating cell temperature (K), PO2 ,
PH2 , and PH2O are the partial pressure of the O2, H2, and H2O,
respectively. Rhc and Rha are the vapor relative humidity at cath-
ode and anode, respectively, A is the membrane surface (cm2),
IPEM describes the operating current for the PEMFC, Pa and Pc
describe the anode and cathode’s inlet pressures, CH2 and CO2
are the concentration of the hydrogen and oxygen (mol/cm3), Rm
and Rc describe the membrane resistance and the resistance of
the connections, I represent the membrane thickness, βi are the
experimental coefficients, ρm describes the membrane resistivity,
λ is tunable parameter, β describes a parametric coefficient, J de-
scribes the real current density, and Jmax represents the maximum
value of J.

Based on the above equations, it can be concluded that six
factors are required to be determined. These parameters are not
determined by the manufacturer’s datasheet.

Therefore, to guarantee promising modeling of PEMFCs for
simulation and control purposes, we need to find precise values
for these parameters. Generally, the model of the PEMFC has six
undetermined parameters including β1, β3, β4, β, Rc, λ.

The aforementioned six parameters have been optimized to
obtain optimal values by considering their constraints using the
modified chaos fluid search optimization algorithm.

2.2. Describing the fitness function and the constraints

In this study, the total of the squared deviations (TSD) is
selected as the main part of the fitness function for the PEMFC
parameter identification. The main objective of this research is to
estimate the aforementioned undetermined six parameters of the
PEM fuel cells by obtaining proper fitting between the evaluated
voltage stack and the measured voltage.

Here, a chaotic fluid search optimization algorithm is em-
ployed to minimize the fitness function by considering a reason-
able computational complexity with higher convergence speed.
The minimization fitness function for this purpose is achieved
from the literature as below:

FSI = Min(TSD) = Min

{
n∑

i=1

[VS(i) − Vm(i)]2
}

(15)

where; n describes the number of measured points, i is the iter-
ation number, and Vm and VS describe the measured voltage and
the evaluated voltage stack of the PEMFC. Indeed, TSD indicates
the error between the actual and approximated voltage data for
the PEMFC. The practical inequality constraints for the FSI are
illustrated below:

s.t.

⎧⎪⎨⎪⎩
βi,min ≤ βi ≤ βi,max, ∀i = 1, 3, 4
βmin ≤ β ≤ βmax
λmin ≤ λ ≤ λmax
Rc,min ≤ Rc ≤ Rc,max

(16)

where, βi,min and βi,max describe the lower and the higher bounds
for the experimental achievements, βmin and βmax are the lower
and the higher bounds of the model parameters, λmin and λmax
describe the lower and the higher bounds for the water content,
Rc,min and Rc,max are the lower and the higher bounds of the
resistance of the cell connections.
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It is important to know that these constraints are employed for
updating the population in the optimization algorithm and also as
a penalty part for the algorithm.

2.3. Fluid search optimization algorithm

In recent years, there have been introduced several types of
optimization algorithms due to increasing the number of op-
timization problems. Since recently the complexity of the op-
timization problems is extensively increasing, there needs to
employ some more powerful techniques to solve them (Sun et al.,
2004).

Meta-heuristics are a kind of optimization approach that can
be utilized for solving any complicated optimization problem.
This approach is a type of optimization technique that has been
inspired by different phenomena like from the nature, animals or
human social behaviors, etc. some of the meta-heuristic methods
are like genetic algorithm (Davis, 1991; Ghadimi, 2012; Mousavi
and Soleymani, 2014), Bayesian optimization algorithm (Pelikan
et al., 1999), harmony search algorithm (Geem et al., 2001), artifi-
cial bee colony (Karaboga and Aslan, 2018; Karaboga and Basturk,
2007; Razmjooy and Khalilpour, 2015), particle swarm optimiza-
tion algorithm (Ghadimi et al., 2013; Moallem and Razmjooy,
2012; Razmjooy and Ramezani, 0000), quantum-based algorithms
(Khodaei et al., 2018; Sun et al., 2004; Han and Kim, 2002), world
cup optimization algorithm (Bagal et al., 2018; Bandaghiri et al.,
2016; Razmjooy et al., 2017, 2018b; Shahrezaee, 2017), shark
smell optimization algorithm (Ebrahimian et al., 2018; Meng
et al., 2020; Hussain et al., 2010; Rao et al., 2019), and fluid Search
Optimization (Dong and Wang).

In 2019, Dong et al. present a new optimization algorithm
called Fluid Search Optimization (FSO) algorithm which is in-
spired by Bernoulli’s principle in fluid mechanics.

Bernoulli’s principle is about how the speed of a fluid is related
to the pressure of the fluid so that by increasing the speed of the
fluid, the potential energy and the pressure of the fluid have been
decreased.

Bernoulli equation is evaluated by the following formula.

p +
1
2
ρv2

= p0 (17)

where, p defines the pressure of a chosen point on a streamline,
p0 is the constant system pressure, v describes the speed of the
fluid flow at the point, and ρ is the fluid density at all points in
the fluid.

Based on Eq. (17), Dong and Wang presented perform some
simulations. They first re-formulated the Eq. (7) as follows.

v =

√
2(p0 − p)

ρ
(18)

Afterward, they considered the new position of the solution as a
recursive formula as follows,

xnew = xold + v (19)

where, xnew and xold describe the new and the former position of
the infinitesimals.

The pressure for the fluid infinitesimals is then considered
as the value for the objective function so that by increasing the
pressure, the velocity of the fluid infinitesimal is decreased.

The optimization process in the fluid infinitesimal is related to
the inverse process of the fluid flowing from the high pressure to
the low pressure Involuntary.

The convergence of the fluid infinitesimals in the process of
fluid flowing has been reached if the highest-pressure point is
found that can be considered to reach the optimum value. More
explanation of the algorithm parameters is given in detail.

2.3.1. Infinitesimal pressure
By considering the position of n number of infinitesimals as

X = [x1, x2, . . . , xn], such that the fitness function is y, and the
best and the worst values of the optimization are ybest and yworst ,
respectively.

The equation for the infinitesimal pressure pi is given below:

pi =
(yworst−yi)

(yworst−ybest )
,

P0 = 1
(20)

where, pi is a normalized value between 0 and 1 to prevent the
impact of various objective functions on the algorithm.

2.3.2. Infinitesimal density
Infinitesimal density is the total number of neighbor infinites-

imals in the cell of the present infinitesimal. The value for other
infinitesimals in the D-dimension hypercube is considered m. So,
the infinitesimals density is:

ρ =
m
lD

(21)

where, l describes the cell side length.

2.3.3. The velocity of the fluid infinitesimal
Since Eq. (18) defines the value of the velocity without direc-

tion, to consider the flow direction in the fluid infinitesimal, the
vector summation of the pressure between the current and the
other infinitesimals should be achieved.

To prevent the impact of the given weight due to the distance
from the other infinitesimals, the distance is normalized.

Afterward, the normalized value of the pressure is added to
achieve better convergence for the algorithm as follows:

p⃗i =

n∑
j=1
j̸=i

rand⊗pj
(Xj − Xi)⏐⏐(Xj − Xi)

⏐⏐
2

+rand⊗pbest×2×
(Xbest − Xi)

|(Xbest − Xi)|2
(22)

where, p⃗i represent a vector value.
The new direction can be achieved by as follows:

Dn = γ × Dl +
p⃗i⏐⏐p⃗i⏐⏐2 (23)

where, Dn and Dl describe the new direction and the last direc-
tion, respectively, and γ defines the inertial factor.

However the FSO algorithm has good results based on the
literature, it has a prominent shortcoming. In the FSO algorithm,
the best solution in each iteration is important and all the other
infinitesimals attempt to move based on the best vector summa-
tion of the pressure. Thus, sometimes the best solution may be
stuck in the local optimum. This condition makes a misleading to
the other individuals in following the best vector summation of
the pressure that finally leads to premature convergence. In this
study, a technique based on chaos theory is utilized for solving
this problem.

2.4. Fluid search optimization algorithm based on chaos theory
(CFSO)

2.4.1. The concept of the chaos theory
Chaos theory is about studying the random and unpredictable

processes in considered systems. Some systems have complicated
and nonlinear behavior that is derived from their chaotic nature.

The idea here is to study the highly sensitive dynamic systems
which have been affected by any small changes.

By considering the aforementioned explanation, a large di-
versity can be made for the population in the FSO algorithm to
improve the diversity in the algorithm. This part can improve
the FSO algorithm capability from the point of the convergence
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Fig. 2. The flowchart diagram of the proposed CFSO algorithm.

speed and also for escaping from falling into the local optimal

point (Yang et al., 2007; Rim et al., 2018). A general definition for

the chaos theory is formulated below:

CM j
i+1 = f (CM j

i )
j = 1, 2, . . . , k

(24)

where, k is the map dimension, f (CM j
i ) is the chaotic model

generator function.

2.4.2. Improving the FSO algorithm based on the chaos theory
The proposed method is called Improved Chaotic World Cup

Optimization (CFSO) algorithm. The main superiority of the pre-
sented work toward the original FSO algorithm is that can escape
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from sticking in the local optimum point following by high speed
in the convergence. In the presented CFSO algorithm, the pa-
rameter xRand is modeled based on the sinusoidal chaotic map as
follows:
xRand, k = ap2k sin(πpk)
p0 ∈ [0, 1], a ∈ (0, 4] (25)

where, k determines the number of iteration.
The improvement makes the spiral model handling selection

easy for updating the teams ranking. Fig. 2 shows the flowchart
diagram of the presented CFSO algorithm.

3. Validation of the modified FSO algorithm

For performance validation of the proposed method, four stan-
dard benchmarks have been analyzed. The results of the proposed
CFSO algorithm are compared with some different state of the art
algorithms including genetic algorithm (GA) (Akbary et al., 2019),
world cup optimization algorithm (WCO) (Bagal et al., 2018),
particle swarm optimization algorithm (PSO) (Bansal, 2019), and
the original fluid search optimization algorithm (FSO) (Dong and
Wang, 2018).

The simulations are performed based on MATLAB R2017b plat-
form on a laptop computer with processor Intel R⃝ CoreTM i7-4720
HQ CPU@2.60 GHz with 16 GB RAM. Table 1 illustrates the bench-
marks formulations which are employed for the performance
analysis.

Table 2 illustrates the mean deviation (MD) and the standard
deviation (SD) values of the compared methods for the analyzed
benchmarks.

The results from Table 2 shows that in all four benchmarks,
the proposed CFSO algorithm gives satisfying results toward the
other methods, especially the original FSO algorithm.

4. Simulation results

Based on the computer configuration from the previous sec-
tion, two practical case studies of typical commercial PEMFCs
including BCS 500-W (Co, 0000) and NedStack PS6 (N. F. C.
Technology, 0000) have been utilized for efficiency analysis of
the proposed methodology (Priya et al., 2015; Ali et al., 2017;
El-Fergany, 2017).

For better and fair analysis of the proposed methodology per-
formance, some state of art works has been also employed to
compare with the method by considering the same constraints
from Mo et al. (2006). Empirical bounds for the six undetermined
PEMFC model are given below:

β1,min = −1.2, β1,max = −0.80, β2,min = 1e−3,
β2,max = 5e−3,

β3,min = 3.5e − 5, β3,max = 1e−4, β4,min = −3e−4,
β4,max = −8e−5,

λmin = 10, λmax = 24, Rc min = 8e−5, Rc max = 9.9e−4,
βmin = 0.01, βmax = 0.6

Relative humidity of vapors at both cathode and anode is consid-
ered 1.00.

At first, the designed algorithm based on chaos theory starts
like other optimization algorithms with randomly initializing, but
unlike them, from the second iteration, the new population will
be a pseudo-random number based on the first iteration which
helps to increases the convergence speed in the algorithm.

The method of identification is as follows:

(1) Apply Initial CFSO algorithm
(2) Find the TSD value based on the difference value from

experimental data (Co, 0000; N. F. C. Technology, 0000) and
the achieved value from the algorithm.

Fig. 3. The TSD convergence diagram of the proposed CFSO algorithm on the
NedS stack.

(3) Update algorithm based on its formulation
(4) If the algorithm stopping criteria is reached, go to (5). Else,

go to (1).
(5) Return the solution

4.1. Case study 1: NedStack PS6

In this case study, a NedSstack PS6 of 6 kW rated power
fuel cell system has been analyzed for performance analysis of
the CFSO algorithm. The main information for the simulation is
collected from N. F. C. Technology (0000) and El Monem et al.
(2014) such that Ncells = 65, A = 240 cm2, l = 178 µm, TPEM =

343 K, the operating ranges for the output voltage is Sun et al.
(2004) and Ali et al. (2017) V dc, and for output current is [0,225]
A dc, and supply pressure changes between 0.5 bar to 5 bar. By
replacing these values to the mathematical model and combining
the equations on the TSD error function, the only parameters
that should be evaluated are β1, β2, β3, β4, λ, Rc , and β . These
parameters are achieved optimally by considering the minimum
value for the TSD error function. Table 3 shows the parameter
values for the optimization algorithms in the studied system. The
CFSO results here are compared with the FSO, GHO (El-Fergany,
2017), SSO (El-Fergany, 2018) which can be found in Tables 4 and
5.

After performing the CFSO to obtain the best solution for the
six undetermined parameters, the final optimal values for the
identified PEMFC model are given in Table 4 which shows the
minimum value for the TSD overall 100 independent runs.

The convergence diagram of the proposed CFSO algorithm on
the NedS stack PS6 of 6 kW is shown in Fig. 3.

The final optimal point after convergence is 2.176 which is
the minimum TSD value among different compared methods. It is
clear that after only 60 iterations, the TSD reached its minimum
value that indicates very fast convergence characteristics.

Table 5 illustrates the Elapsed time for the state of art methods
on the NedS stack PS6 of 6 kW. From the Table, it can be con-
cluded that using the FSO algorithm gives the minimum time for
the processing, but after applying the chaos procedure, i.e. CFSO,
its convergence time decrease more.

The collected best results for I–V polarization characteristics
of the NedStack estimated by the CFSO along with the empirical
data, the absolute deviation of the voltages points and the TSD
between the actual and approximated voltage data is shown in
Fig. 4.

The results show a satisfying fitting between the empirical
voltage model and the data achieved by the CFSO algorithm and
show proper precision to finding the optimized values for the
undetermined six parameters.
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Table 1
The utilized benchmarks for efficiency analysis.
Benchmark Formula Constraints Dimension

Rastrigin f1(x) = 10D +
∑D

i=1

(
x2i − 10 cos(2πxi)

)
[−512, 512] 30–50

Rosenbrock f2(x) =
∑D−1

i=1

(
100

(
x2i − xi+1

)
+ (xi − 1)2

)
[−2.045, 2.045] 30–50

Ackley f3(x) = −20 exp
(

−0.2
√

1
D

∑D
i=1 x

2
i

)
− exp

(
1
D

∑D
i=1 cos(2πxi)

)
+ 20 + e [−10, 10] 30–50

Sphere f4(x) =
∑D

i=1 x
2
i [−512, 512] 30–50

Table 2
The results of the efficiency analysis by considering 30-dimensions.
Benchmark CFSO GA (Akbary et al., 2019) PSO (Bansal, 2019) WCO (Bagal et al., 2018) FSO (Dong and Wang, 2018)

f1 MD 0.00 70.61 74.24 2.19 3.42
SD 0.00 1.66 8.96 4.35 3.27

f2 MD 8.32 35.41 200.1 13.16 8.64
SD 3.85 27.15 59.00 4.62 5.56

f3 MD 0.00 3.19 e−2 8.26 3.14 e−3 4.46 e−16
SD 0.00 2.14 e−2 1.19 1.12 e−3 0.00

f4 MD 0.00 1.15 e−4 8.27 e−4 6.19 e−9 1.55 e−12
SD 0.00 3.14 e−5 5.12 e−4 3.28 e−9 5.37 e−17

Table 3
Parameter selection of the optimization algorithms for the studied system.
Algorithm Parameter Value Algorithm Parameter Value

GA Crossover 0.8 FSO Population size (N) 50
Mutation 0.2 and Maximum iteration (M) 100

GHO L 1.0 CFSO Maximum ratio of density (θ ) 20%
f 1.0 SSO C1 1.0

Table 4
TSD validation for the NedStack PS6.
Parameter Algorithm

CFSO FSO GA (El-Fergany, 2017) GHO (El-Fergany, 2017) SSO (El-Fergany, 2018)

β1 −0.981 −0.931 −1.199 −1.120 −0.972
β2 3.383 e−3 3.375 e−3 3.417 e−3 3.550 e−3 3.349 e−3
β3 7.759 e−5 7.438 e−5 3.600 e−5 4.614 e−5 7.911 e−5
β4 −9.540 e−5 −9.541 e−5 −9.540 e−5 −9.540 e−5 −9.543 e−5
λ 13.00 13.00 13.00 13.010 13.00
Rc 0.100 0.100 0.138 0.100 0.100
β 0.047 0.055 0.036 0.058 0.050
TSD 2.176 2.186 2.409 2.185 2.180

Table 5
The Elapsed time for the state of art methods on the NedS stack.
Algorithm CFSO FSO GA (El-Fergany, 2017) GHO (El-Fergany, 2017) SSO (El-Fergany, 2018)

Elapsed time (s) 4.31 5.28 10.13 7.03 5.30

For more analyzing the method efficiency on the NedStack

system under different conditions of partial pressures and the cell

temperature, the I/V diagram is presented in Figs. 5 and 6.

Fig. 5 shows the variations on the partial pressures with 1/1

bar, 2/1.5 bar, and to 3/2 bar. It can be seen that by enhancing

the supply pressures of the PH2/PO2, the stack output voltage is

increased.

The variations on the constant cell temperatures with 323 K,

343 K, and 363 K are also shown in Fig. 6. Here, by enhancing the

temperature, the stack output voltage is increased.

4.2. Test case 2

The second case study is the BCS PEMFC at a rated power
of 500 W with a 30 A maximum current. This type is made by
American Company BCS Technologies (Co, 0000).

More details for accurate simulation of this model can be
found in Corrêa et al. (2004) such that Ncells = 32, A = 64 cm2,
l = 178 µm, TPEM = 333 K, the operating ranges for the partial
pressures of H2 and O2 are 1 atm and 0.2075 atm, respectively.

Table 6 illustrates the results of the best optimal value for the
voltage stack-based parameters on the proposed CFSO compared
with the FSO, GHO (El-Fergany, 2017), SSO (El-Fergany, 2018) on
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Fig. 4. The I–V diagram for the NedStack for the empirical curve (red-star) and
model curve (blue-line).

Fig. 5. The I/V diagram characteristics of NedStack for pressure variations for
3/2 bar (blue line), 2/1.5 bar (red line), 1/1 bar (green line). . (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. The I/V diagram characteristics of NedStack for varying temperatures for
363K (blue line), 343 K (red line), 323 K (green line). . (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

BCS PEMFC model for 100 independent runs.

β1,min = −1.1997, β1,max = −0.8532, β3,min = 3.6e−5,
β3,max = 9.8e−5, β4,min = −26e−5, β4,max = −9.54e−5,
λmin = 13, λmax = 23, Rc min = 0.1, Rc min = 0.8,
βmin = 13.6e−3, βmax = 0.5

Fig. 7. The TSD convergence diagram of the proposed CFSO algorithm on the
BCS PEMFC.

Fig. 8. The I–V diagram for the BCS PEMFC for the empirical curve (red-star)
and model curve (blue-line).

Results show that using the proposed CFSO algorithm has
better performance with minor TSD value toward the others in
100 independent runs.

Fig. 7 shows the TSD convergence diagram of the proposed
CFSO algorithm on the BCS PEMFC. From the figure, it is clear that
in this case study, like the before, the CFSO has the minimum TSD
value.

The result shows the quick jumping of the algorithm into the
minimum TSD after 5 iterations. Finally, the convergence in the
algorithm is reached in iteration 85.

Final simulations showed that the presented CFSO algorithm
has the best speed among the other methods again. This is illus-
trated in Table 7.

The collected best results for I–V polarization characteristics of
the BCS PEMFC estimated by the CFSO along with the empirical
data, the absolute deviation of the voltages points and the TSD
between the actual and approximated voltage data is shown in
Fig. 8.

Like case study 1, the results show a promising fitting between
the empirical voltage model and the data achieved by the CFSO
algorithm and show proper precision to finding the optimized
values for the undetermined six parameters.

In the following, the I/V diagram characteristics of the BCS
PEMFC for different temperatures and pressure are plotted.

Fig. 9 shows the variations on the partial pressures with
2.5/1.5 bar, 1.5/1 bar, and 1/0.21 bar.

It is obvious that by enhancing the supply pressures of the
PH2/PO2, the output voltage of the stack is increased.

Finally, the variations on the constant cell temperatures with
373 K, 333 K, and 303 K are shown in Fig. 10 which shows that by
enhancing the temperature, the stack output voltage is increased.
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Table 6
TSD validation for the BCS PEMFC.
Parameter Algorithm

CFSO FSO GA (El-Fergany, 2017) GHO (El-Fergany, 2017) SSO (El-Fergany, 2018)

β1 −0.852 −0.8542 −1.023 −0.984 −0.853
β2 4.810 e−3 4.811 e−3 4.811 e−3 2.811 e−3 4.811 e−3
β3 9.412 e−5 8.943 e−5 8.200 e−5 5.341 e−5 9.433 e−5
β4 −1.93 e−4 −1.93 e−4 −1.93 e−4 −1.358 e−4 −1.920 e−4
λ 23.000 23.000 23.000 19.428 23.000
Rc 0.312 0.312 0.315 0.746 0.350
β 0.016 0.018 0.017 0.012 0.016
TSD 0.011 0.012 0.015 8.341 0.012

Table 7
The Elapsed time for the state of art methods on the BCS PEMFC.
Algorithm CFSO FSO GA (El-Fergany, 2017) GHO (El-Fergany, 2017) SSO (El-Fergany, 2018)

Elapsed time (s) 3.82 5.17 7.20 3.65 4.15

Fig. 9. The I/V diagram characteristics of BCS PEMFC for pressure variations
for 2.5/1.5 bar (blue line), 1.5/1 bar (red line), 1/0.21 bar (green line). . (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

The modeling error of the analyzed models is shown in Fig. 11.
As can be observed from the results, using the proposed method
gives good results for the estimation of the PEMFC models.

5. Conclusions

In this study, a new procedure is presented for optimum
parameter identification of the PEMFCs. The method is based on
an optimization algorithm to guarantee the optimal values for

Fig. 10. The I/V diagram characteristics of BCS PEMFC for varying temperatures
for 373 K (blue line), 333 K (red line), 303 K (green line). . (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

the system parameters. Here, an improved version of a new opti-
mization algorithm called a fluid search optimization algorithm
is proposed based on chaos theory. Results showed that using
this theory speeds up the convergence of the algorithm. Two
empirical PEMFC types are applied to analyze the performance of
the presented algorithm for parameter identification. Simulations
showed well-fitting results between the achieved values and the
experimentally measured values for the voltage stack points.
For more analysis, different conditions from the point of the
partial pressures and the cell temperature are studied. The final

Fig. 11. The modeling error for (A) NedStack and (B) BCS PEMFC.
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results prove the high capability and robustness of the proposed
approach.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

CRediT authorship contribution statement

Yan Cao: Conceptualization, Data curation, Writing - original
draft, Writing - review & editing. Xiaoxi Kou: Conceptualization,
Data curation, Writing - original draft, Writing - review & editing.
Yujia Wu: Conceptualization, Data curation, Writing - original
draft, Writing - review & editing. Kittisak Jermsittiparsert: Con-
ceptualization, Data curation, Writing - original draft, Writing -
review & editing. Abdullah Yildizbasi: Conceptualization, Data
curation, Writing - original draft, Writing - review & editing.

Acknowledgments

This paper is supported by Open Research Fund Program
of Shaanxi Key Laboratory of Non-Traditional Machining, China
(Grant: 2017SXTZKFJG04), Shaanxi Key Research and Develop-
ment Plan, China (Grant: 2017ZDXM-G-10-2), Project of Joint
Postgraduate Training Base of Xi’an Technological University, and
Research Project of Graduate Education and Teaching Reform of
Xi’an Technological University in 2017.

References

Aghajani, Gholamreza, Ghadimi, Noradin, 2018. Multi-objective energy manage-
ment in a micro-grid. Energy Rep. 4, 218–225.

Ahadi, A., Ghadimi, N., Mirabbasi, D., 2015. An analytical methodology for
assessment of smart monitoring impact on future electric power distribution
system reliability. Complexity 21 (1), 99–113.

Akbary, Paria, et al., 2019. Extracting appropriate nodal marginal prices for all
types of committed reserve. Comput. Econ. 53 (1), 1–26.

Ali, M., El-Hameed, M., Farahat, M., 2017. Effective parameters’ identification for
polymer electrolyte membrane fuel cell models using grey wolf optimizer.
Renew. Energy 111, 455–462.

Aouali, F.Z., Becherif, M., Ramadan, H.S., Emziane, M., Khellaf, A., Mohammedi, K.,
2017. Analytical modelling and experimental validation of proton exchange
membrane electrolyser for hydrogen production. Int. J. Hydrogen Energy 42
(2), 1366–1374.

Bagal, Hamid Asadi, et al., 2018. Risk-assessment of photovoltaic-wind-battery-
grid based large industrial consumer using information gap decision theory.
Sol. Energy 169, 343–352.

Bandaghiri, P.S., Moradi, N., Tehrani, S.S., 2016. Optimal tuning of PID controller
parameters for speed control of DC motor based on world cup optimization
algorithm. Parameters 1, 2.

Bansal, J.C., 2019. Particle swarm optimization. In: Evolutionary and Swarm
Intelligence Algorithms. Springer, pp. 11–23.

Chen, Y., Wang, N., 2019. Cuckoo search algorithm with explosion operator for
modeling proton exchange membrane fuel cells. Int. J. Hydrogen Energy 44
(5), 3075–3087.

Co, B.T., Data Sheet for a 500-W FC Stack. (accessed.
Corrêa, J.M., Farret, F.A., Canha, L.N., Simoes, M.G., 2004. An electrochemical-

based fuel-cell model suitable for electrical engineering automation
approach. IEEE Trans. Ind. Electron. 51 (5), 1103–1112.

Davis, L., 1991. Handbook of Genetic Algorithms.
Dong, R., Wang, S., New optimization algorithm inspired by fluid mechanics to

combined economic.
Dong, R., Wang, S., 2018. New optimization algorithm inspired by fluid mechan-

ics for combined economic and emission dispatch problem. Turk. J. Electr.
Eng. Comput. Sci. 26 (6), 3305–3318.

Ebrahimian, Homayoun, et al., 2018. The price prediction for the energy market
based on a new method. Econ. Res.-Ekon. Istraž. 31 (1), 313–337.

El-Fergany, A.A., 2017. Electrical characterisation of proton exchange membrane
fuel cells stack using grasshopper optimiser. IET Renew. Power Gener. 12
(1), 9–17.

El-Fergany, A.A., 2018. Extracting optimal parameters of PEM fuel cells using
salp swarm optimizer. Renew. Energy 119, 641–648.

El Monem, A.A., Azmy, A.M., Mahmoud, S., 2014. Effect of process parameters on
the dynamic behavior of polymer electrolyte membrane fuel cells for electric
vehicle applications. Ain Shams Eng. J. 5 (1), 75–84.

Eslami, Mahdiyeh, et al., 2019. A new formulation to reduce the number of
variables and constraints to expedite SCUC in bulky power systems. Proc.
Nat. Acad. Sci. India Sect. A 89 (2), 311–321.

Firouz, Mansour Hosseini, Ghadimi, Noradin, 2016. Concordant controllers based
on FACTS and FPSS for solving wide-area in multi-machine power system. J.
Intell. Fuzzy Systems 30 (2), 845–859.

Ge, W., Qi, Z., Xue, C., Xu, M., 2018. Research on modeling of PEMFC based
on fractional order subspace identification. In: 2018 37th Chinese Control
Conference (CCC). IEEE, pp. 10146–10151.

Geem, Z.W., Kim, J.H., Loganathan, G.V., 2001. A new heuristic optimization
algorithm: harmony search. Simulation 76 (2), 60–68.

Ghadimi, N., 2012. Genetically tuning of lead–lag controller in order to control
of fuel cell voltage. Sci. Res. Essays 7 (43), 3695–3701.

Ghadimi, N., Afkousi-Paqaleh, M., Nouri, A., 2013. PSO based fuzzy stochas-
tic long-term model for deployment of distributed energy resources in
distribution systems with several objectives. IEEE Syst. J. 7 (4), 786–796.

Gheydi, Milad, Nouri, Alireza, Ghadimi, Noradin, 2016. Planning in microgrids
with conservation of voltage reduction. IEEE Syst. J. 12 (3), 2782–2790.

Gollou, Abbas Rahimi, Ghadimi, Noradin, 2017. A new feature selection and
hybrid forecast engine for day-ahead price forecasting of electricity markets.
J. Intell. Fuzzy Systems 32 (6), 4031–4045.

Hamian, Melika, et al., 2018. A framework to expedite joint energy-reserve
payment cost minimization using a custom-designed method based on
Mixed Integer Genetic Algorithm. Eng. Appl. Artif. Intell. 72, 203–212.

Han, K.-H., Kim, J.-H., 2002. Quantum-inspired evolutionary algorithm for a class
of combinatorial optimization. IEEE Trans. Evol. Comput. 6 (6), 580–593.

Hosseini Firouz, Mansour, Ghadimi, Noradin, 2016. Optimal preventive mainte-
nance policy for electric power distribution systems based on the fuzzy AHP
methods. Complexity 21 (6), 70–88.

Hussain, B., Sharkh, S., Hussain, S., 2010. Impact studies of distributed generation
on power quality and protection setup of an existing distribution network.
In: Power Electronics Electrical Drives Automation and Motion (SPEEDAM),
2010 International Symposium on. IEEE, pp. 1243–1246.

Ijaodola, O., et al., 2019. Energy efficiency improvements by investigating
the water flooding management on proton exchange membrane fuel cell
(PEMFC). Energy 179, 246–267.

Karaboga, D., Aslan, S., 2018. Discovery of conserved regions in DNA sequences
by artificial bee colony (ABC) algorithm based methods. Nat. Comput. 1–18.

Karaboga, D., Basturk, B., 2007. A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm. J. Global Optim.
39 (3), 459–471.

Karimi, M., Imanzadeh, M., Farhadi, P., Ghadimi, N., 2012. Voltage control of
PEMFC using a new controller based on reinforcement learning. Int. J. Inf.
Electron. Eng. 2 (5).

Khodaei, Hossein, et al., 2018. Fuzzy-based heat and power hub models
for cost-emission operation of an industrial consumer using compromise
programming. Appl. Therm. Eng. 137, 395–405.

Leng, Hua, et al., 2018. A new wind power prediction method based on ridgelet
transforms, hybrid feature selection and closed-loop forecasting. Adv. Eng.
Inform. 36, 20–30.

Liu, Yang, Wang, Wei, Ghadimi, Noradin, 2017. Electricity load forecasting by an
improved forecast engine for building level consumers. Energy 139, 18–30.

Liu, Jun, et al., 2020. An IGDT-based risk-involved optimal bidding strategy for
hydrogen storage-based intelligent parking lot of electric vehicles. J. Energy
Storage 27, 101057.

Luo, X., Wang, J., Dooner, M., Clarke, J., 2015. Overview of current development in
electrical energy storage technologies and the application potential in power
system operation. Appl. Energy 137, 511–536.

Mekhilef, S., Saidur, R., Safari, A., 2012. Comparative study of different fuel cell
technologies. Renew. Sustain. Energy Rev. 16 (1), 981–989.

Meng, Qing, et al., 2020. A single-phase transformer-less grid-tied inverter based
on switched capacitor for PV application. J. Control Autom. Electr. Syst. 31
(1), 257–270.

Mirzapour, Farzaneh, et al., 2019. A new prediction model of battery and wind-
solar output in hybrid power system. J. Ambient Intell. Humaniz. Comput.
10 (1), 77–87.

Mo, Z.J., Zhu, X.J., Wei, L.Y., Cao, G.Y., 2006. Parameter optimization for a PEMFC
model with a hybrid genetic algorithm. Int. J. Energy Res. 30 (8), 585–597.

Moallem, P., Razmjooy, N., 2012. Optimal threshold computing in automatic
image thresholding using adaptive particle swarm optimization. J. Appl. Res.
Tech. 10 (5), 703–712.

Mousavi, B.S., Soleymani, F., 2014. Semantic image classification by genetic
algorithm using optimised fuzzy system based on Zernike moments. Signal
Image Video Process. 8 (5), 831–842.

N. F. C. Technology. NedStack Fuel Cell Technology. http://www.fuelcellmarkets.
com/content/images/articles/ps6.pdf (accessed.

http://refhub.elsevier.com/S2352-4847(19)31232-6/sb1
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb1
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb1
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb2
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb2
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb2
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb2
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb2
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb3
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb3
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb3
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb4
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb4
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb4
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb4
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb4
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb5
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb5
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb5
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb5
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb5
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb5
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb5
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb6
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb6
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb6
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb6
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb6
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb7
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb7
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb7
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb7
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb7
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb8
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb8
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb8
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb9
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb9
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb9
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb9
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb9
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb11
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb11
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb11
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb11
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb11
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb12
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb14
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb14
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb14
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb14
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb14
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb15
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb15
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb15
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb16
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb16
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb16
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb16
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb16
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb17
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb17
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb17
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb18
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb18
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb18
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb18
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb18
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb19
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb19
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb19
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb19
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb19
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb20
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb20
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb20
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb20
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb20
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb21
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb21
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb21
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb21
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb21
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb22
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb22
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb22
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb23
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb23
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb23
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb24
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb24
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb24
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb24
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb24
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb25
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb25
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb25
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb26
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb26
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb26
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb26
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb26
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb27
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb27
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb27
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb27
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb27
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb28
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb28
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb28
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb29
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb29
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb29
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb29
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb29
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb30
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb30
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb30
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb30
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb30
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb30
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb30
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb31
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb31
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb31
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb31
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb31
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb32
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb32
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb32
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb33
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb33
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb33
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb33
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb33
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb34
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb34
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb34
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb34
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb34
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb35
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb35
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb35
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb35
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb35
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb36
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb36
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb36
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb36
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb36
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb37
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb37
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb37
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb38
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb38
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb38
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb38
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb38
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb39
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb39
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb39
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb39
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb39
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb40
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb40
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb40
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb41
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb41
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb41
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb41
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb41
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb42
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb42
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb42
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb42
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb42
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb43
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb43
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb43
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb44
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb44
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb44
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb44
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb44
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb45
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb45
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb45
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb45
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb45
http://www.fuelcellmarkets.com/content/images/articles/ps6.pdf
http://www.fuelcellmarkets.com/content/images/articles/ps6.pdf
http://www.fuelcellmarkets.com/content/images/articles/ps6.pdf


Y. Cao, X. Kou, Y. Wu et al. / Energy Reports 6 (2020) 813–823 823

Namadchian, A., Ramezani, M., Razmjooy, N., 2016. A new meta-heuristic algo-
rithm for optimization based on variance reduction of guassian distribution.
Majlesi J. Electr. Eng. 10 (4), 49.

Pelikan, M., Goldberg, D.E., Cantú-Paz, E., 1999. BOA: The Bayesian optimization
algorithm. In: Proceedings of the 1st Annual Conference on Genetic and
Evolutionary Computation-Volume 1. Morgan Kaufmann Publishers Inc., pp.
525–532.

Priya, K., Babu, T.S., Balasubramanian, K., Kumar, K.S., Rajasekar, N., 2015. A novel
approach for fuel cell parameter estimation using simple genetic algorithm.
Sustain. Energy Technol. Assess. 12, 46–52.

Rao, Y., Shao, Z., Ahangarnejad, A.H., Gholamalizadeh, E., Sobhani, B., 2019. Shark
smell optimizer applied to identify the optimal parameters of the proton
exchange membrane fuel cell model. Energy Convers. Manage. 182, 1–8.

Razmjooy, N., Khalilpour, M., 2015. A robust controller for power system
stabilizer by using artificial bee colony algorithm. 5 (3), 106–113.

Razmjooy, N., Madadi, A., Ramezani, M., 2017. Robust control of power system
stabilizer using world cup optimization algorithm. Int. J. Inf. Secur. Syst.
Manage. 5 (1), 7.

Razmjooy, N., Ramezani, M., Training Wavelet Neural Networks Using Hybrid
Particle Swarm Optimization and Gravitational Search Algorithm for System
Identification.

Razmjooy, N., Ramezani, M., Estrela, V.V., Loschi, H.J., do Nascimento, D.A., 2018a.
Stability analysis of the interval systems based on linear matrix inequalities.
In: Brazilian Technology Symposium. Springer, pp. 371–378.

Razmjooy, N., Sheykhahmad, F.R., Ghadimi, N., 2018b. A hybrid neural network–
world cup optimization algorithm for melanoma detection. Open Med. 13
(1), 9–16.

Rim, C., Piao, S., Li, G., Pak, U., 2018. A niching chaos optimization algorithm for
multimodal optimization. Soft Comput. 22 (2), 621–633.

Saeedi, Mohammadhossein, et al., 2019. Robust optimization based optimal
chiller loading under cooling demand uncertainty. Appl. Therm. Eng. 148,
1081–1091.

Shahrezaee, M., 2017. Image segmentation based on world cup optimization
algorithm. Majlesi J. Electr. Eng. 11 (2).

Sun, J., Feng, B., Xu, W., 2004. Particle swarm optimization with particles having
quantum behavior. In: Proceedings of the 2004 Congress on Evolutionary
Computation (IEEE Cat. No. 04TH8753), Vol. 1. IEEE, pp. 325–331.

Sun, Z., Wang, N., Bi, Y., Srinivasan, D., 2015. Parameter identification of PEMFC
model based on hybrid adaptive differential evolution algorithm. Energy 90,
1334–1341.

Yang, D., Li, G., Cheng, G., 2007. On the efficiency of chaos optimiza-
tion algorithms for global optimization. Chaos Solitons Fractals 34,
(4), 1366–1375.

Yazdani, M., Jolai, F., 2016. Lion optimization algorithm (LOA) a nature-inspired
metaheuristic algorithm. J. Comput. Des. Eng. 3 (1), 24–36.

Ye, Haixiong, et al., 2020. High step-up interleaved dc/dc converter with high
efficiency. Energy Sources A 1–20.

http://refhub.elsevier.com/S2352-4847(19)31232-6/sb47
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb47
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb47
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb47
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb47
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb48
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb48
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb48
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb48
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb48
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb48
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb48
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb49
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb49
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb49
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb49
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb49
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb50
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb50
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb50
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb50
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb50
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb52
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb52
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb52
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb52
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb52
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb54
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb54
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb54
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb54
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb54
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb55
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb55
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb55
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb55
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb55
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb56
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb56
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb56
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb57
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb57
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb57
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb57
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb57
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb58
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb58
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb58
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb59
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb59
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb59
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb59
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb59
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb60
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb60
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb60
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb60
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb60
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb61
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb61
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb61
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb61
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb61
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb62
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb62
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb62
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb63
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb63
http://refhub.elsevier.com/S2352-4847(19)31232-6/sb63

	PEM fuel cells model parameter identification based on a new improved fluid search optimization algorithm
	Introduction
	Materials and methods
	Mathematical modeling of the PEMFC
	Describing the fitness function and the constraints
	Fluid search optimization algorithm
	Infinitesimal pressure
	Infinitesimal density
	The velocity of the fluid infinitesimal

	Fluid search optimization algorithm based on chaos theory (CFSO)
	The concept of the chaos theory
	Improving the FSO algorithm based on the chaos theory


	Validation of the modified FSO algorithm
	Simulation results
	Case study 1: NedStack PS6
	Test case 2

	Conclusions
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgments
	References


