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Abstract

Ventilation systems in buildings are of vital importance for the provision of acceptable thermal conditions and air quality
while meeting stringent energy requirements. When a rectangular jet hits a slotted plate, an acoustic disturbance can be generated
and self-sustained tones produced. Self-sustaining tones appear when a feedback loop develops between the surface of impact
and the jet instabilities near to the jet exit. In order to control this phenomenon, more attention should be given to the source
of energy that amplifies the resulting noise. Few studies have considered the fluctuation of the aerodynamic field using High
Speed 3D Tomographic-PIV in the presence of self-sustaining tones. In this work, we investigate energy transfer between the
aerodynamic and acoustic fields for different Reynolds numbers (Re = 5294 and Re = 5956) to better understand the noise
generated by a rectangular jet impinging on a slotted plate. High Speed 3D Tomographic-PIV was performed at a sampling
rate of 2 KHz and main flow vortices frequencies below 0.4 KHz. It was found that in the case of an optimal configuration
for self-sustaining tones, the fluctuation of the Z-component of velocity presented higher amplitudes near the jet exit region.
c⃝ 2020 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the scientific committee of the 6th International Conference on Power and Energy Systems Engineering (CPESE
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1. Introduction

Impinging jets are encountered in many ventilation systems, and these can have a major impact on the acoustic
environment and energy performance. Self-sustaining tones can be encountered in applications where a feedback
loop exists [2].

An impinging jet is a flow configuration in which a flow coming from a jet exit hits a wall (perpendicular or at
an angle). An impinging jet is rich in vortex dynamics and fluid–structure interactions and may be accompanied in
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some cases by a high level of noise due to the development of a loop of self-sustaining tones. When a flow hits
a wall, a “stress” on the fluid is created in the impingement contact area, generating a disturbance which travels
upstream to the point where the vortices originated and regulates their detachment at the same frequency as that of
the excitation produced at the obstacle.

Like the parameters of the flow, the geometry of the jet orifice or the nozzle plays a critical role in the production
of self-sustaining tones [4,5,7,8,11] and [12]. When a self-sustaining loop is optimized, energy transfer from the
aerodynamic field to the acoustic field occurs in a geometric configuration that allows optimal interactions between
the acoustic field and the aerodynamic fluctuations. Many studies have been performed to study self-sustaining
tones or to estimate the turbulence kinetic energy produced in 2D-PIV [6]. Alekseenko et al. [1] also considered
the Turbulent Kinetic Energy in an impinging jet and the authors calculated the dissipation term from instantaneous
Stereo-PIV velocity fields in order to compare swirling and non-swirling impinging jets. A few studies, such as
those by Schäfer et al. [13], Schneiders et al. [14] and Tokgoz et al. [15], considered the fluctuation of the jet in
Tomographic-PIV velocity fields. In this work, we studied the fluctuations of the velocity field in High Speed 3D
Tomographic-PIV, and the acoustic signal was measured with a microphone. Our main objective was to investigate
the fluctuation of velocity in optimal conditions for the transfer of energy from the aerodynamic to the acoustic
field at different Reynolds numbers (Re = 4632, Re = 5294 and Re = 5956). The Reynolds numbers selected
had relatively high and low levels of acoustic generation with the presence of self-sustaining tones [2]. This work
should be very useful in understanding the energy transfer mechanism in such configurations, which will in turn
contribute to the development of noise reduction techniques.

2. Methodology

2.1. Air flow facilities

A jet impinging on a slotted plate was generated in our laboratory at a free stream velocity denoted by U0. A
4 mm thick aluminium plate equipped with a 10 mm high slot was set up in order to achieve the configuration of
a jet impinging on a slotted plate. The experimental setup of our study is shown in Fig. 1. The airflow is generated
by a compressor and then the airflow passes through a 1250 mmlong rectangular tube which was extended by a
rectangular convergent. Hence, the setup creates a free jet H = 10 mm high and L z = 190 mm wide. Parallel to the
convergent, a 4 mmthick aluminium plate was fitted with a bevelled slot of the same dimensions as the convergent
outlet and perfectly aligned with the latter using a displacement system. The distance from the exit of the convergent
to the impinged plate is denoted by L and was set at 40 mm in this study in order to generate high acoustic levels.
Note that confinement is defined as the ratio between L and H , i.e., L/H = 4. The Reynolds number is based on
the dimension of the nozzle Re = U0.H/ν (where U0 is the maximum stream-wise velocity at the jet exit and ν is
the kinematic viscosity of air).

Fig. 1. Experimental setup.

2.2. High Speed 3D Tomographic-PIV

In order to study the characteristics of an impinging jet on a slotted plate for a confinement of L/H = 4 and
different Reynolds numbers in the presence of self-sustaining tones, a High Speed 3D Tomographic-PIV system was
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employed to measure the three velocity components. Time resolved Tomographic-PIV consists in cross-correlating
two successive recorded images order to obtain the kinematic field [9].

A 527 nm Nd: YLF LDY 300 Litron laser was used at 30 mJ per pulse, extended with a 1800 mm laser arm. The
laser arm was equipped with a volume generator formed by diverging lenses that generate a volume illumination.
The volume measured in the present study was 40 × 60 × 10 mm3 following the reference system (X-axis, Y -axis,
Z-axis: see Fig. 1). Three Phantom V711 cameras with 1280 × 800 pixels were used. Two cameras were placed on
the right side of the jet exit, one above the other, and the third was placed on the left of the jet at the same level
as camera 1 (See the effect of cameras configurations in Elsinga et al. [10].

2.3. Acoustic measurements

The acoustic pressure was measured simultaneously with the velocity measurements. A microphone was placed
behind the plate (away from the aerodynamic disturbances) to measure the radiated sound pressure. The B&K free
field 1/2 inch type 4189 microphone used has a sensitivity range of 7 Hz–20 kHz. For sound field measurements,
the sampling frequency was 10 KHz. Microphone signals were processed with a B&K Nexus amplifier/conditioner
before being recorded via a National Instruments PXI-6224 acquisition board mounted on a National Instruments
PXI 1044l data logger. This microphone has an uncertainty value of 0.2 dB.

3. Results

Self-sustaining tones may be accompanied by very high acoustic levels. The Sound Pressure Levels (SPL)
obtained by the jet analysed in this study are shown in Table 1 as a function of the Reynolds number forL/H = 4.
As shown in Table 1, the acoustic level decreased from by 3.6 dB (from 97.3 dB to 93.7 dB) despite an increase
in the Reynolds number from Re = 5294 to Re = 5956. This Reynolds number (Re = 5294) is optimal for the
feedback loop of the acoustic excitation, as shown by Assoum et al. [3], and could promote energy transfer from
the dynamic to the acoustic field.

Table 1. Sound Pressure Level (SPL) and main
acoustic frequency F0 (Hz) as a function of the
Reynolds number (Re).

Re SPL (dB)

5294 97.3
5956 93.7

Fig. 2 presents the Root Mean Square components Vrms and Wrms for Re = 5294 and Re = 5956. For the both
Reynolds number, Vrms/U0 started at 0.2 near the surface of impact. Actually, self-sustaining tones are created by
a feedback loop that is sustained by an excitation which travels along the jet from the zone of vortex impact and
reaches the jet exit, where the flow is very sensitive to any type of perturbation. This perturbation controls vortex
generation and energy transfer between the aero-dynamic and acoustic fields. Fig. 2 shows that when

(Y
H ≈ ∓1.5

)
and near the jet exit

(
0 < X

H < 1.5
)
, Wrms

U0
is greater, with higher levels (Levelmaximum ≈0.05) for Re = 5294, which

is an optimal configuration for self-sustaining tones [3]. For Re = 5956, there were lower levels of Wrms
U0

in this
region of the jet (Levelmaximum ≈0.03). These lower levels of Wrms

U0
in this region may be related to the propagation

of the perturbation of control from the impact wall to the jet exit, and could explain why it was stronger when the
self-sustaining tones were in optimal conditions, as for Re = 5294.

4. Conclusion

The Root Mean Square of the velocity field in a rectangular jet impinging on a slotted plate and the acoustic
field generated were investigated experimentally using High Speed 3D Tomographic-PIV and a microphone.
Two Reynolds numbers (Re = 5294 and Re = 5956) with optimal and less optimal configurations for self-
sustaining tones were considered. It was found that, in the case of an optimal configuration for self-sustaining
tones (Re = 5294, local peak of the acoustic level), Wrms presented higher amplitudes near the jet exit region.
This may be related to the upstream propagation of the perturbation of control created at the impinging wall. This
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Fig. 2. Root Mean Square components at the centre of the jet. (a) Re = 5294 and (b) Re = 5956.

perturbation is of high significance in the self-sustaining phenomena by its spatial propagation and effect on the
fluctuations of the velocity field. Further work needs to be done on the correlation between turbulent kinetic energy
and the acoustic field. This may provide more information regarding the energy source the acoustic field.
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