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a b s t r a c t

This paper proposes a new methodology for the optimal selection of the parameters for proton
exchange membrane fuel cell (PEMFC) models. The proposed method is to optimal parameter selection
of the circuit-based model of the PEMFC model to minimize the sum of squared error (SSE) value
between the estimated and the actual output voltage of the PEMFC stack. For minimizing the SSE, a
newly developed model of the Sunflower Optimization Algorithm (DSFO) is proposed. Performance
analysis is performed based on two practical models including NedSstack PS6 PEMFC and Horizon
500-W PEMFCs from the literature and the results have been compared with the empirical data and
also some state of art methods including Seagull Optimization Algorithm (SOA), Multi-verse optimizer
(MVO), and Shuffled Frog-Leaping Algorithm (SFLA). Final results indicate 2.18 and 0.014 SSE value for
NedSstack PS6 PEMFC and Horizon 500-W open cathode PEMFC, respectively which are the minimum
values compared with the other compared methods.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Energy has been turned into a key driver of growth and de-
velopment in the world, and energy consumption alongside the
minimization of losses is an indicator for measuring the de-
velopment of each country. For years, gasoline and diesel fuel
have been the only sources of energy for transportation, electric-
ity generation and meeting demand (Mohammadi and Ghadimi,
2015; Ahadi et al., 2015; Meng et al., 2020). Given the sharp
increase in demand for fossil fuels in recent years and the non-
renewability of fossil fuels, the likelihood of a strong energy crisis
and the search for new fuels and methods of energy production is
of particular importance. In addition, the heavy pollution caused
by fossil fuels in large cities has created disastrous conditions
for consumers of these energy sources. This has led developed
countries to undertake extensive research to find the right alter-
native to fossil fuels and to explore different options according
to their conditions and resources. One of the most popular al-
ternative options is Hydrogen, which, compared to fuels such as
gasoline, diesel and natural gas (CNG and LPG), because of its
simplified production technology, compliance with environmen-
tal standards and the prospect of an affordable price as one of the
top fuels for energy supply (Hosseini Firouz and Ghadimi, 2016;
Liu et al., 2020).

∗ Corresponding author.
E-mail address: yz19xju@163.com (Z. Yuan).

Fuel cells are a type of energy converters that are adopted
for converting the chemical fuel energy directly into electricity.
Unlike batteries that cannot supply the required energy due to
the limited amount of reactive material in the battery tank, after
a while the fuel cells in the fuel cell are continuously pumped
and the products are continuously discharged, so the fuel cell
can work continuously. It is also highly efficient thanks to the
direct conversion of energy. In the fuel cell, hydrogen gas is
used as a fuel and is produced by its reaction with oxygen, in
addition to electrical energy, water, and heat. In other words, in
this conversion, the photoelectrolysis reaction occurs (Ye et al.,
2020; Nejad et al., 2019).

Proton exchange membrane fuel cell (PEMFC) is a type of
efficient fuel cell that is developed mainly in UAVs and aircraft
to increase flight persistence while providing the capability of
securing the low temperature of the polymer cell for air vehi-
cles, stationary energy generation applications and also portable
energy generation applications (El-Fergany, 2018, 2017). PEMFCs
are growing today due to their quite performance, no noise, no
moving components and no greenhouse gas emissions or emis-
sions, and lower temperature and pressure ranges (Fawzi et al.,
2019).

The optimal design of PEMFCs can decrease the total fix
price and can increase its efficiency. The model should include
electrochemical processes governing the performance of the fuel
cell (Selem et al., 2020). All the models contain ordinary or
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partial differential equations to define the PEMFC characteris-
tics. Modeling PEMFCs has two important advantages. First, it
can be used to simplify the learning of mathematical modeling
of complicated physical phenomena in the PEMFCs and sec-
ond, optimal selection of the variant parameters of the model
for improving its efficiency based on different conditions. Re-
searchers worked on different numerical models to analyze the
designed fuel cell before the manufacturing stage (Cao et al.,
2019; Karimi et al., 2012; Fei et al., 2019; Yu et al., 2019;
Chen et al., 2020). Recently, a big contribution of the PEMFC
modeling is assigned based on the meta-heuristics. For example,
Gray Wolf Optimizer (Ali et al., 2017), Genetic Algorithm (Ariza
et al., 2018), RNA genetic algorithm (Wang et al., 2020), Teaching
Learning–Differential Evolution algorithm (Turgut and Coban,
2016), Salp Swarm Optimizer (El-Fergany, 2018), Cuckoo Search
Algorithm (Zhu and Wang, 2019), Pollination Algorithm (Priya
and Rajasekar, 2019), and hybrid vortex search algorithm and
differential evolution (Zhu and Wang, 2019). These researches
analyze special phenomenon such as buoyancy (Huang et al.,
2020), water management (Bae et al., 2020) and some others in-
vestigate large purposes as it was possible to consider significant
behaviors of the fuel cells (Deng et al., 2020; Goshtasbi et al.,
2020). For example, El-Fergany et al. (2019) proposed a different
method to determine the indefinite parameters of a PEMFC. The
optimization of the method was based on Whale Optimization Al-
gorithm (WOA). the study considered seven unknown parameters
that should be selected optimally based on the proposed method.
The purpose of WOA was to minimize the cost function of some
conditional constraints. The proposed method was applied to four
several case studies and the results were compared with Genetic
Algorithm (GA) as a popular method to show its superiority.

Isa et al. (2019) presented a comparative study on the opti-
mal estimation of the PEMFC parameters based on two different
meta-heuristics. Dragonfly Algorithm (DA) and Ant Lion Opti-
mizer (ALO) were used in the analysis and the results were
compared with each other in terms of efficiency. The results
indicated that using ALO gives better results than the DA.

In addition to several advantages of the meta-heuristic algo-
rithms for modeling of the PEMFCs, some hybrid and improved
works have been also based on meta-heuristics to improve their
shortcomings like their premature convergence, their accuracy,
and their local optimization. for instance, Chen and Wang (2019)
introduced another bio-inspired technique based on the Cuckoo
Search (CS) algorithm to the optimal selection of the PEMFC
model parameters. The method also utilized an explosion opera-
tor to develop the exploration of the algorithm. Numerical analy-
sis of some case studies indicated that the presented CS algorithm
gives better efficiency in terms of accuracy and convergence.

Cao et al. (2019) modeled PEMFC based on considering the
experimental data and using a developed version of the Seag-
ull Optimization Algorithm (SOA). The purpose was to present
an optimal design to simulate the PEMFC by optimal selection
of unknown parameters of the model. Simulation results were
investigated based on two case studies to show the algorithm
capability. The method was also compared with some different
algorithms to show the superiority of the algorithm.

Xu et al. (2019) proposed a simple two-fold optimized method
for PEMFC model parameter identification. The optimization
method is a Nelder–Mead simplex algorithm based on the ea-
gle strategy based on the JAYA algorithm for optimal estimat-
ing of the model unknown parameters. The method efficiency
was investigated based on two experimental case studies with
seven and nine unknown parameters. The results of the proposed
method were compared with the standard JAYA algorithm and
also 4 other newly reported bio-inspired algorithms to show its
better performance.

Aghajani and Ghadimi (2018) introduced another technique
for the optimal selection of a PEMFC based on a Hybrid method
of the Gray Wolf Optimizer (GWO) algorithm. The proposed GWO
algorithm was hybridized by mutation and crossover operators
to achieve better performance for the model. The proposed al-
gorithm was first validated by some different bench functions to
show its capability and then utilized for efficient determining of
the PEMFC model.

Liu et al. (2017) proposed a method for modeling a PEMFC
by considering the channel shape design. The study designed
an optimal structure for the channel of the fuel cell based on
a meta-heuristic wave-like structure. The method effect on the
fuel cell has been analyzed over a 3D and non-isothermal model.
Simulation results indicated that the efficiency of the design
approach compared with fuel cells with a basic structure is better.

In 2019, Gomes et al. introduced a new algorithm based on the
particular behavior of the sunflowers for searching the best ori-
entation towards the sun. Literature review shows that the pro-
posed algorithm despite being new gives good balancing between
the exploitation and exploration in the optimization process.
Besides, the algorithm has the ability to keeping higher diversity
to get the optimal cost. The only problem of this algorithm is its
premature convergence. These features attracted us to design a
developed version of this algorithm for the purpose of PEMFC
parameter identification. The main innovations of the presented
study have been briefly given below:

– New Technique for Optimal Estimation of the PEM fuel cell
(PEMFC) was proposed.

– The purpose was to the optimal selection of the parameters
of the Circuit-based PEMFC model.

– The method was based on minimizing the sum of squared
error (SSE) between the estimated and the actual output
voltage.

– Newly developed model of the Sunflower Optimization Al-
gorithm was proposed for optimization.

– The results were compared with empirical data and some
state-of-the-art meta-heuristics.

2. PEMFC model description

In the present section, the circuit-based modeling of a PEMFC
stack has been explained. Carmine’s model (Gollou and Ghadimi,
2017) is considered as the primary inspiration. Before modeling
of the PEMFC, a detailed explanation about this stack should be
considered.

By consider Fig. 1, a PEMFC stack contains three main parts
including anode and cathode, and electrolyte. The electrolyte
that is placed between the membrane and these two electrolytes
(anode and the cathode) is utilized for separating them from each
other. As can be seen from Fig. 1, in the anode side, a catalyst
is adopted for reacting by the hydrogen to generate a negatively
charged electron and a positive charge ion. The proton moves
over the electrolyte so long as the electron passes over the circuit
to produce the current. At the cathode side, ions and electrons
react with oxygen and generate heat and water. The maximum
voltage generated by a PEMFC cell is about 0.7 V that is enough
to light a small lamp. Therefore, to use it for applications with
more required voltage, it should be combined in series by some
other cells. The main reaction of a PEMFC for the Anode pole is
as follows:

H2 → 2H+
+ 2e− (1)

And its reaction for the Cathode pole is:

4H+
+ O2 + 4e−

→ 2H2O (2)
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Fig. 1. A typical structure of a PEMFC.

Fig. 2. The electrical circuit equivalent of a PEMFC.

Finally, the overall base reaction for the PEMFC is as follows:

H2 + O2 → 2H2O (3)

As aforementioned, determining the model of a PEMFC is a
big deal for the proper designing of this device. Because some
parameters of the PEMFC do not give by the manufacturer, they
should be obtained accurately for proper modeling.

Fig. 2 shows the electrical circuit equivalent of a PEMFC.
By considering this figure, the output voltage of the PEMFC is
achieved by the following:

VOUT = E − Va − Vc − VΩ (4)

where, Va is the activation loss voltage, Vc is the concentration
losses voltage, VΩ is the ohmic losses voltage, and E describes
the Nernst (reversible) potential that is achieved as follows:

E = E0
0 − κT − λeI (s)

τes
τes + 1

+
RT
2F

(
PH2

√
PO2

)
(5)

where, T describes the fuel cell temperature, F represents the
Faraday constant (96.487 kC/mol), E0

0 determines the standard
reference potential, λe represents a constant factor (Ω), κ defines
experimental constant (V/K ), and PH2 and PO2 represent the
hydrogen and the oxygen partial pressures (Pa).

The standard value for the standard reference potential is
extracted from Mirzapour et al. (2019) (E0

0 = 1.229 V). Based on
several researches that reported in the literature, they concluded
that for defining of the fuel cell stack model, the overall param-
eters of the cells should be obtained together. In return, there
are some other researches that described the specified differences
between the membrane-electrode connection voltage levels of
the identical fuel cells with the same conditions (Firouz et al.,

Table 1
The comprehensive limitation of the βi parameters.
Parameter Minimum value Maximum value

β1 −0.954 −0.946
β3 7.4 × 10−5 7.8 × 10−5

β4 −1.98 × 10−4
−1.88 × 10−4

2016). Based on the explanations, the optimal selection of the E0
0

has a high priority. So, this parameter is considered as one of the
parameters that should be optimally achieved. Based on Firouz
et al. (2016), λe = 3.3 � and τe = 80 s. However, because the
manufacturer achieves this value based on its own conditions that
has a little uncertainty in different situations. Therefore, here, the
value of the λe and τe are also considered for optimal estimation.

In addition to the above parameters, the activation loss voltage
includes different unknown parameters that should be properly
selected. The mathematical model for the activation loss voltage
is as follows:

Va = β1 + β2 × T + β3 × T × ln (CO2) + β4 × T × ln (I) (6)

where, I describe the PEMFC current, βi represents the ith pseudo-
experimental parametric coefficient, and CO2 determines the
oxygen concentration at the cathode/gas interface (mol cm−3)
that is mathematically modeled as follows:

CO2 =
pO2

50.8 × 107 × e
(

−498
T

) (7)

Table 1 illustrates the comprehensive limitation of the βi
parameters from Hamian et al. (2018).

And the value of the β2 is achieved as follows:

β2 = 0.003 + 0.0002 ln (A) + 43 × 10−6 ln
(
CH2

)
(8)

where, CH2 describes the Hydrogen concentration at the anode
membrane/gas interface (mol cm−3) and is achieved as follows:

CH2 =
PH2 × 10−7

10.9 × e
(
77
T

) (9)

In addition to the above variants, the ohmic resistance is a
term that models the PEM resistance for transferring the protons
and the electrode and also the collector plate for transferring
electrons. Based on Leng et al. (2018), the mathematical model
for this term is as follows:

Rohm = Rmem + Rt (10)

where, Rt describes the equivalent resistance for the transferred
protons over the membrane and is considered 300 µ� and Rmem
represents the membrane resistance (Ω) and is achieved as fol-
lows (Leng et al., 2018):

Rmem = 181.6×
l
A

×
1 + 0.03 ×

I
A + 0.062 ×

( T
303

)2
×

( I
A

)2.5(
ϕ − 0.634 −

3I
A

)
× e

(
4.18× Tc−30

Tc

) (11)

where, l represents the PEM fuel cell thickness (µm) and ϕ <
23 (Akbary et al., 2019) describes a regulative parameter that is
affected by the relative humidity, the membrane age, and the
anode gas stoichiometric ratio.

The mass transport losses decrease the reactant’s concentra-
tion on the surface of electrodes. The mathematical model of
concentration losses is as follows (Ebrahimian et al., 2018).

RCONC =
B
I

× ln
(

Il
Il − I

)
(12)

where, B represents a coefficient that is experimentally achieved
based on the operation state of the cells.



Z. Yuan, W. Wang, H. Wang et al. / Energy Reports 6 (2020) 662–671 665

This reason made us consider also this parameter as another
parameter for parameter estimation.

By considering Fig. 1, it can be seen that the model has also a
capacitor that simulates the double-layer charging effect between
the membrane and porous cathode. The voltage of this capacitor
based on the circuit is equal to:

VC =

(
I − C

dVc

dt

)
× (RCONC + RACT ) (13)

The value of the capacitance has always some uncertainty that
is made by the porous behavior of the PEMFC. Therefore, the
capacitance is considered as another parameter that should be
optimally estimated.

Finally, Il stands for the current limitation and is achieved as
follows (Ebrahimian et al., 2018).

Il = Nr × D × F × Cb × τ−1 (14)

where, D describes the coefficient of the effective diffusion for
reacting, Nr determines the number of employed electrons for the
reaction, τ is the diffusion layer thickness, and Cb represents the
bulk concentration.

3. Materials and methods

3.1. Objective function

For simple and optimal parameters identification of the PEMFC
model, we need to have some experimental data from the studied
PEMFC. This research presents a new methodology for optimal
identification of the unknown parameters and the parameters
with uncertainties that are explained in the previous section. The
method is based on minimizing the sum of squared error (SSE)
value between the estimated data and the actual data for the
output voltage of the PEMFC stack. The measure SSE is selected as
the cost function because it is one of the widely used functions in
the literature (Khodaei et al., 2018). Therefore, briefly, the main
purpose of this research is to optimal parameters identification
of a PEMFC by minimizing the following cost function:

Cost function =

N∑
i=1

(
Vm,FC (i) − Ve,FC (i)

)2 (15)

where, N represents the sampling data number, and Vm,FC and
Ve,FC determine the experimental and the estimated values for the
output voltage of the PEMFC model.

Subject to the constraints given in Table 2, β2 can be achieved
based on Eq. (8).

The model is simulated based on the MATLAB platform and
based on the electrical circuit equivalent that is given in Fig. 2.

3.2. Balanced sunflower optimization (BSFO) algorithm

Optimization is a process for tuning the inputs, the mathemat-
ical process, the features, or testing to obtain the optimum out-
put (Bagal et al., 2018; Gheydi et al., 2016; Firouz and Ghadimi,
2016). The input contains a series of variables: the process or
function known as the objective function, the fitness function, or
cost function and the output that is the fitness or cost. There are
several techniques to solve an optimization problem (Cao et al.,
2019; Yu et al., 2019). Some of these methods are inspired by
natural practices. All the methods begin with an initial set of
variables and then move on until the maximum or the minimum
absolute objective function is achieved. These algorithms attempt
to combine the principles of heuristic methods to find a way
to efficiently search for an answer space and are called meta-
heuristics. In short, meta-heuristic algorithms are global search

strategies and offer steps and criteria that are very effective in
avoiding local optimization (Eslami et al., 2019; Razmjooy and
Ramezani, 2016).

A significant factor in these approaches is the dynamic bal-
ance between Intensification and diversification. Diversification
stands for extensive search in the answer space, and Intensifi-
cation means taking advantage of the experiences gained in the
search process and focusing on the more prominent areas of
the answer space. Therefore, by balancing these two strategies,
on the one hand, the search leads to areas of better answering
space and on the other hand, wastes no more time in the part
of the solution space that was previously reviewed or included
inferior solution. There are various types of meta-heuristic al-
gorithms such as Emperor Penguin Optimizer (EPO) (Dhiman
and Kumar, 2018), Variance Reduction of Gaussian Distribution
(VRGD) (Gheydi et al., 2016), Owl Search Algorithm (OSA) (Jain
et al., 2018), Butterfly Optimization Algorithm (BOA) (Arora and
Singh, 2019), World Cup Optimization (WCO) algorithm (Bagal
et al., 2018), Improved Cat Swarm Optimization (ICSO) algo-
rithm (Kumar and Singh, 2018), Moth Search Algorithm (Wang,
2018), and sunflower optimization (SFO) algorithm (Gomes et al.,
2019).

3.2.1. Basic sunflower optimization (SFO) algorithm
The sunflower optimization (SFO) algorithm is one of the

newest meta-heuristics that is introduced by Gomes et al. (2019).
The algorithm is designed by considering the particular behavior
of the sunflowers for searching the best orientation towards
the sun. In the SFO algorithm, the pollination process has been
simulated based on random generating of the seeds that are done
by considering the minimum distance between the flower i and
the flower i + 1. However, there are millions of pollen gametes in
each natural flower, to obtain a fast solution in the optimization,
the algorithm assumes only one generated pollen gamete for each
sunflower with individual reproduction. In addition to the above
feature, the algorithm simulates the sunflower inverse square law
radiation which has an inversely proportional with the radiation
intensity and the square of the distance, such that the radiation
intensity value reduces directly by increasing the distance. The
main objective of the algorithm is to minimize the distance be-
tween the plant and the sun to get sunlight and to stabilize them
in its vicinity.

In addition, the farther away the less heat is received. This
behavior helps the algorithm to get better exploration to obtain
the global solution (sun) as it is possible. The received heat (H)
from the ith the plant is formulated below:

Hi =
Ps

4πd2i
(16)

where, d describes the distance between a plant and the current
best and Ps represents the source power.

The mathematical model of the sunflowers direction into the
sun is formulated as follows:
−→
Di =

Z∗
− Zi

∥Z∗ − Zi∥
(17)

where, Z∗ and Z describe the best plantation and the current
plantation, respectively.

The model of moving the sunflowers into the sun direction, Si
is as follows.

Si = ω × ∥Zi + Zi−1∥ × Pi (∥Zi + Zi−1∥) (18)

where, ω determines the inertial displacement of the plants, and
Pi (∥Xi + Xi−1∥) represents the pollination probability.

The updating process for the algorithm is different for closer
and farther candidates to the sun. For closer candidates, the algo-
rithm movement contains smaller steps, while for other distant



666 Z. Yuan, W. Wang, H. Wang et al. / Energy Reports 6 (2020) 662–671

Table 2
The range of all the parameters which should be considered in the estimation.
Parameter Minimum range Maximum range Unit Parameter Minimum range Maximum range Unit

E0
0 0.1 2 V λe 0 0.01 �

β1 −1.2 −0.85 – β3 3.6×10−5 9.8 × 10−5 –
β4 −26×10−5

−9.54 × 10−5 – l 51 89 m
A 90 130 cm2 B 0.14 0.5 V
ϕ 10 23 – C 0.1 10 F

candidates, the algorithm movement is done normally. The max-
imum step for the candidates is achieved based on the following
equation:

Smax =
∥Zmax − Zmin∥

2 × Np
(19)

where, Np describes the total number of plants, and Zmax and Zmin
stand for the maximum and the minimum restrictions.

The mathematical formulation for updating the plantation is
as follows:

Z⃗i+1 = Z⃗i + Si ×
−→
Di (20)

The SFO algorithm starts with a set of random populations.
Afterward, the best solution has been achieved by calculating the
cost function and then updating the process has been applied to
update the position of the plats toward the sunlight.

3.2.2. Developed sunflower optimization (DSFO) algorithm
However SFO has different advantages (Gomes et al., 2019), it

has a big drawback due to its premature convergence in some
problems. This objection led us to design a newly developed
version of SFO for the considered optimization problem. The
first development is to use self-adaptive weighting to adjust the
speed of the algorithm tendency to achieve the best solution. For
updating the searching behavior of the plants, a random value has
been considered based on the plantation terms. In this condition,
to make a balance between exploration and exploitation in the
algorithm, the exploration starts with a high divergence search-
ing, while at final steps, it searches locally in the search space.
This improvement is formulated as follows:

Z⃗new
i+1 =

⎧⎪⎨⎪⎩Z⃗i+1 + γ × Si ×
−→
Di × f

(
Z⃗i+1

)
, rand > 0.5

Z⃗i+1 − γ × Si ×
−→
Di × f

(
Z⃗i+1

)
, rand ≤ 0.5

(21)

where,

γ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎝ f

(
Z⃗best
i+1

)
f
(
Z⃗worst
i+1

)
⎞⎠2

, if f
(
Z⃗worst
i+1

)
̸= 0

1 , if f
(
Z⃗worst
i+1

)
= 0

(22)

where, f
(
Z⃗worst
i+1

)
, and f

(
Z⃗best
i+1

)
represent the function cost values

for the worst and best solutions for plantation, respectively.
This improvement increases the exploration of the algorithm

to reduce the difference between the best and the worst so-
lutions. This study also uses the logistic map mechanism to
more improving the system to escape from premature conver-
gence (Rim et al., 2018). The logistic map is a chaos mechanism
that is usually utilized for resolving the local optimum of the
optimization problems. The logistic map performs based on em-
ploying pseudo-random values (Yang et al., 2007). By applying
this mechanism on the total number of plants, the following
updated equations have been made:

Nnew
p+1 = Nnew

p + βi × Nnew
p (23)

Table 3
The utilized functions for the verification.
Formulation Range F∗

F1 = x × sin (4x) + 1.1y × sin (2y) 0 < x, y < 0 −18.55

F2 = 0.5 +

sin 2
(√

x2 + y2 − 0.5
)

1 + 0.1
(
x2 + y2

) 0 < x, y < 2 0.5

F3 =
(
x2 + y2

)0.25
×

sin
(
30

(
(x + 0.5)2 + y2

)0.1)
+ |x| + |y|

[−∞, ∞] −0.25

F4 = 90 +

9∑
i=1

(
x2i − 10 cos (2πxi)

)
[−5.12,5.12] 0

Table 4
Selected parameters for the presented DSFO algorithm.
Parameter Value

Number of iterations 100
Number of sunflowers 120
The sun coefficient 0.6
The days for the algorithm 100

where,

βi+1 = 4 × (βi − β2
i ) (24)

where, βi describes the value for the ith chaotic iteration, and the
initial value βi describes a random value in the range 0 and 1.

Fig. 3 shows the flowchart diagrams of the proposed DSFO.

3.3. Algorithm validation

To analyze the algorithm efficiency in terms of accuracy and
precision, four popular benchmark functions have been employed
and the results of the algorithm are compared with some new
meta-heuristics consisting of Deer Hunting Optimization Algo-
rithm (DHOA) (Brammya et al., 2019), Emperor Penguin Opti-
mization (EPO) (Dhiman and Kumar, 2018), and the original SFO.
More information about benchmarks has been given in Table 3.

Table 4 indicates the selected parameters for the proposed
DSFO algorithm that are achieved based on trials and errors.

In the following, by considering the above information, the
methods including proposed DSFO, DHOA, EPO, and SFO have
been verified. This validation is illustrated in Table 5. Based on
Table 5, four different measures have been employed. The first
measure is the Median that calculates the median value of the
objective values. The next measure is std which has the duty
for determining the standard deviation. Finally, Minimum and
Maximum determine the minimum and the maximum values for
the algorithms, respectively.

The median value and the standard deviation (std) of the
algorithms have been illustrated based on 30 runs. As can be
observed, the presented DSFO gives almost the best results except
for standard deviation in some functions compared with DHOA
and EPO (the first function) algorithm. But, after applying the
proposed DSFO, it gives the best results compared with other
algorithms. Fig. 4 shows the graphical results of the cost value
minimization for the algorithms.
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Fig. 3. The diagram flowchart of the proposed DSFO algorithm.

Table 5
The validation of the proposed algorithm toward the literature algorithms.

Measure DHOA (Brammya
et al., 2019)

EPO (Dhiman and
Kumar, 2018)

SFO (Pierezan and
Coelho, 2018)

DSFO

F1 Maximum
Minimum
Median
std

−9.53
−18.51
−15.52
3.32

−10.19
−18.52
−15.96
2.81

−10.11
−18.47
−15.58
2.91

−12.04
−19.74
−16.37
1.96

F2 Maximum
Minimum
Median
std

0.5217
0.500
0.513
0.012

0.513
0.500
0.507
0.006

0.507
0.500
0.503
0.005

0.500
0.500
0.500
0.000

F3 Maximum
Minimum
Median
std

0.075
−0.225
−0.108
0.135

0.152
−0.250
−0.246
0.412

−0.244
−0.245
−0.244
0.251

−0.115
−0.25
−0.19
0.025

F4 Maximum
Minimum
Median
std

15.83
3.142
5.375
3.160

33.27
0.000
12.06
7.00

7.57
0.000
0.179
0.24

1.165
0.000
0.073
0.012

4. Simulation results

In this section for validating the capability of the presented
approach, two case studies have been simulated and analyzed.
The simulation results also compared with some other meta-
heuristic-based PEMFC estimators to verify and to show the
proposed method’s excellence. The compared algorithms in this
study are based on Seagull Optimization Algorithm (SOA) (Cao
et al., 2019), Multi-verse optimizer (MVO) (Fathy and Rezk, 2018),
and Shuffled Frog-Leaping Algorithm (SFLA) (Khodaei et al., 2018).

The population for all algorithms is considered 100 and the
maximum iteration is considered 1000. The analysis of the pre-
sented method is performed by comparing the results with the
experimental data that is extracted before. Table 6 illustrates
the required parameters that are adopted for the algorithms. the

values for these algorithms have been achieved based on trials
and errors after several tests.

In the following, the study on the case studies has been ex-
plained.

4.1. NedSstack PS6 PEMFC

The NedSstack PS6 is a PEMFC stack with 6 kW rated power.
The operating data of this PEMFC is completely explained in El-
Fergany (2018). For the NedSstack PS6, some necessary features
are different from Table 2 that are illustrated in Table 7.

By considering the above characteristics as the constraints
of the NedSstack PS6 and applying the DSFO algorithm on the
system, the results indicate good achievements for the proposed



668 Z. Yuan, W. Wang, H. Wang et al. / Energy Reports 6 (2020) 662–671

Fig. 4. The comparison results of cost value minimization for the algorithms.

Table 6
Main parameter setting for the algorithms.
Algorithm Parameter value

SOA (Cao et al., 2019) Control parameter (A) [2, 0]
fc 2

SFLA (Khodaei et al., 2018) Number of frogs (P) 200
Number of memeplexes 20

MVO (Fathy and Rezk, 2018) WEPmax 0.1
WEPmin 0.9

DSFO Pollination 0.6
Days 100
Sun 1

Table 7
The necessary characteristics of the NedSstack PS6.
Parameter Minimum range Maximum range Unit

A 110 250 cm2

l 1 × 10−5 1.5 × 10−5 m

approach. For more details, pay attention to Table 8. Fig. 5 shows
the sum square error for the compared algorithms. As can be
observed from Fig. 5, the error value for all the algorithms is satis-
fying and among these algorithms, the proposed DSFO algorithm
gives the best results with the minimum SSE.

The optimal selected parameters for NedSstack PS6 based on
the algorithms are summarized in Table 8.

Fig. 6 shows the estimated voltage–current profile for the 5
kW NedSstack PEMFC based on DSFO.

Fig. 6 indicates that using the proposed DSFO algorithm gives
a promising agreement by the experimental data with the mini-
mum value for SSE between the estimated voltage and the actual
voltage. To show the convergence ability of the proposed DSFO,
the convergence profile of the algorithm is shown compared with
other algorithms reported in the literature.

Fig. 5. SSE diagram of the NedSstack PS6 for the algorithms.

Fig. 6. The estimated V-I profile for the NedSstack PEMFC based on DSFO.

As can be observed from Fig. 7, the convergence speed in the
DSFO algorithm is the fastest among the others and this advan-
tage is considered alongside a good accuracy for the parameter
solutions. Fig. 7 is achieved based on the mean value of 30 runs.
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Table 8
The optimal estimated parameters for the NedSstack PS6 based on different algorithms.
Parameter Method Unit

DSFO SFLA (Khodaei
et al., 2018)

SOA (Cao et al.,
2019)

MVO (Mirjalili
et al., 2016)

E0
0 1.32 1.32 1.28 1.26 V

β1 −1.03 −0.75 −0.68 −0.62 –
β3 × 10−5 7.84 7.96 6.48 6.27 –
β4 × 10−5

−9.48 −9.48 −9.48 −9.48 –
A 210.58 200.73 230.27 202.41 cm2

ϕ 15.93 14.85 14.36 1.227 –
λe 0.01 0.01 0.01 0.01 �

l × 10−5 1.2 1.4 0.8 0.9 m
B 0.072 0.069 0.068 0.070 V
C 5.17 5.23 4.82 5.19 F

Fig. 7. The convergence profile of the algorithm for the NedSstack PS6 PEMFC
stack.

Fig. 8. The overall structure of the test benchmark.

4.2. 500-W horizon PEMFC

The Horizon Model is a PEMFC stack with 500 W rated power.
The operating data of this PEMFC is completely explained in Saleh
et al. (2016). The analyzed test benchmark has been shown in
Fig. 8.

As can be observed from the figure, the 500-W Horizon PEMFC
system contains an air-cooled self-humidification. Two axial fans
have been used for the cooling and conditioning of the cathode
in the PEMFC. Two inlet and outlet valves are also adopted for
the anode arm of the stack and the inlet valve has been supplied
by dry hydrogen with a flow rate of [0, 0.12]Ls−1. The nitrogen
and the condensed water evacuated from the outlet valve every
15 s for refilling the anode by fresh hydrogen. Table 9 illustrates

Table 9
Technical characteristics of the Horizon 500-W open cathode PEMFC (Saleh et al.,
2016).
Parameter Value Unit

Max. current 40 A
PO2 0.9 atm
Rated H2 consumption 8 SLPM
PH2 0.55 atm
NFC 35 –
Rated performance 1.9 V @ 23 A –
l 24 µm
Rated power 495 W
Ambient temperature 4–29 ◦C
Max stack temperature 64 ◦C
Jmax 0.45 cm−2

A 53 cm2

Fig. 9. SSE diagram of the Horizon 500-W open cathode PEMFC for the
algorithms.

the technical characteristics of the Horizon 500 W open cathode
PEMFC (Saleh et al., 2016).

Fig. 9 shows the sum square error of the Horizon 500-W
PEMFC for the compared algorithms. As can be observed, like the
previous example, the error value for all the algorithms is promis-
ing and among these algorithms, the proposed DSFO algorithm
gives the best results with the minimum SSE.

Table 10 indicates that the optimal parameters that are esti-
mated based on the presented algorithm compared with other
studied algorithms.

To show the convergence ability of the proposed DSFO in the
Horizon 500-W open cathode, the convergence profile is shown
in Fig. 10.

The voltage profile for the obtained parameters and the ex-
perimental data is shown in Fig. 11. It can be concluded that the
estimated model based on DSFO can properly follow the reference
output voltage of the PEMFC stack with a satisfying agreement.

As can be seen from the above results, the proposed method
could provide the required precision for modeling the PEMFC
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Table 10
The optimal estimated parameters for the Horizon 500-W open cathode based on different algorithms.
Parameter Method Unit

DSFO SFLA (Khodaei
et al., 2018)

SOA (Cao et al.,
2019)

MVO (Mirjalili
et al., 2016)

E0
0 1.28 1.26 1.15 1.12 V

β1 −0.84 −0.82 −0.82 −0.75 –
β3 × 10−5 8.47 7.85 8.21 8.36 –
β4 × 10−5

−14.9 −14.7 −14.02 −14.8 –
A 52 50 56 51 cm2

ϕ 14.92 13.91 14.57 14.38 –
λe 0.02 0.02 0.02 0.02 �

l × 10−5 0.86 1.05 0.83 0.80 m
B 0.065 0.058 0.063 0.064 V
C 4.92 4.18 5.03 4.62 F

Fig. 10. The convergence profile of the algorithm for the Horizon 500-W PEMFC
stack.

Fig. 11. The estimated voltage profile for the Horizon 500-W PEMFC stack based
on DSFO.

system. The only gap of this study can be neglecting the system
uncertainties for the modeling. To do so, we have to find a
practical experimental data and solve it with a reliable method
like interval analysis and affine analysis.

5. Conclusion

This study presented a new approach for optimal estimation of
the parameter in proton exchange membrane fuel cell (PEMFC).
The estimation method was based on finding the optimal values
for unknown parameters of a circuit-based model of PEMFC.
To obtain these unknown parameters, a cost function based on
the sum of squared error (SSE) value between the estimated
and the actual output voltage of the PEMFC stack was intro-
duced. To minimize the SSE, a newly developed model of the
Sunflower Optimization Algorithm (DSFO) was introduced. For
performance analysis of the presented technique, two practical
models including NedSstack PS6 PEMFC and Horizon 500-W open
cathode PEMFC from the literature were studied. The models
were simulated based on MATLAB R2017b platform and the fi-
nal results of the DSFO were compared with the basic Seagull
Optimization Algorithm (SOA), Multi-verse optimizer (MVO), and

Shuffled Frog-Leaping Algorithm (SFLA). Final results showed bet-
ter efficiency of the presented method for both case studies in
comparison with the other algorithms and its higher convergence
in terms of convergence, accuracy, and precision, such that the
SSE for NedSstack PS6 PEMFC and Horizon 500-W open cathode
PEMFC based on the proposed method are 2.18 and 0.014 that are
the minimum values compared with the other analyzed methods.
In the future study, the PEMFC model will be modeled by consid-
ering its uncertainties to design a pseudo-optimal, but a reliable
model for the system.
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