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Abstract

It presents an effective bio-butanol production with various acid hydrolysis treatment strategies H2SO4, HCI and H3PO4
(1, 2, 3, 4 and 5%) from Nannochloropsis gaditana grown under different light intensities (40, 80, 120 and 160 µmolm−2

s−1). Microalgae were cultivated at 24 ± 2 with f/2 medium for control. According to our results, HCI 3% yielded the highest
carbohydrate productivity with (21.3 ± 0.9 %) and bio-butanol production (2.9 ± 0.24 g/L). In addition, we obtained the
highest carbohydrate content at 160 µmolm−2 s−1 of light intensity. These findings suggest that Nannochloropsis gaditana
can be used for effective carbohydrate content and large scale bio-butanol production in the future.
c⃝ 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Algae can be classified to 2 classes. They are macro and micro. These microorganisms are photoautotrophic
microorganisms. They need light, CO2 and macro and micro elements such as N, P, S and K for proliferation of
cells [1]. Microalgae can be used for pharmaceutical, cosmetic, food and biofuel industry. They are 3rd generation
renewable energy and they have distinguishable facilities compared to former renewable energy resources. In
addition, they have no conflict with plant derivative samples for grounds used for cultivation. They can cultivate
quickly and consist of immense masses [2,3]. They multiply their cell nuclei in low than 24 h and can cultivate
a hundred times quickly than plants with real nuclei [4]. Algae show a significant property in the use of carbon
dioxide due to their skill to capture carbon dioxide ten–fifty times more effectively than the green plants and they
convert the sun to chemical energy [5]. In addition, there are various sources of biofuel such as bio-diesel, bio-
ethanol and bio-butanol. Bio-butanol is revealed by the acetone–butanol–ethanol (ABE) method. At bio-butanol
production, ABE method maintains fermentation of biomass. Traditionally, C. acetobutylicum can be used for
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anaerobic procedure. It generates butyric and acetic acids with acidogenesis. In the next process, acetone, butanol and
ethanol occur. Biomass of microorganism needs high sugar concentration to maintain high bio-butanol production
[6,7]. Photosynthesis procedure is the crucial step that turns sun into chemical energy. This energy leads to
accumulation of biomass and metabolic compounds such as lipid and carbohydrate for photosynthetic organisms
[8]. Light has main property for photosynthesis. It is driving force and abiotic factor for determination of cellular
metabolism. In addition to light, pH, temperature, compounds and amount of CO2 affect FPBR systems and they
should be controlled strictly [9]. Light quantity and quality cause to changes for microalgae. Microalgal biomass
can decrease under much more light and content of biofuel can change. Actually, this is a defense mechanism for
microalgae. They can increase carbohydrate and lipid content when these harsh environments appear [10]. Spectral
composition of light affects metabolic compounds of microalgae. Red light increases hydrocarbon production and
carbohydrate production [11,12]. Sun energy maintains main pigments such as chlorophyll a, b and carotenoids.
They maintain bands of absorption. Blue and red wavelengths show the basic spectrum bands of these pigments
[13]. Blue and red wavelengths have high amounts of biomass but green one has slope value for biomass production
[14]. In this paper, we used the green microalgae. Nannochloropsis gaditana is a unicellular microalga, a member
of the class Eustigmatophyceae, phylum Heterokontophyta. Nannochloropsis sp. has taken attention due importance
of structural properties. Indeed, researchers generally studies metabolic parameters such as lipid for bio-diesel [3].
On the contrary, we researched its different role for biofuel. In current paper, we carried out role of bio-butanol
from Nannochloropsis gaditana in various acid hydrolysis treatment strategies H2SO4, HCI and H3PO4 (1, 2, 3, 4
and 5%) and various light intensities (40, 80, 120 and 160 µmol m−2 s−1).

2. Materials and methods

2.1. Cultivation of Nannochloropsis gaditana

It was gotten from Van Yuzuncu Yil University collection. Nannochloropsis gaditana DEE003 was grown at
24 ± 2 and f/2 was prepared to f/2 procedure [15]. Microalgae was carried out at 680 nm using spectrophotometer
(Merck-Prove-300) under different light intensities (40, 80, 120 and 160 µmol m−2 s−1).

2.2. Monitoring of microalgae

Microalgae were studied at 680 nm using spectrophotometer under different light intensities (40, 80, 120 and
160 µmol m−2 s−1). Ash free dry weights (AFDW) were maintained for connection between OD and dry weight.
For harvesting, microalgae samples were centrifuged at 3000 g in 6 min and pellet was collected.

2.3. Acid treatment procedure

Dry mass was mixed with various acid derivative disruption strategies H2SO4, HCI and H3PO4 (1, 2, 3, 4 and
5%) in 1/10 ratio.

2.4. Calculation of total carbohydrate

The Anthrone method with minor modifications was used for this study [16]. Glucose was selected as a standard
at various volumes.

2.5. Biobutanol production

Acid hydrolyzed microalgae slurries were used for determination of bio-butanol content. Bio-butanol content
was determined to Maiti and modified acetone–butanol–ethanol (ABE) method spectrophotometrically [17].
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Fig. 1. Growth curves of Nannochloropsis gaditana at 40, 80, 120 and 160 µmol m−2 s−1 to OD at 680 nm versus time.

Fig. 2. Growth curves of Nannochloropsis gaditana at 40, 80, 120 and 160 µmol m−2 s−1 with dry weight values (mg/L) vs. time (days).

3. Results and discussion

Curve values of N. gaditana are most likely changeable under various light intensities (40, 80, 120 and 160 µmol
m−2 s−1). Lines of Nannochloropsis gaditana were determined at 40, 80, 120 and 160 µmol m−2 s−1 at 24 ◦C at
16:8 (light: dark) with OD. Line values of N. gaditana were displayed in Fig. 1.

120 µmol m−2 s−1 had the maximum absorbance value with 1.64 and 40 µmol m−2 s−1 displayed the lowest
value with 1.27. 80 and 160 µmol m−2 s−1 had values with 1.43 and 1.46, respectively.

Also, we examined growth rates of Nannochloropsis gaditana with dry weight (mg/L). Results were found in
parallel with OD and their line values were shown in Fig. 2. The highest biomass concentration carried out 120. 40
showed the lowest mass concentration. Also, biomass of Nannochloropsis gaditana was 540.63 mg L−1 Ma et al.
[18]. In other words, various macro and micro components caused to lower values for biomass content in its paper
[18].

In addition to this, we determined some parameters of Nannochloropsis gaditana and these parameters were
shown in Table 1.

The highest biomass productivity and specific growth rate were 0.182 ± 0.01 g L−1 d−1 and 5.29 ± 0.13 d−1 in
120 µmol m−2 s−1 of light intensity, respectively. The lowest ones were 0.143 ± 0.01 g L−1 d−1 and 5.10 ± 0.16
d−1 in 40 µmol m−2 s−1 of light intensity. On the contrary, 120 µmol m−2 s−1 of light intensity had the lowest
doubling time with 0.131 d−1. 40 µmol m−2 s−1 of light intensity had highest doubling time with 0.136 d−1.

Carbohydrate concentrations and productivities of Nannochloropsis gaditana were carried out under various light
intensities (40, 80, 120 and 160) at different acid concentrations H2SO4, HCI and H3PO4 (% 1, 2, 3, 4 and 5). The
highest carbohydrate concentration was found in HCI 3%. All experimental set up was prepared according to HCI
3%. Carbohydrate values were calculated as % dwt and carbohydrate productivities were found as g L−1 d−1. The
results were given in Table 2.
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Table 1. Growth parameters of time of Nannochloropsis gaditana under light intensities (40, 80,
120 and 160).

Light
intensities
[µmol m−2 s−1]

Biomass
concentrations
[g L−1]

Biomass
productivities
[g L−1 d−1]

Specific growth
rates [d−1]

Doubling
time [d]

40 1.43 ± 0.11 0.143 ± 0.01 5.10 ± 0.16 0.136
80 1.70 ± 0.11 0.170 ± 0.01 5.24 ± 0.12 0.132

120 1.82 ± 0.11 0.182 ± 0.01 5.29 ± 0.13 0.131
160 1.64 ± 0.11 0.164 ± 0.01 5.19 ± 0.14 0.134

Table 2. Carbohydrate content and productivity of Nannochloropsis gaditana under
various light intensities (40, 80, 120 and 160) with HCI 3%.

Light intensities
(µmol m−2 s−1)

Carbohydrate content
(dwt %)

Carbohydrate
productivity (g L−1

d−1)

40 17.3 ± 0.9 0.025 ± 0.001
80 15.0 ± 0.6 0.026 ± 0.002

120 16.0 ± 0.6 0.029 ± 0.003
160 21.3 ± 0.9 0.035 ± 0.002

Carbohydrate content with HCI 3% was 21.3 ± 0.9% dwt for 160 µmol m−2 s−1 of light intensity and this value
was the highest one among them. 120 µmol m−2 s−1 had 16.0 ± 0.6% dwt. The lowest value was 15.0 ± 0.6% dwt
for 80 µmol m−2 s−1. Similarly, the maximum carbohydrate productivity was 0.035 ± 0.002 g L−1 d−1 for 160 µmol
m−2 s−1 of light intensity. The minimum carbohydrate productivity was 0.025 ± 0.001 for 40 µmol m−2 s−1. As a
result, while 120 µmol m−2 s−1 of light intensity had the highest productivity with 0.182. 160 µmol m−2 s−1 of light
intensity showed the highest carbohydrate productivity with 0.035 ± 0.002. In literature, Nannochloropsis gaditana
was studied in detail for biodiesel production. Lipid productivity of N. gaditana was studied by some extended
researcher. For example, Song carried out N. gaditana 1049 for metabolic parameters such as lipid. He evaluated that
it is acceptable for biodiesel production [19]. Hu demonstrated that TG of N. gaditana rised with N starvation [20].
Also, we produced bio-butanol from Nannochloropsis gaditana at 160 µmol m−2 s−1 of light intensity. Biomass
slurry including sugar were studied for measurement of bio-butanol and carried out spectrophotometrically. The
results were given in Table 3.

Table 3. Bio-butanol content and yield from Nannochloropsis gaditana in 160 µmol m−2 s−1 of
light intensity.

Light intensities
(µmol m−2 s−1)

Initial sugar
content (g/L)

Bio-butanol
content (g/L)

Bio-butanol yield
(g/g sugar)

160 20 2.9 ± 0.24 0.145 ± 0.01

In this study, 20 g of sugar was collected by means of concentration for bio-butanol production. Sugar was
fermented and bio-butanol concentration was calculated. Bio-butanol and yield were 2.9 and 0.145 g/g sugar at
160 µmol m−2 s−1 of light intensity, respectively.

4. Conclusion

The bio-butanol production efficiency of Nannochloropsis gaditana under various light intensities (40, 80, 120
and 160 µmol m−2 s−1) and different acid hydrolysis treatment strategies H2SO4, HCI and H3PO4 (1, 2, 3, 4 and
5%) in FPBR was evaluated in the current paper. These findings suggest that Nannochloropsis gaditana can be used
for effective carbohydrate content and large scale bio-butanol production in the future.
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