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Abstract

High performance and cost-effective ferry boats are of capital interest for customers and marine industry companies. On
the other hand, the traditional ferry boats, operated by diesel generators, spatter the atmosphere with CO2 emissions and
detrimental particles. Hence, electric propulsion in marine applications, especially in ferry vessel systems, has gained a lot of
attention during the last decade as a promising technology to decrease fuel consumption and emissions. However, one of the
main issues in the electric ferries (E-Ferry) is to keep the voltage and frequency within an acceptable range according to the
large dynamic load fluctuations. In order to solve this issue, this paper presents a model predictive energy management based
on a modified black hole algorithm (BHA) for the hybrid E-Ferry systems. Finally, to study the efficiency of our proposal,
we run a real-time simulation using the d-Space simulator and compare the effect of the prediction horizon on the system
performance.
c⃝ 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The emission reduction imposed by the international marine organization (IMO) as well as the growing
environmental concerns play a significant role in the marine industry’s approach to design environment-friendly
marine power propulsion system solutions [1–3]. Furthermore, the fuel price fluctuations force the shipbuilding
companies to explore technologically advanced and efficient solutions to decrease operational costs in the marine
transportation industry [4]. In consequence, by integrating different potential power generation sources (e.g. liquefied
natural gas, solar energy, and energy storage devices), marine industry works on finding the best solution for
emissions control and energy saving [5].

Hybrid power sources-based marine vessel systems are boat systems where the energy demand is satisfied by
a mixture of diesel power engines, renewable sources like fuel cells, and batteries [6]. In the automotive industry,
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the concept of hybrid was proven successful and many vehicles have been commercialized. This means that CO2
emissions can be reduced significantly in real operating conditions. Given this achievement, hybrid-energy solutions
is also applied in the maritime sector as a high technology tool to decrease emissions and fuel consumption
[7]. Moreover, power recovery approaches are gradually being applied to marine vessel systems to enhance fuel
efficiency. For instance, the system of waste heat recovery uses the exhausted fumes for electricity production to
improve the main generator efficiency by approximately 5%, hence significantly decreases emissions and the cost
of fuel [8].

In general, the complexity of hybridizing marine power grids (e.g. synchronization of each power source) can
bring big challenges. Furthermore, AC vessel distribution power systems have disadvantages like reactive power
flow, transformers inrush current, the imbalances of the three-phase system, and harmonic currents [9]. In contrast,
a DC distribution ship system can deliver efficient electric energy by jointing alternating current and direct current
energy supplies through power electronic circuits, which delivers energy flow to the load [10,11]. Nevertheless,
owing to non-linear characteristics and switching behavior of power electronic devices, the complexity of DC power
systems has increased [3,12]. However, new advancements in power electronics converters make them more efficient
and flexible, by which DC grids become feasible in different power applications. As a result, the utilization of a
hybrid power system with a DC grid enables cooler integration of renewable energy sources and energy storage
devices [13]. Also, generation supplies synchronization is not needed which makes the prime movers possible to
work at their optimal speeds and providing the fuel consumption and emissions reduction [1]. Additionally, the
mentioned advantages also provide additional benefits (e.g. saving the space and weight, flexible arrangement of
equipment as well as reducing the noise from a conventional diesel power system) in the harbor. Besides, the
integration of traditional maritime power plants with RESs and ESSs offers substantial cost and environmental
benefits [1]. Consequently, by adopting hybrid power systems with DC distribution, we can achieve many gains
and benefits.

The optimal scheduling of marine power systems and electric loads, which are considered as a power management
system (PMS), is one of the significant issues in the hybrid marine grids [14]. Particularly, the well-planned function
of a marine power grid in the generation side with optimal scheduling of load demands is able to influence the
efficiency of the plant. On top of everything else, for short-run intervals, power energy management in hybrid
marine systems plays a significant role in the coordination of controllable power units and electrical loads in a way
to satisfy the requirements in the plant’s dynamic [14].

Up to now, many energy management algorithms with different power grid configurations have been suggested
for power systems. For instance, a mixed-integer nonlinear programming (MINLP) algorithm is applied to optimize
the energy management problem in shipboard microgrids [14]. The particle swarm optimization algorithm is used
to solve the problem. In [15], the ship power system, which is equipped with solar panels and energy storage
devices, is investigated for the economic operation of the whole of the system. The model-predictive control-based
optimal energy management is applied in [16,17]. In these papers, the optimization problem is formulated so
that the minimum cost of operation is achieved. In order to enhance the computational efficiency, the real-time
optimization problem is described as a simplified two-level optimization model. The examination of experimental
ship information, from standard operation to shed light, on the potential for using batteries and optimization based
unit commitment is presented in [17]. In [16], the problem of solving optimum ESSs sizing is modeled as a two-layer
optimization problem. In the first step, this paper finds the optimal power generation scheduling for a particular
energy storage capacity. Then, the outer layer goes over all possible design configurations (storages capacities) and
determines the net saving (saving minus cost) for each configuration.

In this paper, the problem of intelligent model predictive approach for energy management of a hybrid electric-
ferry with several generators and batteries is investigated. The practical constraints on the maximum and minimum
and the variation rate of power of generators and batteries are considered. To perform the energy management, a
nonlinear optimization problem with a polynomial cost function and linear inequalities is presented and the problem
is solved by a modified black hole algorithm (BHA). Real-time simulation results show the applicability of the
suggested method in handling the highly varying load power. Also, it is shown that higher horizon prediction
outperforms the energy management by properly charging and discharging the battery before and during sudden
changes in the power demand.

The rest of the paper is organized as follows: In Section 1, the power management for the hybrid electric ferry
is presented. In Section 2, the nonlinear optimization problem is discussed. In Section 3, the black hole algorithm
to solve the optimization problem is studied. In Section 4, the real-time simulation results are provided. Finally, in
Section 5, conclusion and future works are presented.
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2. Illustrations

In general, a marine power system with fuel cell, diesel generator as main sources of the ship power, energy
storage systems as a reservation unit, power electronic devices as interfaces for renewable energy systems, and
loads like ship motor(s) and navigation system(s) can be considered as a special mobile islanded DC microgrid (see
Fig. 1). Minimizing the fuel consumption of several sources in the case study is the key target of the optimization
problem. In this ship system, the powers of generators are assumed as the optimization parameters. The energy
management of the fuel cells causes reducing fuel consumption as well as emissions.

Fig. 1. The scheme of a hybrid electric ferry grid.

This procedure confirms that at least one fuel cell works on the optimum operating condition as well as another
renewable source operates in a high-efficiency zone. To achieve this objective, the energy storage device operates
on an accurate scheduling during the entire path. Furthermore, turn off the renewable energy sources is another
constraint where it can have a positive effect at a low demand in the reduction of fuel consumption in marine
power systems, in other words the fuel cells should only work in high load demands.

As a result, the main objective function of energy management in this study can be formulated as follows:

FCtotal(t) =

N∑
n=1

(SF OCn(t) × Pn(t) × ∆t) (1)

where the fuel depletion of the ship shows with FCtotal(t), while Pn(t) is assumed to be the generated power by nth
energy supply at t th time (kW). The step time of the system is considered as ∆t . Besides, t is a t th time interval,
N is the number of fuel cells. The particular fuel oil consumption of nth energy sources is shown by SF OCn(t)
and written as below:

SF OCn(t) =

[
a
(

Pn(t)
Pn,rated

)2

− b
(

Pn(t)
Pn,rated

)
+ c

]
(2)

where the rated power of the energy unit is represented by Pn,rated . Moreover, the parameters a, b, and c are assumed
as the SFOC equation.

In order to monitor the output of energy units, three kinds of constraints are assumed as follows:
(1) the limitations exist in the energy source units
(2) the constraints related to the generator ramp rate
(3) basic bounds for the output power of generator units that should be within a specific range.
The other constraint, generator ramp rate constraint, does not allow very sharp changes in the output power of

the generator by defining the maximum allowable ramp rate. Moreover, this point is important that the variations
of Pn(t) is represented by (4) in a discrete simulation,

Pmin
n ≤ Pn (t) ≤ P Max

n (3)

⏐⏐⏐⏐ Pn(t) − Pn (t − 1)

∆t

⏐⏐⏐⏐ < Ri (4)

The maximum and minimum acceptable stored power in the batteries is the only constraint, which is assumed
in this optimization problem. Hence, in (5), this battery constraint is represented as:

Emin
≤ E (n) ≤ E Max (5)
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Dynamic equations are necessitated for each dynamic optimization problem. Similar to other optimization
problems, this study uses Eq. (6) as the dynamics of the understudy system. Generally, dynamic equations introduce
the relationship between the system states at each time to the earlier state(s). The applied dynamic equation in this
paper is based on the stored power of the battery at the end of the current time step. In other words, the energy at
the previous time step plus the alteration between the overall power generation and the demanded loads, which are
multiplied by the time step length, is equal to the stored power of the battery at the end of the current time step.

E (n) = E (n − 1) + ∆t ×

[
N∑

n=1

(Pn (t)) − PL (t)

]
(6)

where the load power defines by PL (t).

3. Nonlinear model predictive approach

The objective function defined in (1) is based on fuel consumption at time t . If it is minimized, the consumption
of fuel without considering the future behavior of the load demand will be reduced. However, if the load demand
changes faster than the variation power rate of the generators, then the optimization problem degrades. Thereby, it
is necessary to involve the future behavior of the load profile to improve the energy management especially when
the load varies roughly. It is shown that the model predictive method outperforms the other approaches from the
cost function minimization viewpoint [18–21].

Based on the above-mentioned reasoning, the following optimization problem is suggested:
For the given generator powers Pn(tk − 1), battery power E(tk − 1) at t = tk − 1, and the future power demand

PL (t) for tk ≤ t ≤ tk + T , we define the following optimization problem:

min
Pn(t) f or tk≤t<tk+T

γ (7)

Subject to
tk+T∑
t=tk

N∑
n=1

(SF OCn(t) × Pn(t) × ∆t) < γ (8)

and for tk ≤ t < tk + T, Pmin
n ≤ Pn (t) ≤ P Max

n (9)

−∆t Ri ≤ Pn (t) − Pn (t − 1) ≤ ∆t Ri (10)

Emin
≤ E (t) ≤ E Max (11)

E (t) = E (t − 1) + ∆t

[
N∑

n=1

(Pn (t)) − PL (t)

]
(12)

Then, the generators’ powers Pn(t) for tk ≤ t < tk + T are obtained.

4. Overview of the original black hole algorithm

In general, the black hole algorithm (BHA) is a population-based algorithm. The main concept of a BHA is
simply an area of space that has huge mass centralized in it where there is no path for a close object to flee its
gravitational pull. The movement of stars towards the black hole can be described as follows ([22]; Khooban et al.
2018):

X i ter
m, new = X i ter

m + rand (.)
(
Best i ter

− X i ter
m

)
; m = 1, . . . , NPop (13)
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where X i ter
m presents the target position, while X i ter

m, new shows the updated agent in iteration i ter . Furthermore,
Best i ter denotes the best solution. More information about the formulation and structure of the BHA is discussed
in [23].

In order to improve the exploration properties of the BHA, a new approach is applied to the collapsing process.
In the first step, a new updating mechanism for the modified BHA design process is presented as follows:

X i ter
m, new = X i ter

m + rand1 (.)
(
Best i ter

− X i ter
m

)
+ rand2 (.) (X i ter

r − X i ter
m ) (14)

where r ∈ [1, NPop] and (r ̸= m). In the following, for improving the optimal utilization of data, which is acquired
by the members of the population in producing new candidates, the Absorption Capacity is applied for the utilized
optimization algorithm. In this regard, a modification should be conducted for the event horizon Ri ter based on
distribution and collection of stars, as:

Ri ter
m, Mean =

X i ter
m, new − Meani ter

 ; m = 1, . . . , NPop (15)

Ri ter
= 0.1

NPop∑
m=1

Ri ter
m, Mean

NPop
(16)

where Meani ter is the mean population vector in the iteration. If the difference value between each of X i ter
m, new and

Best i ter is less than Ri ter , then the corresponding solution is replaced by a new randomly created one. By using
the modification (16), the event horizon is able to control the number of collapsed stars as well as avoid the high
scattering of the best solution. So, (17) and (18) are used to overcome the mentioned difficulty.

X i ter
m, new = Best i ter

+
maxm Ri ter

m, Best

N
(2rand (1, N ) − 1) (17)

Ri ter
m, Best =

X i ter
m, new − Best i ter

 ; m = 1, . . . , NPop (18)

Based on the above explanations, the main steps of the modified BHA are presented in Table 1.

Table 1. The application of the modified BHA for the model predictive energy management.

1. Augment the unknown powers Pn (t) for tk ≤ t < tk + T in the vector X∗
= [P1,1 P1,2 . . . P1,T P2,1 P2,2 . . . P2,T ].

2. Initialize a population of NPop stars X i ter
m

⏐⏐
i ter=1 with random locations in the search space.

Loop
3. For each star X i ter

m , evaluate the objective function (8).
4. Select the corresponding star that provides the least objective function value as the black hole (i.e. Best i ter ).
5. Change the location of each star based on the modified updating law (13).
6. If a star reaches a location with a lower cost than the black hole, exchange their locations.
7. If the distance of a star to the black hole is less than (16), that star is replaced by a new one based on (17).
8. If a termination criterion (a maximum number of iterations or a sufficiently good fitness) is met, exit the loop.

End loop
9. The optimum solution is X∗

= Best i ter
⏐⏐
i ter=end .

5. Real-time simulation results

In this section, the proposed approach is applied to a hybrid ferry grid with two diesel engines and one battery.
The parameters of the generators and the energy storage unit are provided in Table 2. Also, the ramp rate constraint
of both generators is assumed to be a maximum ramp rate of 30% per minute, as [24](

∆Pn(t)
∆t

)
≤ 0.3Pn,rated

(
kW
min

)
(19)

The SFOC of each generator based on its normalized generated power is presented in Fig. 2. As can be
seen in Fig. 2, the least SFOC for the generators 1 and 2 can be obtained as the P1(n)/P1,rated = 0.8646 and
P2(n)/P2,rated = 0.6832, respectively. However, for the non-optimum points of the SFOC, for which less power



N. Vafamand, J. Boudjadar and M.H. Khooban / Energy Reports 6 (2020) 550–557 555

Fig. 2. The SFOC of each generator.

Table 2. The parameters of the generators and the battery.

Generator 1 Generator 2 Battery Load

a 0.1691 a 0.1591 Prated 165 kW P Max
L 640 kW

b −0.2924 b 0.2473 Emin
B 15 kW Pave

L 320 kW

c 0.3929 c 0.3507 Emin
B 150 kW P Min

L 67 kW

Pmin
n 20 kW Pmin

n 10 kW

Pmax
n 320 kW Pmax

n 280 kW

than its optimum value is generated, the overall fuel consumption cost can be reduced. So, by incorporating the
battery, the optimization problem may choose the best power that is not equal to that of the optimum value of the
SFOC.

The load demand profile is shown in Fig. 3. As can be seen in Fig. 3, the considered load profile has smooth and
rough power changes. The simulation is performed based on the parameters given in Table 2, the rate constraint (19),
and the load demand profile provided in Fig. 3. Furthermore, it is assumed that the battery is initially charged by
20 kW. For the real-time simulations, the dSPACE 1202 board has been selected as the rapid prototyping solution.
More details can be found in [3]. To show the merits of the proposed approach, two prediction horizons N = 3
and N = 10 are considered, and the optimization problem is performed for every one minute.

Fig. 3. Power load profile of the hybrid ferry.

As can be seen in Fig. 4, the proposed approach with horizon 10 is able to feed the demanded load for all time
points. However, by choosing the prediction horizon 3, the generated power is not sufficient in the time interval
t ∈ [10 16] min. The reason is that the total power of the generators 1 and 2 is not enough and it is needed
that battery is fully charged before the high demand load. Since the optimization algorithm with the prediction
horizon 10 senses the high demand 10 mins before it occurs, the battery is smoothly charged to its maximum value.
However, the optimization algorithm with prediction horizon 3 only senses the high demand 3 mins before it occurs
and because of the constraint on the power generation rate, the battery is not fully charged. Consequently, when
the load is increased, it ferry experiences lack of power for a short period of time. This fact shows the importance
of considering predictive approaches to predict the future behavior of the load profile and use such information in
the optimization problem.
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Fig. 4. (a): prediction horizon 10. (b): prediction horizon 3.

6. Conclusion

The main target in this research was to introduce an efficient and cost-effective energy management algorithm for
the all-electric ferry ships. In order to achieve the key goal, a new intelligent model predictive energy management
was presented. Moreover, an improved heuristic optimization algorithm, the so-called Black Hole, was applied to
tune the unknown variables of the model predictive control approach. The assumed cost function in this study was
based on reducing fuel consumption as well as decreasing emissions. Finally, simulation results showed that the
proposed method can effectively reduce fuel consumption as well as increase the performance of the whole of
the electric ferry queryvessel. For future works, other renewable energy sources can be considered in the energy
management system of the ferry ship. Moreover, the optimal sizing and placing of the energy storage systems among
with renewable energy units can be formulated in the optimization problem.
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