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Abstract

In this work, in-situ application of natural occurring ilmenite (FeTiO3) for upgrading the producer gas from a pilot-scale
bubbling fluidized bed gasifier was performed and its influence on the gas characteristics and gasifier performance was analyzed.

Without using ilmenite, the producer gas average composition (volumetric basis, dry gas) was 15.2% CO, 7.6% H2, 3.8%
CH4 and 15.6% CO2, with 0.50 H2:CO molar ratio and 5.0 MJ/Nm3 lower heating value. For this condition, 1.6 Nm3 gas/kg
biomass (dry basis) specific dry gas production, 44.5% cold gas efficiency and 68.4% carbon conversion efficiency were
attained.

Using ilmenite as catalyst, the producer gas average composition (volumetric basis, dry gas) was 13.9% CO, 11.7% H2,
4.0% CH4 and 17.9% CO2, with 0.84 H2:CO molar ratio and 5.1 MJ/Nm3 lower heating value. For this condition, 1.7 Nm3

gas/kg biomass (dry basis) specific dry gas production, 49.8% cold gas efficiency and 75.5% carbon conversion efficiency
were attained. Thus, in-situ application of ilmenite generally improved the gasifier performance and induced an increase of
H2 concentration and H2:CO molar ratio in the producer gas of 35.1% and 40.7%, respectively, improving its suitability for
advanced gas applications that require high H2:CO ratios, such as liquid fuels and chemicals synthesis.

c⃝ 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Nomenclature

VG Dry gas volumetric flow rate (N m3/s, where N m3 refers to m3 at normal pressure (1.013
× 105 Pa) and temperature (273 K))

mF Biomass (dry basis) mass flow rate (kg dry basis/s)
LHVG Lower heating value of the dry gas produced (MJ/N m3)
mF Biomass (dry basis) mass flow rate (kg dry basis/s)
LHVF Lower heating value of the biomass (MJ/kg dry basis)
PG Absolute pressure (Pa) of the dry gas
TG Absolute temperature (K) of the dry gas
R Ideal gas constant (8.314 J mol−1 K−1)
MC Molar mass of Carbon (12 × 10−3 kg/mol)
Index I Gaseous compound CO2, CO, CH4, C2H4

εC,I Molar fraction of Carbon in gaseous compounds containing Carbon (εC,CO2 = 1, εC,CO = 1,
εC,CH4 = 1, εC,C2H4 = 2)

yi Molar fraction of CO2, CO, CH4, C2H4, in the dry gas produced
wCF Mass fraction of Carbon in the biomass (kg C/kg biomass dry basis).

1. Introduction

Energy plays a vital role in the modern society, being essential for economic development and life quality.
However, the current worldwide energy supply mainly relies on fossil fuels, resulting in its excessive extraction
and consumption. Furthermore, continuous industrialization, population growth and general increase of life quality,
increased the worldwide energy supply necessities in the last decades. These behaviors led to negative economic
and environmental consequences, being responsible for the depletion of underground carbon resources and emission
of large amounts of greenhouse gases (e.g. CO2) [1]. Thus, the search for alternative fuels that allow sustainable
development has been growing, reflected by a significant increase in renewable energies production in the last years
[2].

Bearing this, bioenergy is considered as one of the most important routes to mitigate greenhouse gas emissions
and replace fossil fuels [3]. Biomass is considered an adjustable and sustainable renewable feedstock to produce
energy and chemicals, with the capacity to increase the worldwide energy supply security.

Gasification, which is recognized as a key process for biomass conversion, provides high flexibility by using
different kinds of feedstock materials to generate a gaseous product that can be used in distinct applications [3,4].
The process is defined as the thermochemical conversion of organic material (solid or liquid) into a combustible
gas mixture, under reducing conditions.

The gaseous product from biomass gasification, after the required refinement and upgrading, can provide different
kinds of chemicals and energy carriers [5]. For example, the gas can be applied in direct combustion systems, gas
engines and turbines, fuel cells and combined heat and power processes. Methanol [6], dimethyl ether [7], methyl
tertiary butyl ether, formaldehyde and acetic acid are commonly referred as obtainable products from this gas [8].
The Fischer–Tropsch process can also be employed to produce synthetic fuels from this gaseous product, such as
gasoline and diesel [9].

Nonetheless, even though this conversion process potential is recognized for several applications, some barriers
must still be overcome for the general commercialization of biomass gasification technologies, such as the subpar
quality of the producer gas (obtained by direct gasification with air), which is diluted in nitrogen and may contain
high amounts of tars and low H2:CO molar ratios [10].

In this regard, catalysts can be applied as primary measures (inside the gasification reactor) or secondary measures
(in a post-gasification reactor), to improve the producer gas quality by reforming tar on the catalyst surface, leading
to higher contents of hydrogen in the gas.

In this work, natural occurring iron-titanium mineral (FeTiO3, ilmenite) is applied as primary measure to upgrade
the raw gas quality in a novel reactor configuration developed here and previously described [10] and its impacts
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on the producer gas quality and gasification process efficiency analyzed. Ilmenite is recognized as interesting for
this application due to its mechanical and thermochemical properties at high temperature, catalytic activity for tar
reforming and high water-gas shift reaction (Eq. (1)) activity [11,12].

CO + H2O ↔ H2 + CO2 (1)

2. Experimental work

The experimental infrastructure used in this work was previously described [10,13] and includes a pilot-scale
bubbling fluidized bed (BFB) reactor with 80 kWth. For testing the ilmenite mineral, a fixed bed reactor was
installed in the freeboard of the BFB reactor, just above the bottom bed and biomass feeding location [10]. The
operating conditions of the performed experiments are detailed in Table 1. The fuel used was wood pellets, which
was characterized in previous works [13].

The effect of the ilmenite mineral in the producer gas properties and gasification efficiency parameters was
evaluated based on a comparison between the composition of the gas sampled after passing the fixed bed reactor
filled with ilmenite particles and sampled without passing the fixed bed. The experiments were performed during
steady-state conditions of operation, in terms of temperature at different locations of the reactor and exhaust gas
composition, as previously described in other experimental work performed in this facility [10,13]. An indication
of the raw gas quality improvement is obtained by assuming that any increase in the concentration of combustible
light gases, such as H2, may result from tar destruction reactions promoted by the catalyst [10,14].

Table 1. Pilot-scale gasification experiments and respective operating conditions.

Experiment
reference

Fuel Equivalence ratio Average bed
Temperature [◦C]

Biomass feed rate
[kg/h]

Air feed rate
[L NPT/ min]

Without catalyst Wood pellets 0.26 809 11 200
With catalyst Wood pellets 0.26 801 11 200

The lower heating value (LHV) of the dry gas produced during the gasification experiments was determined
based on the relative abundance of combustible gases components (H2, CO, CH4 and C2H4) and their respective
LHV (at reference conditions, 273 K and 101 kPa).

The gasification efficiency parameters, namely specific dry gas production (Ygas), cold gas efficiency (CGE) and
carbon conversion efficiency (CCE), were determined according to the methodology described in [13], through the
following equations [15–17]:

Ygas =
VG

mF
(2)

CGE [%] =
VG × L H VG

mF × LHVF
× 100 (3)

CCE [%] =

VG ×
PG

R×TG
× MC ×

∑
i ϵC,i × yi

mF × wCF
× 100 (4)

The crystalline phases of fresh Ilmenite were assessed by powder X-ray diffraction (XRD) (BrukerD8 Advance
DaVinci). Diffraction patterns were analyzed using ICDD (International Centre of Diffraction Data, PDF 4).
Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) measurements were performed to determine
the specific surface area and average pore diameter of the particles.

The XRD patterns indicate ilmenite as the main phase (FeTiO3) and alumina (α-Al2O3), rutile (TiO2) and
mayenite (Ca12Al14O33) as residual phases (Fig. 1). Other relevant characteristics of the fresh ilmenite and the
conditions of the catalytic test are shown in Table 2.

3. Results and discussion

The results presented in this section include the composition of the producer gas in terms of CO2, CO, CH4,
C2H4, C2H6, C3H8, N2 and H2, and determined gasification efficiency parameters, namely LHV, Ygas, CGE and CCE,
during direct (air) biomass gasification experiments without and with ilmenite applied as in-situ catalyst (inside the
gasifier).
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Fig. 1. XRD patterns for ilmenite (α-Al2O3 — ▲; SiO2 — ♦; TiO2 — X; FeTiO3 — •; Ca12Al14O33 — ■).

Table 2. Ilmenite characteristics and test conditions for the fixed bed reactor.

Experiment
reference

Catalyst Particle size
[µm]

Apparent density
[kg m−3]

Surface specific
area [m2 g−1]

Pore diameter
[nm]

Bed mass
[g]

Average contact
time [s]

With catalyst Ilmenite <355 2570 0.52 3–4 200 4.7

The produced gas sampled before passing the fixed bed of ilmenite presented the following average composition
(volumetric basis, dry gas): 15.2% CO, 7.6% H2, 3.8% CH4, 15.6% CO2, 1.6% C2H4, 0.1% C2H6 and 0.1% C3H8,
and a molar ratio H2:CO equal to 0.50 (Fig. 2). Based on this gas composition, the following process efficiency
parameters were determined:

Fig. 2. Composition of the dry gas (H2, CH4, CO, CO2, C2H4) for the gasification experiments performed without catalyst and with catalyst.

• LHV = 5.0 MJ/N m3;
• Ygas = 1.6 N m3 dry gas/kg dry biomass;
• CGE = 44.5%;
• CCE = 68.4%.

The produced gas sampled after passing the fixed bed of ilmenite presented the following average composition
(volumetric basis, dry gas): 13.9% CO, 11.7% H2, 4.0% CH4,17.9% CO2, 1.1% C2H4 and 0.2% C2H6, and a molar
ratio H2:CO equal to 0.84 (Fig. 2). During this experiment, C3H8 was below the detection limit (0.1% volume).
Based on this gas composition, the following efficiency parameters were determined:

• LHV = 5.1 MJ/N m3;
• Ygas = 1.7 N m3 dry gas/kg dry biomass;
• CGE = 49.8%;
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Fig. 3. Influence of the ilmenite mineral on the composition (H2, N2, CH4, CO, CO2, C2H4 and C2H6) of the dry gas sampled above the
surface of the bed, H2:CO molar ratio, LHV, Ygas, CGE and CCE.

• CCE = 75.5%.

Thus, it can be observed that the ilmenite in-situ application caused a H2, CH4 and CO2 concentration and H2:CO
molar ratio increase of 35.1%, 4.6%, 12.8% and 40.7%, respectively, while decreasing CO concentration by 9.4%
(Fig. 3). Therefore, the producer gas was refined, presenting higher suitability for advanced gas applications, such as
synthetic liquid fuels production through Fischer–Tropsch synthesis, which requires a H2:CO molar ratio of at least
0.6 [9]. The observed increase of CO2 is not desirable; however, it is a minor inconvenient in the face of the higher
H2:CO ratios attained [9]. In fact, other advanced applications require even higher H2:CO molar ratios, for example
methanol production (molar ratio equal to 2) and dimethyl ether (DME) production (molar ratio equal to 1) [9,18].
This increase in H2:CO molar ratio, as well as the CO2 increase, can be related to an increase in water-gas shift
activity (Eq. (1)) induced by the ilmenite particles. This phenomenon was previously observed in other gasification
processes involving ilmenite [12] and is typically associated to iron-based catalysts [11]. Accordingly, significant
H2:CO molar ratio increases were not observed during in-situ application tests of low-cost catalysts with low iron
contents, such as eucalyptus ashes and wood pellets chars, performed in other works here [10].

The ilmenite mineral in-situ application also caused a general increase of approximately 10% for all determined
efficiency parameters, except for LHV, which was similar for both experiments (Fig. 3). This similarity is related
to the decrease of CO concentration observed in the experiments using ilmenite as catalyst, which accounts for a
significant part of the energy content of the producer gas.

4. Conclusions

In this work, the application of ilmenite as low-cost catalyst for the improvement of the producer gas quality
was evaluated. The research was focused on the impact of this mineral on the composition of the producer gas,
and, consequently, on the efficiency of the gasification process.

The evaluation of the proposed catalytic material was performed by sampling the gas before and after passing a
fixed bed of ilmenite inserted 0.2 m above the surface of the bottom bed of the pilot-scale BFB.

The results show that the in-situ application of ilmenite caused a significant H2 production increase (35.1%)
and a slight CO decrease (−9.4%), thus increasing the H2:CO molar ratio from 0.50 to 0.84. It is also observed a
general increase (∼10%) in the determined efficiency parameters, such as Ygas, CGE and CCE. The LHV remained
almost unchanged, and this can be explained as a result of CO concentration decrease in the producer gas. Thus,
it can be concluded that the in-situ appliance of this mineral for the improvement of the producer gas quality was
successful. The increase in H2:CO molar ratio is a promising result, which was not observed during the application
of other low-cost catalysts in other works performed here [10], and can be associated to increased water-gas shift
activity induced by the ilmenite. This is interesting because several advanced applications, such as liquid fuels and
chemicals synthesis, require H2:CO molar ratios higher than 0.6 [9].
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