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Parameter identification of the proton exchange membrane fuel cell (PEMFC) is a good way of
increasing their efficiency in the next designs. In this study, an optimized improved Elman neural
network based on a new hybrid optimization algorithm is proposed for this purpose. The proposed
algorithm is a hybrid algorithm based on a combination of two newly algorithms, the world cup
optimization (WCO) and the fluid Search Optimization (FSO) algorithms. The proposed method is
applied to improve the method efficiency for estimating the PEMFC model parameters. The method
is then validated by four different operational conditions. The optimization algorithm efficiency is
also analyzed by comparison with some popular algorithms. Simulation results showed that using the
designed method gives higher accuracy forecast for the PEMFC model parameters.

WCO © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

FSO
Improved Elman neural network

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Recently, energy has been turned into a driving force for
comprehensive economic development in all countries which
makes the use of available energy sources as a major factor in
the economic development of post-human societies (Mirzapour
et al, 2019; Ahadi et al, 2015; Aghajani and Ghadimi, 2018).
Concerns have been raised about the increase in fossil fuel prices
and the limited amount of them (Ghadimi et al., 2018; Khodaei
et al., 2018; Bagal et al., 2018). In addition, the impact of these
fuels on the environmental changes and environmental degrada-
tion by pollutants from exploiting these energy sources are also
important. Unlike fuel cells, renewable energies because of the
ability for reusing in nature have become the most widely used
fuels (Saeedi et al., 2019).

Recently, the usage of the fuel cell (FC) has been exponen-
tially increasing. A fuel cell is a power generation component
which converts the chemical power directly into the electri-
cal power and the heating power (Saeedi et al., 2019; Abedinia
et al,, 2019). This type of source energy is widely used as the
promising portable plant especially in portable and motionless

* Corresponding author.
E-mail address: Kkittisak jermsittiparsert@tdtu.edu.vn (K. Jermsittiparsert).
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applications like electric vehicles and UAVs (Liu et al., 2017;
[jaodola et al., 2019). Polymer electrolyte membrane (PEM) has
become a promising model against the other types of fuel cells
based on its characteristics.

The features like fast operation, no contamination, low oper-
ational temperature, and especially their high efficiency makes
them be one of the proper candidates for power generation.
Recently, several works have been performed for improving the
efficiency of the constructional designing in PEMFCs.

These works include different features of the system like the
steady-state stability, study on the dynamic models of the system
and empirical data from the experiments (Sun et al., 2015; Eslami
et al,, 2019; ElI-Hay et al., 2019).

In 1991, Springer et al. proposed a steady-state and one di-
mensional model for the PEMFC (Springer et al.,, 1991). The au-
thors also presented an isothermal and steady-state model for the
PEMEFC.

In 2010, Caux et al. presented provided a state-space iden-
tification method for energy management in HEVs (Caux et al,,
2010). They also consider the control process of the fuel cell’s
temperature and gas flows. In addition, some research works have
been performed over the modeling of PEMFC (Bao and Bessler,
2015; Solsona et al., 2017).

2352-4847/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://doi.org/10.1016/j.egyr.2019.09.039
http://www.elsevier.com/locate/egyr
http://www.elsevier.com/locate/egyr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egyr.2019.09.039&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:kittisak.jermsittiparsert@tdtu.edu.vn
https://doi.org/10.1016/j.egyr.2019.09.039
http://creativecommons.org/licenses/by/4.0/

1366 D. Yu, Y. Wang, H. Liu et al. / Energy Reports 5 (2019) 1365-1374

In 2017, Solsona et al. presented an empirically validated
model for a low-temperature PEMFC by considering the humidi-
fier in the model (Solsona et al., 2017). The control method was
a control-oriented model of a Nafion® membrane. Final results
were compared with the experimental results.

In 2014, Panagiotis et al. presented two dynamical models
based on the semi-empirical formulas and the electrical equiv-
alent for PEMFC (Papadopoulos et al,, 2014). In addition, an im-
proved model based on a transfer function by considering semi-
empirical equations was proposed. The main purpose was to
propose a parametric analysis for models ability.

In 2017, Kumar et al. proposed a real-time model for PEMFC
and then they analyzed the modality of the method by different
validation like ARX and ARMAX (Kumar et al., 2018). MATLAB
toolbox was utilized for system identification. PI and PID con-
trollers were also utilized for obtaining the desired load current.

Although the aforementioned models are useful for design-
ing and performance analysis of the fuel cells, there are some
limitations for them.

Most of the proposed methods are based on accurate modeling
of the fuel cells that is based on the physical concepts of the fuel
cells such as thermodynamics, momentum’s conservation, power,
and mass to obtain an accurate thermal model for anything that
happens in them.

Using these kinds of formulation make the model so com-
plicated. There are even some parameters that cannot be mea-
sured for the model. Therefore, using these methods is not a
proper strategy for modeling the fuel cells, especially in real-time
applications.

Due to the ability of the neural networks for solving the
nonlinear and complicated dynamic models, they become into an
efficient tool for solving nonlinear systems like PEMFCs (Tao et al.,
2005; Hatti and Tioursi, 2009; Rezazadeh et al., 2010).

In 2016, Razmjooy and Ramezani used an improved model of
the neural network for optimal system identification (Razmjooy
and Ramezani, 0000). They used a new hybrid WNN based on
Gravitational Search Algorithm for this purpose. Simulation re-
sults showed that the proposed method can improve the perfor-
mance of the neural network.

In 2016, Abbaspour et al. presented a robust control method
using a neural network for polymer electrolyte membrane PEM-
FCs (Abbaspour et al.,, 2016). The proposed robust method was
used because the changes between the partial pressure of oxygen
and hydrogen in PEMFCs may cause serious damages.

Because of the PEMFC nonlinearities in its dynamic, they used
a neural network for regulating the system. Experimental re-
sults showed that the neural network-based system can improve
system efficiency.

In 2011, Steiner et al. presented a technique for the fault
detection of a Polymer Electrolyte Fuel Cell (PEFC) using the
Elman Neural Network (ENN) (Steiner et al.,, 2011). Because of
the numerous principal parameters in the PEFCs, they need a
strong method for identification. In this paper, a technique for
water management problems in PEFC including drying out and
flooding based on some significant parameters was proposed for
simplifying the identifying process.

In 2011, Wu et al. proposed a control method based on power
decoupling for a hybrid gas turbine and a solid oxide fuel cell
(SOFC) (Wu et al., 2011). Because of the nonlinear substance of
the system, to follow the load profile by the proposed system,
a self-tuning PID based on Elman neural network was utilized.
Particle Swarm Optimization (PSO) algorithm is also used for
obtaining the optimum solution in the system.

Results showed that the presented methodology can obtain
promising performance toward the other state of the art methods.

Literature review shows that using the optimization algo-
rithms improves the neural networks efficiency. The main idea

behind this is that they can escape from the local minimum which
leads them to obtain almost the global optimum (Razmjooy et al.,
2016; Razmjooy and Ramezani, 2014; Namadchian et al., 2016).

Therefore, in this paper, we addressed two parts for improving
the system performance in the PEMFC Identification. First, a mod-
ified Elman neural network is introduced and used for the system
parameters identification and after that, a new hybrid algorithm
is introduced and utilized to achieve a better solution from the
system.

In the proposed method, the features of two new optimization
algorithm, called fluid Search Optimization algorithm and world
cup optimization algorithm have been synthesized. Finally, for
preventing the new algorithm from the premature convergence,
chaos theory has been utilized.

The proposed hybrid chaos FSOWCO based improved ENN
method is utilized for solving the nonlinear modeling of a PEMFC.

The remained part of the paper is as follow: in Section 2,
the material methods of the study, including Elman neural net-
works and the proposed FSO algorithm are described. Section 3
determines a validation of the modified FSO algorithm. Section 4
describes the methodology validation by Proton Exchange Mem-
brane. Section 5 explains about the optimal modified ENN based
on MFSO algorithm and the paper is concluded by Section 6.

2. Materials and methods
2.1. Elman neural networks

In this subsection, the modeling of the PEMFC by the Elman
neural network (ENN) is provided. The Elman neural network
includes 4 main layers: the input layer, the context layer, the
hidden layer, and the output layer.

The main configuration of this neural network is like the
feedforward neural networks such that connection in the input
layer, the hidden layer, and the output layer is completely similar
to the multi-layer neural network.

Besides, there is another layer in ENN that is called the context
layer such that its inputs come from the outputs of the hidden
layer for storing the previous values of the hidden layer.

Fig. 1 shows a simple structure of an ENN.

The external input, context weight, and the output weight
matrices are defined by W,';, Wi, WY, respectively.

By considering the form of ENN from Fig. 1, the dimension of
the input and the output layers are n, ie. x!(t) = [x](t), x3(t).

XN and y(8) = [y1(t), y2(t), - . ., ya(t)]" and the dimension
of the context layer is m.
The input layer in this network can be modeled as follows:

ui(l) = e;(1),
i=1,2,...,n

(1)

where, [ illustrates the input and the output layers in iteration L
Then, the kth hidden layer in this network is considered as
follows:

N n
ull) =Y oD+ Y op(Dui(l) @)
j=1 i=1

k=1,2,...,N

where, xj?(l) describes the signal that is forwarded from the kth
context layer node, w,}j(l) describes the ith and jth weights of the
hidden layers sent from oth node.

Therefore, for the input layer I, the weight of the hidden layer
k can be achieved by wi(1).

Finally, the output value of the hidden layer which is injected
to the context layer is obtained as follows:

Wi(D) = fo(vi(1)) (3)
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where,

()
o) = o)

(4)
is the normalized value of the hidden layer.

The next layer is the context layer. In this layer, the output is
equal to the following formula:

Gu(l) = BC(l = 1) + Wi (I — 1),
k=1,2,...,N
where, W, points to the gain of self-connected feedback between

0 and 1. Razmjooy and Khalilpour (2015).
Finally, the output layer at the network is as follows:

(5)

N
_ 3
oll) = k;woku)wka), ©

o=1,2,...,n

where, a)gk describes the weight of the connection from the kth
layer into the oth layer.

For modifying the EIman neural network to increase the learn-
ing accuracy and better convergence, we utilized a new technique
that is proposed by Ren et al. (2018) as follows:

Initializing the learning rate value u = ¢
In the Ith iteration:

ifl <2:

= default value;

end if t > = 3 && 1.02¢e(l — 1) > e(I):

o a+dy
" exp(1)
else
= default value
end
end

Weights updating;

evaluate e(t);

if the stop criteria are reached:
break;

else

continue

where, u is learning rate, c is a constant, and t represents the cur-
rent epoch. A comprehensive structure of Elman neural network
is shown in Fig. 1.

The weights of the aforementioned modified Elman neural
network is then optimized based on the suggested evolutionary
algorithm.

2.2. Hybrid fluid search optimization based on world cup optimiza-
tion algorithm and chaos theory

Nowadays, there are a lot of optimization problems around us
that cannot be solved precisely, cannot be solved at all, or that
it is not possible way to solve it within a reasonable time. This
issue leads researches to look forward to an approach for solving
these problems. A popular approach for solving the optimization
algorithms is to use the Meta-heuristics.

Meta-heuristic is a type of optimization technique which has
been inspired by different phenomena like genetic algorithm
(Davis, 1991; Ghadimi, 2012; Mousavi and Soleymani, 2014),
artificial bee colony (Karaboga and Aslan, 2018; Karaboga and
Basturk, 2007; Razmjooy and Khalilpour, 2015), particle swarm
optimization algorithm (Razmjooy and Ramezani, 0000; Ghadimi
et al., 2013; Moallem and Razmjooy, 2012), quantum-based in-
vasive weed optimization algorithm (Razmjooy and Ramezani,
2014), world cup optimization algorithm

Output Layer

?f e
\.fIr | |
2

1

JI/’

-6 @@ - ®
Context Layer Input Layer

Fig. 1. The general form of the Elman neural networks.

(Razmjooy et al., 2016; Bandaghiri et al., 2016; Nejad et al,,
2019; Razmjooy and Shahrezaee, 0000; Razmjooy et al., 2018;
Shahrezaee, 2017), shark smell optimization algorithm (Ghadimi,
2015; Bagheri et al., 2018; Hussain et al., 2010; Rao et al., 2019),
and fluid Search Optimization (Dong and Wang, 0000).

Applications of the meta-heuristic methods are extremely
increasing in order to increase the number of complicated opti-
mization problems
(Razmjooy et al., 2016; Razmjooy and Ramezani, 2014; Ghadimi,
2015).

Fluid Search Optimization (FSO) algorithm is a new meta-
heuristic method which is introduced in 2019. FSO algorithm is
inspired by Bernoulli’s principle in fluid mechanics.

Bernoulli’s principle is about how the speed of a fluid relates
to the pressure of the fluid so that by increasing the speed of the
fluid, the potential energy and the pressure of the fluid have been
decreased.

Bernoulli’s equation is formulated in the following (Dong and
Wang, 0000).

1
p+§p¥=po (7)

where, p is the pressure of a selected point on a streamline, pg
describes the constant system pressure, v is the speed of the fluid
flow at the point, and p describes the fluid density at all points
in the fluid.

From the above equation, Dong and Wang proposed per-
forms some simulations. They first re-formulated the Eq. (7) as
follows (Dong and Wang, 0000).

2 —
v (Po — p) (8)
0
Then, they considered the new position of the solution as a
recursive formula as follows,

Xnew = Xoid + V (9)

Then, the pressure for the fluid infinitesimals is considered as
the fitness function value, so that by increasing the pressure, the
velocity of the fluid infinitesimal is decreased.
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Optimization process in the fluid infinitesimal is related to the
inverse process of the fluid flowing from the high pressure to the
low pressure Involuntary.

The convergence of the fluid infinitesimals in the process of
fluid flowing has been reached if the highest pressure point is
found that can be considered to reach the optimum value. In
the following, a brief explanation of the algorithm parameters is
given.

2.3. Infinitesimal pressure

By considering the position of n number of infinitesimals as
X = [Xx1, X2, ..., Xy], such that the fitness function is y, and the
best and the worst values of the optimization are ypes: and yyorst,
respectively.

Infinitesimal pressure p; is formulated as follows:
pi= Yworst — i) (10)

(onrst - ybest)

where, p; describes normalized value between 0 and 1 to prevent
the impact of various objective functions on the algorithm. The
initial value for p (pg) is considered 1.

2.4. Infinitesimal density

The total number of neighbor infinitesimals in the cell of the
present infinitesimal is called the infinitesimal density.

Here, the value of the other infinitesimals included in the D-
dimension hypercube is m. So, the infinitesimals density is (Dong
and Wang, 0000):

m
p=lT) (11)

where, [ is the cell side length.

2.5. The velocity of fluid infinitesimal

Since the value of the velocity can be achieved by Eq. (8), the
direction of it is not definite. To consider the flow direction in the
fluid infinitesimal, the vector summation of the pressure between
the current and the other infinitesimals should be achieved.

To prevent the effects of the given weight due to the distance
from the other infinitesimals, the distance is normalized.

Furthermore, the normalized value of the pressure is also
added for more convergence of the algorithm which is given
below.

n
— (Xj _Xi) (Xbest _Xi)
pDi= rand @ pj————— +rand @ Ppest X 2 X ———
l ; ! |(Xj —Xi)|2 ot |(Xbest _Xi)|2
J#
(12)

where, ?,- represent a vector value.
The new direction can be achieved by as follows:
—_
Di
Dy=y XD+ =+ (13)
| f|2
where, D, and D; are the new direction and the last direction,
respectively and y is the inertial factor.

By testing the simple FSO algorithm in our work, it shows
that it has some weaknesses for achieving the global optimization
for the considered purpose. Therefore, a strong exploration-based
method is required to improve the global optimization problem.

2.6. Modified FSO algorithm (MFSO)

World cup optimization (WCO) is a new meta-heuristic
method that shows good performance in global optimization in
different applications (Razmjooy et al., 2016; Bandaghiri et al.,
2016; Nejad et al., 2019; Razmjooy et al., 2018; Shahrezaee,
2017). In other words, WCO can be used as an auxiliary part for
the FSO algorithm to improve its ability to escape from the local
optimum.

To do so, the vector of the selective random parameters in the
system, i.e. C = [p;, [, y] are obtained by a combination of the
WCO algorithm with FSO algorithm.

In other words, the input solution vector for the hybrid WOA
isn x 3, in which n describes the number of initial population:

X7, x5, x31 = [pi I, v] (14)
and
Xc1,1 XM, 1
Preams = | Xc1,2 XcM |2 (15)
Xc13 0 X3

where, x[" is the parameters of the FSO algorithm that should be
optimally selected, Pgeqms is all continent population in the world,
M describes the quantity for the continents, and x;  is the ith team
of the j™ country.

Then, the rating of the teams in the WCO algorithm is obtained
by the following formula:

(Bx0+X)

Rank = 2 ——— 16
ank > (16)
,1 n
Xszyi (17)
n i=1
1 n
o= mle(xi —X)2 (18)
i=

where, X and o describe the average and the standard deviation
of the X, respectively, B describes the weight of the o which is
bounded between 0 and 1, and n describes the number of teams.

Afterward, Play-Off operator is applied to the algorithm as
follows.

P = [Xgest» Xrand] (19)

where, P describes the next population of the algorithm by the
size N x M, Xganq is @ random value, and:

1 1
5 X pr X (Ub — Lb) < Xpest < 5 X pr x (Ub + Lb) (20)

where, Ub and Lb describe the higher and the lower bounds of
the problem and p, describes a coefficient between Lb and Ub.
More information about WCO can be obtained from Razmjooy
et al. (2016).

Results of the application of the hybrid FSO and WCO al-
gorithms showed good performance, but with one objection;
this operation made this hybridization weaker from the point of
convergence speed.

For increasing the convergence speed, logistic mapping func-
tion (as a chaos function) is utilized such that the iteration for
the new populations is obtained based on chaos theory not com-
pletely randomly to increase the algorithm speed (Luo et al.,
2019; Schymura and Kolossa, 2019). The logistic Mapping of the
algorithm is obtained by the following:

LM = L1 — L") (21)
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Start

(LMWCO) algorithm: produce some random «—
population as continents and the teams ¢
v Initialize the FSO algorithm: Generate
Calculate the objective function of each solution population randomly
vector +
v Evaluate the objective function of
Apply Parameters each solution vector
Play-off Ranking v
v Apply parameters
Preliminary competition: Initial worth holding and ——»  Best Infinitesimal gt it al
finding the optimal value teams in the continents +
I i 7
The last competition: find the minimum/maximum values ISR
Re-initializing the Infinitesimal population
Termination Yes *
satisfied?
Evaluate the objective function of each solution
’ vector
No l 3
Apply parameters

Generate new population based on high value

record countries (Xpes+ L w Jand
PDp = [XBesl ’LmZ]

wCo

Logistic
Mapping

Worst Infinitesimal

v

Evaluate the pressure for the present infinitesimal

v

Evaluate the velocity and direction

r

Update position and velocity

v

Termination
satisfied?

Best Infinitesimal

lYes

Stop

FSO algorithm

Fig. 2. Flowchart diagram of the proposed MFSO algorithm.

where, n describes the adjusting coefficient such that € [0, 1]—
{0.25,0.5,0.75} and L? € [0, 1] is the initial random number. The
final algorithm is shown in Fig. 2.

3. Validation of the modified FSO algorithm

For efficiency analysis of the proposed modified FSO algorithm,
four standard functions have been validated on the proposed al-
gorithm (MFSO) and some different algorithms including genetic

algorithm (GA) (Holland, 1992), particle swarm optimization al-
gorithm (PSO) (Bansal, 2019), world cup optimization algorithm
(WCO) (Razmjooy et al., 2016), and standard whale optimization
algorithm (WOA) (Mirjalili and Lewis, 2016).

The simulations are applied by Matlab R2017b with a PC con-
figuration of 2.50 GHz CPU and 16.0 GB RAM. Table 1 illustrates
the benchmarks formulations that are used for the performance
analysis.

Table 2 illustrates the mead deviation (MD) and the standard
deviation (SD) values for the analyzed benchmarks.
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Table 1

The utilized benchmarks for efficiency analysis.
Benchmark  Formula Constraints Dimension
Rastrigin fi(x) = 10D + 32, (x* — 10 cos(27x;)) [-512, 512] 30-50
Rosenbrock  fo(x) = 305" (100 (32 — xi11) + (xi — 1?) [—2.045, 2.045]  30-50
Ackley f5(x) = —20exp (—0.2‘/5 P, x,?) —exp (g P, cos(an,-)) +20+e [-10, 10] 30-50
Sphere fax)= Y0, % [-512, 512] 30-50

Table 2
The results of the efficiency analysis by considering 30-dimensions.

Benchmark MFSO GA (Holland, 1992)

PSO (Bansal, 2019)

WCO (Razmjooy et al., 2016) WOA (Mirjalili and Lewis, 2016)

fi MD 0.00 70.61 74.24 2.19 2.58
SD 0.00 1.66 8.96 435 2.14
f MD 7.76 35.41 200.1 13.16 8.47
SD 2.42 27.15 59.00 462 173
f MD 0.00 3.19e—2 8.26 3.14e—3 3.17e—16
SD 0.00 2.14e—2 1.19 1.12e—3 0.00
fa MD 0.00 1.15e—4 8.27e—4 6.19e—9 9.65e—11
SD 0.00 3.14e-5 5.12e—4 3.28e—9 9.83e—17
-) AMA inputs and outputs are selected from four operational conditions.
1 130 pairs (about 60%) of the data is utilized for training the
Fuel In ¢ Input In proposed Elman neural network to find the optimum values, 44

Ou

1 H' =
0,
H, o
E —) Unused Air,
FXCTSS - Water, and
uel Out H,0 Heat
Anode Cathode -
Electrolyte ‘

Fig. 3. The general model of a PEMFC.

From Table 2, it is clear that in all four cost functions, the
Proposed ICWOA method gives promising results than the other
methods, especially the original WOA algorithm.

4. Methodology validation by proton exchange membrane

As before said, the main application of the PEMFC is to utilize
the hydrogen and the oxygen in the air for energy production.

In a PEMFC, a thin polymer membrane is employed as an
electrolyte to provide a catalytic environment for the develop-
ment of the necessary reactions on both sides of the platinum
electrodes. Here, the electrolyte blocks electrons to pass through
while allowing the protons.

In PEMFC, anode passes the Hydrogen through a catalyst (an-
ode) for splitting the gas into electrons and hydrogen protons.
Fig. 3 shows this process.

In the following, the dataset preparation for training the pro-
posed network is described. For performance validating of the
proposed method, it is performed on a PEMFC with the capacity of
the 250 W in 4 different operational conditions including 1.5/1.5
bar with 343.15 K, 2.5/3 bar with 343.15 K, 1/1 bar with 343.15
K, and 3/5 bar with 353.15 K.

The experimental data for the performance analysis here is
achieved by the model from Zhang and Wang (2013). 224 pairs of

pairs (10%) for validating, and 50 pairs (20%) for testing data.

In addition, a collection of sixty pairs by different operational
conditions is obtained from Mo et al. (2006) to take the polarizing
profiles and for testing the forecasting precision by the proposed
ENN model.

Before training the data, they are normalized into the interval
[0, 1] by the following equation:

’21‘ — Zl Zlmll’l (22)
Zimax — Zimin

where, z; describes the ith basic data, zjmin and zjmax are the

lower and the upper limitations of the original information in the

defined dataset, respectively.

5. Optimal modified ENN based on MFSO algorithm

In this section, the output voltage forecasting based on the
modified ENN model is analyzed due to the voltage values in the
present and the previous. The general form of the system is given
in Fig. 4.

Error evaluation is performed by the following cost function
which includes learning ENN for minimizing the sum of squared
error between the voltage of neural network model (Output) and
the experimental output voltage of the PEMFC as follows:

M
Error = min {Z(y - 51)2} (23)
i=1
where, M describes the number of samples for the empirical
information, and y and y are the voltage of the neural network
model and the output voltage of the empirical experiments of the
PEMFC.

The function Error should be minimized by the proposed MFSO
algorithm for achieving the center of the hidden neurons in the
ENN.

As aforementioned, the ENN model configured is initialized
based on the training dataset. Afterward, the proposed hybrid
optimization algorithm can be obtained for optimizing the hidden
nodes. The profile of the learning error for the identification of
the PEMFC parameters based on the proposed method is shown
in Fig. 5.
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Fig. 4. The general form of the proposed system.
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Fig. 5. The profile of the learning error for the sample data for PEMFC identification.
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Fig. 8. The training error profile of the PEMFC identification for 2.5/3 bar, 343.15 K.
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Fig. 10. The profile of the polarization for the experimental and predicted data for the operational conditions.

As before said, the learned model by the modified Elman
neural network has also calculated through 4 general datasets.
Figs. 6-9 show the results of the error profile for 4 datasets.

According to the above figures, it is clear that the error devi-
ation of the empirical values and the forecasted values are low
which makes the presented method a promising tool for the
identification of the PEMFC parameters.

In addition, the profile of the polarization for four different
operational conditions to prove the identification accuracy of the
improved ENN model is shown in Fig. 10.

In Fig. 10, the forecasted voltage in terms of current based on
the proposed neural network model is described. By considering
the obtained results, the forecasted values and the experimen-
tal are almost similar; this shows the proposed method’s high
efficiency.

6. Conclusions

Fuel cells are a kind of renewable energy sources that uses
electrochemical reactions for energy reduction. There are various
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models of fuel cells that are divided based on the electrolyte
applied. In this research, a proton exchange membrane fuel cell
(PEMEFC) is studied. The purpose of this paper is to investigate
the PEMFC model to improve its efficiency. In this study, a new
improved optimization algorithm based on hybridization of two
new optimization algorithm, including fluid search optimization
algorithm and world cup optimization algorithm is suggested. For
increasing the convergence time, the logistic mapping function
is applied to the algorithm. The efficiency of the presented opti-
mization algorithm is compared with some different optimization
algorithms. The designed algorithm is then applied to an im-
prove Elman neural network for modeling the nonlinear PEMFC.
Method’s validation is performed on four different operational
conditions. Final results show that the presented Elman network
has a high performance in the modeling of the nonlinear PEMFC.
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