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a b s t r a c t

Deep learning methodologies have revolutionized prediction in many fields and is potential to do
the same in the petroleum industry because of the complex oil–gas reservoir. A limitation remains
for dense shale exploration in that the shales with invisible bedding are difficult to characterize
measurably because of the considerable complexity of the geological structures. The oblique-incidence
reflectivity difference method (OIRD) is sensitive to the surface features and was used to obtain a
layered distribution of dielectric properties in shales. In this paper, we report a combination of OIRD
and deep learning method to identify the dielectric anisotropy of an invisible-bedding shale. The model
performs well and clearly identifies the bedding of the shale based on the output values associated
with the probability. Only a single direction was determined to have laminations with widths of 20–
60 µm. The anisotropy features detected by OIRD also existed in the invisible-bedding shale and were
caused by the smaller cracks and denser particles’ orientation relative to general shales. As current
dense reservoirs include rich invisible-bedding shales, we believe that the OIRD method combined
with deep learning method can help improve the exploration efficiency of shale reservoirs.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Logging observations have found anisotropic layers in the
interior of shale reservoirs (Hughes, 2013; Kerr, 2010). The source
of shear-wave anisotropy is uncertain, but geophysical models
predict large strains along boundaries. It has been suggested that
the anisotropy of rock can be divided into types, including the
existence of micro-cracks and the orientation of rock particles,
which would and would not change the stress, respectively Mash-
hadian et al. (2018) and Wells et al. (2014). The micro-cracks
cause more and larger cracks, thereby creating more fractured
channels for hydrocarbon molecules to be extracted (Yang et al.,
2017).

The characterization of shale anisotropy is important to the
exploration of hydrocarbons (Mokhtari and Tutuncu, 2015). Scan-
ning electron microscopy (SEM) and micro-computer tomography
(CT) are employed for microstructure determination, and are thus
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appropriate for shale detection (Lin and Cerato, 2014; Ma and
Chen, 2014). The oblique-incidence reflectivity difference method
(OIRD) is sensitive to the dielectric and surface properties of
shale because it measures the difference in reflectivity between
s- and p-polarized light (Landry et al., 2006; Liu et al., 2014,
2015). OIRD was employed to measure reservoir rocks and obtain
their morphology, the holes’ structures, and the adsorption in
holes (Zhan et al., 2017a,b; Wang et al., 2016). The anisotropic
features of shale and isotropic properties of sandstone have been
previously investigated experimentally using OIRD and SEM, but
a limitation remains in that the shale used obviously has layers
and the lamination direction can be directly identified (Zhan et al.,
2016).

In terms of natural geological resources, invisible-bedding
shales were found to have large reserves and rich mining
value (Chong et al., 2017; Miao et al., 2018). Knowledge of
shale with invisible beddings is therefore critical to deciphering
reservoir features of shale, which, in turn, can help our under-
standing of the geophysical properties in the deep Earth (Zhan
et al., 2015a; Miao et al., 2016). Precise identification of feature
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anisotropy in invisible-bedding shale is of significance for dense-
shale-reservoir exploration. Common methods to characterize
anisotropy in shale with invisible bedding include acoustic wave
velocity measurement under pressure, ultrasonic wave character-
ization and seismic response detection. Both the P-wave velocity
and the S-wave velocity of the shale show anisotropy in the high-
pressure chamber. Young ’s modulus and Poisson ’s ratio also
behave anisotropy (Li et al., 2018; Kuila et al., 2011). In ultrasonic
testing, the ultrasonic wave speed and waveform will change due
to changes in the internal structure of the shale. The relationship
between wave velocity and anisotropy of shale media can be
described by petrophysical models (Zhubayev et al., 2016). In
seismic response detection, seismic wave velocity has strong
dispersion and attenuation in viscoelastic media. The anisotropic
response of reservoir azimuth varies with fracture parameters
and shows different characteristics (Wang, 2002). Compared with
these conventional methods, OIRD measurement causes none
damage to the original shale samples, requires little preliminary
preparation and has a simple test condition.

The success of supervised deep learning models, especially
convolutional neural networks (ConvNets or CNNs), have fueled
research into their application in various fields. The ConvNet
models have been successfully applied in the computer vision
field such as handwritten digit recognition and image classifi-
cation. And in the field of identifying and processing images
obtained by optical devices, deep learning algorithms have pow-
erful capabilities and enormous potential (Washburn et al., 0000).
As another example of the potential of deep learning in shale
anisotropy research, this paper introduces the application of the
ConvNet model in the OIRD image data set.

In the work reported in this paper, we applied the OIRD
method to quantify the surface properties of subsurface shale
on the basis of an obscure measurement by SEM. To reveal
the anisotropy information and the lamination properties of the
shale, a principal component analysis (PCA) method was used on
the basis of OIRD signal intensities. The results suggest that OIRD
combined with statistical methods can be used for shale-core
analysis with invisible laminations, indicating that there would
be a new selection for super-dense-shale-reservoir exploration.

2. Experimental methods

Sample preparation. Shale rock without visible anisotropy was
cored in the horizontal direction. The petrophysical layers are
perpendicular to the upper and lower surface of the core. The
shale core is a cylinder measuring 25 mm in diameter and 50 mm
in length. To obtain the parallelism of shale surfaces, the shale
core was cut and then polished before all measurements. Gener-
ally, shale has a vectored stratification plane over the entire space,
while the bedding of the shale used in this experiment is invisible.
The bedding direction cannot be directly confirmed before each
measurement.
Direct OIRD scanning. Fig. 1 is a schematic of the OIRD experi-
mental setup for the detection of shale core. The optical beam is a
He–Ne laser with wavelength of λ = 632.8 nm. It initially passes
through a polarizer (P) to ensure p-polarized incidence. The po-
larization of the laser between p- and s-polarization is oscillated
by a photoelastic modulator (PEM) at a frequency of 50 kHz.
The laser then enters a phase shifter (PS) to create a fixed phase
difference Φps between the p- and s-polarization components. The
laser reflected from the sample is introduced into a polarization
analyzer (PA) with the transmission axis set from s-polarization.
The intensity can be detected by a silicon photodiode (PD). We
use two lock-in amplifiers to measure the first harmonic I(1 �)
and second harmonic I(2 �) signals. Finally, the I(2 �) and I(1 �)
signals of Im{∆p − ∆s} and Re{∆p − ∆s} are recorded by a

Fig. 1. Schematic picture of the OIRD experimental setup.

computer. The I(2 �) and I(1 �) signals include information
about the surface and the dielectric properties of the sample. In
terms of OIRD detection, no special requirements with respect
to the samples were needed, and they can be fastened onto the
upper surface of the stage. The OIRD instrument uses a stepper
motor to move the sample and the frequency of the collected
signal to be scanned can be adjusted, thus kinds of rock samples
can be measured by increasing the frequency of the collected
signal and the moving speed of the motor when scanning a large
sample. OIRD is not only sensitive to the surface features of the
shale with much anisotropy information, but also helpful to scan
large surface for identification of the geological structures. The
scanning parameters can be changed depending on the scanning
area. Generally, it will take half an hour to scan 5 cm × 5 cm
shale by OIRD. The measurements were performed under ambient
conditions. The interval between two adjacent scans can be 1 µm.
In the experiment, the scanning step length was 4 µm. In this
research, Im{∆p − ∆s} was used as the parameter to detect the
shale surface.
Deep learning model architecture. Since convolutional neural
network architectures are good at spatially-correlated feature
extraction, a convolutional model was designed for dielectric
anisotropy of invisible-bedding shale probed. Fig. 2 showed the
architecture of the deep learning model. The surface of the shale
with obvious bedding was scanned by OIRD, and the data ob-
tained was used as input data directly without conversion to
images. These data were split into several subsets of 50*250,
and the data obtained by the horizontal and vertical cuts ware
labeled 1 and 0, respectively. Then, 80% of the segmented data
was divided into training sets, 20% was divided into verification
sets, and there was no intersection between the two subsets. In
a convolutional layer, the features are extracted from the input
by sliding filters with convolution operations, generating feature
maps correspondingly. The model consists of 12 convolutional
layers with strides of 1 and kernel sizes of 3 × 3, where the
feature depth gradually increases from 16 to 64 output channels.
Between the convolutional layers, down-sampling was performed
by three max pooling layers with a 2 × 2 window size. The output
of the last convolutional layer was flattened to one-dimensional
data and then regularized (regularization parameter was 0.0001).
Then three fully-connected layers were attached immediately
after each one have 128 nodes, and dropout regularization was
applied to them; the third one produces the unnormalized logits
for the two categories to be classified. Finally, the predicted
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Fig. 2. The architecture of the deep learning model. The deep convolutional neural network model (inspired by VGGNet) consists of 10 convolutional layers, 2
maximum pooling layers, and 3 fully connected layers. The convolutional layer extracts and learns features of an input example with a 3 × 3 kernel (m × Conv3-p
ReLU represents m convolutional layers with p output filters and ReLU activation functions). The first two fully connected layers have full connectivity to all nodes in
the previous layer, and discard regularization is applied after them. The probabilities of these two categories are output on the sigmod layer and the input examples
are classified.

probabilities of the classes are obtained by a Sigmoid layer from
the logits. By using these probabilities, the cross-entropy error
can be calculated and minimized by the Adam optimizer during
back propagation and the variables of the model are updated
iteratively. To introduce nonlinearity, all convolutional and fully-
connected hidden layers are equipped with Rectifed Linear Unit
(ReLU). After the data was substituted into the established model,
the output data related to the predicted probability value could
be obtained. Meanwhile, the total time of 80 epochs was less
than 10 min because the scanning imaging results of OIRD will
obtain data in text format. These data are cut into pieces with
50 × 250 size in advance, witch further saves the calculation
amount. The neural network structure applied in this study has
been optimized. Therefore, the calculation process will be greatly
simplified compared with traditional image recognition.
Principal component analysis. PCA is a mathematical method
used to reduce the number of dimensions within the data while
retaining as much of the overall variation as possible based on
uncorrelated projections (Zhan et al., 2015b). The OIRD data are
set as the input of matrix as follows:

X =

⎡⎢⎢⎣
x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

xm1 xm2 · · · xmn

⎤⎥⎥⎦ ,

where m and n are the number of samples and number of sample
dimensions, respectively. A linear transformation of X will be
calculated and Y is obtained as follows:{ Y1 = u11X1 + u12X2 + · · · + u1nXn

Y2 = u21X1 + u22X2 + · · · + u2nXn
Yn = un1X1 + un2X2 + · · · + unnXn

.

There is no correlation between Yi and Yj (i ̸= j, i, j ∈ (1, n)).
Meanwhile, Y1 is the linear combination with the largest variance
and is described as the first principal component (PC 1). Similarly,
Y2 is the linear combination that is not related to Y1 and is
called PC 2. Analogous to this, Yn is the last PC with the smallest
variance. A basic limitation of the linear combination is u2

k1+u2
k2+

· · · + u2
kn = 1, k = 1, 2, . . . , n.

Ultrasonic measurement. Longitudinal waves (P waves), an im-
portant branch in bulk waves, is the first significant peak, which
has often been employed for detecting thickness, density, and
elasticity (Lu et al., 2015). A high-energy pulsed laser
(20 mJ/pulse) emits the shale core and excites ultrasonic waves
via thermoelastic expansion, which can be measured by a laser
ultrasonic receiver. The adaptive laser interferometer is a specific

Fig. 3. 2D image of OIRD Im{∆P − ∆S } of shale core.

type of interference receiver. The receiver uses two-wave mixing
in a photorefractive crystal to deliver the displacement of the
sample and has a sensitivity with a bandwidth from 10 kHz to
10 MHz. The shale core is placed directly on the rotating table for
rotational measurement. The ultrasonic longitudinal waves are
then measured at intervals of 5◦ until the rotation is returned
to the test starting point.

3. Analyses and results

A basic investigation was initially performed into the
anisotropy of shale. The typical types of the anisotropy of shale
include the existence of micro-cracks and their arrangements in
different directions, as well as the orientation of the mineral par-
ticles. Generally, the layered structure of shale is detected by SEM.
However, some shale reservoirs exhibit non-obvious anisotropy,
which is difficult and necessary to detect. OIRD method is thus
introduced to identify the anisotropy of shale.

The shale core, without obvious lamination or a layered struc-
ture, was then analyzed using the OIRD system. The sample was
placed on a 2D stage and the phase shifter as well as polarization
analyzer were adjusted to make the signals I(2 �) and I(�)
equal to zero. The shale core was then scanned in a random
region measuring 1 mm×1 mm. The real signal Re{∆P − ∆S },



798 R. Chen, Z. Ren, Z. Meng et al. / Energy Reports 6 (2020) 795–801

Fig. 4. The schematic picture of data preparation and deep learning calculation.

imaginary signals Im{∆P − ∆S }, and their relative coordinates
were recorded by a computer. Fig. 3 is the intensity profile
taken along a rectangular area showing the signal images of
Im{∆P − ∆S } obtained from the shale core. Im{∆P − ∆S } is
altered with changing scanning position, which revealed the vari-
ance of dielectric properties depending on the positions of the
shale-core surface. Some maximum and minimum signals can be
observed and the respective peaks are located at different points.
Fluctuations are also observed in some areas, indicating that the
dielectric information of the sample surfaces are reflected in the
OIRD signals.

On the whole, the layered structure and anisotropy prop-
erty of invisible-bedding shale are hard to be directly detected.
Deep learning method, which is useful for revealing the rich
information in the data, was employed to calculate the OIRD
imaging data. Fig. 4 shows the data preparation and deep learning
calculation. The OIRD scan data file is used directly as input
data without conversion to an image. Originally, these wave-
form elements were two-dimensional spatial sequence data. In
order to adapt to the conventional convolutional neural network
architecture, these elements are divided into several 50 × 250
two-dimensional data according to the difference between the
horizontal and vertical selection methods. The entire data set is
divided into three subsets, including training, validation, and test
data sets.

Fig. 5(a) shows the output image associated with the prob-
ability value obtain image classification after the Re{∆p − ∆s}
signal obtained by the shale core is substituted into the deep
learning neural network. The output signal strength differences
show the change in the dielectric properties of the shale core
surface as a function of position. Multiple stripes are parallel to
the 1 mm side and perpendicular to the 2 mm side. The width of
the secondary laminate was found to range from a few microns
to tens of microns. Figs. 5(b) and (c) show 3-D images of two
randomly selected regions in the output data. The resolution of
the image is significantly improved compared to the experimental
results of shale anisotropy in Fig. 3. In these figures, two or three
beddings can be clearly seen. In these two regions, the width of
the peak area and the distance between the continuous peaks are
5–30 µm, which is consistent with the actual stratification of the
shale. Therefore, this deep learning model based on convolutional
neural networks can be used to identify OIRD image data of shale
containing bedding.

4. Discussion

The layered structures of invisible-bedding shale is clearly re-
flected by the OIRD image combined with deep learning calcula-
tion. In order to detect the structural information and validate the

Fig. 5. The calculated OIRD image for the invisible-bedding shale based on
the deep learning network. (a) A two-dimensional image of the output data
associated with the probability value. A number of stripes were obtained parallel
to the 1 mm side and perpendicular to the 2 mm side. (b) A 3D image of the
output data of the selected region b. (c) A 3D image of the output data of the
selected region c.

results obtained by deep learning, SEM, PCA and laser ultrasonic
measurements were performed to analyze the shale scanned by
OIRD. SEM was initially employed to analyze invisible-bedding
shale, shown in Fig. 6. Obvious cracks and orientations of rock
can be barely observed throughout the measured areas.

A PCA method was used on the basis of OIRD signal intensities.
According to the characteristics of OIRD scanning, the 2D signal
data were divided into two types: one based on the vertical
direction as the variance and every horizontal line as a group
and the other related to the horizontal direction as the variance
and every vertical direction as a group. In the PCA calculation,
PC 1, whose variance was maximized, reflected most information
according to the largest contribution rate that can be used to
describe the importance of PCs to the samples. PC 2 reflected the
second-largest amount of information. Herein, the first two PCs
of the OIRD data set are found to describe more than 90% of the
variance within the data. Owing to its large contribution, PC 1 is
of great importance to the analysis of the dielectric properties.
Fig. 7(a) shows the vertical length dependence of the PC 1 and
PC 2 scores obtained from the OIRD signal data in Fig. 3. Both PC
1 and PC 2 scores are altered from −1.0 to 1.5 over the entire
vertical length range, and the average PC 1 as well as PC 2 scores
are equal to approximately zero. None of the PC peaks can be
observed. Consequently, PC 1 and PC 2, which were obtained on
the basis of the OIRD signal, are basically unchanged at all the
locations in the vertical direction, indicating that the dielectric
properties remained uniform.
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Fig. 6. SEM images of shale core measured by OIRD system.

Fig. 7. PCA based on the OIRD scanning image. (a) PC 1 and PC 2 vs vertical length of OIRD scanning area. (b) PC 1 and PC 2 vs horizontal length of OIRD scanning
area.

Meanwhile, we performed a further calculation of the OIRD
signal data in the horizontal direction using a PCA algorithm. As
shown in Fig. 7(b), the PC intensities are different at different
positions, revealing the position-dependent variance of the OIRD
signal properties on the shale-core surface. PC 1 represents the
major information of OIRD signal distribution caused by the shale.
A number of peaks were obtained and were parallel to the vertical
side and perpendicular to the horizontal side. The results showed
that the shale has the adjacent laminations with the width of
∼100–300 µm because of the first-class features located at the
positions of 0.084, 0.384, 0.544, 0.768 and 0.968 mm. The sec-
ondary laminations were hardly detected by PCA. Consequently,
the shale has the bedding structure in a single direction.

Shales are often anisotropic owing to the combined effect of
partial alignment of platy clay particles, layering and kerogen
inclusions. In order to detect the distribution features of similar
components, ultrasonic measurement was employed herein. It
is a general way of determining the isotropic features in rock
that proved that the elastic properties are isotropic in the di-
rections parallel to the bedding, while they are anisotropic in

other directions. To confirm the directional properties in the inner
shale, ultrasonic measurement was employed to scan a 360◦-
circle curve. Fig. 8(a) shows the ultrasonic measurement of the
shale, by which the travel-time map of the shale can be obtained
at different θ values. The time–voltage curves can reveal a peak-
picking program located at the time of the first peak. On the basis
of the travel time τ1, the propagation speeds v were calculated
for the shale at different θ values. Fig. 8(b) plots the angle-
dependent longitudinal wave velocity of the shale. It is clear that
the velocity ranges from ∼3200 to 3800 m/s and that the shale
has a significant anisotropy of velocity with the data symmetry at
the location of 180◦. According to the velocity curve in Fig. 8(b),
there are three maximum data at the degrees of 0◦, 180◦, and
360◦ and two minimum data at the degrees of 90◦ and 270◦. In
the ranges from 0◦ to 90◦ and from 180◦ to 270◦, the velocity
decreases gradually with increasing θ ; in contrast, in the ranges
from 0◦ to 90◦ and from 180◦ to 270◦, the velocity decreases
gradually with increasing θ . These results reveal the propagation
of longitudinal waves reaching a maximum along the bedding
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Fig. 8. Ultrasonic analysis of shale measured by OIRD and SEM. (a) Schematic
of shale sample for input laser. Assuming that there exists a fixed direction of
bedding in the shale, a θ degree can be obtained between the direction of the
laser and that of the bedding. (b) θ-dependent longitudinal wave velocity. Error
bars represent a ±5% fluctuation of relative deviation.

surface of the shale and a minimum along the surface vertical to
the beddings in the shale.

The schematic illustration of the resistance measurements was
presented in Fig. 9(a). The resistance of shale was tested with
the ohm of multimeter and the two electrodes were always kept
1 cm. The parameter θ from 0 to 360◦ is the angle between the
direction of electric field in the first test and the later test. As
shown in Fig. 9(b), the resistance of shale is in M� grade. The

shale has a significant anisotropy, and there is a symmetry at
the location where the θ is 180◦. The maximum resistance of
27 M� is obtained at the direction of electric field. This direction
is perpendicular to the direction of shale. The minimum of 8 M�

was also observed. The periodic changes of θ-R curves predicted
the bedding shale of shale. Similar to the ultrasonic analysis,
resistance measurement can detect the bedding direction, while it
can hardly provide more information such as the shale structure.
OIRD and deep learning can provide a supplementary analysis.

Therefore, OIRD combined with deep learning calculation pre-
dicted the anisotropy of the invisible-bedding shale. Deep learn-
ing approaches such as CNNs are largely responsible for a recent
paradigm shift image and natural language processing. Com-
pared with traditional machine learning algorithms, deep learn-
ing emphasizes learning from massive data, and solves the prob-
lems that traditional machine learning algorithms such as high-
dimensional, redundant, and high-noise existing in massive data
are difficult to handle. Specifically, the stratification of shale in
this paper is reflected in the numerical fluctuations of the OIRD
scan data. Through supervised learning, the layered rationality of
shale in the data has been extracted by the neural network and
stored in the model in the form of weight values. The features in
the image data obtained by the OIRD scan are well extracted by
the convolution operation. Based on the results in this research,
OIRD combined with deep learning is a very promising and practi-
cal technology for detect the shale reservoir, which is very useful
for the conventional techniques in this field.

5. Conclusions

This research focused on using a new combination of OIRD and
deep learning in the investigation of the anisotropy in invisible-
bedding shale. Invisible-bedding shale was found to have lam-
inations with widths of 20–60 µm. The shale had the bedding
structure in a single direction, which can hardly be charac-
terized with a single conventional method. The anisotropy of
dense shale influences many aspects of exploration owing to
the different strength properties of the stratification layers in
shale. Consequently, OIRD combined with deep learning supply a
very promising technology for detecting the anisotropy in dense
shales.
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Fig. 9. (a) Experimental device diagram; (b) Angle dependent measured (dots) and fitted resistance (dotted curve) of the shale sample between 0◦–360◦ .
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