

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Pongsert Sriprom; Witthaya Krobthong; Pornsawan Assawasaengrat

Article

Investigation of important parameters for Photo-Fenton degradation of methyl orange over Fe/TiO2 catalyst

Energy Reports

Provided in Cooperation with:

Elsevier

Suggested Citation: Pongsert Sriprom; Witthaya Krobthong; Pornsawan Assawasaengrat (2020): Investigation of important parameters for Photo-Fenton degradation of methyl orange over Fe/TiO2 catalyst, Energy Reports, ISSN 2352-4847, Elsevier, Amsterdam, Vol. 6, Iss. 2, pp. 731-736, https://doi.org/10.1016/j.egyr.2019.11.147

This Version is available at: https://hdl.handle.net/10419/243960

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

https://creativecommons.org/licenses/by-nc-nd/4.0/

EISEVIED

Available online at www.sciencedirect.com

ScienceDirect

Energy Reports 6 (2020) 731-736

www.elsevier.com/locate/egyr

The 6th International Conference on Power and Energy Systems Engineering (CPESE 2019), 20–23 September 2019, Okinawa, Japan

Investigation of important parameters for Photo-Fenton degradation of methyl orange over Fe/TiO₂ catalyst

Pongsert Sriprom^a, Witthaya Krobthong^b, Pornsawan Assawasaengrat^{b,*}

^a Program of Food Process Engineering, Faculty of Agro-Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
^b Department of Chemical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
Received 18 October 2019; accepted 23 November 2019

Abstract

Methyl orange (MO) is an intensely colored compound used in dyeing and printing textile, which contaminates the effluent. Photo-Fenton reaction is one of the advanced oxidation processes (AOPs) which can treat the pollutant to the green products and small molecules. Photo-Fenton process using Fe/TiO2catalyst was applied to decolorization of methyl orange. The Fe/TiO2 catalyst was prepared by using dry impregnation method. Plackett–Burman Full Factorial was applied to identify the significant parameters in methyl orange decolorization. Six factors (i.e. Fe/TiO2 catalyst concentration, initial H_2O_2 concentration, initial MO concentration, pH, stirring speed, and light intensity) influencing methyl orange decolorization were investigated. The results showed that the regression model for parameter screening was well-fitted with the experiment data, supported by the high R^2 of 0.95. The results also showed that Fe/TiO2 catalyst dosage, H_2O_2 concentration, initial MO concentration, stirring speed, and light intensity were the significant effects (P < 0.05) rather than pH. The assumption means a lot in engineering design involving with the confounding multifactor. It could be seen from the conclusion that Plackett–Burman Full Factorial is a suitable tool for screening a large number of parameters, when the complicating interactions of these parameters are involved. Therefore, the key parameters can be found and properly engineered; thus warranting the treatment efficiency and minimizing the cost.

© 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the scientific committee of the 6th International Conference on Power and Energy Systems Engineering (CPESE 2019).

Keywords: Photo-Fenton process; Methyl orange; Fe/TiO2 catalyst; Plackett-Burman Full Factorial Design

1. Introduction

Methyl orange (MO) is an intensely colored compound used in dyeing and printing textile, which is non-degradable, toxic, and carcinogenic. Therefore, MO contaminated in wastewater must be worried and should be treated before being discharged into the environment. The difference wastewater treatment such as physical, chemical, and biological treatments have been applied to the synthetic dyed wastewater. However, chemical

E-mail address: pornsawan.as@kmitl.ac.th (P. Assawasaengrat).

https://doi.org/10.1016/j.egyr.2019.11.147

2352-4847/© 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the scientific committee of the 6th International Conference on Power and Energy Systems Engineering (CPESE 2019).

^{*} Corresponding author.

oxidation method is considered as promising technology because of result in complete degradation of organic pollutants. It is effective for a wide range of organics and environment-friendly.

Advanced oxidation processes (AOPs) is one of chemical methods which can treat the pollutant to green products and small molecules. Fenton oxidation reaction is one of AOPs which can effectively eliminate the organic compounds in wastewater since it is a strong oxidation potential at the mild reaction conditions and easy to operate. However, light irradiation can help improve the catalytic activity of the system. Photo-Fenton reaction, the hydroxyl radical generated using Fe²⁺/H₂O₂/UV system is an important process. The ferrous ions are dissolved in water which was used as a catalyst in Fe²⁺/H₂O₂/UV system [1]. This system is called "homogeneous photo-Fenton process". However, homogeneous Photo-Fenton process has some disadvantages. The separation and reuse of iron ions after the reaction are rather difficult. Thus, heterogeneous catalyst used in Photo-Fenton process was interesting because it is easier to separate after the reaction than the homogeneous catalyst. In addition, a process by which titanium dioxide (TiO₂) is arranged as photocatalyst is one of AOPs commonly used in environmental remediation of water and air. Also, it is possible to use the energy from the light source in the Photo-Fenton process. TiO₂ has been commonly applied as a photocatalyst in a variety of applications because of its low toxicity, high photoactivity, chemical stability, self-cleaning ability, narrow band gap, and low cost. The adsorption and photocatalytic reaction constitute the main mechanisms of reaction in the photocatalytic process. Thus, TiO₂ is a catalyst supported to increase the adsorption rate which is beneficial to the overall photocatalytic process [2].

Therefore, scanning experiments were used aiming to classify the significant parameters that provide large impacts on the response. Plackett–Burman is one of the full factorial designs that is usually employed to assess the relative importance of the investigative factors, in which there are no interaction effects between the different effective parameters in the range of consideration, and each parameter is established at both high and low levels [3]. In this condition, one or two relative important parameters are identified. Nevertheless, this was rarely studied before. Therefore, in this research, we used Plackett–Burman Full Factorial Design to screen the parameters affecting the efficiency of the Photo-Fenton oxidation reaction. In the Photo-Fenton oxidation reaction, many parameters affect the organic removal efficiency including light intensity, pH, initial concentration of the sample, catalyst loading, hydrogen peroxide, and stirring speed [4,5]. These factors were optimized to increase the organic removal efficiency.

In this research, Photo-Fenton oxidation reaction was applied to determine the degradation of the azo dye methyl orange in experimental wastewater using Fe/TiO₂ catalyst under the selected reaction conditions of Fe/TiO₂ dosage, MO concentration, hydrogen peroxide concentration, pH, light intensity, and stirring speed. Plackett–Burman Full Factorial was applied to screen the important parameters

2. Experimental

2.1. Preparation of Fe/TiO₂ catalyst

Fe/TiO₂ catalyst was prepared by dry impregnation method. For preparation of Fe/TiO₂ catalyst, 10%wt of FeSO₄·7H₂O solution was dropped into TiO₂ (P-25). After that, the sample was dried at 100 °C for 12 h and calcined under the nitrogen atmosphere at 400 °C for 5 h (the heating rate was set to 2 °C/min). The crystal phase of Fe/TiO₂ catalyst was studied by X-ray diffraction. X-ray diffraction was examined by a Bruker Advanced D8 Instrument coupled with Cu-K α radiation at the room temperature.

2.2. Important-parameter screening designs

The Plackett–Burman Full Factorial Design (FFD) was applied to study the effects of the parameters on MO degradation using Photo-Fenton oxidation reaction over Fe/TiO₂ catalyst. Two levels Plackett–Burman FFD with six parameters were applied to screen the important parameters for MO degradation. Six parameters were Fe/TiO₂ catalyst dosage (300–500 ppm: X_1), H_2O_2 concentration (60–200 ppm: X_2), initial MO concentration (200–250 ppm: X_3), pH (3–7: X_4), stirring speed (250–500 rpm: X_5), and light intensity (54–108w: X_6). The statistical analysis of each parameters at 95% significance level were estimated using the MINITAB software (version 16.0, Minitab Inc., State College, PA). These parameters were screened to estimate the effects of percent MO degradation which was identified as the response (Y, %) and can be calculated follow Eq. (1);

$$Y = \frac{(C_0 - C_i)}{C_0} \times 100\% \tag{1}$$

where C_0 and C_i are the initial MO concentration and the MO concentration at a certain time, respectively. The experimental was run 2 replications, which was obtained 24 experimental runs as shown in Table 1.

Table 1	Plackett-Burman	design for	r screening	of Photo-Fenton	oxidation reaction	on parameters

Run order	Fe/TiO ₂ concentration (ppm)	H ₂ O ₂ concentration (ppm)	Initial MO concentration (ppm)	pН	Stirring (rpm)	Light intensive (w)	%MO degradation
1	300	200	250	3	500	54	79.4
2	300	200	250	3	500	54	79.4
3	300	200	250	7	250	108	85.4
4	300	60	200	7	500	108	80.33
5	500	60	200	3	500	108	78.54
6	300	60	200	3	250	54	65.25
7	300	60	250	7	500	54	68.68
8	500	60	250	7	250	108	62.84
9	500	200	250	3	500	108	84.14
10	300	200	250	7	250	108	85.4
11	300	60	250	7	500	54	70.33
12	300	60	200	3	250	54	66.25
13	500	200	200	7	250	54	78.54
14	500	200	200	7	250	54	78.54
15	500	60	250	3	250	54	60.54
16	300	200	200	3	250	108	84.63
17	300	60	200	7	500	108	84.4
18	500	60	200	3	500	108	69.25
19	500	60	250	7	250	108	62.84
20	300	200	200	3	250	108	84.63
21	500	200	200	7	500	54	85.16
22	500	200	250	3	500	108	91.29
23	500	60	250	3	250	54	60.54
24	500	200	200	7	500	54	85.16

2.3. Photo-Fenton reaction experiment

The stock MO solutions containing 200 and 250 ppm were prepared. The Photo-Fenton oxidation reaction was tested in photo-box with 6 UV lamp 18 W. The Photo-Fenton oxidation reaction was run 20 min for each batch at the room temperature. The sample was kept and analyzed by UV–Vis spectrophotometer (Agilent 8453) at the wavelength of 465 nm

3. Results and discussion

3.1. Characterization of Fe/TiO₂ catalyst

Fe/TiO₂ catalyst was characterized by X-ray diffractometer to determine the degree of crystallinity and identify the metal ions, Fe(III), doped on TiO₂. X-ray diffraction pattern of Fe/TiO₂ are shown in Fig. 1. Fig. 1(a) shows the X-ray diffraction pattern of TiO₂ (p-25) with 3 major peaks at $2\theta = 25^{\circ}$, 38° , 48° , 54° , 55° , 69° , and 70° with d = 3.53, and 3.91 Åas a peak of anatase TiO₂ phase in accordance with anatase standard JCPDS (12–1276) at d = 3.520 Å. Fig. 1(b) shows the X-ray diffraction pattern of Fe/TiO₂ catalyst indicating that Fe metal ions have been immobilized on the surface of TiO₂.

3.2. Parameter screening

Fe/TiO $_2$ catalyst was selected to be used in Photo-Fenton oxidation reaction of MO degradation. It was found that a lot of parameters affecting the efficiency of the Photo-Fenton oxidation reaction are Fe/TiO $_2$ catalyst dosage, H_2O_2 concentration, initial MO concentration, pH, stirring speed, and light intensity. The two-level Plackett-Burman FFD with six parameters and total of 24 experimental runs were carried out as shown in Table 1. The response

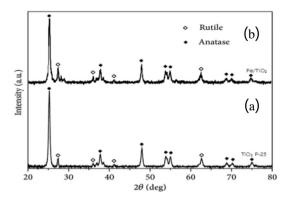


Fig. 1. XRD pattern of Fe/TiO2 catalyst.

was chosen as the percentage of MO degradation. The response was found to range from 60.54 to 91.29% and the significant effect of each parameters on Y, % was estimated by normal probability plot of standardize effects, a pareto chart, main effect at 95% significance level using Minitab Version 17.0 Software.

Fig. 2 shows a normality plot of effect which was generated from the main effects of parameters. The results showed that are Fe/TiO_2 catalyst dosage, H_2O_2 concentration, initial MO concentration, stirring speed, and light intensity are significant. It indicates that the standardized effect plots are placed far away from the straight line and have a non-zero mean.

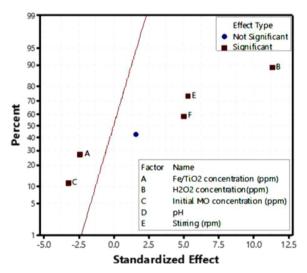


Fig. 2. Normal probability plot of standardized effect.

The pareto chart of effects as shown in Fig. 3 is applied to identify the important parameters. The estimated main effects were ranked according to their significance at P-value = 0.05 and showed that the most important effect was H_2O_2 concentration, stirring speed, light intensity, initial MO concentration and Fe/TiO₂ catalyst dosage, respectively.

Fig. 4 shows the main effect plot describes the trend of all effects. Increase in H_2O_2 concentration, stirring speed, and light intensity lead to increase in percent of MO degradation. The result was similar to Zhu et al. [6], which reported that the photo-generated electrons on the conduction band of TiO_2 could transfer to the surface of catalyst, which could inhibit the recombination of electron-hole pairs, leading to more efficient usage of holes on TiO_2 , and could accelerate the reduction of Fe(III) to Fe(II) on the surface, producing more efficient decomposition of H_2O_2 and production of OH. Additionally, OH^- and H_2O can be oxidized to OH due to the lower redox potential of OH/H_2O (2.27 V vs. NHE) [7]. In addition, the conduction band of TiO_2 is more negative than the O_2/O_2^-

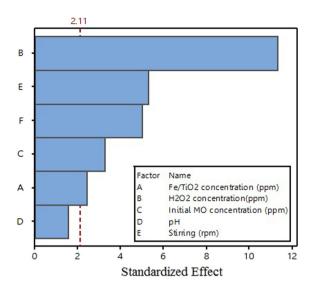


Fig. 3. Pareto chart for the main parameters effect.

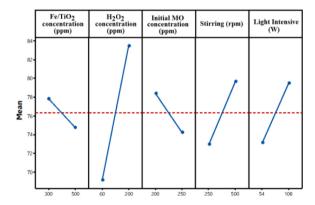


Fig. 4. Plot of main effect for % of MO degradation.

potential (-0.046 V vs. NHE) [8], indicating that the photo-generated electrons can react with O_2 to form O_2^- in the heterogeneous Fenton reaction. Both the \bullet OH and O_2^- could take part in the degradation of MO. As a result, the efficiency of MO degradation by Fe/TiO₂ catalyst can be enhanced over Fe²⁺ (the conventional heterogeneous Fenton catalyst) and TiO₂ (the conventional semiconductor).

4. Conclusion

MO was degraded by Photo-Fenton oxidation reaction using Fe/TiO $_2$ catalyst. It was found that a lot of parameters affecting the efficiency of the Photo-Fenton oxidation reaction are Fe/TiO $_2$ catalyst dosage, H $_2$ O $_2$ concentration, initial MO concentration, pH, stirring speed, and light intensity. Thus, two levels Plackett–Burman FFD was applied to screen the important parameters for MO degradation. The results showed that Fe/TiO $_2$ catalyst dosage, H $_2$ O $_2$ concentration, initial MO concentration, stirring speed, and light intensity are significant effects on MO degradation. The effects of parameter ranked were found that H $_2$ O $_2$ concentration and light intensity were the important parameters on MO degradation using Fe/TiO $_2$ catalyst since TiO $_2$ needs the energy to activate electron for produce the oxidizing agent. Thus, Plackett–Burman Full Factorial is a suitable tool for screening many parameters, when complicated interactions of these parameters are involved. Therefore, the key parameters can be found and properly engineered; thus the treatment efficiency is warranted, and the cost is minimized.

Acknowledgment

This work is supported by Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.

References

- [1] Kim Jin-Hee, Lee Hyun-Kyu, Park Yoon-Ji, Lee Sae-Binna, Choi Sang-June, Oh Wonzin, et al. Studies on decomposition behavior of oxalic acid waste by UVC photo-Fenton Advanced Oxidation Process. Nucl Eng Technol 2019.
- [2] Haider Adawiya J, Al-Anbari Riyad Hassan, Kadhim Ghadah Rasim, Salame Chafic Touma. Exploring potential environmental applications of TiO₂ nanoparticles. Energy Procedia 2017;119(2017):332–45.
- [3] Karlapudi Abraham Peele, Krupanidhi S, Reddy Rajeswara, Indira M, Bobby Md N, Venkateswarulu TC. Plackett–Burman design for screening of process components and their effects on production of lactase by newly isolated Bacillus sp. VUVD101 strain from Dairy effluent. Beni-Suef Univ J Basic Appl Sci 2018;7(4):543–6.
- [4] Guo Qiuyu, Li Gang, Liu Dan, Wei Yue. Synthesis of zeolite Y promoted by Fenton's reagent and its application in photo-Fenton-like oxidation of phenol. Solid State Sci 2019;89–95.
- [5] Vorontsov Alexander V. Advancing Fenton and photo-Fenton water treatment through the catalyst design. J Hazard Mater 2019;372:103–12.
- [6] Zhu Yanping, Zeng Chun, Zhu Runliang, Xu Yin, Wang Xingyan, Zhou Huijun, et al. TiO₂/Schwertmannite nanocomposites as superior co-catalysts in heterogeneous photo-Fenton process. J Environ Sci 2019;80(2019):208–17.
- [7] Chen Fang, Huang Hongwei, Zhang Yihe, Zhang Tierui. Achieving UV and visible-light photocatalytic activity enhancement of AgI/BiOIO₃ heterostructure: Decomposition for diverse industrial contaminants and high mineralization ability. Chin Chem Lett 2017;28(12):2244–50.
- [8] Zhu Yanping, Zhu Runliang, Yan Lixia, Fu Haoyang, Xi Yunfei, Zhou Huijun, et al. Visible-light Ag/AgBr/ferrihydrite catalyst with enhanced heterogeneous photo-Fenton reactivity via electron transfer from Ag/AgBr to ferrihydrite. Appl Catal B 2018;239(2018):280–9.