
Carlini, Maurizio; Castellucci, Sonia; Mennuni, Andrea; Morelli, Stefano

Article
Numerical modeling and simulation of pitched and curved-roof solar
greenhouses provided with internal heating systems for different
ambient conditions

Energy Reports

Provided in Cooperation with:
Elsevier

Suggested Citation: Carlini, Maurizio; Castellucci, Sonia; Mennuni, Andrea; Morelli, Stefano (2020) :
Numerical modeling and simulation of pitched and curved-roof solar greenhouses provided with
internal heating systems for different ambient conditions, Energy Reports, ISSN 2352-4847, Elsevier,
Amsterdam, Vol. 6, Iss. 3, pp. 146-154,
https://doi.org/10.1016/j.egyr.2019.10.033

This Version is available at:
https://hdl.handle.net/10419/243987

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.egyr.2019.10.033%0A
https://hdl.handle.net/10419/243987
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Available online at www.sciencedirect.com

ScienceDirect

Energy Reports 6 (2020) 146–154
www.elsevier.com/locate/egyr

Tmrees, EURACA, 04 to 06 September 2019, Athens, Greece

Numerical modeling and simulation of pitched and curved-roof solar
greenhouses provided with internal heating systems for different

ambient conditions
Maurizio Carlini, Sonia Castellucci, Andrea Mennuni∗, Stefano Morelli

University of Tuscia, 01100 Viterbo, Italy

Received 19 September 2019; accepted 28 October 2019
Available online 2 November 2019

Abstract

During the past few years, the plant nursery sector has drastically minimized its carbon footprint by using geothermal
systems for heating rather than fossil fuel. This study aims to define the temperature range inside a greenhouse by means of
a multiparametric analysis, with regard to several inner and external conditions imposed. In detail, it has been used the Finite
Element Method (FEM), contained in the modules for the thermal analysis of the COMSOL Multiphysics (CM) software. The
greenhouse structures considered are the most common in the north of Italy and Europe. Through the development of a stationary
study, it has been possible to choose the suitable design solution for the heating standard required for both the floriculture
and the horticulture. A 2D study of the transitory has been implemented with the intent to consider as influential factors the
irradiation and the daily temperature throughout the year. The temperature trend over horizontal direction is investigated to
detect any non-uniformity on the temperature distribution to which floriculture and horticulture plants are exposed. This study
aims to be a starting point for the development of a system to be exploited during the design phase of these kind of greenhouses,
to enhance the functioning relatively to inner and external conditions fluctuations, maximizing the thermal performance.
c⃝ 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Greenhouse cultivation is the most common way to recreate the microclimate conducive to plant growth
throughout the year [1]. The greenhouses are confined environments in which, both as a result of direct solar
radiation and air conditioning systems, the ideal thermo-hygrometric conditions for different crops growing-up are
maintained [2]. The most commonly used materials for wall covering are glassy or rigid plastic films [3], such as
polycarbonate or polymethylmethacrylate. The latter are used especially in horticulture and for ornamental plants
with less restrictive thermal needs. For crops that do not need regular temperature control, their survival is guaranteed
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in a much wider thermal range. The peculiar characteristics that distinguish a greenhouse from other systems of
simple protection are given by the using of air conditioning and heating systems, more than human and machines
accessibility [4–6] These factors require certain height and width, which are volume per unit of covered surface;
in fact, we can talk about greenhouses starting from unit volumes of 1.8 ÷ 2 m3 per square meter of covered
area [7]. The territorial distribution of the various types of greenhouses is strictly influenced by climatic factors. In
the regions of Northern and Central Europe, where winters are cold and summers are characterized by low solar
radiation, there are almost exclusively glass greenhouses [8,9]. In recent years many companies have started to use
polymethylmethacrylate, that is plexiglass [10]. In the regions of the Mediterranean basin, characterized by mild
winters and hot summers with high solar radiation, the most widespread type of greenhouse is characterized by a
curved roof, often tunneled [8–11]. The greenhouse influences the microclimate parameters and consequently the
growth and physiology of the plants placed inside it. The main influences are due to temperature, solar radiation,
air humidity, wind conditions and CO2 concentration in the air. The air temperature in protected plant systems
is related to thermal fluxes due to radiation, convection, conduction and air exchange, which take place by the
external environment through the walls of the greenhouse and by the ground. Depending on the materials used,
the dispersions could be reduced [12]. The optimal temperature for the type of plant chosen, in this case flower,
varies between 17 ◦C and 27 ◦C [7]; for extended periods exceeding temperatures 27 ◦C [6], artificial cooling is
necessary to maintain a suitable microclimate for the vegetable correct growth. Although other parameters as those
aforementioned have to be considered, the study is focused mainly on the thermal exchange between the air inside
the greenhouse and the environment [6], once fixed some heating system configurations. The heating considered for
the study takes place by means of underground or vertical pipes located close to the plants. The fluid flowing through
the pipelines should be heated by exploitation of geothermal energy sources, to reduce emission of pollutants due
to fossil-based fuels usage [13–17] . The implemented geometry models are those of the pitched and curved roof,
referring to Northern and Central Europe conditions [8].

2. Materials and methods

The numerical simulation scenario has been implemented in COMSOL Multiphysics (CM) [18], a finite element
method solver which allows the user to set multi-physical conditions, taking into account different equation
phenomena, simultaneously [19,20]. For the simulation analysis a 2D green house model was considered, focusing
on a vertical section considerably distant from the anterior façade located at x = 0 and from the posterior one in x
= L. The section is then positioned in the middle-located plane, that is at x = L/2. These assumptions were also
justified by the high level of symmetry that should be noticed for the heat transfer phenomena, once both external
and internal conditions are imposed, uniformly. Anyway, a 3D approach has been also implemented to confirm the
previous hypothesis. A remarkable symmetry on heat transfer phenomena was noticed, so a 2D geometry model
has been chosen to reduce computational resources requirements. A parametric sweep has been also implemented
for every scenario, highlighting the influence on internal temperature once varying boundary conditions such as the
incoming radiation flux, due to the solar radiation, and the ambient temperature for each of the considered months
are varied. The thermal features and properties of the materials have been manually initialized by the user in CM
interface. In this case, it was possible to select each domain’s material by choosing it from the built-in material
library of CM: PMMA, also known as plexiglass, or PVC are two of the most used materials as an alternative to the
glass for greenhouse walls and roofs structures; high density polyethylene (PE 100) for heating systems pipelines,
where an out-of-plane high temperature fluid flow is forced. The reason why PMMA is considered as an alternative
to glass is that the last one is both much heavy and fragile than the plexiglass [21]. The solving procedure applied
to each one of the scenarios allows to compute the temperature at different distances from the ground level inside
the greenhouse confined environment (constituted by an air volume) along the horizontal direction. The reason why
the focus was placed on this kind of temperature distribution is that every horizontal gradient should provoke a
different growth condition for every family of plants within the greenhouse in the same period. Indeed, non-uniform
temperature could negatively affect the plants growth. In Table 1, are reported the optimal development temperatures
of two different plant species [7].
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Table 1. Plant survival temperatures for optimal growth.

Species Temperature [◦C]

Horticultural
Tomato 21 – 26
Lettuce 17 – 22
Melon 22 – 28

Floricole
Rose 20 – 24
Chrysanthemum 17 – 21
Gerbera 21 – 27

Finally, Table 2 shows the physical and chemical characteristics of the materials used.

Table 2. Coefficient values.

Parameter Soil Air PMMA PVC Polyethylene Description

k [W/(m K)] 2,5 0,026 0,19 0,1 0,38 Thermal conductivity
ρ [kg/m3] 2650 1,225 1190 1760 959 Density
C p [J/(kg K)] 870 1420 1420 900 1850 Heat capacity at constant pressure

2.1. Definition of external environment and boundary conditions

For parametric sweeps, average outdoor temperatures [22] and radiation [12] values were considered for each
month of the year, as reported in Table 3.

The results of the summer months (May, June, July, August) will not be reported as thermometric conditions
inside the greenhouse are met at this time of year even with heating system disabled. For the underground pipelines
heating system, the number is decreased from 20 to 11 tubes while for the vertical pipeline configuration is varies
from 4 for each series to 3 (considering 7 series). The choice lies in the fact that, after several hypotheses, with
this decrease in the number of vertical tubes it is possible to have an appropriate thermal exchange with plants, not
allowed with a lower or higher number of pipes: indeed, it was not possible to ensure an approximately uniform
temperature on every x-direction and y-direction coordinate.

Table 3. Values of ambient temperature and radiation during the year.

Months Tamb,ext [◦C] I rr [W/m2]

January 10 290
February 12 420
March 15 530
April 18 705
May 22 810
June 26 770
July 30 795
August 30 800
September 27 650
October 21 500
November 16 320
December 11 250

2.2. Definition of pitched roof greenhouse numerical scenario

The implementation of the pitched roof greenhouse scenario has required the definition of both geometric [12]
and environmental parameters, as reported by Table 4. The values shown are the typical ones of the most common
configurations of solar greenhouse in the reference territory (Northern and Central Europe) [8].

Four simulations were carried out by modifying the number of vertical tubes of the internal heating system,
while the in-ground pipelines number was also varied, as shown by Fig. 1.



M. Carlini, S. Castellucci, A. Mennuni et al. / Energy Reports 6 (2020) 146–154 149

Table 4. Implemented parameters for the pitched roof greenhouse.

Parameter Value Description

Tti 30 ◦C Underground pipe temperature
Ttv 25 ◦C Vertical tube temperature
Rti 40 mm Underground pipe beam
Rtv 20 mm Vertical tube radius
Hpl 3,5 m Sidewall Height
Ls 6 m Length of the greenhouse
Hgnd 0,4 m Ground height
Lgnd 6 m Ground length
dyti 0,1 m Distance from the surface of the underground pipes
dytv 20 cm Distance between vertical tubes

Fig. 1. Implemented geometry configurations for the pitched roof solar greenhouse: (a) n. 20 underground pipelines available; (b) n. 11
underground pipelines available; (c) n. 4 × 7 vertical pipelines available; (d) n. 3 × 7 vertical pipelines available.

Each scenario has been solved to obtain the temperature horizontal distribution at fixed distances (10 cm, 30 cm,
50 cm and 70 cm along vertical direction, respectively) from the soil level in the inner structure. This kind of
investigation has been applied to highlight the constancy and uniformity of the temperature which the plants are
exposed to. Evidently, a major thermal overhang could negatively affect the growth of the plant.

2.3. Definition of curved roof greenhouse numerical scenario

The parameters implemented for the curved roof solar greenhouse scenario are shown in Table 5. Additional
parameters such as semi-axis and sector corner angle are related to the construction of the curved roof [3].

An analogue study to the previous conducted for the pitched roof greenhouse has been implemented for the
curved roof structure, investigating the horizontal distribution of temperature for every one of the heating system
configurations reported by Fig. 2.
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Table 5. Implemented parameters for the curved roof greenhouse.

Parameter Value Description

Tti 30 ◦C Underground pipe temperature
Ttv 25 ◦C Vertical tube temperature
Rti 40 mm Underground pipe beam
Rtv 20 mm Vertical tube radius
Hpl 3,5 m Side wall height
Ls 6 m Length of the greenhouse
Hgnd 0,4 m Ground height
Lgnd 6 m Ground length
dyti 0,1 m Distance from the surface of the underground pipes
dytv 20 cm Distance between vertical tubes
a 3 m Semi-axis a
b 1,5 m Semi-axis b
α 180◦ Sector Corner

Fig. 2. Implemented geometry configurations for the curved roof solar greenhouse: (a) n. 20 underground pipelines available; (b) n. 11
underground pipelines available; (c) n. 4 × 7 vertical pipelines available; (d) n. 3 × 7 vertical pipelines available.

3. Results and discussion

3.1. Results from the pitched roof greenhouse numerical scenario

Results from the pitched roof structure simulation scenario, which computes the horizontal distribution of
temperature within the middle cross section plane, are shown in Fig. 3.

From the graphs concerning the underground pipes, it should be noticed that the temperature trend along the
height of the plant is not constant and the greatest difference is found for January and December, as it starts from
28 ◦C at the base and reaches 22 ◦C at the top of the analyzed domain. This shows that the two configurations with
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Fig. 3. Temperature distribution along the horizontal direction of the analyzed cross section plane of the pitched roof greenhouse, at different
height from the ground level: (a) n. 20 in-ground pipes configuration; (b) n. 11 in-ground pipes configuration; (c) n. 4 × 7 vertical pipelines
configuration; (d) n. 3 × 7 vertical pipelines configuration.
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Fig. 4. Temperature distribution along the horizontal direction of the analyzed cross section plane of the curved roof greenhouse, at different
height from the ground level: (a) n. 20 in-ground pipes configuration; (b) n. 11 in-ground pipes configuration; (c) n. 4 × 7 vertical pipelines
configuration; (d) n. 3 × 7 vertical pipelines configuration.
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the underground pipes do not allow the proper development of the plant. After analyzing both configurations it is
clear that the one with the vertical tubes, unlike the one with the underground pipes, manages to keep the average
temperature along the height of the plant almost constant and below the limits imposed (for all year months where
the heating is enabled). It is therefore much more efficient to configure with vertical tubes for two reasons, the
first because the temperature of the underground pipes must necessarily be higher than the vertical ones, since in
addition to the thermal exchange for convection is also present the thermal exchange for conduction, the second
reason is that the vertical pipes allow to have a temperature difference between the base and apex of the plant of
up to 3 ◦C and the underground pipes instead reach up to 6 ◦C , this temperature difference between apex and base
is too high for plant development [6].

3.2. Results from the curved roof greenhouse numerical scenario

Results from the pitched roof structure simulation scenario, which computes the horizontal distribution of
temperature within the middle cross section plane, are shown in Fig. 4. Even in the case of a greenhouse with
a curved roof provided with underground pipes, temperatures exceed the limits allowed for the survival of plants.
The same is true for temperature differences between apex and base that are too high.

Temperatures obtained with vertical tube configurations are within the expected ranges for the development of the
plant, and even if the study was carried out for the flowering crops, it also gave excellent results for the horticultural
species.

4. Conclusions

The simulation campaign, which aimed to determine the temperature [23] range inside a greenhouse, has
identified the best heating system solution for the proper development of flowering crops, once grounded and
vertical pipelines for heating are implemented. From the scenarios, regarding the configuration with underground
pipes, the position of the flowering crops will have to be modified to allow the survival of the same crops. From
the analysis carried out, the setup that uses vertical pipes turns out to be the most effective. In fact, in the scenarios
with underground pipes the values of the average temperature computed along the horizontal direction at different
distances from the ground level (measured with the parametric sweep of radiation and ambient temperature to
simulate every monthly condition) reach 30 ◦C and over, not allowing the proper conditions for the growth of the
flowering crops. Therefore, the analysis of all the simulated scenarios demonstrates that vertical pipes are a suitable
solution to allow the use of the heating system for most of the year, except during summer period, when the heating
is turned off. In fact, the temperature range detected with this configuration allows the maximum development of
the cultivation and makes it possible not to have to change the configuration of the heating system every month.
Although in the other operating conditions temperature values detected are beyond the ideal threshold, there are
other techniques that can be used to manage heat transfer within the analyzed configuration, such as cooling the
greenhouse through special devices or using pallets in order to raise plants to a height that could guarantee a proper
development. The configuration with vertical pipelines allows the most efficient use of thermal energy, since the
transmission of heat takes place only by convection and not by conduction through the soil like for underground
pipelines configuration. This study laid the groundwork for the development of a standalone greenhouse design
application, which allows to carry out multi-parameter analyses, varying the secondary parameters that are not
considered in this study thus obtaining more accurate results.
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